Math 2142 Homework 3: Due Friday February 9

This homework comes in two parts. Please hand in the two parts on separate pieces of paper. The undergraduate grader will grade Part 1 and I will grade Part 2.

Homework 3 Part 1

Problem 1. From the textbook, Exercises 9.6, 1(a)-(h).

Problem 2. From the textbook, Exercises 9.6, 2(a)(c)(f).

Problem 3. From the textbook, Exercises 9.6, 3(a)(c)(e)(f).

Problem 4. From the textbook, Exercises 9.10, 1(b)(e)(f)

Problem 5(a). Prove that for all $z_1, z_2 \in \mathbb{C}$, we have $|z_1 z_2| = |z_1| |z_2|$ and $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$.

5(b). Use 5(a) and induction to prove that for all $z \in \mathbb{C}$ and all natural numbers $n \geq 1$, we have $|z^n| = |z|^n$ and $\overline{z^n} = \overline{z}^n$.

Homework 3 Part 2

If you use the properties of \overline{z} that we proved in class and you proved in Problem 5, then the solutions to the first two parts of the next problem should be very short.

Problem 6(a). Let $r \in \mathbb{R}$ and $z \in \mathbb{C}$. Prove that $\overline{rz} = r\overline{z}$.

6(b). Let p(z) be a polynomial with real coefficients. That is, p(z) looks like

$$p(z) = r_0 + r_1 z + r_2 z^2 + \dots + r_n z^n$$

with $r_0, r_1, \ldots, r_n \in \mathbb{R}$. Prove that $\overline{p(z)} = p(\overline{z})$.

6(c). Use 6(b) to explain why the non-real zeros of p(z) must occur in conjugate pairs. That is, explain why if p(z) = 0 and z is not real, then $p(\overline{z}) = 0$ as well.

One interesting feature of working with the exponential function in \mathbb{C} is that it makes some trig identities fairly easy to prove. The next two problems will give you three examples of this phenomenon.

Problem 7(a). Prove that if θ is real, then

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

Hint. Write $e^{i\theta}$ and $e^{-i\theta}$ in terms of their real and imaginary parts and then add them. How are $\cos \theta$ and $\cos -\theta$ related?

7(b). Use 7(a) to prove that $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$.

Hint. Square both sides of the equation in 7(a), then use 7(a) again when you are simplifying.

Problem 8(a). Prove that if θ is real and n is a positive integer then

$$(\cos\theta + i\,\sin\theta)^n = \cos n\theta + i\,\sin n\theta$$

Hint. For what complex value z is e^z equal to $\cos \theta + i \sin \theta$? Once you find z, use the fact that $(e^z)^n = e^{nz}$.

8(b). Use the case of n=3 in 8(a) to prove that

$$\sin 3\theta = 3\cos^2\theta\sin\theta - \sin^3\theta$$
 and $\cos 3\theta = \cos^3\theta - 3\cos\theta\sin^2\theta$

Hint. The case of n = 3 in 8(a) tells you that $(\cos \theta + i \sin \theta)^3 = \cos 3\theta + i \sin 3\theta$. Multiply out the lefthand side and then compare the real and imaginary parts of the two sides of the equation.

Practice Problems

Exercises 9.6: 2, 3, 4(a)(b)(c), 5(a)(b)(c)

Exercises 9.10: 1, 3, 4