Math 2142 Homework 1 Solutions

Problem 1. Prove that for any n > 2, the log function In(z) grows slower than /z by
proving that
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Solution. This limit has the form co/oo, so we apply L'Hopital’s rule.
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The first equality is by L’Hopital’s rule and the last equality follows because the denominator
goes to infinity while the numerator is constant.

Problem 2. Find the following limits.
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Solution. The limit has form co/oco. We will apply L'Hopital’s rule twice.
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The first and second equalities follow from L’Hopital’s rule.
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Solution. The limit has form oo/oco so we apply L’Hopital’s rule and do some algebra.
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This limit still has form co/oco so we apply L'Hopital’s rule again and do some algebra.
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Solution. Since —1 < sinz < 1 for all x, we have sinz — x — —o0 as * — oo. Therefore,
the limit has form oo/oo and we can apply L’Hopital’s rule.
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This limit does not have form oco/oco because the numerator satisfies —2 < cos(z) — 1 < 0.
Therefore, we cannot apply L’Hopital’s rule again. However, we can use the Squeeze theorem.
Since —2 < cos(x) — 1 < 0, we have
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Since lim, o —2/32% = 0, we have lim,_,,(cos(z) — 1)/32? = 0.
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Solution. This limit has form 0 - co so we need to rewrite it before using L’Hopital’s rule.
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Now the limit has form co/oco so we can apply L’'Hopital’s rule.
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Solution. This limit has form 0 - co so we need to rewrite it before using L’Hopital’s rule.
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Now the limit has form oco/oo so we can apply L’Hopital’s rule and simplify.
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The limit now has form 0/0 so we can apply L’Hopital’s rule again.
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Solution. This limit has form oo — 0o so we need to rewrite it.
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T—00 T—00



The limit now has form oo -0 so we need to rewrite it as a fraction and apply L’Hopital’s rule.
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Solution. This limit has the form 0° so we need to rewrite it using exponential and log
functions.
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By Problem 2(d), we know that lim,_,o+ v/zInz = 0, so lim,_,g+ eV*™® = 1.
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Solution. This limit has the form 1*° so we need to rewrite it using exponential and log
functions.
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The limit in the exponent has form oo - 0, so we turn it into a fraction and use L’Hopital’s
rule.
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Therefore, the final answer is e?.

Problem 3. Calculate the following convergent integrals.
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Solution. First, we calculate
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Therefore,
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Solution. We calculate |,” —3* dz by parts. Set u = Inz and dv = =2 dz, which means
du = 27t dx and v = —z~!. Therefore,
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Since lim, o (Inu)/u = 0 (by L’Hopital’s rule), we have
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Solution. You did not have to do this problem, but I'll put in the solution since we will cover
these types of integrals later. Since 1/4/x has a vertical asymptote at x = 0, we have
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Problem 4. Use the Comparison Theorem to determine if the following integrals converge
or diverge. You do not need to calculate the exact value of the integrals.
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Solution. For z > e, we know that Inz > 1. Therefore, (Inz)/z > 1/z. Since [ 1/xdx
diverges, this integral diverges as well.
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Solution. Since 0 < 1/(x + €**) < 1/e** and [~ 1/e*" da converges (from Problem 2), this
integral converges as well.
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Solution. Since 0 < z/va® < /v/1+ 26 and 2/vx% = 1/2* and [ 1/2* dz converges, this
integral converges as well.
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Solution. Notice that we have the following inequalities for x > 2.
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Since z/Va3 = 1/z'/? and [;°1/z'/?dx diverges (by the p-test since p = 1/2 < 1), this
integral diverges as well.
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Solution. We have the following inequalities for = > 1.

0 < sin® x - 1 - 1
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Since floo 1/x? dz converges, this integral converges as well.



