
Math 2142 Exam 1 Review Problems

Problem 1. Calculate the 3rd Taylor polynomial for arcsinx at x = 0.

Solution. Let f(x) = arcsin x. For this problem, we use the formula

f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3

for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

f(x) = arcsin x ⇒ f(0) = 0

f ′(x) = (1− x2)−1/2 ⇒ f ′(0) = 1

f ′′(x) = x(1− x2)−3/2 ⇒ f ′′(0) = 0

f ′′′(x) = (1− x2)−3/2 + 3x(1− x2)−5/2 ⇒ f ′′′(0) = 1

Therefore, the 3rd Taylor polynomial is x+ x3/6.

Problem 2. In this problem, you will calculate the n-th Taylor polynomial for x−1/2 at x = 1.
To make the notation easier, let f(x) = x−1/2.

2(a). Prove by induction that for all n ≥ 1,

f (n)(x) = (−1)n
1 · 3 · 5 · · · (2n− 1)

2n
x−(2n+1)/2

Solution. The base case for the induction is when n = 1. In this case,

f ′(x) = − 1

2
x−3/2 = (−1)1

1

21
x−(2·1+1)/2

so the formula works.
For the induction case, assume that f (n)(x) has the form above and we show that f (n+1)(x)

also has this form. Since f (n+1)(x) = d/dx f (n)(x), we can take the derivative of the formula
above to get

f (n+1)(x) = (−1)n
1 · 3 · 5 · · · (2n− 1)

2n
· −(2n+ 1)

2
x(−(2n+1)/2)−1

I will leave you to check that this expression simplifies in the correct form of

f (n+1)(x) = (−1)n+11 · 3 · 5 · · · (2(n+ 1)− 1)

2n+1
x−(2(n+1)+1)/2

2(b). Give the formula for the n-th Taylor polynomial to x−1/2 at x = 1.



Solution. We have f(1) = 1 and by Problem 2(a), we know

f (k)(1) = (−1)k
1 · 3 · 5 · · · (2k − 1)

2k

for k ≥ 1. Therefore, the n-th Taylor polynomial for f(x) at x = 1 is

1 +
n∑
k=1

(−1)k
1 · 3 · 5 · · · (2k − 1)

2k · k!
(x− 1)k

or written without the sum notation

1− 1

2
(x− 1) +

1 · 3
22 · 2!

(x− 1)2 − 1 · 3 · 5
23 · 3!

(x− 1)3 + · · ·+ (−1)n
1 · 3 · 5 · · · (2n− 1)

2n · n!
(x− 1)n

Problem 3. In this problem, you will develop the Taylor polynomials for ln(1 − x). Let
f(x) = ln(1− x).

3(a). Prove by induction that for all n ≥ 1,

f (n)(x) = − (n− 1)!

(1− x)n

and hence for n ≥ 1, f (n)(0) = −(n− 1)!.

Solution. For the base case when n = 1, we need to show that

f ′(x) = − 0!

(1− x)1

By the Chain Rule, d/dx(ln(1− x)) = −1/(1− x). Since 0! = 1, the right side of this above
equation is also −1/(1− x). This completes the base case.

For the induction case, assume that

f (n)(x) = − (n− 1)!

(1− x)n

for a fixed n ≥ 1. We need to show that

f (n+1)(x) = − ((n+ 1)− 1)!

(1− x)n+1

The right side is −n!/(1− x)n+1. To calculate the left side using the induction hypothesis

f (n+1)(x) =
d

dx
f (n)(x) =

d

dx

(
−(n− 1)! (1− x)−n

)
= −(n− 1)!(−n)(−1)(1− x)−(n+1)

The last expression simplifies to −n!/(1− x)(n+1) as required.



3(b). Give the n-th Taylor polynomial for f(x) at x = 0.

Since f(0) = ln 1 = 0, we know that the constant term in the Taylor polynomial is 0. So, we
can start the indexing in our sum with k = 1 (because the k = 0 term is 0). By Problem
3(a), we know that f (n)(0) = −(n− 1)! for n ≥ 1. Therefore, the n-th Taylor polynomial for
ln(1− x) at x = 0 is

Tn =
n∑
k=1

f (k)(0)

k!
xk =

n∑
k=1

−(k − 1)!

k!
xk =

n∑
k=1

− x
k

k

Problem 4. Prove that if c is a constant and f is a (sufficiently differentiable) function, then

Tn(cf(x)) = c Tn(f(x))

where we take the Taylor polynomial at x = a.

Solution. We first calculate the right side as follows

c Tn(f(x)) = c
n∑
k=0

f (k)(a)

k!
(x− a)k =

n∑
k=0

c f (k)(a)

k!
(x− a)k

To calculate the left side, we first note that because c is a constant, we have

dk

dxk
cf = c

dk

dxk
f = c f (k)

We now calculate the left side as follows.

Tn(cf(x)) =
n∑
k=0

(dk/dxk cf)(a)

k!
(x− a)k =

n∑
k=0

c f (k)(a)

k!
(x− a)k

As these formulas now match, we have finished our proof.

Problem 5. Evaluate the following (convergent) improper integrals.

For the first integral,∫ ∞
4

1

(3x+ 1)2
dx = lim

t→∞

∫ t

4

1

(3x+ 1)2
dx = lim

t→∞

−1

3(3x+ 1)

∣∣∣∣t
4

= lim
t→∞

−1

9t+ 3
+

1

3 · 13
=

1

39

For the second integral,∫ ∞
2

e−x/2 dx = lim
t→∞

∫ t

2

e−x/2 dx = lim
t→∞
−2e−x/2

∣∣∣t
2

= lim
t→∞
−2e−t/2 + 2e−1 = 2/e



For the third integral, we need to split the integral into two improper integrals by picking
a convenient middle point. I’ll choose to split it as∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
e−|x| dx+

∫ ∞
0

e−|x| dx

We need to make sure that both of the integrals on the right converge and sum their values.
First, consider∫ ∞

0

e−|x| dx = lim
t→∞

∫ t

0

e−x dx = lim
t→∞
−e−x

∣∣∣t
0

= lim
t→∞
−e−t + e0 = 1

Notice that we were able to remove the absolute value sign because x is positive on the interval
(0,∞]. You can approach the other integral in a couple of different ways. One method is to
note that by symmetry, the area under e−|x| on the interval (−∞, 0) is the same as on the

interval (0,∞). Therefore, we must have
∫ 0

−∞ e
−|x| dx = 1 as well. Alternately, you can write

out the definition and calculate the integral directly. However, remember that |x| = −x on
the interval (−∞, 0)!∫ 0

−∞
e−|x| dx = lim

t→−∞

∫ 0

t

e−(−x) dx = lim
t→−∞

∫ 0

t

ex dx = lim
t→−∞

ex
∣∣∣0
t

= lim
t→−∞

e0 − et = 1

Problem 6. Use the definition of the improper integral to explain why
∫∞
0

sinx dx diverges.

Solution. By definition, ∫ ∞
0

sinx dx = lim
t→∞

∫ t

0

sinx dx

provided this limit exists. To show that the limit does not exist, we note that∫ t

0

sinx dx = − cosx
∣∣∣t
0

= − cos t+ cos 0 = − cos t+ 1

Recall that when we plug an even multiple of π into cos t we get 1. That is, cos 2nπ = 1.
When we plug an odd multiple of π into cos t, we get −1. That is, cos(2n+ 1)π = −1. This
means that ∫ 2nπ

0

sinx dx = 0 and

∫ 2(n+1)π

0

sinx dx = 2

Therefore, for every M > 0, there are numbers t0 > M such that
∫ t0
0

sinx dx = 0 and t1 > M

such that
∫ t1
0

sinx dx = 2. Therefore,
∫ t
0

sinx dx cannot approach a limit as t→∞.

Problem 7. Determine whether the following integrals converge or diverge. You do not need
to calculate the value of the convergent integrals.

For the first integral ∫ ∞
1

x2

9 + x6
dx



we can use the Comparison Test as follows:

x2

9 + x6
≤ x2

x6
=

1

x4

for all x ∈ [1,∞) because 9 + x6 ≥ x6. We know
∫∞
1

1/x4 dx converges because it has the
form

∫∞
1

1/xp dx with p = 4 > 1. Therefore, the first integral converges.

For the second integral, ∫ ∞
1

2 + e−x

x
dx

we can use the Comparison Test as follows:

2 + e−x

x
≥ 1

x

because 2 + e−x ≥ 1. We know
∫∞
1

1/x dx diverges from class, and so the second integral
diverges.

For the third integral, ∫ 1

0

e−x√
x
dx

the problematic integral limit is the lower limit of 0. For x ∈ [0, 1], we know that e−x is
between e−1 and 1. Therefore, for x ∈ (0, 1), we have

1

e
√
x
≤ e−x√

x
≤ 1√

x

We know that
∫ 1

0
1/
√
x dx converges from Homework 3 since it has the form

∫ 1

0
1/xp dx where

p = 1/2 < 1. Therefore, the second inequality above tells use that
∫ 1

0
e−x/
√
x dx converges as

well by the Comparison Test.

For the fourth integral, ∫ ∞
2

lnx

x2
dx

we might be tempted to try the Comparison Test with 1/x2. However, the inequality goes
the wrong way. That is,

1

x2
≤ lnx

x2

but
∫∞
1

1/x2 dx converges, so the Comparison Test doesn’t help using this particular com-
parison and we need to think a little more. We know that as x → ∞, lnx goes to infinity
more slowly than any positive power of x, so our intuition says that the factor of lnx in the
numerator should not be enough to push the integral into divergence.



To see this more formally, try the Comparison Test with 1/xp where p is a little smaller
than 2 rather than with 1/x2. For example, it should be that for large values of x, we have
lnx ≤

√
x. Since

lim
x→∞

lnx√
x

= 0

we can apply the definition of the limit to fix an M such that for all x > M , lnx/
√
x < 1.

In other words, ln x <
√
x for all x > M . By choosing M larger if necessary, we can assume

that M ≥ 2.
We now have that for all x > M ,

lnx

x2
≤
√
x

x2
=

1

x3/2

This comparison is useful since we know
∫∞
M

1/x3/2 dx converges because p = 3/2 > 1. To
finish the problem, we write∫ ∞

2

lnx

x2
dx =

∫ M

2

lnx

x2
dx+

∫ ∞
M

lnx

x2
dx

The first integral on the right side exists because the function being integrated is continuous
and the second integral on the right side converges by the Comparison Test. Therefore, our
initial integral converges as well.

For the last integral ∫ ∞
1

x

1 + x2
dx

we might be tempted to try a comparison with 1/x. However,

x

1 + x2
≤ x

x2
=

1

x

Since
∫∞
1

1/x dx diverges, this comparison doesn’t help us, and as above, we need to think a
little more. Our intuition should be that for large values of x, x/(1 + x2) is extremely close
to x/x2 so adding the constant 1 should make the fraction small enough to push the integral
into convergence. One way to make this more formal is to notice that for x ≥ 1, we have
1 ≤ x2 and hence 1 + x2 ≤ x2 + x2 = 2x2. Since make the denominator larger will make a
fraction smaller, this insight tells us that

x

1 + x2
≥ x

2x2
=

1

2x

for all x ≥ 1. Now our comparison goes the right way! We know
∫∞
1

1/x dx diverges, and
hence so does

∫∞
1

1/2x dx. So, the Comparison Test tells us that this final integral diverges
as well.

Problem 8. Find a general formula to write (a + ib)−1 in the form c + id. That is, find
formulas for c and d in terms of a and b. (You can assume a+ ib is not 0.)



Solution. To find the multiplicative inverse of a+ ib we calculate

1

a+ ib
· a− ib
a− ib

=
a− ib
a2 + b2

=
a

a2 + b2
− i b

a2 + b2

Problem 9. Prove that ez is not equal to 0 for any z ∈ C.

Solution. Write z = a+ ib where a and b are real numbers. We know

ez = ea+ib = ea cos b+ i ea sin b

To prove that this value can never be 0, we need to show that there are no real numbers a
and b such that both ea cos b = 0 and ea sin b = 0. Since ea 6= 0 (because a is real), it suffices
to show that we cannot have both sin b = 0 and cos b = 0. If sin b = 0, then b is a integer
multiple of π. However, the value of cos b when b is an integer value of π is either 1 or −1.
Therefore, when sin b = 0, we have cos b 6= 0, and hence they cannot both be 0 at the same
time.

Problem 10. Find the following limits.

lim
x→0

sin ax

sin bx
lim
x→0

tan 2x

sin 3x
lim
x→0

sinx

arctanx

lim
x→∞

2x

3x
lim
x→0

xx

lim
x→1−

x1/(1−x) lim
x→0

1

x
− 1

ex − 1

Solution. We consider the limits one at a time, typically using L’Hopital’s rule. The first
three limits all have form 0/0, so we immediately apply L’Hopital’s rule. In all three cases,
we only need to apply it once.

lim
x→0

sin ax

sin bx
= lim

x→0

a cos ax

b cos bx
=
a

b

lim
x→0

tan 2x

sin 3x
= lim

x→0

2 sec2 2x

3 cos 3x
=

2

3

lim
x→0

sinx

arctanx
= lim

x→0

cosx

1/(1 + x2)
= 1

There are a couple of ways you could approach the next limit. One method would be to
simplify 2x/3x to (2/3)x. Since 0 < 2/3 < 1, the value of (2/3)x goes to 0 as the exponent
goes to ∞. That is,

lim
x→∞

2x

3x
= lim

x→∞
(2/3)x = 0.



Alternately, you can rewrite 2x as ex ln 2 and 3x as ex ln 3. Then

lim
x→∞

2x

3x
= lim

x→∞

ex ln 2

ex ln 3
= lim

x→∞
ex(ln 2−ln 3)

Since ln 2 − ln 3 is negative, the exponent of e goes to −∞ as x goes to ∞. Therefore, the
limit is 0.

The next limit has for 00, so we start by rewriting xx.

lim
x→0

xx = lim
x→0

elnx
x

= lim
x→0

ex lnx

We need to find the limit of x lnx, which has the form 0 · ∞, so we rewrite it in the form
∞/∞ as follows.

lim
x→0

x lnx = lim
x→0

lnx

1/x
= lim

x→0

1/x

−1/x2
= lim

x→0
−x = 0

so limx→0 x
x = e0 = 1.

The next limit has form 1∞, so we start by rewriting again.

lim
x→1−

x1/(1−x) = lim
x→1−

elnx
1/(1−x)

= lim
x→1−

e
ln x
1−x

The limit of the exponent has form 0/0, so we apply L’Hopital’s rule:

lim
x→1−

lnx

1− x
= lim

x→1−

1/x

−1
= lim

x→1−
−1/x = −1

So, the original limit is e−1, or equivalently 1/e.
The next limit has form ∞−∞, so we combine it into one fraction.

lim
x→0

1

x
− 1

ex − 1
= lim

x→0

ex − 1− x
x(ex − 1)

= lim
x→0

ex − 1− x
xex − x

The limit now has the form 0/0 so we try L’Hopital’s rule.

lim
x→0

ex − 1− x
xex − x

= lim
x→0

ex − 1

ex + xex − 1

This limit still has form 0/0, so we try L’Hopital’s rule again.

lim
x→0

ex − 1

ex + xex − 1
= lim

x→0

ex

ex + ex + xex
=

1

2


