Exam 2 Review Problems

Problem 1. Prove that if $M = (\mathcal{F}, R, v)$ is a symmetric model (i.e. R is a symmetric binary relation), then $M \models \alpha \rightarrow \Box \Diamond \alpha$ for every modal proposition α .

Comment. The axiom scheme $\alpha \to \Box \Diamond \alpha$ is called Axiom B in the modal logic literature. It is characterized by the class of symmetric models in the same sense as the other axioms we have looked at in class.

Problem 2. A binary relation is called *weakly dense* if whenever xRy holds, there is a z such that xRz and zRy hold. Intuitively, you can think of z as "sitting between" x and y. However, note that z does not have to be different from x and y – this is why the notion is called *weakly* dense.

- 2(a). Prove that if R is reflexive, then R is weakly dense.
- 2(b). Give an example of a weakly dense relation R which is not reflexive.
- **2(c).** Prove that if $M = (\mathcal{F}, R, v)$ is a weakly dense model (i.e. R is a weakly dense binary relation), then $M \models \Box \Box \alpha \rightarrow \Box \alpha$ for every modal proposition α .
- **2(d).** Give a model $M = (\mathcal{F}, R, v)$ such that $M \models \Box \Box A \rightarrow \Box A$ but $M \not\models \Box A \rightarrow A$.

Problem 3. The following exercises are examples of a general notion of duality in modal logic. Let α be an arbitrary modal proposition.

- **3(a).** Show that if M is reflexive, then $M \models \alpha \rightarrow \Diamond \alpha$. Then show that $T \vdash \alpha \rightarrow \Diamond \alpha$ by giving a tableau proof of $\alpha \rightarrow \Diamond \alpha$ using the reflexive development rule.
- **3(b).** Show that if M is euclidean, then $M \models \Diamond \Box \alpha \rightarrow \Box \alpha$. Then show that $5 \vdash \Diamond \Box \alpha \rightarrow \Box \alpha$ by giving a tableau proof of $\Diamond \Box \alpha \rightarrow \Box \alpha$ using the euclidean development rule.

Problem 4. Let α be an arbitrary modal formula.

- **4(a).** Show that if M is symmetric, then $M \models \Diamond \Box \alpha \rightarrow \alpha$.
- **4(b).** By the comment after Problem 1, Axiom *B* is the scheme $\alpha \to \Box \Diamond \alpha$ and the collection of symmetric models is sound and complete for Axiom B. Write down a symmetric tableau development rule that captures the notion of symmetric models. Show that $B \vdash \Diamond \Box \alpha \to \alpha$ by giving a tableau proof using your symmetric development rule.

Problem 5. Recall that S5 is the modal system which includes Axiom 5 and Axiom T. It is characterized by models which are reflexive and euclidean. Show that $S5 \vdash \alpha \rightarrow \Box \Diamond \alpha$ for every modal proposition α .

Hint. Show that $\alpha \to \Box \Diamond \alpha$ is tableau provable using the reflexive and euclidean development rules.