Math 2141 Final Review Problems

Problem 1. Evaluate the following integrals using integration by parts.

\[\int_0^1 (x^2 + 1)e^x \, dx \]
\[\int (\ln x)^2 \, dx \]
\[\int e^{-x} \sin x \, dx \]

Problem 2. Evaluate the following integrals by using a substitution and then doing integration by parts.

\[\int_1^4 e^{\sqrt{x}} \, dx \]
\[\int x^3 e^{x^2} \, dx \]

Problem 3. Evaluate the following trig integrals.

\[\int_0^\pi \cos^5 x \, dx \]
\[\int \tan^3 x \sin^2 x \, dx \]

Problem 4. Use trig substitutions to evaluate the following integrals.

\[\int_0^2 x^3 \sqrt{x^2 + 4} \, dx \]
\[\int \frac{1}{x^2 \sqrt{16x^2 - 9}} \, dx \]
\[\int \sqrt{5 + 4x - x^2} \, dx \]

For the last integral, you may want to use the trig identities $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$ and $\sin 2\theta = 2 \sin \theta \cos \theta$.
Problem 5. Evaluate the following integrals.

\[
\int_0^1 \frac{x - 1}{x^2 + 3x + 2} \, dx \\
\int_0^1 \frac{x^3 - 4x - 10}{x^2 - x - 6} \, dx \\
\int \frac{x^3}{(x + 1)^3} \, dx \\
\int \frac{x^2 - x + 6}{x^3 + 3x} \, dx \\
\int_0^1 \frac{x}{x^2 + 4x + 13} \, dx
\]

Problem 6(a). Let \(f(x) = x - 1 - \ln(x) \) for \(x > 0 \). Prove that \(f(x) \geq 0 \) and that \(f(x) > 0 \) for \(x \neq 1 \).

6(b). Let \(g(x) = \ln(x) - 1 + 1/x \) for \(x > 0 \). Prove that \(g(x) \geq 0 \) and that \(g(x) > 0 \) for \(x \neq 1 \).

6(c). Use the results in 6(a) and 6(b) to explain why the inequalities

\[
1 - \frac{1}{x} < \ln(x) < x - 1
\]

hold for \(x > 0 \) and \(x \neq 1 \).

6(d). Use the inequalities in 6(c) to prove that

\[
\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1
\]

Hint. Write the inequality in 6(c) with \(1 + x \) in place of \(x \). Note that this new inequality holds when \(1 + x \neq 1 \), which is the same as \(x \neq 0 \).

Problem 7. Give an alternate proof that

\[
\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1
\]

by letting \(f(x) = \ln(x) \), using the fact that \(f'(1) = 1 \) and using the limit definition of \(f'(1) \).

Problem 8. Let \(k > 1 \) be a natural number. Prove that

\[
\sum_{i=2}^{k} \frac{1}{i} < \ln(k) < \sum_{i=1}^{k-1} \frac{1}{i}
\]

Hint. You know \(\ln(k) = \int_1^k 1/x \, dx \), so \(\ln(k) \) is the area under the curve \(y = 1/x \) on the interval \([1, k]\). Consider the partition \(P = \{1, 2, \ldots, k\} \) of \([1, k]\). Use the left endpoints and
the right endpoints of this partition to approximate the area under the curve from below and above.

Problem 9. Use the Mean Value Theorem to prove that if \(f'(x) = 0 \) for all \(x \) in an open interval \(I \), then there is a constant \(c \) such that \(f(x) = c \).

Problem 10. Prove that if \(f'(x) = g'(x) \) for all \(x \) in an open interval \(I \), then there is a constant \(c \) such that \(f(x) = g(x) + c \).

Hint. Consider the function \(h(x) = f(x) - g(x) \).

Problem 11. Prove that if \(f'(x) = rf(x) \) for some fixed real number \(r \), then \(f(x) = f(0)e^{rx} \).

Hint. Consider the function \(h(x) = f(x)e^{-rx} \). What is \(h'(x) \)? How does that help you?