Math 2142 Homework 4 Part 2 Solutions

Problem 1. Prove that the set of functions $\{1, \sqrt{x}, x\}$ is independent.

Solution. We assume that

 $c_0 \cdot 1 + c_1 \sqrt{x} + c_2 x = 0$

and we need to show the that $c_0 = c_1 = c_2 = 0$. Plugging in x = 0 shows that $c_0 = 0$, so we are left with $c_1\sqrt{x} + c_2x = 0$. Plugging in x = 1 and x = 4 gives the equations $c_1 + c_2 = 0$ and $2c_1 + 4c_2 = 0$. Since $c_1 + c_2 = 0$, we know $c_1 = -c_2$. Plugging this identity into $2c_1 + 4c_2 = 0$ gives $-2c_2 + 4c_2 = 0$, which means $c_2 = 0$. Since $c_1 = -c_2$, it also implies that $c_1 = 0$.

Problem 2. Prove that the set of functions $\{e^x, \sin x, \cos x\}$ is independent.

Solution. We assume that

 $c_0 e^x + c_1 \sin x + c_2 \cos x = 0$

and we have to show that $c_0 = c_1 = c_2 = 0$. Plugging x = 0 and $x = \pi$ into the equation above gives

$$c_0 + c_2 = 0 c_0 e^{\pi} - c_2 = 0$$

Adding these equations gives $c_0(1+\pi) = 0$ and so $c_0 = 0$. Since $c_0 + c_2 = 0$, we also have that $c_2 = 0$. We are left with $c_1 \sin x = 0$. Plugging in $x = \pi/2$ gives $c_1 = 0$, finishing the problem.

Alternately, once you have shown $c_0 = 0$, you are left with $c_1 \sin x + c_2 \cos x = 0$. In class, we proved that $\cos x$ and $\sin x$ are independent, so you can state this fact and immediately conclude that $c_1 = c_2 = 0$.

Problem 3. Prove that for each $n \ge 1$, the set of functions $\{1, x, x^2, \ldots, x^n\}$ is independent.

Solution. I will describe two ways to solve this problem. The first method is to do the proof by induction on $n \ge 1$. For the base case when n = 1, we have to show that $\{1, x\}$ is independent. We assume that $c_0 + c_1 x = 0$ and have to show that $c_0 = c_1 = 0$. Plugging x = 0 into $c_0 + c_1 x = 0$ gives us $c_0 = 0$ and leaves us with $c_1 x = 0$. Plugging in x = 1 gives us $c_1 = 0$.

For the induction case, we assume that $\{1, x, \ldots, x^n\}$ is independent and show that $\{1, x, \ldots, x^n, x^{n+1}\}$ is independent. We assume

$$c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + c_{n+1} x^{n+1} = 0$$

and have to show that $c_0 = c_1 = \cdots = c_n = c_{n+1} = 0$. First, if we plug in x = 0, we see that $c_0 = 0$. Second, if we take the derivative of the equation above, we get

$$c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1} + (n+1)c_{n+1}x^n = 0$$

Because $\{1, x, x^2, \dots, x^n\}$ is independent, we know that each of the coefficients in this equation must be equal to 0. That is

$$c_1 = 0$$
 and $2c_2 = 0$ and $3c_3 = 0$ and \cdots and $nc_n = 0$ and $(n+1)c_{n+1} = 0$

It follows that $c_1 = 0, c_2 = 0, \ldots, c_n = 0, c_{n+1} = 0.$

The second method is a slightly less formal version of the same argument. To show $\{1, x, \ldots, x^n\}$ is independent, we assume that

$$c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_n x^n = 0$$

We need to show that $c_0 = c_1 = \cdots = c_n = 0$. Plugging in x = 0 gives $c_0 = 0$. Taking the derivative gives us

$$c_1 + 2c_2x + 3c_3x^2 + \dots + nc_nx^{n-1} = 0$$

and plugging in x = 0 tells us that $c_1 = 0$. Taking the derivative again gives us

$$2c_2 + 3 \cdot 2c_3x + \dots + n(n-1)c_nx^{n-2} = 0$$

and plugging in x = 0 tells us that $c_2 = 0$. Continuing in this manner of taking derivatives and plugging in x = 0, we eventually get down to

$$(n-1)! c_{n-1} + n(n-1) \cdots (3)(2)c_n x = 0$$

Plugging in x = 0 gives $c_{n-1} = 0$. Finally, taking one more derivative give

$$n! c_n = 0$$

from which it follows that $c_n = 0$.