
Math 2142 Homework 2 Solutions

Problem 1. Prove the following formulas for Laplace transforms for s > 0.

L{1} =
1

s
L{t} =

1

s2
L{sin at} =

a

s2 + a2
L{cos at} =

s

s2 + a2

Solution. For the first Laplace transform, we need to calculate:∫ ∞
0

e−st · 1 dt = lim
u→∞

∫ u

0

e−st dt = lim
u→∞

−e−st

s

∣∣∣u
0

= lim
u→∞

−e−su

s
+
e0

s

For each fixed value of s > 0, e−su → 0 as u → ∞. Therefore, the first terms drops out and
we are left with e0/s = 1/s as required.

For the second Laplace transform, we need to calculate:∫ ∞
0

e−st · t dt = lim
u→∞

∫ u

0

e−stt dt

To calculate
∫ u

0
e−stt dt, we use integration by parts with u = t and dv = e−st. Therefore,

du = dt and v = −e−st/s.∫ u

0

e−stt dt =
−te−st

s

∣∣∣u
0

+
1

s

∫ u

0

e−st dt

=
−ue−su

s
+ 0 +

(
−e−st

s2

∣∣∣u
0

)
=
−ue−su

s
+

(
−e−su

s2
+

1

s2

)
=
−u
sesu

− 1

s2esu
+

1

s2

By L’Hopital’s Rule, for each fixed s > 0, u/esu → 0 as u→∞. Furthermore, for each fixed
s > 0, 1/esu → 0 as u → ∞, Therefore, when we take the limit as u → ∞ we are left with
1/s2 are required.

For the third Laplace transform, we need to calculate:∫ ∞
0

e−st · sin at dt

Rather than dealing with the limit form of this integral, I will do integration by parts leaving
∞ as the upper limit. Let u = e−st and dv = sin at, so du = −se−st and v = (−1/a) cos at.∫ ∞

0

e−st · sin at dt =
−e−st cos at

a

∣∣∣∞
0
− s

a

∫ ∞
0

e−st cos at dt



Remember that the first term on the righthand side is an abbreviation for

−e−st cos at

a

∣∣∣∞
0

= lim
u→∞

−e−st cos at

a

∣∣∣u
0

= lim
u→∞

−e−su cos au

a
+
e0 cos 0

a
= lim

u→∞

− cos au

aesu
+

1

a

Since −1 ≤ cos au ≤ 1, we have −1/esu ≤ (cos au)/esu ≤ 1/esu. Since s > 0, limu→∞ 1/esu =
0, so by the Squeeze theorem limu→∞(cos au)/esu = 0. Therefore,

−e−st cos at

a

∣∣∣∞
0

= lim
u→∞

− cos au

aesu
+

1

a
=

1

a

and we have ∫ ∞
0

e−st · sin at dt =
1

a
− s

a

∫ ∞
0

e−st cos at dt. (1)

To calculate
∫∞
0
e−st cos at dt we use parts again with u = e−st and dv = cos at, so du = −se−st

and v = (1/a) sin at. Therefore,∫ ∞
0

e−st cos at dt =
e−st sin at

a

∣∣∣∞
0

+
s

a

∫ ∞
0

e−st sin at dt.

Again, the first term on the righthand side is an abbreviation:

e−st sin at

a

∣∣∣∞
0

= lim
u→∞

e−st sin at

a

∣∣∣u
0

= lim
u→∞

e−su sin au

a
− e0 sin 0

a
= lim

u→∞

sin au

aesu

Because −1 ≤ sin au ≤ 1, we have 1/esu ≤ (sin au)/esu ≤ 1/esu. For s > 0, limu→∞ 1/esu = 0
and so by the Squeeze theorem, limu→∞(sin au)/esu = 0. Therefore,

e−st sin at

a

∣∣∣∞
0

= lim
u→∞

sin au

aesu
= 0

and we have ∫ ∞
0

e−st cos at dt =
s

a

∫ ∞
0

e−st sin at dt. (2)

Putting Equations (1) and (2) together and doing some algebra, we have∫ ∞
0

e−st · sin at dt =
1

a
− s2

a2

∫ ∞
0

e−st sin at dt(
1 +

s2

a2

) ∫ ∞
0

e−st · sin at dt =
1

a

a2 + s2

a2

∫ ∞
0

e−st · sin at dt =
1

a∫ ∞
0

e−st · sin at dt =
1

a
· a2

s2 + a2
=

a

s2 + a2

which is the formula we are trying to prove.



For the last Laplace transform, we need to calculate:∫ ∞
0

e−st · cos at dt

We could repeat similar calculations to those used in the last Laplace transform, but it will
be shorter to use the formulas in Equations (1) and (2). Starting with Equation (2) and using
Equation (1) to do a substitution, we have∫ ∞
0

e−st cos at dt =
s

a

∫ ∞
0

e−st sin at dt =
s

a

(
1

a
− s

a

∫ ∞
0

e−st cos at dt

)
=

s

a2
−s

2

a2

∫ ∞
0

e−st cos at dt.

We can produce the formula for L{cos at} from here with some algebra.∫ ∞
0

e−st cos at dt =
s

a2
− s2

a2

∫ ∞
0

e−st cos at dt(
1 +

s2

a2

)∫ ∞
0

e−st cos at dt =
s

a2

a2 + s2

a2

∫ ∞
0

e−st cos at dt =
s

a2∫ ∞
0

e−st cos at dt =
s

a2
· a2

s2 + a2
=

s

s2 + a2

which is the formula we are trying to prove.

Problem 2. Prove by induction on n ∈ N+ that

L{tn} =
n!

sn+1

Solution. For the base case, we need to show that L{t} = 1/s2, which we did in Problem 1.
For the induction case, assume that

L{tn} =
n!

sn+1

for a fixed value of n and we show that

L{tn+1} =
(n+ 1)!

sn+2

By the definition of the Laplace transform, we have

L{tn+1} =

∫ ∞
0

tn+1e−st dt



Apply integration by parts to this integral with u = tn+1 and dv = e−st, so du = (n + 1)tn

and v = −e−st/s. Then we have

L{tn+1} =
−tn+1e−st

s

∣∣∣∞
0

+
n+ 1

s

∫ ∞
0

tne−st dt (3)

By the definition of the Laplace transform, we know that
∫∞
0
tne−st dt = L{tn}. Therefore,

we can substitute L{tn} into Equation (3) and use the Inductive Hypothesis.

L{tn+1} =
−tn+1e−st

s

∣∣∣∞
0

+
n+ 1

s

∫ ∞
0

tne−st dt

L{tn+1} =
−tn+1e−st

s

∣∣∣∞
0

+
n+ 1

s
L{tn}

L{tn+1} =
−tn+1e−st

s

∣∣∣∞
0

+
n+ 1

s
· n!

sn+1

L{tn+1} =
−tn+1e−st

s

∣∣∣∞
0

+
(n+ 1)!

sn+2

To finish the proof, we need to show that the first term on the righthand side of these equations
is equal to 0. Writing this term out in full, we have

−tn+1e−st

s

∣∣∣∞
0

= lim
u→∞

−tn+1e−st

s

∣∣∣u
0

= lim
u→∞

−un+1e−su

s
=
−1

s
lim
u→∞

un+1

esu

Applying L’Hopital’s rule n+ 1 many times shows that limu→∞ u
n+1/esu = 0 and so

−tn+1e−st

s

∣∣∣∞
0

= 0

as required to finish the induction case.

Problem 3. Let f(t) be a twice differentiable function such that f ′′ is continuous on [0,∞)
and both f and f ′ have exponential order as t → ∞. Fix constants K, M and a such that
both |f(t)| ≤ Keat and |f ′(t)| ≤ Keat for t ≥M . Prove that for s > a

L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0).

Solution. As suggested in the hint, let g(t) = f ′(t). From class, we know that for s > a,

L{g(t)} = L{f ′(t)} = sL{f(t)} − f(0).

Applying the formula for the Laplace transform of a derivative to g(t), we have for s > a

L{g′(t)} = sL{g(t)} − g(0).

Substituting in the facts that g(0) = f ′(0) and L{g(t)} = sL{f(t)} − f(0), we have

L{f ′′(t)} = L{g′(t)} = s
(
sL{f(t)} − f(0)

)
− f ′(0) = s2L{f(t)} − sf(0)− f ′(0).



Problem 4. Calculate the following Taylor polynomials.

4(a). The 5th Taylor polynomial of lnx at x = 1.

Solution. Let f(x) = lnx. Let cn denote the coefficient of the n-th term in the Taylor
polynomial for f(x).

f(x) = ln x ⇒ f(1) = 0 ⇒ c0 =
0

0!
= 0

f ′(x) =
1

x
⇒ f ′(1) = 1 ⇒ c1 =

1

1!
= 1

f ′′(x) =
−1

x2
⇒ f ′′(1) = −1 ⇒ c2 =

−1

2!
= −1

2

f ′′′(x) =
2

x3
⇒ f ′′′(1) = 2 ⇒ c3 =

2

3!
=

1

3

f (4)(x) =
−2 · 3
x4

⇒ f (4)(1) = −2 · 3 ⇒ c4 = −2 · 3
4!

= −1

4

f (5)(x) =
2 · 3 · 4
x5

⇒ f (5)(1) = 2 · 3 · 4 ⇒ c5 =
2 · 3 · 4

5!
=

1

5

Therefore, the 5th Taylor polynomial for lnx at x = 1 is

T5,1 lnx = 0 + 1(x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 +

1

5
(x− 1)5

4(b). The 4th Taylor polynomial of
√
x at x = 1.

Solution. Let f(x) =
√
x. Let cn denote the coefficient of the n-th term in the Taylor

polynomial for f(x).

f(x) =
√
x ⇒ f(1) = 1 ⇒ c0 =

1

0!
= 1

f ′(x) =
1

2
x−1/2 ⇒ f ′(1) =

1

2
⇒ c1 =

1/2

1!
=

1

2

f ′′(x) = − 1

22
x−3/2 ⇒ f ′′(1) = −1

4
⇒ c2 = −1/4

2!
= −1

8

f (3)(x) =
3

23
x−5/2 ⇒ f (3)(1) =

3

8
⇒ c3 =

3/8

3!
=

1

16

f (4)(x) = −3 · 5
24

x−7/2 ⇒ f (4)(1) = −15

16
⇒ c4 = −15/16

4!
= − 5

128

Therefore, the 4th Taylor polynomial for
√
x at x = 1 is

T4,1
√
x = 1 +

1

2
(x− 1)− 1

8
(x− 1)2 +

1

16
(x− 1)3 − 5

128
(x− 1)4



4(c). The 6th Taylor polynomial of cosx at x = 0.

Solution. Let f(x) = cos x.

f(x) = cos x ⇒ f(0) = 1 ⇒ c0 = 1

f ′(x) = − sinx ⇒ f ′(0) = 0 ⇒ c1 = 0

f ′′(x) = − cosx ⇒ f ′′(0) = −1 ⇒ c2 = − 1

2!
f ′′′(x) = sinx ⇒ f ′′′(0) = 0 ⇒ c3 = 0

At this point, the pattern of derivatives repeats, so we have f (4)(0) = cos 0 = 1, f (5)(0) =
− sin 0 = 0 and f (6)(0) = − cos 0 = −1. Therefore, the 6th Taylor polynomial is

T6,0 cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6

Problem 5. Prove that the Taylor polynomial of degree 2n for cos(x) at x = 0 is

T2n(cos(x)) =
n∑

k=0

(−1)k

(2k)!
x2k

Solution. Let f(x) = cos x. From the calculations in Problem 4(c), the pattern of values of

f (k)(0) is that f (k)(0) = 0 when k is odd and f (k)(0) alternates between 1 and −1 when k is
even. Therefore, the Taylor polynomial is

T2n,0 cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·+ (−1)n

1

(2n)!
x2n =

n∑
k=0

(−1)k

(2k)!
x2k

Problem 6. Let f(x) = 1/(1− x) = (1− x)−1.

6(a). Prove by induction on k that f (k)(x) = k! (1− x)−(k+1) and so f (k)(0) = k!.

6(b). Prove that the n-th Taylor polynomial for f(x) at x = 0 is

Tnf = 1 + x+ x2 + · · ·+ xn =
n∑

k=0

xk

Solution. For 6(a), we proceed by induction. For the base case k = 0, we have f (0)(x) =
f(x) = (1 − x)−1 and 0!(1 − x)−(0+1) = (1 − x)−1 which are equal. For the induction case,
assume that f (k)(x) = k! (1−x)−(k+1). We need to show that f (k+1)(x) = (k+1)! (1−x)−(k+2).

f (k+1)(x) =
d

dx
f (k)(x) =

d

dx
k! (1−x)−(k+1) = −k!·(k+1)(1−x)−(k+1)−1(−1) = (k+1)!(1−x)−(k+2).



For 6(b), since f (k)(0) = k!, we have

Tn,0f =
n∑

k=0

f (k)(0)

k!
xk =

n∑
k=0

k!

k!
xk =

n∑
k=0

xk

Problem 7(a). Use Problem 6 to find the n-th Taylor polynomial for 1/(1 + x) at x = 0.

Solution. Since 1/(1 + x) = 1/(1− (−x)), we have by substitution that

Tn,0
1

1 + x
=

n∑
k=0

(−x)k

= 1− x+ x2 − x3 + x4 − · · · (−1)nxn

=
n∑

k=0

(−1)kxk

7(b). Use 7(a) to find the n-th Taylor polynomial for 1/(1 + x)2 and the degree 2n Taylor
polynomial for 1/(1 + x2), both also at x = 0.

Solution. Substituting x2 for x, we get the 2n-th Taylor polynomial

T2n,0
1

1 + x2
=

n∑
k=0

(−1)kx2k = 1− x2 + x4 − x6 + · · ·+ (−1)nx2n

Differentiating 1/(1 + x) gives −1/(1 + x)2. Therefore,

Tn,0
1

(1 + x)2
= − d

dx
Tn+1,0

1

1 + x

= − d

dx

n+1∑
k=0

(−1)kxk

= −
n+1∑
k=0

d

dx
(−1)kxk

= −
n+1∑
k=1

(−1)kkxk−1

Note that in the last sum, the bottom index shifted to k = 1 because the constant term in
the previous line disappears when you take the derivative. To simplify this expression, note
that −(−1)k can be rewritten as (−1)k+1 or as (−1)k−1. We shift indices as follows:

Tn,0
1

(1 + x)2
=

n+1∑
k=1

(−1)k−1kxk−1 =
n∑

k=0

(−1)k(k + 1)xk



7(c). Use 7(b) to find the degree 2n+ 1 Taylor polynomial for arctan(x) at x = 0.

Solution. Since arctanx =
∫ x

0
1/(1 + t2) dt, we can find the (2n + 1)-st Taylor polynomial

by integrating the formula for T2n,0 1/(1 + x2).

T2n+1,0 arctanx =
n∑

k=0

(−1)k
x2k+1

2k + 1

Problem 8. Consider the operator defined by D(f) = 2f ′ + f .

8(a). Calculate D(x), D(x2) and D(3x2 − 4x).

Solution. We calculate as follows.

D(x) = 2(1) + x = 2 + x

D(x2) = 2(2x) + x2 = 4x+ x2

D(3x2 − 4x) = 2(6x− 4) + 3x2 − 4x = 3x2 + 8x− 8

8(b). Prove that D is linear. That is, show that D(αf + βg) = αD(f) + βD(g) for any
α, β ∈ R.

Solution.

D(αf + βg) = 2
d

dx
(αf + βg) + (αf + βg)

= 2(αf ′ + βg′) + αf + βg

= (2αf ′ + αf) + (2βg′ + βg)

= α(2f ′ + f) + β(2g′ + g)

= αD(f) + βD(g)

Problem 9. Consider the operator defined by D(f) = f ′′ − 2f ′ + 3f .

9(a). Calculate D(x), D(x2) and D(3x2 − 4x).

Solution.

D(x) = 0− 2(1) + 3x = 3x− 2

D(x2) = 2− 2(2x) + 3x2 = 3x2 − 4x+ 2

D(3x2 − 4x) = 6− 2(6x− 4) + 3(3x2 − 4x) = 9x2 − 24x+ 14

9(b). Prove that D is linear.

Solution.

D(αf + βg) =
d2

dx2
(αf + βg)− 2

d

dx
(αf + βg) + 3(αf + βg)

= αf ′′ + βg′′ − 2(αf ′ + βg′) + 3αf + 3βg

= (αf ′′ − 2αf ′ + 3αf) + (βg′′ − 2βg′ + 3βg)

= α(f ′′ − 2f ′ + 3f) + β(g′′ − 2g′ + 3g)

= αD(f) + βD(g)



Problem 10. Consider the operator defined by D(f) = ex + f ′.

10(a). Calculate D(x2), D(2x2) and 2D(x2).

Solution.

D(x2) = ex + 2x

D(2x2) = ex + 4x

2D(x2) = 2(ex + 2x) = 2ex + 4x

10(b). Use your answers to 10(a) to explain why D is not linear.

Solution. Since D(2x2) 6= 2D(x2), we cannot pull multiplicative constants out of D, which
means D is not linear.


