Math 2142 Homework 4 Part 2: Due Friday February 16

In our study of differential equations, we used the notion of two functions being independent. We can extend this notion from two functions to a finite set of functions. A set $\{f_0(x), f_1(x), \ldots, f_n(x)\}$ of functions is (*linearly*) independent if for any $c_0, \ldots, c_n \in \mathbb{R}$,

$$c_0 f_0(x) + c_1 f_1(x) + \dots + c_n f_n(x) = 0$$
 implies $c_0 = c_1 = \dots = c_n = 0$

The equality $c_0 f_0(x) + \cdots + c_n f_n(x) = 0$ is between functions, so it holds for all values of x.

To show that a finite set of functions $\{f_0(x), f_1(x), \ldots, f_n(x)\}$ is independent, we typically proceed by assuming that $c_0 f_0(x) + \cdots + c_n f_n(x) = 0$ and then showing that each $c_i = 0$.

In class, we used two methods to help show that a finite set of functions in independent. The first method is to plug in particular values of x to get linear equations involving the constants c_i . The second method is to take the derivative and use the fact that

$$c_0 f_0(x) + c_1 f_1(x) + \dots + c_n f_n(x) = 0$$
 implies $c_0 f'_0(x) + c_1 f'_1(x) + \dots + c_n f'_n(x) = 0$

Example. To show that the set of functions $\{1, x, x^2\}$ is independent, we begin with

Assume:
$$c_0 \cdot 1 + c_1 x + c_2 x^2 = 0$$

Show: $c_0 = c_1 = c_2 = 0$

Plugging x = 0 into $c_0 + c_1 x + c_2 x^2$ gives $c_0 = 0$. So we are left with $c_1 x + c_2 x^2 = 0$ and we still need to show $c_1 = c_2 = 0$. There are a couple of ways we could proceed from here.

Method 1. If we plug x = 1 and x = 2 into $c_1x + c_2x^2 = 0$, we get $c_1 + c_2 = 0$ and $2c_1 + 4c_2 = 0$. The first equation tells us that $c_1 = -c_2$. Plugging $c_1 = -c_2$ into the second equation tells us that $-2c_2 + 4c_2 = 0$, so $c_2 = 0$. Then $c_1 + c_2 = 0$ and $c_2 = 0$ together tell us that $c_1 = 0$.

Method 2. Alternately, we could take the derivative of $c_1x + c_2x^2 = 0$ to get $c_1 + 2c_2x = 0$. Plugging x = 0 into this equation gives us $c_1 = 0$. Since $c_1x + c_2x^2 = 0$ and $c_1 = 0$, we are left with just $c_2x^2 = 0$. Plugging in x = 1 gives us that $c_2 = 0$.

Problem 1. Prove that the set of functions $\{1, \sqrt{x}, x\}$ is independent.

Problem 2. Prove that the set of functions $\{e^x, \sin x, \cos x\}$ is independent.

Problem 3. Prove that for each $n \ge 1$, the set of functions $\{1, x, x^2, \ldots, x^n\}$ is independent.