Math 5026: Problem Set 4, Due Wednesday October 31

Problem 1. Which axioms of ZFC are true in \mathbb{ON} ?

Problem 2. Let \mathbb{M} be a transitive class that satisfies the Comprehension Scheme and has the property that $\forall X \subseteq \mathbb{M} \exists y \in \mathbb{M} (x \subseteq y)$. Show that ZF proves that $\mathbb{M} \models ZF$.

The next problem asks you to prove the Tarski-Vaught criterion for elementary substructures. To make sure the notation is clear, $\mathcal{A} \subseteq \mathcal{B}$ denotes that \mathcal{A} is a substructure of \mathcal{B} . That is, the domain of \mathcal{A} is contained in the domain of \mathcal{B} and for all atomic formulas $\psi(\bar{x})$ and $\bar{a} \in \mathcal{A}$, $\mathcal{A} \models \psi(\bar{a})$ if and only if $\mathcal{B} \models \psi(\bar{a})$. Here, I am being lazy and writing $\bar{a} \in \mathcal{A}$ to indicate that each element in the tuple \bar{a} is an element of the domain of \mathcal{A} . I will continue to use this abbreviation.

On the other hand, $\mathcal{A} \leq \mathcal{B}$ denotes that \mathcal{A} is an elementary substructure of \mathcal{B} . That is, $\mathcal{A} \subseteq \mathcal{B}$ and in addition, for all formulas $\psi(\overline{x})$ and $\overline{a} \in \mathcal{A}$, $\mathcal{A} \models \psi(\overline{a})$ if and only if $\mathcal{B} \models \psi(\overline{a})$.

Problem 3. Let \mathcal{L} be a first order language and let \mathcal{A} , \mathcal{B} be \mathcal{L} -structures. Prove that if $\mathcal{A} \subseteq \mathcal{B}$ and for every \mathcal{L} -formula $\varphi(x, \overline{y})$ and $\overline{a} \in \mathcal{A}$,

there is a $c \in \mathcal{B}$ such that $\mathcal{B} \models \varphi(c, \overline{a}) \Leftrightarrow$ there is a $c \in \mathcal{A}$ such that $\mathcal{B} \models \varphi(c, \overline{a})$

then $\mathcal{A} \leq \mathcal{B}$. (The key point in this criterion is that you only have to look at satisfaction in the structure \mathcal{B} .)

Hint. You can assume that formulas are written using only the connectives \neg , \land and \exists . You need to show that for every formula $\psi(\overline{x})$ and tuple $\overline{a} \in \mathcal{A}$, $\mathcal{A} \models \psi(\overline{a})$ if and only if $\mathcal{B} \models \psi(\overline{a})$. Proceed by induction on ψ .

The last problem is a version of the Downward Lowenheim-Skolem theorem that we will use later. You can (and should) use the Axiom of Choice when proving it.

Problem 4. Let \mathcal{L} be a countable language and let \mathcal{B} be infinite \mathcal{L} structure. Prove that for any $X \subseteq \mathcal{B}$, there is an elementary substructure $\mathcal{A} \subseteq \mathcal{B}$ such that $X \subseteq \mathcal{A}$ and $|\mathcal{A}| \leq \max\{|X|, \omega\}$. Furthermore, if X is infinite, then $|\mathcal{A}| = |X|$.

Hint. Let *B* be the domain of \mathcal{B} . For each \mathcal{L} -formula $\varphi(x, \overline{y})$, define a function $f_{\psi} : B^k \to B$ (where k = the length of the tuple \overline{y}) such that for all $\overline{b} \in B^k$, if $\mathcal{B} \models \exists x \psi(x, \overline{b})$, then $\mathcal{B} \models \psi(f(\overline{b}), \overline{b})$. Now use the Tarski-Vaught criterion and a bit of counting to get the desired result.