CHAPTER 3

Relations and Partitions

Given a set of objects, we may want to say that certain pairs of objects are telated
in some way. For example, we may say that two people are related if they have the
same citizenship or the same blood type, or if they like the same kinds of food. If a
and b are integers, we might say that a is related to b when a divides b. In this chap-
ter we will study the idea of “is related to” by making precise the notion of a refa-
tion and then concerntrating on certain relations called equivalence relations, The-
last two sections of the chapter introduce order relations and the theory of graphs,

C;i:tesian Products and Relations

When we speak of a relation on a set, we identify the notion of “a is related to &” with
the ordered pair (g, b). For the set of all people, if Phoebe and Monica were born on
the same day of the year, then the pair (Phoebe, Monica) is in the relation “has the
same birthday as.” Thus a relation may be defined simply as a set of ordered pairs.

DEFINITIONS Let A and B be sets, R is arelation from A to B iff Ris
asubset of A x B. A relation from A to A is called a relation on A.

If (a, b) € R, we write @ R b and say a is R-related (or simply related)
to b. If (a, b) & R, we writea K b.

Examples, IfA=1{-1,2,3,4}and B = {1,2, 4,5, 6}, let
R = {(_la 5)9 (27 4)5 (23 1): (4s 2)}:
§=1{(5,2),(4,3),(1,3)} and
T= {(_11 3)! (27 3)! (4s 4)}'
Then R is a relation from A to B, S is a relation from B to A and the set T is a rela-
tion on A,

135




138

CHAPTER 3 Relations and Partitions

We could describe the relation R by writing —1 R5, 2R4, 2R 1, and 4 R 2.
Since (3, 5) & R, we write 3 K 5. We can also describe R by listing the pams of Rina
two-column table, by displaying the relation with an arrow diagram, or by drawing the
graph of R as in Figure 3.1.1.
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(a) Table for R {b) Arrow diagram for R {c) Graph of R

Figure 3.1.1

An equation, inequality, expression, or graph is often used to describe a relation, :
especially when listing all pairs is impractical or impossible. For example, the rela- s
tion LT = {(x,y) € R x R: x < y} is the familiar “less than” relation on R, since i
x LTy iff x < y. The graph of LT is shown (shaded) in Figure 3.1.2.

Figure 3.1.2

You have worked with the graphs of relations in previous courses, because, as
we will see in Chapter 4, functions are relations that satisfy an additional condition.

Example. The phone faceplate pictured on the next page may be used to define a
relation from the set of digits A ={0,1,2,..., 91 to the sei of 26 letters
['={A,B,C,...}. Therelation R defined by “appear on the same phone button” is
asubset of A x T containing 24 pairs. The pair (4, G) < R since 4 and G appear on
the same button. Likewise, 9 R Y and 6 R M are true. (3, T) & Rsince 3 and T do
not appear together. Also 1 B E and 4 ¥ P are true.
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Consider the relation § on the set N x N given by (m, n) S(k, ) iff
m -+ n=k-+j. Then (3, 17) S (12, 8), but (5, 4) is not S-related to (6, 15). Notice
that § is a relation from N x N to N x N and consists of ordered pairs whose
entries are themselves ordered pairs. For this reason, the description above is some-
what simpler than defining S with set notation; K

S={{(n.nm), k&N eNxN)x (NxN)m+a=Fk+j}

The empty set &J and the set A x B are relations from A to B. In general,
there are many different relations from a set A to a set B because every subset of

A x B is arelation from A to B. In Exercise 12 you are asked to prove that if 4

has m elements and B has n elements, then there are 2™ different relations from
AtoB.

DEFINITIONS The domain of the relation R from A to B is the set
Dom (R) = {x € A: there exists y € B such that x R y}.

The range of the relafion R is the set
Rug (R) = {y € B: there exists x € 4 such that x R y}.

Thus thé domain of R is the set of all first coordinates of ordered pairs in R, and
the range of R is the set of all second coordinates. By definition, Dom (R) € A and

"Rng (R) C B.

For the relation R= {(—1,5),(2,4),(2, 1), (4,2)}, Dom (R) = {—1, 2,4}
and Rng (R) = {1, 2, 4, 5}. For the relation LT on R, where x L'y iff x < y, both
the domain and range are R. For the relation defined by “appears on same phone but-
ton,” the domain is {2, 3,4, 5, 6, 7, 8, 9} and the range is the set of ail capital letters
except Q and Z. '

Every set of ordered pairs is a relation. If M is any set of ordered pairs, then M
is a relation from A to B, where A and B are any sets for which Dom (M) € A and
Rng (M) < B.
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2 2

Example. letS= {(x neR xR 224 + g;g < 1} The graph of § is the shaded

area in Figure 3.1.3. The domain is [—18, 18] and the range is [—8, 8].

; R
/> x  |Rog(s) = [-8,8]
I

| Dom(5) = [-18,18] |
Figure 3.1.3

‘We can use a directed graph or digraph to represent a relation R on a small
finite set A. We think of the objects in A as points (called vertices) and the relation
R as telling us which vertices are connected by arcs. Arcs are drawn as arrows:
There is an arc from vertex a to vertex b iff (a, b) € R. An axc from a vertex to itself
is called a loop. For example, letA = {2, 5,6, 12} and R = {(6, 12), (2 6), (2,12},
(6, 6), (12, 2)}. The digraph for R is given in Figure 3.1.4.

The digraph of the relation “divides” on the set {3, 6, 9, 12} has a loop at each
vertex, as shown in Figure 3.1.5.

DEFINITION For any set A, the relation Iy = {{x, x): x € A} is called
the identity relation on A.

For A ={1,2,a, b}, I, = {{1, 1), (2, 2), {a, a), (b, b)}. Clearly, for any set A,
Dom ([4) = A and Rng (I;) = A. The graph of the idenity relation on [-2, &% Is
shown in Figore 3.1.6.
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The remainder of this section is devoted to methods of constructing new rela-
‘tions from given relations, These ideas are important in the study of refions, #wd
will'be used again when we study Rsmctions.

Since relations Irom set A to set B ate subsets of 4 x B, the union and intersec-
tion of two relations from A to B are again relations from A to B,

Example, LetX=[2,4]and ¥ =(1, 33U {4}. Let S be the relation on R déefined
by xSyiff x € X, and let T be the relation on R defined by x Tyiffwne¥. The
graphs of S and T"are given in Figures 3.1.7(a) and (b). Figure 3.1.7(c) shows the graph
of SNT. Note that S=X xR, T'=Rx ¥, and SNT=Xx ¥, Figure 3.1.7(d)
shows the graph of SU T,
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Figure 3.1.7

DEFINTTION  If Ris a relation from A to B, then the inverse of R is the
relation

R ={(y,%): (x,y) € R},

N

Since inversion is a matter of switching the order of each pair in a relution, if
R is a relation from A to B, then R is a relation from B to A. '

Examples. The inverse of the relation R = {(L, B), (1, ¢), (2, )} is the relation
R1={(h 1), (c, 1), (¢, 2}). For any set A, the inverse of 14 1s 1 itself. For the real
numbers, the inverse of the “less than” relation LT = {, ) eRxR:x < y}isthe
“greater than” relation on R because

(e, ) e LT7Yiff (y,x) e LT
iffy<x
if x > .

In case R is a relation on A, the digraph of R~ is obtained from the digraph of
R by copying all the loops and arcs, but reversing the direction of the arrows for
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xes. Fgure 3.1.8 shows the digraphs of R and R, where R is the relafion < on
the set {5, {13, [34, {1, 2}}.

[1,2}*9

(a) &

Figure 3.1.8 :

Example. Let EXP be the relation on R given by x EXP y iff y = £*. The inverse of
EXP is given by x EXP~! y iff x = ¢’. We know that x = ¢’ iff y = Inxiff xIn y,
where In is the natural logarithm. Thus, the inverse of EXP is the relation In. The
familiar graphs of EXP and In are given in Figuse 3.1.9.

(8) x EXPy: y=¢* M in=EXPhy=lnzx
Figure 3.1.8

In the previous example, Dom (EXP) = R and Rng (EXP) == {0, 00), while
Dom (In) = (0, co) and Rng(In) = R. The next theorem says that this switch of the
domain and range of a relation to the range and domain of inverse relation always
happens.

Let R be a relation from A to B,

(@) Dom(R~I)=Rng(R).
() Rnug(R-') = Dom (R).
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Proof,

(a) b eDom (R™!) iff there exists a € A such that (b, a) € R~ iff there exists
a € A such that (g, b) € R iff b € Rag (R).
(b)  The proof is similar to the proof for part (a}. : |

‘(iven a relation from A to B.and another from B to C, composition is a method
of coastructing a relation from A to C.

DEFINITION Let R be a relation from A to B, and let § be a relation
from B to C. The composite of R and §'is

S o R = {{(a, ¢): there exists b € B such that (g, b) € R and (b, ¢) &€ 5}

The relation S © R is a relation from A to Csince § @ R € A x C. Itis always true
that Dom (S © R) € Dom (R) but it is not always true that Dom (S5oR) =
Dom (R). (See Exercise 9.)

We have adopted the right-to-left notation for § © R that is commonly used in
analysis courses. To determine § © R, you need to remember that R is the relation
from the first set to the second and S is the relation from the second set to the third.
Thus, to determine S © R, we apply the relation R first and then S,

Example. LetA={1,2,3,4,5},andB = {p,q, 7.5 t},and C'= {x,v,z, w}. Let
R be the relation from A to B:

R={(1,p), 1L g, 2, q, 3,1 {45}
and § the relation from B to C:

S={(p,x). (g x} (g, (2, 1D}

Figure 3.1.10

These relations are illustrated in Figure 3.1.10 by arrows from one set to another.
An element g from A is related to an element ¢ from C under § o R if there is
at least one “intermediate” element b of B such that {a, b)) =R and (b, c) €8§.
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Theorem 3.1.2

For example, since (1,p) ¢ R and (p,x) € §, then (1, x)= SoR. By following
all possible paths along the arrows from A to B and B to C in Figure 3.1.10, we
have

SoR={(1,x,1,» Zx, 2y &2}
If R is a relation from A to B, and § is a relation from B to A, then R o S and

S o R are both defined, but you should not expect that R 0§ = 5% R. Even when
R and § are relations on the same set, it may happen that Re §£ 5o R.

Example. LetR={(x,y)eRxRiy=x+1}andS={(x,y) eRx R:y=x2}.

Ro 8 ={{x,y): (x,7) €S and {z, ¥} € R for some z € R}
= {(x,y:z=x*and y = z | | for some z € R}
= {(x, yy=x"+1}.

SoR={(x,y) (x,z) €Rand (z,) & § for some z € R}
= {(x,y):z=x+ 1 and y = z* for some z € R}
=@y y =G+

Clearly, S © R # R © S, since x2 + 1 is seldom equal to (x + 1)2.
The last theorem of this section presents several results aboui inversion, com-

position, and the identity relation. We prove part (b) and the first part of (c), leaving
the rest as Exercise 10.

Suppose A, B, C, and D are sets. Let R be arelation from A to 8, § be arelation from
B to C, and T be a relation from C to D.

(@ ®H'=R .
(by To{SoR)=(ToS)oR,socomposition is associative.
(¢c) IpoR=RandRoly=R.

d @EoRIT=frlosgl

Proof.

(h)  Thepar (x, wyeTo(SoR)forsomexcAandweD
iff GzeO)f{x,2)eSoRand(z,w) €T}

Gz OFy=B)({(x,v) €Rand (y,z) € 5) and (z, w) & T]

iff (Jze O Iye B[, yv)eRand(y,z) = Sand (g, w) € T

iff (AyeBYdze O)(x,y)e Rand{y, z) € Sand (z, w) € T']
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iff (AyeB)x,y)eRand (Gze C)(y,z) & Sand (z, w) € D]

iff (Jy e B)}{x,y) e Rand (y,w)e T o 5]

iff (x;wye (ToSyoR.
Therefore, To (SoR)=(To 8§ o R
(We first show that Ipo R C R.) Suppose (x, ¥) € Iz © R. Then there exists
z€ B such that (x,z) € R and (5, ) €Iy. Since (g, ¥)&lp, z=y. Thus
(%, ¥y € R{since (x, yy=(x, 7) € R). _
Conversely, suppose (p, g) € R. Then (g, q) & Ip and thus {(p, g) € [z o R,
ThuslzoR=R. ]

The storage and manipulation of data in tables (n-tuple relations) is an important
field of computer science called relational databases. Operations such as union and
composition for ordered pairs may be extended to operations on n-tuples, One gen-
eralization of composition in relational databases 1s the “join” of two tables.

Example. Suppose the student information at a small university includes both
directory information and billing information. We let A be the set of first names, B
be last names, C be 4-digit student TD numbers, D be names of campus residence
halls, E be residence hall room numbers, F be tuition amounts due, and G be room
charges due.

The student records in the directory may be described in a table R:

R (darectory)

First Name Last Name Student ID Rcs1dcnce Hail Room Number

Krista Maire 1234 Orlando 7T
Harold Dorman 2490 Mountain 435
Ferlin Husky 5555 Dove 213A
Martha Reeves 3215 Vandella 238
Kim Anen 6920 Bowie ) 1679

The directory relation R is a subset of A x B x C x D x E consisting of five
5-tuples. The 5-tuple (Krista, Maire, 1234, Orlando, 77} is one student record in the
directery R. '

The financial information relation S is a subset of € x F x &

& {financial)

Tuition -.Room Charges

%30 40
$150 $20
875 $25
30 $0
50 $60




144 CHAPTER 3 Relations and Partitions

The join of these two tables, denoted R ® S, is a table with 7 columns. The
rows of the table are obtained by merging 5-tuples from R and 3-tuples from S that
share a common 1D mumber:

R®S
First Last Student Residence Room Room
Name Name D Hall Number Tuition Charges
Krista Maire 1234 Orlando 77 $80 $40
Harold Dorman 2490 Mountain 455 $130 $20
Ferlin Husky 5555 Dove 213A $75 $25
Martha Reeves 3215 Vandella 238 $0 $0
Kim Anen 6920 Bowie 1979 $0 $60

The join operation is one of several database operations that allow a manager
to create tables in response to requests for information (queries). There are many
advantages to storing data in simple tables like R and S, but requests such as “What
is the room charge for Harold Dorman?” cannot be answered using either of the
tables by itself.

Exercises 3.1

1. Let T be the relation {(3, 1), (2,3), (3, 5), (2,2), (1, 6), (2, 6), (1, 2)). Find

(a) Dom (7). (b) Raog (7).

(© T. (@ (rH L
2. Find the domain and range for the relation W on R given by x Wy iff
* {a) y=2+L b y=x*+3

‘ 1

s Q) y=oiL @ y=—
* (&) y=ah M x| <2andy=3.

® x| <2ory=3. h) y#=x

3. Sketch the graph of each relation in Exercise 2.
4. The inverse of R={{x,y) € R x R: y = 2x + 1} may be expressed in the

-1
form R~! =_{(x, neR xRy :x—2—}, the set of all pairs {x, y) subject to

some condition. Use this form to give the inverses of the following relations.
In (i), (), and (k), P is the set of all people.
* (@) Ri={xyeRxRy=x}
® R={xyeRxRy=-5x+2}
+ (@) RB={x.esRxRy=Tx-10}
(d) Ri={(x,)eRxRy=x2+2}
x (&) R5={(x,y)ERxR:y=——4x2+5}
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B Ri={(x,eRxRy<x+1}

@ Ri={xyeR xR y>3—4})

(h) Ry= {(x,y)ER x R:y:—%x—}
x—2

() Ry={(x,y) € P x P:yis the father of x}

() Rup=[(x,y) € P x P:yis a sibling of x}

(k) Ryy={{x,y)eP x P:yloves x}

Let R={(1,5),(2,2),3,4),5, 2},5=1{(2,4),(3,4),(3,1),(5,35)}, and
T={(1,4), (3,5, (4, 1)}}. Find _

(@ RodS. * (b) RoT.

(cy ToS. * (d) RoR.

(e) SoK ® ToT.

® Ro(SoT) (h)y (RoS)oT.

Find these composites for the relations defined in Exercise 4,

(@ RioR () Ri°R;

© RyoR; * (d) R0R;

(€) RyoRy ) Ri°R,

(® R4oRs (h) RsoR,

() RsoRy () RscRs

(k) RioRy M RsoR;

(m) RzoRg * () R3oRy

(0) RgcRs o (p) RyoRg

Give the digraphs for these relations on the set {1, 2,3},

(@) = ' ) S={(1,3),2 1D}

0 =< (d) S, where§={(1,3),(2 1}
(&) # H Sof, where S ={(1, 3), (2, 1)}
Let A = {a, b, ¢, d}. Give an example of relations R, S, and T on A such that
(a) RoS#£S¢eR. ) (SeR)1#SToR™L

{¢) SoR=ToRbutS#T.

{d) R apd S are nonempty, and R o 5 and § © R are empty.

Let R be a relation from A to B and § be a relation from Bto C.

(a) Prove that Dom (§ ¢ R) € Dom (R).

(b) Show by example that Dom (S o R) == Dom (R} may be false.

{c) Which of these two statements must be true:

Rng(S) CRng(SoR)} or Rog(SoR)C Rng(S)?

Give an example to show that the other statement may be false.
Complete the proof of Thecrem 3.1.3.
Show by example that (A x B) x C=A x (B x C) may be false.

Prove that if A has m elements and B has » elements, then there are 2™
different relations from A to B.
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Proofs to Grade

13. (a} LetR be arelation frem A to B, For a € A, define the vertical section of

i4.

15.

Ratatobe R, = {y € B: (a,y) € R}. Prove that UJRﬂ = Rng (R).

aEA
(b} LetR be arelation from A to B. For a € A, define ﬂfe horizontal secfion
of R atb tobe ;R = {x € A: (x, b) € R}. Prove that |}, R = Dom (R).

We may define ordered iples in terms of ordered pgi?g by saying that
(a, b, c) = ((a, b), ¢). Use this definition to prove that {(a, b, ¢} = (x, y, z) iff
a=xandb=yandec=1z
Assign a grade of A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A.
(a) Claim. (AxB)UC=(AxC)U(BxC(C).
“Proof” xs(AxB)UC
ff xreAxBorxeC
ffxeAandxeBorxeC
iff xeAx CorxeBxC
ffre(Ax CQOUB x Q). Bl
() Claim. fACBand CC D, thenA x CCBxD.
“Proof.” Suppose A x C ¢ B x D. Then there exists (a,c) €A x C
with (@, ¢) ¢ B x D. But (@, ¢) € A x C implies that a€ A and ¢ € C|
wheress (a, ¢) & B x D implies that a &€ B and ¢ ¢ D. However, A CB
and CCD, sc ae B and ¢ £ D. This is a contradiction. Therefore,
AxCCBxD, B
(¢) Claim. IfAxB=AxCand A=, then B=C.
“Proof.”’ Suppose A x B=A x C. Then

AxB AxC

A A
Therefore B = C. B

@) Claim. FfAxB=AxCandA=#, then B=C,

“Proaf.” To show -B=C, sﬁppose be B. Chovose any a€A.

Then (a,b) = A x B. But since A x B=A x C, (a,5) e A x C. Thus

b ¢ C. This proves B C C, A proof of CC B is similar. Therefore,

B=C ®
(e¢) Claim. LetR and § be relations from A to B and from B to C, Tespec-

tively. Then So R = (Ro §)~L

“Proof” The pair (x,y) € S o Riff (y,x) eR o Siff (x,y) € (Re $)~!

Therefore, So R = (Ro §)™L. a
(f) Claim. LetRbearelation fromAtoB. ThenIy C R 1oR.

“Proof.” Suppose (x, x) € I4. Choose any y € B such that (x, ¥} € R.

Then, (y, x) & R~ Thus (x,x) € R™' o R. Therefore, [ CR™'oR. &
() Claim. Suppose Ris arelation from A to B. Then R~ o R € I
“Proof.” let (x,y)€R-'oR. Then for some z< B, (x,z) € R and
(z,y) € R~L. Thus (v, z) € R. Since (x, z) € Rand (v, z) € R, x = y. Thus
(x,y)=(x,x)and x € A, so(x,y) € L4 2
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Equivalence Reiations

The goal of this section is to describe a way to equate objects in a set according
to some value, property, or meaning. We might say that among all students who
completed a certain math class, students are equivalent if they had the same
numeric score on the final exam. With this meaning of equivalence, a student
with a score of 87 on the final exam is related to every other student with 4 eoore
of 87 and not related to any other student. We could also have said that two stu-
dents are equivalent if they have the same favorite movie, or if they have the
same blood type.

The three propertics we define next, when taken together, comprise what we
mean by objects being equivalent.

DEFINITIONS LetAbeasetand Rbea relation on A.

Risreflexiveon A iff forall x e A, xR x.
R is symmetric iff forallxandy € A, if xRy, theny R x.
R is transitive iff forallx, y,andz € A, if x Ryandy Rz, thenx R z.

The relation R, defined as “had the same final exam score,” on the set C of all
students in a given class has all three of these properties. R is symmetric becanse if
student x had the same score as student y, then student y must have had the same
score as student x. R is transitive because if student x had the same score as student
y and student y had the same score as student z, then x bad the same score as z.
Finally, for every student x in C, x must have had the same score as x. Thus R is
reflexive on C.

 To prove that a relation R is symmetric or transitive, we usually give a direct
proof, because these properties are defined by conditional sentences. A proof that
R is reflexive on A is different. What we must do is show that for all x € 4, x is
R-related 1o x.

For a relation R on a nonempty set A, only the reflexive property actually
asserts that some ordered pairs belong to R. The empty relation & is not reflexive
on a set A except in the special case when A is the empty set. The empty relation 1]
is, however, symmetric and transitive for any set A. See Exercise 4. For each of the
three properties there is an alternate condition (involving the identity relation or the
operations of inversion or composition) that may be used to prove that a relation has
or does not have that property. See Ixercise 13.

To prove that a relation R on a set A is not reflexive on A, we must show that
there exists some x € A such that x K x. Since the denial of “If x Ry then y R x” is
“¢ Ry andnoty R x,” arelation R is not symmetric iff there are elements x and yin
A such that x R y and y £ x, Likewise, R is not transitive iff there exist elements x,
y,and zin A such that x Ry and y R z but x K z.
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Examples. For B=1{2,5,6,7}, let §={(2,5),45,6),(2,6), (7,7} and T=
{(2, 6), (5, 6)}. Since 6 8 6 and 2 7' 2, neither § nor T is reflexive on B. The relation
§ is not symmetric because 2 § 5, but 5 § 2. Likewise, 7' is not symmetric because

- 5T6but67'S.

Both § and 7 are transitive relations. To verify that S is transitive we check all
pairs (x, ¥) in S with all pairs of the form (, z). We have (2, 5) and (5, 6) in S, so we
must have (2, 6); we have (7, 7) and (7, 7) in § so we must have (7, 7). The relation
T'is transitive for a different reason: there do not exist x, y, z in B such that x Ty and
y T z. Because its antecedent is false, the conditional sentence “If x Ty and y T z,
then x 7' 7" is true.

Example. Let R be the relation “is a subset of” on P(£), the power set of Z. R is
reflexive on P(7Z) since every set is a subset of itself. R is transitive by Theorem
2.1.1(c). Notice that {1,2} < {1, 2, 3} but {1, 2,3} ¢ {1, 2}. Therefore, R is not
symmetric. J

Example. Let STNR designate the relation {(x, ) € Z x Z: xy > 0} on Z. In this
example, x STNR x for all x in Z except the integer (; hence the relation STNR is
not reflexive on Z. STNR is symmetric since, if x and y are integers and xy > 0,
then yx > 0. STNR is also transitive. To verify this, we assume that x STNR y and
¥ STNR z. Then xy > 0 and yz > 0. If y is positive, then both x and z are positive;
50 xz > Q. If y is negative, then both x and z are negative; so xz > 0. Thus in either
case, x STNR z. This relation gets its name from the fact that it is symmetric, tran-
sitive, and not reflexive on Z.

For a relation R on a set A, the properties of reflexivity on A, symmetry, and
transitivity can also be characterized by properties in the digraph of R

R is reflexive on A iff every vertex of the digraph has a loop.

R is symmetric iff between any two vertices there are either no edges or

an edge in both directions.

R is tramsitive iff whenever there is an edge from vertex x to y and an

edge from vertex vy to z, there is an edge (a direct route) from x to z.
Examples. Figure 3.2.1 shows the digraphs of three relations on A = {2, 3, 6}.
Figure 3.2.1(a) is the digraph of the relation “divides” and Figure 3.2.1(b) is the
digraph of “>. Figure 3.2.1(c} is the digraph of the relation S, where x §y iff
xt+y=>T. _

There is a loop at every vertex in Figure 3.2.1(a) becaunse the relation “divides”
is reflexive: Every integer divides itself. The relations “>"" and § are not reflexive;
there is no loop at 2 in Figure 3.2.1(b) or (c).

S is a symmetric relation, but the others are not. In Figure 3.2.1(a) there is an
arc from 2 to 6, but not in the reverse direction; in Figure 3.2.1(b) there is an arc
from 6 to 2, but not from 2 to 6,

The relation S is not transitive—there is an arc from 2 to 6 and one from 6 to 3,
but no arc from 2 to 3. The other two relations are transitive. Note that for the
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digraph in Figure 3.2.1(a), every pair of arcs to be checked for transitivity involves
a loop. For example, there is an arc from 3 to 3 and an arc from 3 to 6; the shortcut
is to go directly from 3 to 6.

{(a) divides (b) >

Figure 3.2.1

For every set A, the identity relation I is reflexive on A, symmeitric, and
transitive. The identity relation is, in fact, the relation “equals,” becanse x I,y ini
x=y. Bquality is a way of comparing objects according to whether they are
the same. Equivalence relations, defined next, are a means for relating objects
according to whether they are, if not identical, at least alike in the sense that they
share a common trait. For example, if T is the set of all triangles, we might say
two triangles are “the same” (equivalent) when they are congruent. This generates
the relation R = {(x, y) & T x T x is congruent to y} on 7, which is reflexive on T,
symmetric, and transitive. The notion of equivalence, then, is embodied in these
three properties.

DEFINITION A relation R on a set A is an equivalence relation on A
iff Ris reﬂexive on A, symumetric, and transitive.

Suppose we say two integers are related iff they have the same parity. For this
relation, R = {{(x,y) € Z x Z: x + y is even}, we see that all the odd integers are
related to one another (since the sum of two odd numbers is even) and all the evens
are related to each other. The relation R is reflexive on Z, symmetric, and fransitive
and is, therefore, an equivalence relation.

For the set P of all people, let L be the relation on P given by x Ly 1ff x and y
have the same family name. We have Lucy Brown L Charlie Brown, James
Madison L Dolly Madison, and so on. Tf we make the assumption that everyone has
exactly one family name, then L is an equivalence relation on £,

The subset of P consisting of 21l people who are L-related to Charlie Brown
is the set of all people whose family name is Brown. This set contains Charlie by
reflexivity. It also contains Saily Brown, James Brown, Buster Brown, Leroy
Brown, and ail other people who are like Charlie Brown in the sense that they
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have Brown as a family name. The same is true for the Madisons: The set of peo-
ple L-related to Dolly Madison is the set of all people with the family name

Madison.

DEFINITIONS Let R be an equivalence relation on a set A, For x € 4,
the equivalence class of x determined by R is the set

x/R={ye A xRy}

When R is fixed throughout a discussion or clear from the context, the
notations [x] and X are commonty used instead of x/R.

We read x/R as “the class of x modulo R,” or simply “x mod R.”

The set A/R = {x/R: x € A} of all eqnivalence, classes is called
A modulo R.

The equivalence class of Charlie Brown modulo L is the set of ali people whose
family name is Brown. Furthermore, Buster Brown/L is the same set as Charlie
Brown/L,

Example. The relation H = (1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} is an equivalence
relation on the set A = {1, 2, 3}. Here 1/H = 2/H = {1, 2} and 3/H = {3}. Thus
A/H={{1,2}, {3}}.

Example. Let S= {(x,) € R x R:x? =y?}. § is an equivalence relation on R.
We have 2 = {2, =2}, @ = {—n, m}, etc. Also, 0 = {0}. In this example, for every
x € R the equivalence class of x and the equivalence class of —x are the same. R
modulo §'is R/S = {{x, —x}: x & R}.

Exampte. For the equivalence relation R = {(x,y) € £ x Z: x + yis even} on Z,
there are only two equivalence classes: D, the set of all odd integers and E, the set
of even integers. Thus Z/R = {D, E}.

Note that in the examples above—A/H, R/S, and Z/R—any two equivalence
classes are either equal or disjoint. The next theorem tells us for all equivalence rela-
tions, distinct equivalence classes never “overlap.”

Let R be an equivalence relation on a nonempty set A. For all x, yin A,

(@) x/RCA and x € x/R. Thus every equivalence class is a nonempty subset

of A. -
(Y xRyiffx/R =v/R. Thus elemenis of A are related iff their equivalence

classes are identical.
(© xRyiffx/RNy/R=. Thus elements of A are unrelated iff their equiva-

lence classes are disjoint.
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By the definition of x/R, x/R € A. Since R is reflexive on A, x R x. Thus
xex/R
(D Suppose xRy. To show x/R= y/R, we first show x/RC y/R. Let
"€ x/R. Then x R z. From x R y, by symmetry, ¥ R x. Then, by transi-
tivity, y R z. Thus z € y/ R. The proof that y/R S x/R is similar.
(i) Supposex/R=y/R.Sincey€y/R,y€x/R Thusx Ry.
() Ifx/RNy/R=, then, sincey € y/R, y & x/R. Thus xKy.
(i) Finally, we show x K y implies x/R N y/R = . (We prove the contra-
positive.) Suppose x/R Ny/R # . Letk & x/R N y/R. Thenx R kand
y R k. Therefore, x Rk and k R y. Thus x R y. B

For the rest of this section, we explore the properties of an equivalence relation
that has a multitude of important applications. This relation, called congruence,
provides a valuable way to deal with questions associated with divisibility in the
integers. The notion of congruence, first introduced by Carl Friedrich Gauss,* leads
to nodular arithmetic, which is an abstraction of our usual arithmetic, and this leads
in turn to methods for converting computational problems with large integers into
more manageable problems.

DEFINITIONS Let m be a fixed positive integer. For x, y € Z, we say
x is congruent to y modulo m iff m divides (x — y). We write x =, ¥,
or simply % =y (mod m). The number m is called the modulus of the
congruence.

Examples. Using 3 as the modulus, 4 = 1 (mod 3} because 3 divides 4 — 1. Like-
wise, 10 = 16 (mod 3) because 3 divides 10 — 16 = —6. Since 3 does not divide
5 — (--9) = 14, we have 5 5 —9 (mod 3). It is easy to see that 0 is congruent to
0,3, —3, 6, and —6 and, in fact, 0 is congruent modulo 3 to every multiple of 3.

For every fixed positive integer m, =, is an equivalence relation on 7.

Proof. We note that =, is a et of ordered paigs of integers and, hence, is a rela-
tion on Z. {Now we show that =y, is reflexive on Z, symmetric, and fransitive.)

(i) To show reflexivity on 7, let x be an integer. We show that x = x {mod m).
Since m - 0 = 0 = x — x, m divides x — x. Thus =, is reflexive on Z.

(i) For symmetry, suppose x =y (mod m). Then m divides x — y. Thus there is
an integer k so that x — y = km, But this means that —(x — ¥} = —{(km), or
that y — x = (—k)m. Therefore, m divides y — x, s0 that y = x (mod m).

* The Gemman Carl Friedrich Gauss (1777-1855), one of the greatest mathematicians of all time, also
made major contributions to astronomy and physics. Congruence and modular arithmetic {and much
more) appeared in his masterwork Disquisitiones Arithmeticae, which he completed at the age of 21, He
proved the Fundamental Theorem of Algebra and the Prime Number Theorem, among many other
resulfs in number theory, statistics, analysis, and differential geometry.
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{it) Suppose x =y (mod m) and y =z (mod m). Thus m divides both x — y and
y — z. Therefore, there exist integers k and k& such that x — y = hm and
y — z = km. But then h + k is an integer, and

x—z=F -+ (y—D=hm+lom=_(h+ bm.

Thus m divides x — z, 50 x = z (mod m). Therefore, =, is transitive. "

DEFINITION The set of equivalence classes for the relation =, is
denoted 7.

!
]

We can now determine the set 75 of all equivalence classes modulo 3. For
x € Z, the equivalence class of x is {y € Z: x =3y}, which we now denote by X.
Since the integers congruent to 0 (mod 3) are exactly the multiples of 3, we have

G=1{...,~6-3,0,36,...}

To form the equivalence class of 1, denoted 1, we begin with 1 (because 1 =; 1) and
repesteddy add or subtract 3. This produces the positive integers 4, 7, 10, 13,... and
the negative integers —2, —5,—8, ... that are congruent to 1 modulo 3, so

1=1{.., -8 -5 -214710,13,...].

In the same way we form

2=1{...,-4,-1,2,5,8,...}.

If we compute 3={...,—6,—3,0,3,6,...} we find that 3=0 and in fact
4=1,5=2,6=19, stc, so there are really only three different equivalence
classes. We have fownd that 73 = {0, I, 2}.

Notice that the class of 0 modulo 3 above is not the same as the congruence
class of 0 moduto 4. The class of 0 modulo 4 contains 0, 44, +8; +12, and all the
other multiples of 4, See Exercise 9. ‘

Using the notation X for the equivalence class of x modulo m works well as
long as the modulus remains unchanged, but suppose we want to compare compu-
tations with two different moduli. To work with elements of, say, Z as well as ele-
ments of Zs, we will write elements of Zg as [0], [1], [2], [3]. [4], and [5], to
distinguish them from the elements 0, 1, and 2, of Zs.

The 12 hours on the clock correspond to the 12 classes in Z5. Rather than talk-
ing about hours beyond 12 o’clock, we start over again with 1 o’clock instead of
13 o’clock because 13 = 1 {mod 12), and 2 o’clock instead of 14 o’clock because
14 = 2 (mod 12), etc. The hours on a clock face show only the hours since the pre-
vious midnight or noon, We are so accustomed to working with equivalence classes
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modulo 12 that we routinely do arithmetic with them: 9 hours after 8 o’clock is
5 o’clock, becanse 8 -+ 9 = 17 and 17 = 5 (modulo 12) and 4 hours before 3o’clock
is 11 o’clock, because 3 — 4 = —1 = 11 (modulo 12).

Our next theorem will show that there are always m different equivalence
classes for the relation =,, and the set Z,,, is always {0, 1,2,...,m — 1}. Itis help-
ful to observe that 0, 1, 2,..., and m — 1 are exactly all the possible remainders
when integers are divided by m. For this reason the elements of Z,, are sometimes
called the residue (or remainder) classes maodulo .

Let m be a fixed positive integer. Then

(a) Torintegers x and v, x = y (mod m) iff the remainder when x is divided by
m equals the remainder when y is divided by m. o

(b)  Z, consists of m distinct equivalence classes: Z,, = {0, 1,2,,..,m — 1].

Proof.

(a) Letx and ¥ be integers. By the Division Algorithm, there exist integers g,

r, &, and 5 such that x=mg+r, with 0 < r<m and y =mf + s, with .

0 < s < m. {We must show that x =y (mod m) iff r=s.} Then

x =y (mod m) iff m dividesx —y
iff m divides (mg -+ r) — (mt + 5)
iff m divides m{g — £ + (r — 9)
iff m divides r — s
iff r=s. (Thisisbecause 0 < r <mand 0 < s < m.)

(b) (W first show that Zn=1{0,1,72,. m—1}) For each k where

0<k=<m—1,the setklsaneqmvalenceclass so {0,1,2,...,m — 1} is
a subset of Z,,. Now suppose x & Z,, for some integer x. By the Division
Algorithm, there exist integers g and r such that x=mg-+r, with
0 < r < m. Then x — r = mgq, so m divides x — r. Thus x = r (mod m). By
Theorem 3.2.1(b) ¥ = 7. Therefore Z,, € {0, 1,2, ..., m — 1}.

Finally we will know that Z,, has exactly m elements when we-show that

the eguivalence classes 0, 1,2, ..., m — 1 are all distinct. Suppose E=T.

where 0 < r < k < m — 1. Then k = r (mod niY:wnd thus m divides k — r.
But0 <k—r<m—1, s0k— r=0. Then k = r. Therefore the m equiva-
lence classes #Fe distinct. B

Exercises 3.2

1. Indicate which of the following relations on the given sets are reflexive on a
given set, which are symmetric, and which are transitive.

* (@ {{I,2}}on {I,2} () <onN
(¢) =oni () <oniN
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*

() >onN H FonN

(g) “divides” on N M ((x,yyedxZ:x+y=10}

® {1,5,5,1),, )} ontheset A= {1,2,3,4,5}

() L={({ m):and m are lines and [ is perpendicular to m} on the set of
all lines in a plane

(k) R,where (x,V)R(z,w)iff x+z <y+w ontheset R x R

(1) S, where x Sy iff x is a sibling of y, on the set P of all people

(m) T,where (x, D T(z,w)iff x+y<z+w,ontheset R x R

Let A = {1, 2,3}. List the ordered pairs and draw the digraph of a relation on

A with the given properties.

(a) not reflexive, not symmetric, and not transitive

(b} reflexive, not symmetric, and not transitive

(¢) not reflexive, symmetric, and not transitive

(@) reflexive, symmetric, and not transitive

(e) notreflexive, not symmetric, and transitive

() reflexive, not symmetric, and transitive

(g) ot reflexive, symmetric, and transitive

(h) reflexive, symmetric, and transitive

For each part of Exercise 2, give an example of a relation on R with the

desired properties.

Let R be arelation on a set A. Prove that
(a) if A is nonempty, the empty relation & is not reflexive on A.
(b) the empty relation J is symmetric and transitive for every set A.

For each of the following, prove that the relation is an equivalence relation.

Then give information about the equivalence classes as specified.

(a) . The relation R on R given by x R y iff x — y € Q. Give the equivalence
class of 0; of 1, of \/Q

(b) The relation R on N given by m R n iff m and n have the same digit in
the tens places. Find an element of 106/R that is less than 50; between
150 and 300; greater than 1,000, Find three such elements in the equiv-
alence class 635/R.
The relation V on R given by xVyiff x=y or xy = 1. Give the
equwalence class of 3; of HZ of 0.

On N, the relation K given by a R b iff the prime factorizations of ¢ and
b have the same number of 2’s, For example, 16 R 80 because 16 = 24
and 80 = 2*- 5. Name three clements in each of thess classes: 1/R,
4/R,T2/R.

The relation 7 on R x R given by (x,¥) T (g, b) iff x2 + y? = a® + b~
Sketch the equivalence class of (1, 2); of (4, 0).

For the set X = {m, n, p, 4, 1, 5}, let R be the relation on P(X) given by
A R B iff A and B have the same number of elements. List all the elements
in {m}/R;in {m,n, p, g, r, s}/R. How many elements are in X/R? How
many elemenis are in P (X)/R?
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(g) The relation P on R x R defined by (x,y) P (z, w)iff jx —y| =
{z — w|, Name at least one ordered pair in each quadrant that is related

to (3, C). Describe all ordered pairs in the equivalence class of (O 0} in
the class of (1, 0).
Let R be the relation on the set of all differentiable functions defined by
SR giff fand g have the same first derivative, that is, f' = g'. Name three
elements in each of these classes: x2/R, (4x* + 10x)/R. Describe x3/R
and 7/R.

(i) Therelation Ton R givenby x T'y iff sin ¥ = sin y. Describe the equiv-
alence class of 0; of 7/2; of m/4.

Let R be the relation on O defined by 5 ZRe ; iff pt = gs. Show that R is an
equivalence relation. Describe all ordered pan:s in the equivalence class of 2 3
Which of these digraphs represent relations that are (i) reflexive? (ii) symmetnc?
(1ii) transitive?

(a) 1 4

i

1 3
2

Determine the equivalence classes for the relation of ,
{a) congruence modulo 5. (b) congruence modulo 8.
{c} congruence modulo 1. (d) congruence modulo 7.

Name a positive integer and a negative integer that are

(a) congruent to 0 (mod 5) and not congruent to 0 (mod 8).
(b) congrment to 0 (mod 3) and congrueent to 0 (mod 6).

(c) congruent to 2 (mod 4) and congruent to 8 (mod 6).

{d) congruent to 3 (mod 4) and congruent to 3 (mod 5).

(e) congruentto I (mod 3) and congruent to 1 (mod 7).
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Proofs to Grade

10.

Using the fact that =,, is an equivalence relation on Z and without reference
to Theorerns 3.2.1 and 3.2.3, prove that for all x and y in Z:

(a) xeki = (b)) X#£Q

(¢) ifx=,y thenxX=7. (d) ifx=y, thenx=,y.

() fxNJ£J, theni=7. ® FxNy=U, thenx#J.

Consider the relation S on N defined by x Sy iff 3 divides x + y. Prove that
S is not an equivalence relation.

Suppose that R and § are equivalence relations on a set A. Prove that R N S is

an equivalence relation on A. :

The properties of reflexivity, symumetry, and transitivity are related to the

identity relation and the operations of inversion and composition. Prove that

(a) Risareflexive relaton on A iff I, CR.

(b) R is symmetric iff R=R~\.

(¢) Ristransitive iff Ro R C R. ,

Prove that if R is a symmetric, transitive relation on A and the domain of R is

A, then R is reflexive on A.

Let R be a relation on the set A.

(a) Prove that RUR™! is symmetric. (R UR™! is the symmetric closure
of R.)

(b) Prove that if § is a symmetric relation on A and R C S, then R C §,

Let R be a relation on the set A. Define Tp = {(x,y) €A x A: for some

n € N there exists ag=x, a1, a2, ..., a, =y € A such that {ay, a1), (a1, a2),

(@, a3), ..., (@n-1, an) € R}.

(a) Prove that Ty is transitive. (T is the transitive closure of R.)

(b) Prove that if S is a transitive relation on A and R C §, then T C 5.

The complement of a digraph has the sarme vertex set as the original digraph,
and an arc from x to y exactly when the original digraph does not have an arc
from x to y. The two digraphs shown below are complementary. Call a

~ digraph symmetric (transitive) iff its relation is symmetric (transitive).

8
ﬂ
!

(a) Show that the complement of a symmetﬁc digraph is symmetric.

(b) Show by example that the complement of a transitive digraph need not
be transitive.

Let L be a relation on a set A that is reflexive on A and transitive but not nec-

essarily symmetric. Let R be the relation defined on A by x Ry iff x L y and

v L x. Prove that R is an equivalence relation,

Assign a grade of A (cormrect), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A,

e e e R
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Claim. If the relation R is symmetric and transitive, it is also reflexive.
“Proof.” Since R is symmetric, if (x,y) € R, then (v, x) € R. Thus
(x, y) € Rand (y, x) € R, and since R is (ransitive, (x, x) & R. Therefore,
R is reflexive. B
Claim. The relation Ton R x R given by (x, M T (r, ) iff x4y =
r + s is symmetric.
“Proof” Suppose (x,y) € R x R. Then (x, y) T (y, x) becausex +y=
¥ + x. Therefore, T'is symmetric. E
. Claim. The relation Won R x R given by (x,v) W(r, 8) iff x —r =
y — § is symmetric.
“Progf” Suppose (x,y) and (r, s) are in R x R and (x, y) W(r, 5).
Then x — r =y — 5. Therefore, r —x =5 — v, so (r, 5) W(x, y). Thus
W is symmetric. ke
Claim.  If the relations R and S are symmetric, then R 1 § is symmetric.
“Proof” Let R be the relation of congruence modiile 10 and § the
relation of congruence modulo 6 on the integers. Both R and § are sym-
metric. If (x, y) € RN S, then 6 and 10 divide x — y. Therefore, 2, 3, and
5 all divide x — y, so 30 divides x — y. Also if 30 divides x — y, then 6
and 10 divide x — y, so R N § is the relation of congruence modulo 30,
Therefore, R M § is symmetric. &
Claim. If therelations R and § are symmetric, then R M § is symmetric,
“Proof” Suppose (x, y) € RN S. Then (x, y) € Rand (x, ¥) € §. Since R
and § are symmetric, (y, x) € R and (y, x) € S. Therefore, (v, x) RN §. &
Claim. If the relations R and S are transitive, then R N § is transitive.
“Proaf.” Suppose (x,y)€RNS and (y,7) € RNS. Then (x.y) e R
and (y, z) & 5. Therefore, (x,z) RN S. B

Partitions

- Partitioning is frequently used to organize the world around us, The United States,
for example, is partifioned'in several ways—by postal zip codes, state boundaries,
time zomes, etc. In each case nonerpty subsets of the United States are defined that
do not overlap and that together comprise the entite country. This section intro-
duces this concept of partitioning of a set and describes the close relationship

© between pamuons and equivalence relations.

DEFINITION LetAbea nonempty set. % is a partition of 4 iff P is
a set of subsets of A such that

i) HEXeP then X+,
() FXcPandYeP thenX=YorXNY=2.
@iy Ux=a.

Xe®
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The set W of all employees in a large work area can be partitioned into work
groups by putting up physical partitions (walls) to form cubicles. If we are care-
ful so that (i) every cubicle contains at least one worker, (ii) no worker is
assigned to two different cubicles, and (iii) every worker must be in some cubi-
cle, then we have formed a partition of W. Notice that the workers are not els-
ments of the partition; each element of the partition is a set of workers within a
common cubicle. In Figure 3.3.1, W is a set of 6 workers and the partition of W
consists of four sets—iwo sets each with two workers and two sets each with a
single worker.

Figure 3.3.1

Examples. The 2-element family P = {E, D}, where F is the even integers and D
is the odd integers, is a partition of Z. The 3-element collection = (M, {0}, 77},
where 7 is the set of negative integers is also a partition of Z. For cach k € Z, let
Ap={3k,3k+ 1, 3k + 2}. The family & = {Ay : k € Z} is an infinite family that is
a partition of 7. Some elements of J are Ag={0, 1,2}, A;={3,4,5}, and
Ag=1{-3,-2, -1}

Two other partitions of Z are {..., {3}, {2}, {=1}, {0}, {1}, {2}, {3}, ...}
and {Z}. In fact, for any nonempty set A, the families {{x}: x = A} and {A} are
partitions of A.

Example. Foreachn e Z, let G, = [n, n + 1). The collection {G,: n € Z} of half
open intervals is a partition of R.

By definition, a partition of A is a pairwise disjoint collection of nonempty
subsets of A whose mnion is A. Recall from Section 2.3 that the definition of
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“pairwise disjoint” allows for the possibility that setsin a pairwise disjoint fam-
ily may be equal. :

Example. Forthe setA = {a, b, ¢, d, e}, the family C = {Cy, Cs, (s}, where
Ci = {b, E}, CZ = {ﬂ, e, d}: and C3 ={ba -e}’

is a partition of A even though the sets C; and C; are not disjoint. The family
{C1, Ca, C3}, is the same as the family {C,, C5}.

Let W be a sct of six people and C = {blue, green, red, white}, Foreach ¢ € C,
let

B = {x € W: xis wearing clothing with color c}.

+ amd 16t % = {Byue, Byreen, Breds Byhite}. The famﬂy % may not be a partition of W

because any of the threg parts of the definition might be violated. ¥ no one is
wearing red, then By.4 is empty, so condition (i) fails. If someone is wearing green
only,while a second person is wearing green and blue, then the different sets Brie
and Bgwe, Overlap, in violation of condition (ii). If someone is wearing only
yellow clothing, then that person does not belong to any set in 9, in violation of
condition (iii),

The first half of the connection between partitions and equivalence relations is:
Every equivalence relation on a set determines a partition of that set.

If R is an equivalence relation on a nonempty set 4, then A/R, the set of equivalence
classes for R, is a partition of A.

Proof. By Theorem 3.2.1 every equivalence class x/R is a subset of A and is
nonempty because it contains x, and any two equivalence classes are either equal
or disjoint. All that remains is to show that the union over A/R is equal to A.

First {Jx/R € A because each x/R G A. Toprove A & |_Jx/R, suppose 1 € A.
=eh xEd -
Sincere /R, 1 & | Jx/R. Thus A = | Jx/R. ®

xEA x4

Example. LetA = {4, 5,6, 7} and T be the equivalence relation

{4, 4, (5,9),(6,6), (7,7, (5. 7), (7,5), (7. 6), (6, 7), 5, 6). (6, 5)}.

By Theorem 3.3.1, we can form a partition of A by finding the equivalence classes
of T. These are 4/T = {4} and 5/T = 6/T=7/T={5,6,7}. The partition pro-
duced by Tis A/R = {{4}, {5,6,7}}.
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The Five Boroughs of New York City
Bi: Manhattan
B;: Brooklyn
Bs: Queens
B4 The Bronx
Bs: Staten Island

Figure 3.2

New York City is divided into 5 boroughs (counties). The boroughs are labeled
B, through Bs in Figure 3.3.2, If A is the set of all residents of New York City, then
A is partitioned into 5 subsets: the set of residents living in By, the residents lving in
Bj, and 50 on. How can we use this fact to define an equivalence relation on A7 We
say that two residents of New York City are equivalent iff they are in the same par-
tition element; that is, they reside in the same borough.

The method we will use to produce an equivalence relation from a partition
is based on this idea that two objects will be said to be related iff they belong
to the same member of the partition. The next theorem proves that this method for
defining a relation always produces an equivalence relation and, furthermore, the
set of equivalence classes of the relation is the same as the original partition.

s s

Theorem 3.3.2 Let % be a partition of the nonempty set A. For x and y € A, define x Q y iff there
exists C € P such that x € Cand y & C. Then

(a) O 1isan equivalence relation on A.
th) A/Q=9.

Proot.

(a)  'Weprove Q is transitive and Jeave the proofs of symmetry and reflexivity on
A for Exercise 10, Let x, ¥, z € A. Assume x QO y and y 0 z. Then there are
sets C and D in % such that x, y € C and y, z € D. Since P is a partition of

- A, the sets C and D are either identical or disjoint; but since y is an element
of both sets, they cannot be disjoint. Hence, there is a set C {= D} that con-
tains both x and z, so that x O z. Therefore, 0 is transitive.

(b) We first show A/Q CP. Let x/0 = A/Q. Then choose B & P such that
x& B Weclaimx/Q =8 Iy« x/0, then x @ y. Then there is some C e P

such that x & Cand y € C. Since x € CN B, C = B, so y € B. On the other

hand, if y € B, then x 0 y, and so y € x/Q. Therefore, x/Q = B.
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To show @ CA/Q, let B ®. As an element of a partition, B # (.
Choose any ¢ € B; then we claim B=1¢/0. If s B, thent 0.5, s0 5 € t/Q.
On the other hand, if s € #/Q, then ¢ O 5; so s and ¢ are elements of the same
member of %, which must be B. &

Example. Let A={1,2,3,4}and® = {{1}, {2, 3}, {4}} be a partition of A with
three sets. The equivalence relation O associated with o is {(1,1),(2,2),(3,3),
{4, 4), (2. 3), (3,2)}. The three equivalence classes for Q are 1/Q = {1}, 2/0 =
3/0 = {2, 3}, and 4/Q = {4}. The set of all equivalence classes is precisely P.

Example. The set & = {Ap, A1, Ay, A3} is a partitien of Z, where

Ag={4k: ke Z}.

Ay ={4k+1:keZ}
An== A4k +2 ke Z}.
A= {4k +3 ke ).

Then integers x and y are in the same set 4; iff x =4n + iandy =4m + i for some
integers r and m or, in other words, iff x — y is a multiple of 4, Thus, the equiva-
lence relation associated with the partition & is the relation of congruence modulo
4 and each A; is the residue class of i modulo 4, fori=0, 1,2, 3.

We have seen that every equivalence relation on a set determines a partition for
the set and every partition of a set determines a corresponding equivalence relation
on that set. Furthermore, if we start with an-equivalence relation, the partition we
make is the set of equivalence classes, and if we use that partition to form an equiv-
alence relation, the relation formed is the relation we started with. Thus, each con-
cept may be used to describe the other. This is to our advantage, for we may use
partitions and equivalence relations ingerchaggeably, choosing the one that lends
itself more readily to the sitmation at hand.

Exercises 3.3

1. Describe four different partitions of the set of all students enrolled at a
university. .
2. For the given set A, determine whether & is a partition of A.
(a) A={1,2,3,4),®={{12},{23},{3,4}}
) A=1{1,2,3,4,56,7),P={{1,2}, {3}, {4, 5}}
(€ A=1{1,2,3,4567),%={{1,3}, (56}, {24} {7}}
x (d A=N,?=1{1,2,3,45U{neNin> 5}
(&) A=R P =(—o0c,-1)U[-111U(, occ)
f A=R P={(S:ycRandy> 0}, where S, = {xeR:ix <y}
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3. Describe the partition for each of the following equivalence relations,

(a) Forx,yeR xRyifx—yel

(b) Forn,me Z, n R miff n and m have the same tens digit.

() Forx,yeR xRyiff sinx=siny.

(d) Forx,yeR, xRyiff x> =y~

(e} For(x,y)and (i, vV} € R xR, (x, ¥) § (1, v) iff xy = uv =0 or xpuv > 0.
® EWREViffx+tv=y-+u

Let C={i, —1, —i, 1}, where i2 = —1. The relation R on C given by x Ry
iff xy = 41 is an equivalence relation on C. Give the partition-of C associated
with R.

Let C be as in Exercise 4. The relation § on C x C given by (x, )5 (u, ¥)
iff xy = uv is an eguivalence relation. (Rve the partition of € x C associated
with S. )

Describe the equivalence relation on each of the following sets with the given
partition.

(ay N,{{1,2,...9},{10,11,...99}, {100, 101,...999},...}

M) Z,{... (-2}, {-1},{0}, {1}, {2}, {3,4,5.... }}

© B, {{—~o0,0), {0}, ©, 0}

(d) Ra {' ey (_31 -—2), {_2}a ("‘2, #1)3 {_1}’ (_11 0): {0}, (O! 1), {]-}s

(1,2}, {2}, (2,3),...}
() Z,{A Bl,whereA=[red:x<3}andB=7Z—A
Foreacha e R, letA, = {(x, ) e R x Ry =a — x?).
{a) Sketch a graph of the set A, fora = —2,—1,0, 1, and 2.
(b) Prove that {A,: a € R} is a partition of R x R.
(¢) Describe the equivalence relation associated with this partition.
List the ordered pairs in the equivalence relation on A == {1, 2, 3, 4, 5} asso-
ciated with these partitions:
(& {{1,2}(3,4,5}} ) ({1}, {2}, (3,4} {5}}
() {{2,3,4,5},{1}}
Partition the set D ={1,2,3,4,5,6,7} into two subsets:.those symbols
made from straight line segments only (like 4}, and those that are drawn with
at least one curved segment (like 2). Describe or draw the digraph of the cor-
responding equivalence relation on D.
Complete the proof of Theorem 3.3.2 by proving that if & is a partition of 4,
and x O v #f there exists C € P such that x € Cand y € €, then
(a) @ is symmetric.
(b) @ isreflexive on A.
Let R be a relation on a set A that is reflexive and symmetric but not
transitive. Let R(x) = {y: x R y}. [Note that R(x) is the same as x/R except
that R is not an equivalence relation in this exercise.] Does the set & =
[R(x): x€ A} always form a partition of A? Prove that your answer is
correct.
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12. Repeat Exercise 11, assuming R is reflexive and teansitive but not symmetric,
13.  Repeat Exercise 11, assuming R is symmetric and transitive but not reflexive.

14. Let A be a set with at least three elements.
* (@) If® =By, B} is a partition of A with B, # By, is { B}, BS} a partition
of A7 Explain. What if B; = B,?

(b} IfP = {By, By, By} is a partition of 4, is {BY, Bj, B;} a partition of A7
Explain. Consider the possibility that two or more of the elements of P
may be equal.

(©) IfP = {By, By} is apartition of A, 6, is a partition of By, and €, is a par-
tition of By, and B, # By, prove that 4; U €, is a partition of A.

15. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A,

{a) Claim. TetRbean equivalence relation on the set 4, and let x, v, and
zheelements of A. If x € y/R and z & x/R, them z & ¥/R.

“Proof.” Assume that x € y/R and z € x/R. Theny Rx and x R z. By
transitivity, y R z, so z € y/R. Therefore, if x € y/R and z ¢ x/R, then
z & y/R. ®

(b} Claim. LetR be an equivalence relation on the set A, and let x, y, and
zbe elements of A. If x € y/Rand z ¢ x/R, then z ¢ y/R.

“Progf” Assume that x € y/R and assume that z & y/R. Then YRx
and y Rz. By symmetry, x Ry, and by transitivity, x R z. Therefore,
z € x/R. We conclude that if x € y/R and 7 ¢ %/R, then z ¢ ¥R |
(¢) Claim. If o is a partition of a set A and B.is a paftition of a set B, then
U B is a partition of A U B.
"{Proaﬁ’}
(i) FXesd U, thenX = A, or X = B. In sither case X # (7,
(i) FXedUBandYeAURB, thenXcehdandYesd, orXeod
amd¥eB,orX¥eRBandYe oA, or X = B and ¥ & B. Since both
A and 9B are partitions, in each case either X =¥ or XN ¥ = &,

(iii) Since | JX=Aand |UX=8, |J X=4UB. 8
Xesd x=B XedUh

* (d) Claim. If% isapartition of 4, and if x O v iff there exists C € @ such
that x & C and y € C, then the relation Q is symmetric.
“Proof” First, x Q y iff there exists C € % such that x € C and ye C.
Also, v 0 x iff there exists C < 9B such that v & Cand x & C. Therefore;
x Oy Qx. W

Ordering Relations

Familiar ordering relations for N, Z, and R such as “less than.” “oreater than,” and
“less than or equal to” are basic to our understanding of number systems but they are
not equivalence relations. For instance, < is not reflexive on R becanse 3 < 3 is
false, and is not symmetric because 2 < 7 is true but 7 < 2 is false. The relation < is
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transitive, because the conjunction x <y and y <z implies x < z. This section
describes those properties of relations that characterize orderings like < and <. We
begin with some examples.

Example. In addition to transitivity and reflexivity on R, the relation < on R has
two properties we have riot previously considered. The first of these properties is
comparability: every two elements of R are comparable. This means that for all
x, ¥y & R, either x < y or y < x. The other property is that for all x, ye R, if x < y
and y < x, thenx = y.

Example, We saw eatlier that the relation “divides” is reflexive on N. While we
did not use the term “transitive” in Section |.4, in effect we proved in that section
that “divides” is transitive. Two other properties of this relation are notable. If a
divides b and b divides a, then a= b, Also, there are elements of N that are not
comparable. That is, there are natural numbers x and y (for example, 10 and 21)
such that both “x divides y” and “y divides x™ are false.

Example, ILet X be a set. The set inclusion relation < on the power set of X is
reflexive on P (X)) and transitive. Also, if A and B are subseis of X with A € B and
B < Athen A = B. In this relation some pairs of elements are not comparable. For
example, if X = {1, 2, 3, 4}, then {1, 3} and {1, 4} are elements of P (X) but both
[1,3} € (1,4} and {1, 4} C {, 3} are false.

Example. Let ¥ be the relation “is the same age in years or younger than” on
a fixed set P of people. Then Y is refiexive on P and transitive. This relation
also has the property that any two elements of P are comparable. However, the
relation ¥ has a property that is undesirable for an ordering. If @ and b are
two different people in P, and both @ and & are 20 years old, thena ¥ b and 5 ¥ q,
but a #£ 5.

Although we find it acceptable in an ordering for two elements to not be
comparable, we wish to avoid the situation in the previous example where two
different objects are both related to each other. The property we want is called
antisyminetry.

i
DEFINITION A relation R on a set A is antisymmetric ifffor all é
x,yeA ifxRyandyRx, thenx=y.

Examples. We have already noted that the relations “divides” on N, < on R, and
< on P(A) are antisymmetric. The relation < differs from the relation < on R
becanse « is not reflexive on R. Like =, the relation < is antisynumetric but for a
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different reason: the statement “For all x, yin R, if x < y and y < x then x = y” is
true because the antecedent is false.

The relation “divides” is an antisymmetric relation on N. However, “divides”
is not an antisymmetric relation on Z. For example, ¢ divides —6 and —6 divides 6,
but 6 £ —6.

Antisymmetry is an important concept for maintaining the chain of command
in the military where the relation “can give orders to’ must be explicit. It would be
chaotic if two different officers could give orders to each other.

A relation may be antisymmetric and not symmetric, symmetric and not anti-
symmetric, both, or neither, See Exercise 2. In Exercise 3, you are asked to show
that if R is an antisymmetric relation, then x R y and x = y implies y K x. That is, the
only possible symmetry that an antisymmetric relation may exhibit is that an object
may be related to itsell.

DEFINITION A relation R on a set A is a partial order {or partial
ordering) for A if R is reflexive on A, antisymmetric, and fransitive. A set
A with partial order R is called a partially ordered set, or poset.

Three relations discussed above: “divides” on N, < on R, and C on & (X) for
any set X, are examples of partial orderings. L

Example. Let Whe the relation on N givenby x Wy iff x +yisevenand x < y.
Then W is a partial order. For example, 2 W4, 4 W6,6 WS,...,and 1 W3,3 W5,
5W7,...,but we never have m Wn where m and » have opposite parity. We verify
that W is a partial order:

Proof.

D (Show Wis reflexive on N Tetx € N, Then x +x =2xiseven and x < x,
sox Wx )

Gi) (Show W is antisymmeiric.) Suppose x Wy and y Wx. Then x + y is even,
x <y, and y < x. By antisymmetry of < on N, x = y.
{(Show W is transitive.) Suppose x Wy and y Wz Thenx <y, x + y is even,
v <z and v+ z is even. By transitivity of < on N, x < z. Also, x4z is
even because x + z = (x+y) + {¥v + 2) + (—2y) is the sum of three even
numbers. Therefore, x Wz, ]

Suppose R is a partial order on the set A and a, b, c are three distinct elements of
A. Purther suppose that ¢ R b, b R, and ¢ R a. A portion of the digraph of R is
shown in Figure 3.4.1. The chain of relationships a R5, bRe, cRa is called a
closed path (of length 3) in the digraph. (See the next section for more about paths in
graphs.) The path is closed because as we move from vertex to vertex along the path,
we can start and end at the same vertex. From a R b and b R ¢, by transitivity
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we must have a R ¢. {The arc from a to ¢ is not shown in the portion of the digraph
in Figure 3.4.1.) But ¢ R a is also true, and this contradicts the antisymmetry prop-
erty of R. Using this reasoning, we conclude that the digraph of a partial order can
never contain a closed path except for loops at individual vertices.

')

LN

Figure 3.4.1

If R is a partial order for a set A and xRxj, x; Rx, a R xa, .... %, R x, then
X=X =X =H3 5 000 = Xp.

Proof.  (We prove this by induction on n.} For n = 1, suppose we have x R x; and
x1 R x. By antisymmetry, we conclude that x = x;.

Now suppose that for some natural number k, whenever x R x1, xR xs,
X Rxs,...,qRx, then x=x;=x =x3=-.- =x, and suppose that xR xj,
x1 Rxz, xa Rxs, ..., % R Xpy1, X1 R x. By transitivity {applied to x; R x,, and
Xet1 R x} we have x; Rx. From x Rx), x; Rxy,..., xR x and the hypothesis of
induction, we have x =x; = x; = .- = x;. Since x;=x we have x Rx,,; and
X1 R x, 80 x = xpq . Therefore, x == x; = xp = - -+ = x3,1. . &

.
§
.

|

| DEFINITION Let R be a partial ordering on a set A and let g, b€ A |

with @ # b. Then a is an immediate predecessor of b i#f ¢ R b and there
doss notexist c €A swchthat £ ¢, b # c,aRcand ¢ R b.

TIn other words, 2 is an immediate predecessor of » when o R b and no other element
lies “between” @ and b.

Example. For A ={1,2,3,4, 5}, P(A)is partially ordered by the set inclusion
relation C. For the set {2, 3, 5}, there are three immediate predecessors in P (A):
{2,3}, {2, 5}, and {3, 5}. The empty set has ne immediate predecessor. Also, & is
the only immediate predecessor for {3}. We have {4} C {2, 4, 5}, but {4} is not
an immediate predecessor of {2, 4, 5} because {4} # {4, 5}, {4, 5} # {2, 4, 5},
{4} € {4,5},and {4, 5) C {2, 4, 5}.

S e i ki

Let M ={1,2,3,5,6, 10, 15, 30} be the set of all positive divisors of 30. The
relation “divides” is a partial order for M whose digraph is given in Figure 3.4.2(a).
We can simplify the digraph significantly. First, since we know that every vertex
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must have a loop, we need not include them in the digraph. Also, since there are no
closed paths, we can orient the digraph so that all edges point upward; thus we may
eliminate the arrowheads, assuming that each edge has the arrowhead on the upper
end. We can also remove edges that can be recovered by transitivity. For example,
since there is an edge from 2 to 10 and another from 10 to 30, we do not need to
include the edge from 2 to 30. In other words, we need only include those edges that
relate immediate predecessors. The resulting simplified digraph, Figure 3.4.2(b), is
called a Hasse diagram of the partial order “divides.”

(a) Digraph of “divides.” (b) Hasse diagram for “divides.”
Figure 3.4.2

Example. LetA = {1, 2, 3}. The Hasse diagram for %(A) partially ordered by

is given in Figure 3.4.3. It bears a striking resemblance to Figure 3.4.2(b) for-good
reason. Except for the naming of the elements in the sets, the orderings are the
same. In fact, it can be shown that every partial order is “the same” as the set inclu-
sion relation on subsets of some set. Although we need the concepts of Chapter 4 to

Hasse diagram for €.

Figure 3.4.3
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make precise what we mean by “same,” Exercise 19 outlines how one might statt to
show this,

DEFINITIONS  Let R be a partial order for a set A. Let B be any subset
of Aand a € A. Then

4 is an upper bound for B iff b R a for every b € B.
a is a lawer bound for B iff a R & for every b € B.
a is a least upper hound for B (or supremem for B) iff

(i) ais anupper bound for B, and
(ii) a R x for every upper bound x for B.

ais a greatest lower bound for B (or infimmam for B) iff

{i} aisalower bound for B, and '
(ii) x R a for every lower bound x for B.

We write sup (B) to denote a supremum of B and inf (8) for an infunum
of B.

“We shall soon see (Theorem 3.4.2) that there is at most one supremum and one
infimuom for a set.

Examples. Ford=(1,2,3,4,5,6,7,8,9,10),let B= ({1,4,5,7},{1,4,7, 8},
{2,4,7}). Bis a subset of P(A). Using the partial order C for P(4), we see that
{1,2,3,4,5,6,7, 8} is an upper bound for B because

£1,4,5,7) € {1,2,3,4,5
{1,4,7,81 €{1,2,3,4,5
(2,4,71<{1,2,3,4,5

3~y My s }s
s b }! and
}

(== =N
3 =1 =3
oo o0 o0

3 &y Ty hy s My Uy

Anolws wppes bonnd for B is {2, 4, 5,7, 8,9, 10}. The least upper bound for B is
sup(B) = {1,2,4,5,7, 8}. _

Hlesents of P(X) that are lower bounds for B are &, {4}, {7}, and {4, 7}. The
greatest tower hound for B is inf(B) = {4, 7}.

You should notice in the example above that sup{B) is the union of the sets in
B and inf(B) is the intersection of the sets in B, This is true in general: for any non-
empty set A with P(A) partially ordered by C, if B is a set of subsets of A, then

sup(B) = | J X and inf(B) = [ | X. See Exercise 14.
XeB XeB

Exampie. Here are least upper bounds and greatest lower bounds for some subsets
of R with the usual ordering <:

for A = [0, 4), sup(4d) = 4 and inf(4) =0.
forB=1{1,6,3,9,12,—4, 10}, sup(B) = 12 and inf(B) = —4.
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for C = {2%: k € N}, sup(C) does not exist and inf(C) = 2.
for D = (2% ke N}, sup(D) = 5 and inf(D) = 0.

Example, Tet A be the set of all positive divisors of 1000 with the ordering
relation “divides” on A. Let B = {10, 20, 25, 100}. Both 500 and 1000 are upper
bounds for B; the least upper bound is 100. The greatest lower bound for B is 5,
Note that for “divides,” the least upper bound is the lem (feast common multiple)
and the greatest lower bound is the ged (greatest common divisor).

Let R be a partial order for a set A and B C A. Then if sup(B) exists, it is unique.
Also, if inf(B) exists, it is unique.

Progf.  Suppose that x and y are both least upper bounds for B. (We prove that
x =y.) Since x and y are least upper bounds, then x and y are upper bounds. Since
x is an upper bound and y is a least upper bound, we sstst have v R x, Likewise,
since y is an upper bound and x is a least upper bound, we must have x R y. From
x By and y R x, we conclude that x = y by antisymmetry. Thus, if it exists, sup(B)
is unique.

The proof for inf(B} is left s an exercise. ]

We have seen examples of sets B where, when they exist, the least upper and
greatest lower bounds for B are in B and other examples where they are not in B,

o b e e ey

DEFINITION Let R be a partial order for a set A, Let B C A. If the l
greatest lower bound for B exists and is an element of B, it is called the
smallest element (or least element) of B. If the least upper bound for B is

in B, itis called the largest element (or greatest element) of B.

The usual ordering of the number systems has the comparability property: for any
x and y, either x < y or ¥y < x. A partial ordering with this property i$ valled linear.

DEFINITION A partial ordering R on 4 is called a linear order (or total
order) on A if for any two clements x and y of A, eitherx Ry ory Rx.

Examples. Each of N, Z and R with the ordering < is linearly ordered. 2P{A) with
set inclusion, where A = {1, 2, 3}, is not a linearly ordered set because the two ele- .

ments {1, 2} and {1, 3} cannot be compared. Likewise, the relation “divides” is not

" a linear order for N because 3 and 3 are not related {neither divides the other).

If R is a linear order on A, then by antisymmetry, if x and y are distinct elements
of A, x R v or v R x (but not both). The Hasse diagram for a linear ordered set is a
set of points on a vertical line.
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For a given linear order on a set it is not always true that every subset has a small-
est or largest element. The set of integers with < is linearly ordered but the set
B=1{1,3,5,7,...} has neither upper bounds nor a least upper bound. Likewise,
{—2, —4, —8, —16, —32,... 1 has no greatest lower bound {and hence no smallest
element).

DEFINITION  Let I be alinear ordering on a set A. L is a well ordering
on A if every nonempty subset B of A contains a smallest element.

In Chapter 2 we proved the Well-Ordering Principle from the Principle of
Mathematical Induction. Using the terminology of this section, the Well-Ordering
Principle says that the natural numbers are well ordered by <. The integers, 7, on
the other hand, are not well ordered by < because we have Seen that [—2, —4, —8,
—16,—32,...} is a nonempty subset that has no smallest element.

Finally, we state without proof d remarkable result.

Well-Ordering Theorem
Every set can be well ordered.

The Well-Ordering Theorem should not be confused with the Well-Ordering
Principle of Section 2.5, which is a property of the natural mimbers. The theorem says
for any noneinipty et A there‘is altvays a way t8 defing & Huser okdeving on the set so
that every nonempty subset of A has a least element. Even the set of real numbers,
which we know is not well ordered by the usual linear order <, has some other linear
ordering so that R is well ordered by that ordering. The proof of the Well-Ordering
Theorem requires a new property of sets, the Axiom of Choice, (See Section 5.5.)

Exercises 3.4

1. 'Which of these relations on the given set are antisymmetric?
* (@) A={1,2,3,45}L,R=((13).({,1), 24,3, 2),(54), 4, ).
M) A={1,2,3,4,5},R=((},4),(1,2),2,3),(3,4), (5,2), (4,2),(1,3)}.
* () Z,xRyiff x>=1y%
M) RxRyiff x <
(&) RxRx8yiffy=x—1.
* (f) A=/{1,2 3,4}, R asgivenin the digraph:

Cre—D

Ci—=0)




