Math 2141 Homework 3 Solutions
Problem 1. Prove that the inequality

[l =yl | < |z =yl

holds true for all real numbers x and y.

Solution: We begin by rewriting what we want to show. Using Theorem 1.38 to remove the
outer absolute value signs, we have

el =Tyl < e =yl & —fe =yl <[z = Jy| < |z -y

Therefore, we can solve the problem by showing that |z|—|y| < |z—y| and —|z—y| < |z|—|y|.
Consider the first inequality

[z [yl < |z -yl  (to show)
This inequality is equivalent to |z| < |y| + |z — y|. So, we have turned our problem into
| <lyl+ 1z =yl (to show)

By the Triangle Inequality, we know |u+v| < |u|+ |v| for all real numbers u and v. Let u =y
and v = x — y. Plugging into the Triangle Inequality gives

lutvf=ly+(z—yl=lz[ and  |u|+ o] = Jy[ + [z —y]

Therefore, by the Triangle Inequality, |z| < |y| + |z — y|, which is what we needed to show.
Now, we consider the second inequality above:

—|z =yl <l|z|=1fy]  (to show)
Rearranging the text algebraically, this inequality is the same as
lyl < x|+ ]z -yl (to show)
Also, since y —x = —(x — y), we have |x — y| = |y — z|. So, we can rewrite one more time
yl<lal+ly—s|  (to show)

Now we are in a position to use the Triangle Inequality just as before. Let u = z and v = y—z,
SO
lutol=lz+E—2)= and |ul+]v]=]z]+]y— 2|

By the Triangle Inequality, we have |y| < |z| + |y — x|, which is exactly what we needed to
show.



Problem 2. Let p,n € NT. Prove that

(n+ 1)P+1 — pp!

nf <
p+1

< (n+1)°

Solution: Multiplying the inequalities that we need to prove by p + 1, we can reduce the
problem to proving that

(p+1)n? < (n+ 1P =Pt < (p+1)(n+1)*  (to show)

First, consider the middle term. The Difference of Powers Formulas is

p
Pt et — (CL _ b)(aP + Clpilb—k aP—2p2 4t abP~! + bp) _ (a B b) Zapfibi
i=0
Letting a = n + 1 and b = n, we have
(n+ 1P —nP = ((n+1)—n) Y (n+1)"'n' = Z(” + 1)P'n’
i=0 i=0

Notice that since i goes from 0 to p, there are p + 1 many terms in this sum.
Now consider the two outside terms. The term (p + 1)n? is the same as adding n? to

itself p + 1 many times. So, we can write (p + 1)n? = > "> n?. Similarly, (p + 1)(n 4+ 1)? =
o(n+1)P
i=0 :
We can now rewrite what we need to show as follows:
p p - P
an < Z(n +1)P7'n' < Z(n +1)? (to show)
i=0 i=0 i=0

There are exactly p + 1 terms in each of these sums, so we can compare them term by term.
That is, we need to compare n?, (n+ 1)?~'n’ and (n + 1)? for each number i between 0 and p.

Consider n?, (n + 1)?"'n’ and (n + 1)?. We know n?~* < (n+ 1)P~% (and this inequality is
strict unless 7 = p). Multiplying by n’ gives n?~'n’ < (n + 1)?~'n’, which means

n? < (n+1)P"'n

(and this is strict unless 7 = p). On the other hand, n* < (n+1)" (and this inequality is strict
unless ¢ = 0). Multiplying by (n + 1)P~¢ gives (n + 1)P~'n’ < (n + 1)P~(n + 1)’ which means

(n+1)P""n" < (n+1)?
(and this is strict unless @ = 0). Therefore, we have shown that for each i, we have

n? < (n+1)P"'n" < (n+1)°



The left inequality is strict unless ¢ = p and the right inequality is strict unless ¢ = 0. Since
p > 1, at least one of these inequalities is always strict. Taking sums, we get

in” < i(n +1)P7'nt < i(n +1)?
i=0 i=0 =0

which is exactly what we needed to show.

Problem 3. Prove by induction on n that

n-l npt1
;kp<p+1 <ka

k=1

Solution: We proceed by induction on n. For the induction case, I will handle the two
inequalities separately. You don’t have to do it this way, but it might make the proof easier
to understand.

Base case (n=1): When n = 1, the lefthand sum is 3_)_, k” which by definition is equal to

0 because the lower index is strictly greater than the upper index. The middle term is f—“

which is equal to —~. The righthand sum is 21: kP which is just 1. Since 0 < - < 1, we
p+1 k=1 p+1
have established the base case for both inequalities.

Induction case for left inequality: We first set up the induction hypothesis.

npt+1

1
Assume: For a fixed n, Y ,_ kP <
= pil

n n+1)P+1
Show: > ' kP < %

Separating off the last term of >")_, k” and applying the induction hypothesis, we get

+1

n n—1
nP
kP = K| +n? < +nP

and so we know

+ n?

n +1
Sk <
P p+1

Therefore, to complete the induction case, it suffices to show that

npt1 (n + 1)p+1

+n? < to show
p+1 p+1 ( )

Multiplying by p + 1, it suffices to show

n"™ 4+ (p+ Dn? < (n+ 1)P*H! (to show)



Finally, moving the n?*! to the other side, it suffices to show
(p+ D)n? < (n+ 1)PT —pptt (to show)

However, that is exactly what we proved in Problem 2! Therefore, we are done with the
induction case for the left inequality.

Induction case for right inequality: We first set up the induction hypothesis.

. nPt noogp
Assume: For a fixed n, =5 <35, k7.

+1
Show: I < ST .

n

Separating off the last term of )

n+1 n np+1
kP — kP 1)? 1)?
Z Z +(n+1) >p+1+(n+ )

g kP and applying the induction hypothesis, we get

and so we know

> k> +(n+ 1)
k=1 p - 1

Therefore, to complete the induction case, it suffices to show that

nptt (n+ 1)PH!
+n+1)P>—- to show
p+1 ( y=z p+1 ( )
Multiplying by p + 1, it suffices to show
P+ (p+1)(n+ 1) > (n+ 1)PH (to show)

Finally, moving the n?*! to the other side, it suffices to show
(p+1)(n+ 1) > (n+ 1Pt — pptt (to show)

Again, this is exactly what we proved in Problem 2. Therefore, we are done with the induction
case for the right inequality as well.

Problem 4. Recall that [z] denotes the greatest integer function. For this problem, I want
you to work with the function f(x) = [22] + 1. So, for example, f(2/3) = [4/3] +1 = 2.
Sketch a graph of f(z) on the interval [0, 3] and calculate

/0 3 f(z)dz



Solution: The function f(z) has constant value n on each open interval of the form (%, “3

Therefore, we can break up the integral as follows:

3 1/2 1 3/2 2 5/2 3
/ f(a:)d:c:/ 1dx+/ 2d:c—i—/ 3d:c+/ 4dx+/ 5d:c+/ 6 dx
0 0 1/2 1 3/2 2 5/2

/Sf(;c)d:c:1.(1/2—o)+2.(1—1/2)+3-(3/2—1)+4~(2—3/2)+5.(5/2—2)+6~(6—5/2)

/Sf(:):)dx:1/2+1+3/2+2+5/2+3:21/2
0

(You should also draw a sketch of the function, but the calculation above shows how to find
the integral without sketching the graph.)

Problem 5. Let g(x) = 2[z] — 1. Sketch a graph of g(z) on the interval [0, 3] and calculate

/0 o) dr

Solution: As above, you should sketch the graph of the function. To calculate the integral:

/032[3:}—1dx - 2/03[$]da:—/031dx
- 2(/01de+/121dI+/232dx>—1-(3—0)

= 20-(1-0)+1-2-1)+2-(3-2)) -3
= 200+142)-3=6-3=3

Problem 6. Prove Theorem 1.8 (expansion or contraction of the interval of integration).
That is, let s(z) be a step function on [a, b]. Prove that for any k£ > 0,

/:2(%) dx:k/abs(x)dx

a

Solution: Let P = {xg,x1,...,2,} be a partition of [a, b] such that s(x) has constant value
s; on the i-th open subinterval. Then P = {kxo, kxy, ..., kx,} is a partition of [ka,kb] on
which the step function s(z/k) has constant value s; on the i-th open subinterval. Writing
the integrals in the problem out as sums using these partitions, we have

b n
k / s(z)dx =k Zsi- (x; — x51)
@ i=1

/:bs (%) dr = Zsi (k= kri) = Zsi ke (x; — i)

a i=1 i=1



We proved that multiplicative constants can be pulled outside of finite sums. Therefore,

k zn:si' (l‘i—l’i_l) :zn:slk} (QTZ'—ZEi_l)
=1 =1

which proves that



