More Final Exam Review Problems

Problem 1. Let f be a partial computable function. Explain why the function

$$g(n) = \begin{cases} 1 & \text{if } f(m) \downarrow \text{ for all } m \leq n \\ \uparrow & \text{otherwise} \end{cases}$$

is also partial computable.

Solution. To compute g(n) we run the following loop:

Step 1. Set m = 0.

- Step 2. Run f(m). If f(m) halts proceed to Step 3. If f(m) never halts, we wait in this step forever (and so $g(n) \uparrow$).
- Step 3. Check if m = n. If so, halt and output 1 (and so g(n) = 1). Otherwise increment m by 1 and repeat Step 2.

Problem 2. Which sets X satisfy $X \leq_m \emptyset$?

Solution. To have $X \leq_m \emptyset$, we need a computable function f such that

$$n \in X \Leftrightarrow f(n) \in \emptyset$$

Since $f(n) \notin \emptyset$ (by the definition of \emptyset), we must have $n \notin X$ for all n. Therefore, the only set X for which $X \leq_m \emptyset$ is $X = \emptyset$.

Problem 3. Which sets X satisfy $X \leq_m \mathbb{N}$?

Solution. To have $X \leq_m \mathbb{N}$, we need a computable function f such that

$$n \in X \Leftrightarrow f(n) \in \mathbb{N}$$

Since $f(n) \in \mathbb{N}$ no matter what n is, we must have $n \in X$ for all n. Therefore, the only set X for which $X \leq_m \mathbb{N}$ is $X = \mathbb{N}$.

Problem 4. Let W be a c.e. set. Show that $W \leq_m K_0$, where $K_0 = \{ \langle e, n \rangle \mid \varphi_e(n) \downarrow \}$.

Solution. Since W is a c.e. set, we can fix an index e such that $W = \text{domain}(\varphi_e)$. Let $f(n) = \langle e, n \rangle$. Since our pairing function is computable, f is a computable function. We claim that f witnesses that $W \leq_m K_0$.

$$n \in W \iff \varphi_e(n) \downarrow$$
$$\Leftrightarrow \langle e, n \rangle \in K_0$$
$$\Leftrightarrow f(n) \in K_0$$

Problem 5. Fix an index $e \in \mathbb{N}$ and let $A = \{i \mid \varphi_i = \varphi_e \text{ as partial functions}\}$.

- Prove that A is an index set.
- Prove that $A \neq \emptyset$ and $A \neq \mathbb{N}$.
- Prove that A is not computable.

Solution. To see A is an index set, suppose $i \in A$ and $j \sim i$ (that is, $\varphi_j = \varphi_i$ as partial functions). We need to show that $j \in A$. Since $i \in A$, we know $\varphi_i = \varphi_e$ as partial functions, and so $\varphi_j = \varphi_e$ as partial functions. Therefore, $j \in A$ as required.

To see that $A \neq \emptyset$, note that $e \in A$ because $\varphi_e = \varphi_e$ are partial functions. To see $A \neq \mathbb{N}$, let *a* be an index such that $\varphi_a(n) = 0$ for all *n*, and let *b* be an index such that $\varphi_b(n) = 1$ for all *n*. Since φ_e can be equal to at most one of φ_a or φ_b , we have that either $a \notin A$ or $b \notin A$ (or both). Therefore, $A \neq \mathbb{N}$.

By Rice's theorem, A is not computable because A is an index set such that $A \neq \emptyset$ and $A \neq \mathbb{N}$.

Problem 6. Let $A = \{e \mid \operatorname{domain}(\varphi_e) \leq_m K_0\}$.

- Prove that A is an index set.
- Explain why A is computable.
- Explain why these two facts do not contradict Rice's theorem.

Solution. To see A is an index set, suppose $e \in A$ and $i \sim e$ (that is, $\varphi_i = \varphi_e$ as partial functions). We need to show that $i \in A$. Since $i \sim e$, we know that $\operatorname{domain}(\varphi_i) = \operatorname{domain}(\varphi_e)$. Since $e \in A$, we know $\operatorname{domain}(\varphi_e) \leq_m K_0$. Therefore, $\operatorname{domain}(\varphi_i) \leq_m K_0$ and so $i \in A$ by the definition of A.

To see why A is computable, recall that by Problem 4, every c.e. set W satisfies $W \leq_m K_0$. By definition, each set of the form domain(φ_e) is c.e., and so domain(φ_e) $\leq_m K_0$ for every e. Therefore $A = \mathbb{N}$ and so A is computable.

These facts do not contradiction Rice's theorem because Rice's theorem says that an index set is not computable when it is neither \emptyset nor \mathbb{N} . The index set A in this problem is equal to \mathbb{N} and so Rice's theorem does not apply to it.