
Math 2141 Homework 3 Solutions

Problem 1. Prove that the inequality

| |x| − |y| | ≤ |x− y|

holds true for all real numbers x and y.

Solution: We begin by rewriting what we want to show. Using Theorem I.38 to remove the
outer absolute value signs, we have

| |x| − |y| | ≤ |x− y| ⇔ −|x− y| ≤ |x| − |y| ≤ |x− y|

Therefore, we can solve the problem by showing that |x|−|y| ≤ |x−y| and −|x−y| ≤ |x|−|y|.
Consider the first inequality

|x| − |y| ≤ |x− y| (to show)

This inequality is equivalent to |x| ≤ |y|+ |x− y|. So, we have turned our problem into

|x| ≤ |y|+ |x− y| (to show)

By the Triangle Inequality, we know |u+v| ≤ |u|+ |v| for all real numbers u and v. Let u = y
and v = x− y. Plugging into the Triangle Inequality gives

|u + v| = |y + (x− y)| = |x| and |u|+ |v| = |y|+ |x− y|

Therefore, by the Triangle Inequality, |x| ≤ |y| + |x − y|, which is what we needed to show.
Now, we consider the second inequality above:

−|x− y| ≤ |x| − |y| (to show)

Rearranging the text algebraically, this inequality is the same as

|y| ≤ |x|+ |x− y| (to show)

Also, since y − x = −(x− y), we have |x− y| = |y − x|. So, we can rewrite one more time

|y| ≤ |x|+ |y − x| (to show)

Now we are in a position to use the Triangle Inequality just as before. Let u = x and v = y−x,
so

|u + v| = |x + (y − x)| = |y| and |u|+ |v| = |x|+ |y − x|

By the Triangle Inequality, we have |y| ≤ |x| + |y − x|, which is exactly what we needed to
show.



Problem 2. Let p, n ∈ N+. Prove that

np <
(n + 1)p+1 − np+1

p + 1
< (n + 1)p

Solution: Multiplying the inequalities that we need to prove by p + 1, we can reduce the
problem to proving that

(p + 1)np < (n + 1)p+1 − np+1 < (p + 1)(n + 1)p (to show)

First, consider the middle term. The Difference of Powers Formulas is

ap+1 − bp+1 = (a− b)
(
ap + ap−1b + ap−2b2 + · · ·+ abp−1 + bp) = (a− b)

p∑
i=0

ap−ibi

Letting a = n + 1 and b = n, we have

(n + 1)p+1 − np+1 = ((n + 1)− n)

p∑
i=0

(n + 1)p−ini =

p∑
i=0

(n + 1)p−ini

Notice that since i goes from 0 to p, there are p + 1 many terms in this sum.
Now consider the two outside terms. The term (p + 1)np is the same as adding np to

itself p + 1 many times. So, we can write (p + 1)np =
∑p

i=0 n
p. Similarly, (p + 1)(n + 1)p =∑p

i=0(n + 1)p.
We can now rewrite what we need to show as follows:

p∑
i=0

np <

p∑
i=0

(n + 1)p−ini <

p∑
i=0

(n + 1)p (to show)

There are exactly p + 1 terms in each of these sums, so we can compare them term by term.
That is, we need to compare np, (n+ 1)p−ini and (n+ 1)p for each number i between 0 and p.

Consider np, (n + 1)p−ini and (n + 1)p. We know np−i ≤ (n + 1)p−i (and this inequality is
strict unless i = p). Multiplying by ni gives np−ini ≤ (n + 1)p−ini, which means

np ≤ (n + 1)p−ini

(and this is strict unless i = p). On the other hand, ni ≤ (n+ 1)i (and this inequality is strict
unless i = 0). Multiplying by (n + 1)p−i gives (n + 1)p−ini ≤ (n + 1)p−i(n + 1)i which means

(n + 1)p−ini ≤ (n + 1)p

(and this is strict unless i = 0). Therefore, we have shown that for each i, we have

np ≤ (n + 1)p−ini ≤ (n + 1)p



The left inequality is strict unless i = p and the right inequality is strict unless i = 0. Since
p ≥ 1, at least one of these inequalities is always strict. Taking sums, we get

p∑
i=0

np <

p∑
i=0

(n + 1)p−ini <

p∑
i=0

(n + 1)p

which is exactly what we needed to show.

Problem 3. Prove by induction on n that

n−1∑
k=1

kp <
np+1

p + 1
<

n∑
k=1

kp

Solution: We proceed by induction on n. For the induction case, I will handle the two
inequalities separately. You don’t have to do it this way, but it might make the proof easier
to understand.

Base case (n=1): When n = 1, the lefthand sum is
∑0

k=1 k
p which by definition is equal to

0 because the lower index is strictly greater than the upper index. The middle term is 1p+1

p+1

which is equal to 1
p+1

. The righthand sum is
∑1

k=1 k
p which is just 1. Since 0 < 1

p+1
< 1, we

have established the base case for both inequalities.

Induction case for left inequality: We first set up the induction hypothesis.

Assume: For a fixed n,
∑n−1

k=1 k
p < np+1

p+1

Show:
∑n

k=1 k
p < (n+1)p+1

p+1

Separating off the last term of
∑n

k=1 k
p and applying the induction hypothesis, we get

n∑
k=1

kp =

(
n−1∑
k=1

kp

)
+ np <

np+1

p + 1
+ np

and so we know
n∑

k=1

kp <
np+1

p + 1
+ np

Therefore, to complete the induction case, it suffices to show that

np+1

p + 1
+ np ≤ (n + 1)p+1

p + 1
(to show)

Multiplying by p + 1, it suffices to show

np+1 + (p + 1)np ≤ (n + 1)p+1 (to show)



Finally, moving the np+1 to the other side, it suffices to show

(p + 1)np ≤ (n + 1)p+1 − np+1 (to show)

However, that is exactly what we proved in Problem 2! Therefore, we are done with the
induction case for the left inequality.

Induction case for right inequality: We first set up the induction hypothesis.

Assume: For a fixed n, np+1

p+1
<
∑n

k=1 k
p.

Show: (n+1)p+1

p+1
<
∑n+1

k=1 k
p.

Separating off the last term of
∑n+1

k=1 k
p and applying the induction hypothesis, we get

n+1∑
k=1

kp =

(
n∑

k=1

kp

)
+ (n + 1)p >

np+1

p + 1
+ (n + 1)p

and so we know
n+1∑
k=1

kp >
np+1

p + 1
+ (n + 1)p

Therefore, to complete the induction case, it suffices to show that

np+1

p + 1
+ (n + 1)p ≥ (n + 1)p+1

p + 1
(to show)

Multiplying by p + 1, it suffices to show

np+1 + (p + 1)(n + 1)p ≥ (n + 1)p+1 (to show)

Finally, moving the np+1 to the other side, it suffices to show

(p + 1)(n + 1)p ≥ (n + 1)p+1 − np+1 (to show)

Again, this is exactly what we proved in Problem 2. Therefore, we are done with the induction
case for the right inequality as well.

Problem 4. Recall that [x] denotes the greatest integer function. For this problem, I want
you to work with the function f(x) = [2x] + 1. So, for example, f(2/3) = [4/3] + 1 = 2.
Sketch a graph of f(x) on the interval [0, 3] and calculate∫ 3

0

f(x) dx



Solution: The function f(x) has constant value n on each open interval of the form (n
2
, n+1

2
).

Therefore, we can break up the integral as follows:∫ 3

0

f(x) dx =

∫ 1/2

0

1 dx +

∫ 1

1/2

2 dx +

∫ 3/2

1

3 dx +

∫ 2

3/2

4 dx +

∫ 5/2

2

5 dx +

∫ 3

5/2

6 dx∫ 3

0

f(x) dx = 1 · (1/2− 0) + 2 · (1− 1/2) + 3 · (3/2− 1) + 4 · (2− 3/2) + 5 · (5/2− 2) + 6 · (6− 5/2)∫ 3

0

f(x) dx = 1/2 + 1 + 3/2 + 2 + 5/2 + 3 = 21/2

(You should also draw a sketch of the function, but the calculation above shows how to find
the integral without sketching the graph.)

Problem 5. Let g(x) = 2[x]− 1. Sketch a graph of g(x) on the interval [0, 3] and calculate∫ 3

0

g(x) dx

Solution: As above, you should sketch the graph of the function. To calculate the integral:∫ 3

0

2 [x]− 1 dx = 2

∫ 3

0

[x] dx−
∫ 3

0

1 dx

= 2
(∫ 1

0

0 dx +

∫ 2

1

1 dx +

∫ 3

2

2 dx
)
− 1 · (3− 0)

= 2
(
0 · (1− 0) + 1 · (2− 1) + 2 · (3− 2)

)
− 3

= 2
(
0 + 1 + 2

)
− 3 = 6− 3 = 3

Problem 6. Prove Theorem 1.8 (expansion or contraction of the interval of integration).
That is, let s(x) be a step function on [a, b]. Prove that for any k > 0,∫ kb

ka

s
(x
k

)
dx = k

∫ b

a

s(x) dx

Solution: Let P = {x0, x1, . . . , xn} be a partition of [a, b] such that s(x) has constant value

si on the i-th open subinterval. Then P̂ = {kx0, kx1, . . . , kxn} is a partition of [ka, kb] on
which the step function s(x/k) has constant value si on the i-th open subinterval. Writing
the integrals in the problem out as sums using these partitions, we have

k

∫ b

a

s(x) dx = k

n∑
i=1

si · (xi − xi−1)∫ kb

ka

s
(x
k

)
dx =

n∑
i=1

si · (kxi − kxi−1) =
n∑

i=1

si · k · (xi − xi−1)



We proved that multiplicative constants can be pulled outside of finite sums. Therefore,

k

n∑
i=1

si · (xi − xi−1) =
n∑

i=1

si · k · (xi − xi−1)

which proves that ∫ kb

ka

s
(x
k

)
dx = k

∫ b

a

s(x) dx.


