Math 5026: Problem Set 3 (Philosophy), Due Monday October 22

Problem 1. Let A be a nonempty set of cardinals. Prove that sup A is a cardinal.

Problem 2. Let κ be an infinite regular cardinal and let \mathcal{F} be a family of sets with $|\mathcal{F}| < \kappa$ and $|X| < \kappa$ for each $X \in \mathcal{F}$. Prove that $|\bigcup \mathcal{F}| < \kappa$.

Problem 3. Let κ be an infinite cardinal. Prove the following properties of $H(\kappa)$.

- 1. $H(\kappa)$ is transitive.
- 2. For a transitive set $x, x \in H(\kappa)$ if and only if $|x| < \kappa$.
- 3. $H(\kappa) \cap \mathbb{ON} = \kappa$
- 4. If $x \in H(\kappa)$, then $\bigcup x \in H(\kappa)$.
- 5. If $x, y \in H(\kappa)$, then $\{x, y\} \in H(\kappa)$ and $\langle x, y \rangle \in H(\kappa)$.
- 6. If $x \in H(\kappa)$ and $y \subseteq x$, then $y \in H(\kappa)$.

Problem 4. Let κ be an infinite regular cardinal.

- **4(a).** Prove that if $y \subseteq H(\kappa)$ and $|y| < \kappa$, then $y \in H(\kappa)$.
- **4(b).** Prove that if $A \in H(\kappa)$, then $A \times A \in H(\kappa)$.
- **4(c).** Prove that if $z \in H(\kappa)$ and $f: z \to H(\kappa)$, then $f \in H(\kappa)$ and range $(f) \in H(\kappa)$.

Hint for Problem 1. I would break this problem into two cases. First, suppose that A has a greatest element. That is, there is a $\kappa \in A$ such that for all $\lambda \in A$, $\lambda \leq \kappa$. This case is straightforward.

Second, suppose that A doesn't have a greatest element. You know that $\sup A = \alpha$ for some $\alpha \in \mathbb{ON}$. For a contradiction, suppose that α is not a cardinal. What does that tell you about the relationship between $|\alpha|$ and α ? How is that helpful?

Hint for Problem 2. Let $\lambda = |\mathcal{F}|$. Fixing a bijection between λ and \mathcal{F} , you can think of $\mathcal{F} = \{X_{\alpha} \mid \alpha < \lambda\}$. Suppose for a contradiction that $|\bigcup \mathcal{F}| \geq \kappa$. This means you can fix an onto function $f : \bigcup \mathcal{F} \to \kappa$. Because $\lambda < \kappa$ and κ is regular, you will arrive at the desired contradiction if you can produce a cofinal function $g : \lambda \to \kappa$. Think about how you can define $g(\alpha)$ using f and X_{α} so that g is the desired cofinal function.

Hint for Problem 3. The proof for each of these properties is very short. It might be helpful for you to start by noting a couple of general facts about transitive closures. For example, you might start by proving that (1.) if $y \in x$ or $y \subseteq x$, then $\operatorname{trcl}(y) \subseteq \operatorname{trcl}(x)$, and (2.) if x is transitive, then $\operatorname{trcl}(x) = x$. These properties should help you a lot.

Hint for Problem 4. For 4(a), use Problem 2 to help you. For 4(b), use Problem 4(a) and Problem 3 to help you. For 4(c), use 4(a) and 4(b) to help you.