
Math 2142 Homework 3 Solutions

This homework comes in two parts. Please hand in the two parts on separate pieces of paper.
The undergraduate grader will grade Part 1 and I will grade Part 2.

Homework 3 Part 1

Problem 1. From the textbook, Exercises 9.6, 1(a)-(h).

Solution. When using the formulas from class for division, we will often use the fact that
z · z = |z|2. That is, if z = a+ ib, then z · z = a2 + b2. I will use this fact often in the following
calculations. I will also use the facts that i2 = −1, i3 = −i (since i3 = i2i) and i4 = 1 (since
i4 = (i2)2 = (−1)2).
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Problem 2. From the textbook, Exercises 9.6, 2(a)(c)(f).

Solution.
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Problem 3. From the textbook, Exercises 9.6, 3(a)(c)(e)(f).

Solution. The easiest way to do these problems is to think about where the points sit in the
plane and give the polar coordinates. Remember that the principal argument θ has to satisfy
−π < θ ≤ π. For 3(a), the number 2i sits at (0, 2) and so have modulus 2 and θ = π/2. For



3(c), the number −1 sits at (−1, 0) and so has modulus 1 and θ = π. For 3(e), the number
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the triangle in the plane.) For 3(f), the number (1 + i)/
√

2 sits at (1/
√

2, 1/
√

2) and so has
modulus 1 and θ = π/4.

Problem 4. From the textbook, Exercises 9.10, 1(b)(e)(f)

Solution. First, I’ll calculate these using the formula for the complex exponential.

2e−πi/2 = 2 e0+i(−π/2) = 2(e0 cos(−π/2) + i e0 sin(−π/2)) = 2(0 + i(−1)) = −2i

i+ e2πi = i+ e0+i 2π = i+ e0 cos(2π) + i e0 sin(2π) = i+ 1 + 0 = 1 + i
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It is also worth thinking about these points geometrically because that is easier once you
get used to working with complex numbers. Remember that each z ∈ C can be written as
z = |z|eiθ where θ is the argument (i.e. the polar angle).

For 1(b), we are given the point 2e−πi/2. From this form, we know that the modulus is 2
and the argument is −π/2. That, we want to point in the complex plane that corresponds
to the point in R2 with polar coordinates r = 2 and θ = −π/2. This point is (0,−2) in R2,
which corresponds to the complex number −2i.

For 1(e), from the form of the complex number e2πi, we see that it has modulus 1 and
polar angle 2π. The point in R2 with polar coordinates r = 1 and θ = 2π is (1, 0). This point
corresponds to the complex number 1, so e2πi = 1. Then i+ e2πi = i+ 1.

For 1(f), the form of eπi/4 tells us that it corresponds to the point in R2 with polar
coordinates r = 1 and θ = π/4. This point is (1/
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√
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Problem 5(a). Prove that for all z1, z2 ∈ C, we have |z1z2| = |z1| |z2| and z1z2 = z1 z2.

Solution. Let z1 = a1 + ia2 and let z2 = b1 + ib2. To show that |z1z2| = |z1| |z2|, it suffices
to show that |z1z2|2 = (|z1| |z2|)2 since all the quantities are positive. We calculate both sides
to check that they are equal.
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We next calculate z1z2.

z1z2 = (a1 + ia2)(b1 + ib2) = (a1b1 − a2b2) + i(a1b2 + a2b1)

Therefore, |z1z2|2 is given by

(a1b1 − a2b2)2 + (a1b2 + a2b1)
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Canceling terms and comparing shows that |z1z2|2 = (|z1| |z2|)2.



To see that z1z2 = z1 z2, we again calculate both sides. Using the formula for z1z2 above,
we have

z1z2 = (a1b1 − a2b2)− i(a1b2 + a2b1)

Since z1 = a1 − ia2 and z2 = b1 − ib2, we get

z1 z2 = (a1 − ia2)(b1 − ib2)
= a1b1 + i2a2b2 − ia1b2 − ia2b1
= (a1b1 − a2b2)− i(a1b2 + a2b1)

Again, comparing these quantities shows that the equality holds.

5(b). Use 5(a) and induction to prove that for all z ∈ C and all natural numbers n ≥ 1, we
have |zn| = |z|n and zn = zn.

Solution. The base case when n = 1 is trivial for both properties. For the induction case,
assume that |zn| = |z|n and zn = zn for a fixed n and we show |zn+1| = |z|n+1 and zn+1 = zn+1.

|zn+1| = |zn · z| = |zn| · |z| = |z|n · |z| = |z|n+1

zn+1 = zn · z = zn · z = zn · z = zn+1

In each case, the second equality follows from 5(a) and the third equality uses the induction
hypothesis.

Homework 3 Part 2

Problem 6(a). Let r ∈ R and z ∈ C. Prove that rz = r z.

Solution. By Problem 5(a), rz = r z, but since r ∈ R, r = r.

6(b). Let p(z) be a polynomial with real coefficients. That is, p(z) looks like

p(z) = r0 + r1 z + r2 z
2 + · · ·+ rn z

n

with r0, r1, . . . , rn ∈ R. Prove that p(z) = p(z).

Solution. Recall that in class we proved that for any z1, z2 ∈ C, z1 + z2 = z1 + z2. We use
this property together with Problems 5 and 6(a) as follows:

p(z) = r0 + r1 z + r2 z2 + · · ·+ rn zn

= r0 + r1 z + r2 z2 + · · ·+ rn zn by the property from class

= r0 + r1z + r2z2 + · · ·+ rnzn by Problem 6(a)

= r0 + r1z + r2z
2 + · · ·+ rnz

n by Problem 5

= p(z)



6(c). Use 6(b) to explain why the non-real zeros of p(z) must occur in conjugate pairs. That
is, explain why if p(z) = 0 and z is not real, then p(z) = 0 as well.

Solution. Suppose z ∈ C is not real and p(z) = 0. Taking the conjugate of both sides, we
have p(z) = 0. But, 0 = 0 and by Problem 6(b), p(z) = p(z). Therefore, p(z) = 0. (Notice
that this calculation works just fine even if z is real, but in that case, z = z so we haven’t
found a new root of the polynomial p.)

Problem 7(a). Prove that if θ is real, then

cos θ =
eiθ + e−iθ

2

Solution. We use the fact that eiθ = cos θ + i sin θ and that e−iθ = cos(−θ) + i sin(−θ).
Recall that sin is an odd function, so sin(−θ) = − sin θ, and cos is an even function, so
cos(−θ) = cos θ. Therefore, e−iθ = cos θ − i sin θ. We can now calculate

eiθ + e−iθ

2
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cos θ + i sin θ + cos θ − i sin θ

2
=
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2
= cos θ

7(b). Use 7(a) to prove that cos2 θ = 1
2
(1 + cos 2θ).

Solution. First, we square both sides of the equation in Problem 7(a).

cos2 θ =
(eiθ + e−iθ)2
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We can simplify by (eiθ)2 = ei2θ, eiθe−iθ = eiθ−iθ = e0 = 1 and (e−iθ)2 = e−i2θ. Therefore, we
have

cos2 θ =
ei2θ + 2 + e−i2θ
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Finally, notice that if we replace θ by 2θ in the formula from Problem 7(a), we get

cos 2θ =
ei2θ + e−i2θ
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Using this equality to substitute into the previous equation gives

cos2 θ =
1

2
(cos 2θ + 1)

as required.



Problem 8(a). Prove that if θ is real and n is a positive integer then

(cos θ + i sin θ)n = cosnθ + i sinnθ

Solution. Using the identity eiθ = cos θ + i sin θ, we have

(cos θ + i sin θ)n = (eiθ)n = ei nθ

But, ei nθ = e0+i nθ = e0 cosnθ + ie0 sinnθ = cosnθ + i sinnθ. Substituting into the equation
above gives us the desired identity.

8(b). Use the case of n = 3 in 8(a) to prove that

sin 3θ = 3 cos2 θ sin θ − sin3 θ and cos 3θ = cos3 θ − 3 cos θ sin2 θ

Solution. By the case of n = 3 in 8(a), we know that (cos θ + i sin θ)3 = cos 3θ + i sin 3θ.
Using the fact that (a+ b)3 = a3 + 3a2b+ 3ab2 + b3, we have

(cos θ + i sin θ)3 = cos3 θ + 3 cos2 θ · i sin θ + 3 cos θ · i2 sin2 θ + i3 sin3 θ

= cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

= cos3 θ − 3 cos θ sin2 θ + i(3 cos2 θ sin θ − sin3 θ)

Since (cos θ + i sin θ)3 = cos 3θ + i sin 3θ, we have

cos 3θ + i sin 3θ = cos3 θ − 3 cos θ sin2 θ + i(3 cos2 θ sin θ − sin3 θ)

Comparing the real and imaginary parts of this equations gives the desired trig identities.


