
Final Exam Review Problems

Problem 1. Show that the following functions are register machine computable: n!, nm and
max{n,m}.

Solution. I will leave you to think about writing these register machine programs.

Problem 2(a). Prove that A ≤m A for every set A.

2(b). Prove that if A ≤m B and B ≤m C, then A ≤m C.

2(c). Let E = {2n : n ∈ N} be the set of even numbers and O = {2n + 1 : n ∈ N} be the
set of odd numbers. Prove that E ≤m O and O ≤m E. Explain why this example shows that
≤m is not an anti-symmetric relation.

Solution. For 2(a), use the identity function f(n) = n.

a ∈ A ⇔ f(n) = n ∈ A

For 2(b), let f and g be the functions witnessing A ≤m B and B ≤m C respectively. That
is, n ∈ A ⇔ f(n) ∈ B and n ∈ B ⇔ g(n) ∈ C. Let h = g ◦ f be the composition of f and
g. Since f and g are total computable functions, h is also a total computable function. It
follows that A ≤m C because

a ∈ A⇔ f(n) ∈ B ⇔ g(f(n)) = (g ◦ f)(n) ∈ C

For 2(c), the function f(n) = n + 1 works to show both E ≤m O and O ≤m E because
n ∈ E ⇔ n + 1 ∈ O and n ∈ O ⇔ n + 1 ∈ E. Recall that an anti-symmetric relation is a
binary relation R with the property that if R(i, j) and R(j, i) both hold, then i = j. For ≤m,
we have E ≤m O and O ≤m E but E 6= O, so ≤m is not antisymmetric.

Problem 3. Define a new relation ≡m between sets as follows:

A ≡m B ⇔ A ≤m B and B ≤m A.

Prove that ≡m is an equivalence relation. That is, ≡m is reflexive, symmetric and transitive.

Solution. Reflexive. A ≡m A because A ≤m A by Problem 2(a).
Symmetric. Assume A ≡m B holds, and we show B ≡m A holds. Since A ≡m B, we

have A ≤m B and B ≤m A. Therefore, both B ≤m A and A ≤m B hold, which means
B ≡m A.

Transitive. Assume A ≡m B and B ≡m C, and we show A ≡m C. Since A ≡m B, we
know A ≤m B and B ≤m A. Since B ≡m C, we know B ≤m C and C ≤m B. Putting these
together, using the transitivity of ≤m from Problem 2(b), we have

A ≤m B and B ≤m C ⇒ A ≤m C

C ≤m B and B ≤m A ⇒ C ≤m A



Together A ≤m C and C ≤m A imply A ≡m C.

Problem 4(a). Prove that K1 ≤m K0 and that K0 ≤m K.

4(b). Using our results from class, show that K ≡m K0 ≡m K1.

Solution. For 4(a), first consider K1 ≤m K0. Let f(e) = 〈e, 0〉. Since our pairing function is
computable, f is computable. This shows K1 ≤m K0 by

e ∈ K1 ⇔ ϕe(0) ↓⇔ 〈e, 0〉 = f(e) ∈ K0

Next, consider K0 ≤m K. Remember that each number x codes a pair 〈x0, x1〉. Define a
partial computable function f(x, y) by

f(x, y) =

{
1 if ϕx0(x1) ↓ where x = 〈x0, x1〉
↑ otherwise

Note that f is computable because it takes inputs x and y, splits x into its coded pair 〈x0, x1〉,
decodes the x0-th register machine from x0 and runs it on input x1. If this halts, f outputs
1 and otherwise it runs forever waiting for ϕx0(x1) to halt. Note that the input y is ignored,
so the value of the function f(x, y) (and whether or not it halts) depends only on x.

By the s-m-n theorem, there is a total computable function s(x) such that ϕs(x)(y) =
f(x, y) as partial functions. (Namely, on any input y, either both ϕs(x)(y) and f(x, y) diverge
or both converge to the same value.) Consider the function f(x, y) for a fixed value of x.
Because f(x, y) does not depend on y, we have the following property: f(x, y) ↓ for a single
value of y if and only if f(x, y) ↓ for all values y.

By the s-m-n theorem, there is a computable function s(x) such that for all x, ϕs(x)(y) =
f(x, y) as partial functions. We claim that the function s(x) gives the reduction of K0 to K.

〈e, n〉 ∈ K0 ⇔ ϕe(n) ↓
⇔ f(〈e, n〉, y) ↓ for all y

⇔ ϕs(〈e,n〉)(y) ↓ for all y

⇔ ϕs(〈e.n〉)(s(〈e, n〉)) ↓
⇔ s(〈e, n〉) ∈ K

Problem 5. Consider the set Tot = {e : ϕe is total} = {e : ϕe(n) ↓ for all n}. Prove that
Tot is not computable.

Solution. You can solve this problem in a variety of different ways using the techniques from
the past couple of weeks.

Method 1. Assume for a contradiction that Tot is computable. This means that the
characteristic function χTot defined by

χTot(e) =

{
1 if ϕe(n) ↓ for all n
0 otherwise



is computable. Therefore, we can define a computable function g(e) by

g(e) =

{
ϕe(e) + 1 if χTot(e) = 1
0 if χTot(e) = 0

Note that if χTot(e) = 1, then ϕe is total, so in particular, ϕe(e) ↓. Therefore, g is a total
computable function.

To finish the proof, we need to derive our contradiction. Since g is a computable function,
it has an index, say g = ϕi. Since g is total, we know ϕi is total and hence χTot(i) = 1.
Therefore, g(i) = ϕi(i) + 1 6= ϕi(i), which contradicts g = ϕi.

Method 2. For this method, we use the s-m-n theorem to give a reduction K ≤m Tot
showing that Tot is not computable. Define a partial computable function g(e, n) by

g(e, n) =

{
1 if ϕe(e) ↓
↑ otherwise

Note that the value of g(e, n), as well as whether it converges, does not depend on n. By the s-
m-n theorem, there is a total computable function s(e) such that for all e and n, ϕs(e) = g(e, n)
as partial functions. Note that if ϕe(e) ↓, then g(e, n) ↓ for all n, so ϕs(e)(n) ↓ for all n. On
the other hand, if ϕe(e) ↑, then g(e, n) ↑ for all n and hence ϕs(e)(n) ↑ for all n. We can now
show that the function s(x) gives us the reduction:

e ∈ K ⇔ ϕe(e) ↓
⇔ ϕs(e)(n) ↓ for all n

⇔ s(e) ∈ Tot

Method 3. As a third method, we can solve this problem using Rice’s theorem. Notice
that Tot 6= ∅ because there are total computable functions – for example, f(x) = x + 1 is a
total computable function. On the other hand, Tot 6= N because there are partial computable
functions which are not total – for example, the function f such that f(n) ↑ for all n is partial
computable but not total. Therefore, if we can show that Tot is an index set, it will follow
from Rice’s theorem that Tot is not computable. To see Tot is an index set, suppose e ∈ Tot
and i ∼ e. That is, ϕe is total and ϕi = ϕe as partial functions. Since ϕe(n) ↓ for all n, it
follows that ϕi(n) ↓ for all n because ϕe = ϕi. So, ϕi is total and i ∈ Tot as required.

Problem 6. Consider the following partial computable function.

g(e) =

{
ϕe(e) + 1 if ϕe(e) ↓
↑ otherwise

Prove that there is no (total) computable function f such that f is an extension of g.

Solution. Suppose for a contradiction that there is a total computable function f such that
f(e) = g(e) for all e such that g(e) ↓. Since f is a computable function, it has an index –



say f(x) = ϕi(x). Since f is total, ϕi is total and hence ϕi(i) ↓= f(i). Because ϕi(i) ↓, we
have g(i) = ϕi(i) + 1. Since g(i) ↓ and f is an extension of g, f(i) = g(i). We now have the
following contradiction:

ϕi(i) = f(i) = g(i) = ϕi(i) + 1

Problem 7(a). Consider the set Ext = {e : ϕe has a total computable extension}. Prove
that Ext is an index set.

7(b). Prove that Ext is not computable.

Solution. For 7(a), assume that e ∈ Ext and i ∼ e. We need to show that i ∈ Ext. Since
e ∼ i, we know ϕe = ϕi as partial functions. In particular, domain(ϕe) = domain(ϕi) and for
all n ∈ domain(ϕe), ϕe(n) = ϕi(n).

Since e ∈ Ext, there is a total computable function f such that f is an extension of ϕe. This
means that for all n ∈ domain(ϕe), ϕe(n) = f(n). However, since domain(ϕi) = domain(ϕe),
we have that for all n ∈ domain(ϕi), ϕi(n) = ϕe(n) = f(n). Therefore, f is also an extension
of ϕi and so i ∈ Ext.

For 7(b), we would like to apply Rice’s theorem. We already know Ext is an index set, so
it suffices to show Ext=6= ∅ and Ext 6= N. Problem 7(a) shows that Ext 6= N. To see Ext= 6= ∅,
notice that if f is any total computable function (for example, f(x) = x+1), then every index
for f is in Ext because f is a total computable extension of itself (so f has a total computable
extension). Therefore, Rice’s theorem applies and we conclude that Ext is not computable.

Problem 8(a). Consider the set Fin = {e : ϕe has a finite domain}. Prove that Fin is an
index set.

8(b). Prove that Fin is not computable.

Solution. For 8(a), assume that e ∈ Fin and i ∼ e. We need to show that i ∈ Fin. Since
e ∼ i, we know ϕe = ϕi as partial functions. In particular, domain(ϕe) = domain(ϕi). Since
e ∈ Fin, domain(ϕe) is finite. Therefore, domain(ϕi) is finite and hence i ∈ Fin.

For 8(b), we apply Rice’s theorem. By 8(a), Fin is an index set. We know Fin 6= ∅ because
the function f such that f(n) ↑ for all n is partial computable and has empty (and hence
finite) domain. Therefore every index for f is in Fin. On the other hand, Fin 6= N because
there are total computable functions (such as f(x) = x + 1). Any such function has infinite
domain and hence each of its indices is not in Fin. Therefore, Rice’s theorem applies to Fin
and we conclude Fin is not computable.

Problem 9. Let A be a nonempty c.e. set. Prove that there is a total computable function
g such that A = range(g).

Solution. Since A 6= ∅, we can fix an element a ∈ A. Since A is c.e., there is a partial
computable function ϕe such that A = domain(ϕe). We define a total computable function
g(x) as follows. We interpret each input x as a code for a pair 〈x0, x1〉. Then we compute



ϕe,x0(x1). That is, we run the algorithm for ϕe(x1) for x0 many steps. If this computation
converges (i.e hits a halt instruction), we output x1. If the computation doesn’t converge, we
output a. That is,

g(〈x0, x1〉) =

{
x1 if ϕe,x0(x1) ↓
a otherwise

We need to show that range(g) = domain(ϕe), or equivalently range(g) = A. First, suppose
m ∈ range(g) and we show m ∈ A. There are two possibilities for m. First, we could have
m = a, in which case m ∈ A because a ∈ A. Second, we could have m = x1 in some pair
〈x0, x1〉 such that ϕe,x0(x1) ↓. In this case, m = x1 ∈ domain(ϕe) and so m ∈ A.

Next, assume m ∈ A and we show m ∈ range(g). Since m ∈ A = domain(ϕe), we know
there is some number of computation steps s such that ϕe,s(m) ↓. By the definition of g, we
have g(〈s,m〉) = m because ϕe,s(m) ↓. Therefore, m ∈ range(g) as required.

Problem 10. Let A be an infinite c.e. set. Prove that there is a total computable function
g such that g is one-to-one and A = range(g).

Solution.


