Problem 1. Which axioms of ZFC are true in $\Omega\mathbb{N}$?

Problem 2. Let \mathbb{M} be a transitive class that satisfies the Comprehension Scheme and has the property that $\forall X \subseteq \mathbb{M} \exists y \in \mathbb{M} (x \subseteq y)$. Show that ZF proves that $\mathbb{M} \models \text{ZF}$.

The next problem asks you to prove the Tarski-Vaught criterion for elementary substructures. To make sure the notation is clear, $A \subseteq B$ denotes that A is a substructure of B. That is, the domain of A is contained in the domain of B and for all atomic formulas $\psi(\overline{x})$ and $\overline{a} \in A$, $A \models \psi(\overline{a})$ if and only if $B \models \psi(\overline{a})$. Here, I am being lazy and writing $\overline{a} \in A$ to indicate that each element in the tuple \overline{a} is an element of the domain of A. I will continue to use this abbreviation.

On the other hand, $A \preceq B$ denotes that A is an elementary substructure of B. That is, $A \subseteq B$ and in addition, for all formulas $\psi(\overline{x})$ and $\overline{a} \in A$, $A \models \psi(\overline{a})$ if and only if $B \models \psi(\overline{a})$.

Problem 3. Let L be a first order language and let A, B be L-structures. Prove that if $A \subseteq B$ and for every L-formula $\phi(x, y)$ and $a \in A$, there is a $c \in B$ such that $B \models \phi(c, a)$ if and only if $B \models \phi(c, a)$, then $A \preceq B$. (The key point in this criterion is that you only have to look at satisfaction in the structure B.)

Hint. You can assume that formulas are written using only the connectives \neg, \land and \exists. You need to show that for every formula $\psi(\overline{x})$ and tuple $\overline{a} \in A$, $A \models \psi(\overline{a})$ if and only if $B \models \psi(\overline{a})$. Proceed by induction on ψ.

The last problem is a version of the Downward Lowenheim-Skolem theorem that we will use later. You can (and should) use the Axiom of Choice when proving it.

Problem 4. Let L be a countable language and let B be infinite L structure. Prove that for any $X \subseteq B$, there is an elementary substructure $A \subseteq B$ such that $X \subseteq A$ and $|A| \leq \max\{|X|, \omega\}$. Furthermore, if X is infinite, then $|A| = |X|$.

Hint. Let B be the domain of B. For each L-formula $\phi(x, \overline{y})$, define a function $f_{\phi} : B^k \to B$ (where $k =$ the length of the tuple \overline{y}) such that for all $\overline{b} \in B^k$, if $B \models \exists x \psi(x, \overline{b})$, then $B \models \psi(f(\overline{b}), \overline{b})$. Now use the Tarski-Vaught criterion and a bit of counting to get the desired result.