Set Theory: Problem Set 1 (Philosophy), Due Friday Sept 14

Problem 1. Use our set theoretic definition of pairs to prove that $\langle a, b \rangle = \langle c, d \rangle$ if and only if a = c and b = d.

Let A and B be sets and let $f:A\to B$ be a function between them. Three important properties that functions can have are:

- f is one-to-one if $a_0 \neq a_1$ implies that $f(a_0) \neq f(a_1)$,
- f is onto if for every $b \in B$, there is an $a \in A$ such that f(a) = b, and
- f is a bijection if f is both one-to-one and onto.

If we have two functions $f: A \to B$ and $g: B \to C$, the composition function $g \circ f: A \to B$ is defined by $(g \circ f)(a) = g(f(a))$. That is, $g \circ f$ takes an input from a, applies f to a to produce an element $f(a) \in B$, and then applies g to f(a) to produce an element $g(f(a)) \in C$.

Problem 2. Let $f: A \to B$ and $g: B \to C$ be functions.

- **2(a).** Prove that if f and g are one-to-one, then so is $g \circ f$.
- **2(b).** Prove that if f and g are onto, then so is $g \circ f$.
- **2(c).** Prove that if f and g are bijections, then so is $g \circ f$.

For the next problem, recall that set theoretically, $2 = \{0, 1\}$. Fix an arbitrary set A. For $Y \subseteq A$, the *characteristic function of* Y is denoted $\chi_Y : A \to 2$ and is defined by

$$\chi_Y(a) = \begin{cases} 0 & \text{if } a \notin Y \\ 1 & \text{if } a \in Y \end{cases}$$

Problem 3. Let A be a set. Prove that the function $\Delta : \mathcal{P}(A) \to 2^A$ given by $\Delta(Y) = \chi_Y$ is a bijection.

Problem 4. Let A be a set and let $g: A \to \mathcal{P}(A)$. Prove that g cannot be onto by showing that $Y = \{a \in A \mid a \notin g(a)\}$ is not in the range of g.

Hint. For a contradiction, assume g(b) = Y for some $b \in A$. Is $b \in Y$?

Problem 5. Let $(A, <_A)$ and $(B, <_B)$ be well orders. Define $<_{A \times B}$ on $A \times B$ by

$$\langle a_0, b_0 \rangle <_{A \times B} \langle a_1, b_1 \rangle \Leftrightarrow (b_0 <_B b_1) \vee (b_0 = b_1 \wedge a_0 <_A a_1)$$

(The linear order $<_{A\times B}$ is a called the *reverse lexicographic order*.) Prove that $(A\times B,<_{A\times B})$ is a well order. You can assume it is a linear order and just show it is well founded.

The last problem is the heart of what is called the Schroeder-Bernstein Theorem. For this problem, the following notation is useful. Let $f: X \to Y$ be a function. For $Z \subseteq X$, let

$$f[Z] = \{ y \in Y \mid \exists z \in Z (f(z) = y) \}$$

That is, $f[Z] = \text{range}(f \upharpoonright Z)$.

Problem 6. Let A and B be sets such that there are one-to-one functions $f: A \to B$ and $g: B \to A$. Prove that there is a bijection $h: A \to B$.

Hint. Fix one-to-one functions $f:A\to B$ and $g:B\to A$. We need to define a bijection $h:A\to B$. Define decreasing sequences of subsets of A and B indexed by $\mathbb N$

$$A = A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$$

$$B = B_0 \supseteq B_1 \supseteq B_2 \supseteq A_3 \supseteq \cdots$$

by $A_0 = A$, $B_0 = B$, $A_{n+1} = g[B_n]$ and $B_{n+1} = f[A_n]$.

Step 1. Consider A_0 , A_1 , A_2 , B_0 , B_1 and B_2 .

- (a) Prove that f gives a bijection between $A_0 \setminus A_1$ and $B_1 \setminus B_2$.
- (b) Analogously, prove that g gives a bijection between $B_0 \setminus B_1$ and $A_1 \setminus A_2$.

Step 2. Using Step 1, show that $h: A_0 \setminus A_2 \to B_0 \setminus B_2$ defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A_0 \setminus A_1 \\ g^{-1}(x) & \text{if } x \in A_1 \setminus A_2 \end{cases}$$

is a bijection.

Step 3. Using essentially the same arguments, show that for any $n \in \mathbb{N}$:

- (a) f gives a bijection between $A_{2n} \setminus A_{2n+1}$ and $B_{2n+1} \setminus B_{2n+2}$ and
- (b) g gives a bijection between $B_{2n} \setminus B_{2n+1}$ and $A_{2n+1} \setminus A_{2n+2}$.

Step 4. Let $A_{\infty} = \bigcap_{n \in \mathbb{N}} A_n$ and $B_{\infty} = \bigcap_{n \in \mathbb{N}} B_n$. Prove that f gives a bijection between A_{∞} and B_{∞} .

Step 5. Prove that $h: A \to B$ given by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A_{2n} \setminus A_{2n+1} \text{ for some } n \\ g^{-1}(x) & \text{if } x \in A_{2n+1} \setminus A_{2n+2} \text{ for some } n \\ f(x) & \text{if } x \in A_{\infty} \end{cases}$$

is a bijection.