Math 5026 Homework 5 (Math): Due Wednesday November 28

Problem 1. The Replacement Scheme says that for each formula $\varphi(x, y, \overline{v})$, we have an axiom of the form

$$\forall \overline{v} \, \forall A \, \big(\forall x \in A \, \exists ! y \, \varphi(x, y, \overline{v}) \to \exists Y \, \forall x \in A \, \exists y \in Y \, \varphi(x, y, \overline{v}) \big)$$

Use the Reflection Theorem to show that we can remove the "uniqueness assumption" about the y's. That is, ZF satisfies the stronger collection of axioms stating that

$$\forall \overline{v} \, \forall A \, \big(\forall x \in A \, \exists y \, \varphi(x, y, \overline{v}) \to \exists Y \, \forall x \in A \, \exists y \in Y \, \varphi(x, y, \overline{v}) \big)$$

For the remaining problems, let M be a countable transitive model of ZFC (or really, some suitable finite fragment of ZFC), $P = \langle P, \leq, 1_P \rangle$ be a forcing poset in M, and G be a P-generic filter over M.

Problem 2. Let $E \subseteq P$ with $E \in M$. Prove that either $G \cap E \neq \emptyset$ or $\exists q \in G \ \forall r \in E \ (q \perp r)$. Hint. Consider the set $D = \{ p \in P \mid \exists r \in E \ (p \leq r) \} \cup \{ q \in P \mid \forall r \in E \ (q \perp r) \}$.

Problem 3. For $p \in P$ and $E \subseteq P$, we say E is dense below p if $\forall q \leq p \, \exists r \leq q \, (r \in E)$. Prove that if $E \in M$ is dense below p and $p \in G$, then $G \cap E \neq \emptyset$.

Hint. Use Problem 2.

Problem 4. For $\sigma, \tau \in M^P$, prove that $\sigma_G \cup \tau_G = (\sigma \cup \tau)_G$.

Problem 5. For $\tau \in M^P$, let

$$\pi = \{ \langle \rho, p \rangle \mid \exists \langle \sigma, q \rangle \in \tau \ \exists r \in P \ (\ \langle \rho, r \rangle \in \sigma \ \land \ p \leq r \ \land \ p \leq q) \}$$

Show that $\pi_G = \bigcup \tau_G$.