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Abstract

We study ordered groups in the context of both algebra and computability. Ordered

groups are groups that admit a linear order that is compatible with the group operation. We

explore some properties of ordered groups and discuss some related topics. We prove results

about the semidirect product in relation to orderability and computability. In particular, we

give a criteria for when a semidirect product of orderable groups is orderable and for when

a semidirect product is computably categorical. We also give an example of a semidirect

product that has the halting set coded into its multiplication structure but it is possible to

construct a computable presentation of this semidirect product.

We examine a family of orderable groups that admit exactly countably many orders and

show that their space of orders has arbitrary finite Cantor-Bendixson rank. Furthermore,

this family of groups is also shown to be computably categorical, which in particular will

allow us to conclude that any computable presentation of the groups does not admit any

noncomputable orders. Lastly, we construct an example of an orderable computable group

with no computable Archimedean orders but at least one computable non-Archimedean order.
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Chapter 1

Introduction

1.1 Preliminaries

In computable structure theory, we study mathematical structures such as linear orders,

graphs, groups, etc. from the perspective of computability theory and analyze their effective

content. One of the main themes of computable structure theory is to understand the

relationship between structural and computational properties of a structure. This study

begins with defining what we mean by a computable structure. We say a structure is

computable if its domain is a computable set, and all of its functions, relations and constants

are uniformly computable. We will be interested in computable groups and so we give a

precise definition.

Definition 1.1.1. A group (G, ·G) is called a computable group if its domain G is a computable

set and the group operation ·G : G × G → G is a computable function. A computable

presentation or a computable copy of a group G is a computable group H such that H ∼= G.

We will be primarily interested in infinite computable groups, in which case we will usually

identify the domain of our group with ω. A class of structures that is of great interest and a

central theme of our study are ordered groups.

Definition 1.1.2. Let G be a group and let < be a strict total order on G. The pair (G,<)
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1.1 PRELIMINARIES

is called an ordered group if the order < is both left and right invariant, that is, a < b implies

ca < cb and ac < bc for all a, b, c ∈ G. A group is called an orderable group if it admits a

strict total order which is bi-invariant, that is, both left and right invariant.

In the literature, these groups are sometimes more aptly called bi-ordered groups to

distinguish from left-ordered groups (or right-ordered groups). It is worth noting that the

theories of bi-ordered groups and left-ordered groups are not the same, in an informal sense

and a precise logical sense in that their first-order theories do not coincide. We will only be

concerned with groups with bi-invariants orders and so we will simply say an ordered group

or an orderable group without the qualifier “bi”.

As a piece of terminology, an orderable computable group is a computable group which

admits an invariant order but the order is not necessarily computable.

In this dissertation, we will be studying results about ordered groups both in the context

of algebra and computability. A good deal of work has been done on ordered groups both

from the side of algebra and computability. For example, we have the following well-known

result about ordered abelian groups. See Theorem 1.2.2 for a proof.

Theorem 1.1.3 ([Lev42]). An abelian group is orderable if and only if it is torsion-free.

In contrast, it turns out that the effective analog of this result does not hold.

Theorem 1.1.4 ([DK86]). There is a computable torsion-free abelian group that is isomorphic

to ⊕
ω Z with no computable orders.

This result shows that how a group is computably presented can affect what computational

properties it has. We will prove a result in similar spirit to this in Chapter 4.

We follow standard computability notation. We will write φe to denote the partial

computable function with index e and degree will always mean Turing degree. For a reference

on computability theory, see [Soa16; Web12].
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1.2 ORDERED GROUPS

1.2 Ordered groups

We will usually write 1 to denote the identity of a group. For abelian groups, we will

sometimes use additive notation and write 0 for the identity. If (G,<) is an ordered group,

we will sometimes write g ≤ h to mean g < h or g = h. An element g in an ordered group is

called positive if 1 < g and negative if g < 1.

We start with the following simple result.

Proposition 1.2.1. Every nontrivial ordered group is torsion-free and hence infinite.

Proof. Suppose g ∈ G and 1 < g. Then g < g2, g2 < g3 and so forth, and by transitivity,

1 < gn for all positive integers n. The case when g < 1 is proved similarly.

Proposition 1.2.1 shows that being torsion-free is a necessary condition for a group to

be orderable; however, in general, this is not a sufficient condition. There do exist finitely

generated torsion-free groups which are not orderable. See Example 1.2.11 for an example of

such a group. There is one class of groups for which being torsion-free is enough to conclude

that they are orderable and these are precisely the abelian groups.

Theorem 1.2.2 ([Lev42]). An abelian group is orderable if and only if it is torsion-free.

Proof. Let G be a torsion-free abelian group. We can embed G into a torsion-free divisible

group D (see Appendix A.1). It suffices to show that D is orderable. To not overcomplicate

notation, we describe the order of D by declaring its set of positive elements under the order.

(See Section 1.3 for why this is sufficient.)

Since D is torsion-free and divisible, it is a Q-vector space and thus D ∼= Qλ for some

cardinal number λ. Pick a basis {bν}ν∈λ for D and linearly order the basis set. Every nonzero

element g ∈ D can be expressed uniquely as g = q1bν1 + · · · + qnbνn for some nonzero rational

coefficients qi and ν1 < · · · < νn. Declare g to be positive if q1 is a positive rational number.

Note our order on D is just a lexicographic order with respect to the ordered basis. It can be

checked that this definition makes D into an ordered group.
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1.2 ORDERED GROUPS

We mention in passing that Theorem 1.2.2 is also true for nilpotent groups, see [KK74,

Corollary 4, p. 16] for a proof.

Example 1.2.3. The additive groups (Z,+), (Q,+) and (R,+) with their usual orders are

ordered groups.

Example 1.2.4. It is easy to see that orderability is preserved under taking subgroups—thus

every subgroup of an orderable group is orderable.

Example 1.2.5. If (G,<) is an ordered group, then we can define a new order on G by

g <∗ h if and only if h < g. The order <∗ is called the dual or opposite order, it is also an

invariant order on G.

Example 1.2.6. If (G,<G) and (H,<H) are ordered groups, then so is their direct product

G×H under the lexicographical ordering, which declares that

(g, h) < (g′, h′) if and only if g <G g
′, or g = g′ and h <H h′.

More generally, the following is true.

Proposition 1.2.7. Let Γ be a possibly infinite set and let {(Gγ, <γ) | γ ∈ Γ} be a collection

of ordered groups indexed by Γ.

(i) Let <Γ be a well-order on the index set Γ. Define an order on the direct product

G = ∏
γ∈Γ Gγ by g <G g

′ if and only if gλ <λ g
′
λ where λ ∈ Γ is the <Γ-least component

at which g and g′ differ. Then (G,<G) is an ordered group.

(ii) Let <Γ be a linear order on the index set Γ. Define an order on the direct sum

G = ⊕
γ∈Γ Gγ by g <G g

′ if and only if gλ <λ g
′
λ where λ ∈ Γ is the <Γ-least component

at which g and g′ differ. Then (G,<G) is an ordered group.

Example 1.2.8. The additive group Z2 can be ordered in uncountably many different ways

as follows. Choose a vector v⃗ ∈ R2 with irrational slope. We can order the elements of Z2 by
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1.2 ORDERED GROUPS

considering their dot product with v⃗. For m⃗, n⃗ ∈ Z2, define

m⃗ < n⃗ if and only if m⃗ · v⃗ <R n⃗ · v⃗

where <R denotes the usual order of R.

Example 1.2.9. Every free group is orderable and more so free groups with more than one

generator have uncountably many orderings. See [CR16, §3.2] for a construction of an explicit

ordering.

Example 1.2.10. The fundamental groups of surfaces (i.e. two-dimensional manifolds)

are orderable with the exceptions of the Klein bottle and the real projective plane. More

information can be found in [CR16, §3.3].

Example 1.2.11 (Non-orderable group). The fundamental group of the Klein bottle cannot

be given an invariant ordering. The fundamental group can be expressed as

π1(Klein bottle) ∼= Z ⋊ Z ∼= ⟨x⟩ ⋊ ⟨y⟩ ∼= ⟨x, y | yxy−1 = x−1⟩.

Notice that 1 < x if and only if x−1 < 1. However, the defining relation implies that 1 < x if

and only if 1 < yxy−1 = x−1 and we have a contradiction.

We have the following classification of the number of orderings of an ordered abelian

group. This can be deduced from a more general result due to Linnell [Lin11] along with

a theorem of Sikora [Sik04, Proposition 1.7]. See also [Min72; Teh61] for a more general

discussion of the orderings of an abelian group and how to construct all possible different

orderings of an abelian group. Recall that the rank of an abelian group is the cardinality of a

maximal linearly independent subset.

Theorem 1.2.12. Let A be a torsion-free abelian group.

(1) If A has rank one, that is, A is a subgroup of (Q,+), then A has exactly two orders.

(2) If A has rank greater than one, then A has uncountably many orders.
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1.2 ORDERED GROUPS

Corollary 1.2.13. The additive group of rational numbers (Q,+) has only two orders.

We mention a few algebraic facts that hold for ordered groups. Recall that the commutator

of two elements g and h in a group is defined as [g, h] = ghg−1h−1. The commutator of g

and h is 1 if and only if g and h commute.

Proposition 1.2.14. Let (G,<) be an ordered group.

(i) If g < h, then h−1 < g−1.

(ii) If g < h and g′ < h′, then gg′ < hh′.

(iii) If gn = hn for some nonzero integer n, then g = h.

(iv) If [gm, hn] = 1 for some nonzero integers m and n, then [g, h] = 1.

(v) If h ̸= 1, then (g1hg
−1
1 ) · · · (gnhg−1

n ) ̸= 1. In other words, ordered groups do not have

generalized torsion.

(vi) The equation xn = g has at most one solution for any g ∈ G and any positive integer n.

Proof. We prove only (iv), (v) and (vi). To prove (iv), assume g and h do not commute. Say

gh < hg. Then g < hgh−1 and we can multiply this inequality by itself m times to conclude

gm < hgmh−1. From this we derive h < g−mhgm and now we can multiple this inequality by

itself n times to get hn < g−mhngm. Thus, gmhn < hngm, and gm and hn do not commute.

To prove (v), assume h ̸= 1 and say 1 < h. Then 1 < gihg
−1
i and by multiplying

inequalities we get that 1 < (g1hg
−1
1 ) · · · (gnhg−1

n ).

To prove (vi), note if x and y are two different solutions and, say x < y, then xn < yn, a

contradiction.

In an ordered group (G,<), the absolute value |g| of an element g ∈ G is defined as:

|g| =



1, if g = 1,

g, if 1 < g,

g−1, if g < 1.

6



1.2 ORDERED GROUPS

The following summarizes some of the properties of the absolute value. The proofs of

these can be found in [Che58].

Proposition 1.2.15. Let (G,<) be an ordered group.

(i) For any integer n, |gn| = |g||n|.

(ii) For all g, h ∈ G, |ghg−1| = g|h|g−1.

(iii) If g and h are positive, then |gh| = |g||h| = gh.

(iv) If g and h are negative, then |gh| = |h||g| = h−1g−1.

(v) If g < 1, 1 < h and |g| < |h|, then

|gh| = |g|−1|h| = gh and |hg| = |h||g|−1 = hg.

(vi) If 1 < g, h < 1 and |g| < |h|, then

|gh| = |h||g|−1 = h−1g−1 and |hg| = |g|−1|h| = g−1h−1.

Next we want to prove a result about order-preserving maps on R.

Definition 1.2.16. Let (G,<G) and (H,<H) be ordered groups. A group isomorphism

φ : G → H is called an order-isomorphism if x <G y implies φ(x) <H φ(y) for all x, y ∈ G.

Proposition 1.2.17 (Hion’s Lemma). Suppose A and B are subgroups of (R,+) endowed

with the usual order, and f : A → B is an order-isomorphism. Then there is a positive real

number r such that f(x) = rx for all x ∈ A.

Proof. Assume towards a contradiction, there exists x, y ∈ A with f(x)/x ̸= f(y)/y. Assume

x/y < f(x)/f(y). Fix a rational number m/n such that x/y < m/n < f(x)/f(y). Then

we have that nx < my and mf(y) < nf(x) but this is a contradiction since f is an order-

isomorphism. Thus f(x)/x is constant for all x ̸= 0.

7



1.3 POSITIVE CONE AND THE SPACE OF ORDERS

1.3 Positive cone and the space of orders

A helpful tool for studying ordered groups is the notion of the positive cone of an ordering.

Definition 1.3.1. Let (G,<) be an ordered group. The positive cone of G is defined to be

the set P = {g ∈ G | 1 < g}.

The positive cone P of an ordering satisfies the following properties:

(1) for every g ∈ G exactly one of g = 1, g ∈ P or g−1 ∈ P holds;

(2) P is a semigroup, i.e., P · P ⊆ P ; and

(3) P is self-conjugate, i.e., gPg−1 ⊆ P for all g ∈ G.

Conversely, given a subset P ⊆ G that satisfies the above three conditions, we can define an

invariant strict total order on G by the recipe g < h if and only if g−1h ∈ P . In summary,

we have the following.

Theorem 1.3.2. A subset P of a group G is the positive cone of an order on G if and only

if P satisfies the following conditions:

(i) P ∩ P−1 = ∅;

(ii) P ∪ P−1 = G\{1};

(iii) P · P ⊆ P ; and

(iv) gPg−1 ⊆ P for all g ∈ G.

Thus we see that when describing an ordering of an orderable group, we need only specify

the positive cone and verify that it satisfies conditions (i)–(iv) above. This is a very useful

characterization of the orderings of a group because it allows us to shift perspective to

thinking of orderings as certain special subsets of G instead of as binary relations. With this

in mind, we can make the following definition.

8



1.3 POSITIVE CONE AND THE SPACE OF ORDERS

Definition 1.3.3. The space of orders of an orderable group G, denoted X(G), is the set of

all positive cones of G. In notation,

X(G) = {P ⊆ G | P is the positive cone of an order on G}.

A very useful fact about the space of orders is that it is a topological space. We now show

how to put a topology on the set of all orderings of an orderable group.

For any set X, the product topology on its power set P(X) is the topology generated by

the subbasis consisting of the sets

Ux = {A ⊆ X | x ∈ A} and Vx = {A ⊆ X | x /∈ A}

for each x ∈ X. Note that the sets Ux and Vx are complements of each other. A basis for

this topology can be obtained by taking finite intersections of various Ux and Vx. We can

identity the power set P(X) with the set of all functions from X to {0, 1}, namely, the set

2X = {f : X → {0, 1}}. In this identification, our subbasis now corresponds to the sets

Ux = {f : X → {0, 1} | f(x) = 1} and Vx = {f : X → {0, 1} | f(x) = 0}.

We will freely identity P(X) with 2X and represent elements of 2X as both subsets of X

and functions X → {0, 1}. With respect to the product topology, the space 2X is totally

disconnected, compact, Hausdorff and has a basis of clopen sets. Thus 2X is a Boolean space.

We can now define a topology on X(G). For any orderable group G, we can regard X(G)

as a subspace of 2G and so the topology on X(G) has as a subbasis all sets of the form

Ug ∩ X(G) = {P ∈ X(G) | g ∈ P} and Vg ∩ X(G) = {P ∈ X(G) | g−1 ∈ P}

for all g ∈ G. As we will prove in Theorem 1.3.4, this topology makes X(G) a closed subset

of 2G and therefore a Boolean space.

Here is another useful way to describe the topology of X(G). Suppose G is an orderable

group and < is an ordering of G. Consider a finite string of inequalities g1 < · · · < gn for

9



1.3 POSITIVE CONE AND THE SPACE OF ORDERS

gi ∈ G. The set of orderings of G that satisfy these inequalities forms an open neighborhood

of < in X(G). More so, the set of all such neighborhoods forms a basis for the topology of

X(G). Equivalently, one can multiply the inequalities as necessary and see that a basis for

X(G) consists of all sets of orderings in which some specified finite set of elements of G are

all positive.

Theorem 1.3.4. If G is an orderable group, then X(G) is a closed subset of 2G. Thus X(G)

is a Boolean space.

Proof. We will argue that the complement 2G \ X(G) is an open set. We define a collection

of subsets U1, U2, U3, and U4 of 2G such that each will satisfy conditions (i)–(iv) from

Theorem 1.3.2, respectively. Define

U1 = {Y ⊆ G | Y ∩ Y −1 = ∅} = {Y ⊆ G | ∀g ∈ G (g /∈ Y ∨ g−1 /∈ Y )}.

Then Y ∈ U1 if and only if Y satisfies condition (i). Notice that we can express the complement

of U1 as

2G \ U1 =
⋃
g∈G

Ug ∩ Ug−1 .

Therefore 2G \ U1 is a union of open sets and so is open. Next, define

U2 = {Y ⊆ G | ∀g ∈ G\{1} (g ∈ Y ∨ g−1 ∈ Y )},

U3 = {Y ⊆ G | ∀g, h ∈ G (g, h ∈ Y ⇒ gh ∈ Y )},

and

U4 = {Y ⊆ G | ∀g, h ∈ G (h ∈ Y ⇒ ghg−1 ∈ Y )}.

Likewise, we can express their complements as

2G \ U2 =
⋃

g∈G\{1}
Vg ∩ Vg−1 ,

2G \ U3 =
⋃

g,h∈G
Ug ∩ Uh ∩ Vgh,

10



1.4 TREES AND Π0
1 CLASSES

and

2G \ U4 =
⋃

g,h∈G
Uh ∩ Vghg−1 .

Then each of 2G \ U2, 2G \ U3 and 2G \ U4 is an open set because they are a union of open

sets. Finally, observe that

2G \ X(G) = 2G \ U1 ∪ 2G \ U2 ∪ 2G \ U3 ∪ 2G \ U4.

Hence we can conclude that 2G \ X(G) is an open set and therefore X(G) is closed.

1.4 Trees and Π0
1 classes

Let 2<ω denote the set of finite binary strings. A tree T is a subset of 2<ω that is closed

under initial segments. In symbols, if σ ∈ T and τ ⊆ σ, then τ ∈ T . A path through T is a

function f : ω → {0, 1} such that for all n,

f ↾ n = ⟨f(0), . . . , f(n− 1)⟩ ∈ T.

We write [T ] to denote the set of all paths through T and [T ] is called the set of paths through

T . A set P ⊆ 2ω is called a Π0
1 class if P = [T ] for some computable tree T ⊆ 2<ω.

We have already seen that 2ω is a Boolean space and thus [T ] is also a topological space

endowed with the subspace topology. When working with trees, it is helpful to have an

alternative characterization of this topology. For each string σ ∈ 2<ω, define

Bσ = {f ∈ 2ω | σ ⊂ f}.

The topology generated by all sets of the form Bσ is equivalent to the product topology on 2ω

and the collection of clopen sets {Bσ | σ ∈ 2<ω} is a basis for the topology of 2ω. Similarly, if

T is a tree, then for all σ ∈ 2<ω,

Bσ ∩ [T ] = {f ∈ [T ] | σ ⊂ f}

11



1.4 TREES AND Π0
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is a basic open set in the subspace topology of [T ].

Proposition 1.4.1.

(i) If T ⊆ 2<ω is a tree, then [T ] is a closed subset of 2ω.

(ii) For every closed set C ⊆ 2ω, there is a tree T ⊆ 2<ω such that C = [T ].

Proof. For part (i), let T ⊆ 2<ω be a tree. Let

A = {σ ∈ 2<ω | σ is not on a path through T}

and let U = ⋃
σ∈ABσ. We claim U = 2ω \ [T ]. If X ∈ U , then X ∈ Bσ for some σ ∈ A. So

for all Y ∈ [T ] there exists some n < |σ| such that σ(n) ̸= Y (n). Since σ ⊂ X, it follows

that for all Y ∈ [T ] there exists some n such that X(n) ̸= Y (n). So X /∈ [T ]. Conversely, if

X /∈ [T ], then there exists some n such that X ↾ n /∈ T . Let τ = X ↾ n. Then τ ∈ A and so

Bτ ⊆ U . Thus X ∈ Bτ ⊆ U . Hence U = 2ω \ [T ] and since U is an open set, we get that [T ]

is a closed set.

To prove part (ii), suppose C ⊆ 2ω is closed. Define a subset T of 2<ω by σ ∈ T if and

only if there exists an X ∈ C with σ ⊂ X. The set T is easily seen to be a tree. We claim

that C = [T ]. First assume X ∈ C. Then X ↾ n ∈ T for all n by definition of T and so

X ∈ [T ]. Next assume X ∈ [T ]. We show that X ∈ C (the closure of C in 2ω). Fix some Bσ

such that σ ⊂ X; so X ∈ Bσ. Now σ ∈ T because X ∈ [T ]. So there exists a Y ∈ C with

σ ⊂ Y . Then Y ∈ Bσ and therefore X ∈ C. But C = C since C is closed. Therefore X ∈ C

and it follows that C = [T ].

Proposition 1.4.1 tells us that we can view closed sets in 2ω as sets of paths through trees.

Since a Π0
1 class is defined as the set of paths through a computable tree, we sometimes refer

to a Π0
1 class as an effectively closed subset of 2ω.

In connection with ordered groups, we have the following important result about com-

putable groups.

12



1.4 TREES AND Π0
1 CLASSES

Theorem 1.4.2. If G is an orderable computable group, then X(G) is a Π0
1 class.

Proof. Let G be an orderable computable group. Assume the domain of G is ω and fix an

enumeration G = {g0, g1, g2, . . .} with g0 representing the identity element. We describe how

to build a computable tree T ⊆ 2<ω which will have the property that [T ] = X(G). We will

build T in stages such that T0 ⊆ T1 ⊆ · · · and T = ⋃
s∈ω Ts. Each Ts denotes part of T build

at the end of stage s and includes all nodes of T of length at most s. To each σ ∈ T , we

assign a finite set Pσ ⊆ ω which will consist of elements σ “thinks” are part of the positive

cone of some order.

Construction:

Stage 0: Set T0 = ⟨⟩ = {λ} and Pλ = ∅.

Stage 1: Set T1 = {⟨0⟩} (this ensures g0 is not on any path through T ) and set P⟨0⟩ = ∅.

Stage s+ 1: Assume we have defined Ts. Define Ts+1 to include Ts. For each σ ∈ Ts with

|σ| = s: if g0 ∈ Pσ, then σ has no extensions in Ts+1; else, put σ0 and σ1 into Ts+1. We

define the sets

Pσ0 = Pσ ∪ {g−1
s+1} ∪ {gh | g, h ∈ Pσ} ∪ {gihg−1

i | h ∈ Pσ and i ≤ s+ 1}

and

Pσ1 = Pσ ∪ {gs+1} ∪ {gh | g, h ∈ Pσ} ∪ {gihg−1
i | h ∈ Pσ and i ≤ s+ 1}.

This completes the construction of T .

We can view a path through T as a choice of signs for each g ∈ G\{g0} and the elements

of [T ] are exactly the positive cones of G. Hence [T ] = X(G).

Theorem 1.4.2 along with the various basis theorems for Π0
1 classes imply the existence

of orders with different computability theoretic properties for every orderable computable

group. For example, by the Low Basis Theorem, every orderable computable group has an

order of low degree.
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1.5 Archimedean relations

In this section we introduce the Archimedean property of an ordering and its generalization.

Definition 1.5.1. An ordered group (G,<) is called Archimedean if for every pair of positive

elements g, h ∈ G there exists a positive integer n such that g < hn.

Example 1.5.2. The usual orderings of (Z,+), (Q,+) and (R,+) are Archimedean.

Example 1.5.3. Every subgroup of an Archimedean group is Archimedean.

Example 1.5.4. The orderings of Z2 described in Example 1.2.8 are Archimedean. On the

other hand, the lexicographic ordering of Z2 is not Archimedean.

The following well-known result of Hölder is indispensable in the study of ordered groups

(see [CR16, Theorem 2.6] for a proof). To put it succinctly, it states that the group (R,+) is

universal for Archimedean ordered groups. Thus all Archimedean ordered groups are abelian,

a fact that is not at all obvious from the definition.

Theorem 1.5.5 (Hölder’s theorem). Every Archimedean ordered group is order-isomorphic

to a subgroup of the naturally ordered additive group of real numbers.

In fact, an even more general result holds for ordered abelian groups, due to Hans Hahn.

This is regarded to be one of the deepest results in the theory of ordered abelian groups.

Theorem 1.5.6 (Hahn’s Embedding Theorem). Every ordered abelian group is order-

isomorphic to a subgroup of some lexicographic product of the naturally ordered additive

reals.

In the case of Archimedean groups, Hahn’s Embedding Theorem reduces to Hölder’s

theorem. See [Cli54], [Fuc63, §IV.5] and [KK74, §VII.3] for more details and proofs.

We can generalize the Archimedean property in the following way. Recall that the absolute

value |g| of an element g is defined to be |g| = max(g, g−1).
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1.5 ARCHIMEDEAN RELATIONS

Definition 1.5.7. Let (G,<) be an ordered group and let g, h ∈ G. We define g ∼ h if

there exist positive integers m and n such that |g| < |h|m and |h| < |g|n. We say g and h are

Archimedean equivalent if g ∼ h. We say g is Archimedean less than h, denoted by g ≪ h, if

|g|n < |h| for all positive integers n.

Note that an ordered group is Archimedean if and only if all nonidentity elements are

Archimedean equivalent. This observation along with Proposition 1.6.15 together give another

proof of the fact that every Archimedean ordered group is abelian. The following properties

of the relations ∼ and ≪ are routine.

Proposition 1.5.8. Let (G,<) be an ordered group, and let ∼ and ≪ be as defined above.

(i) For all g, h ∈ G, exactly one of the following holds: g ≪ h, g ∼ h or h ≪ g.

(ii) ∼ is an equivalence relation and ≪ is a transitive relation.

(iii) g ∼ gn for all nonzero integers n.

(iv) g ≪ h if and only if gn < |h| for all integers n.

(v) h ∼ h′ implies ghg−1 ∼ gh′g−1 for all g ∈ G.

(vi) h ≪ h′ implies ghg−1 ≪ gh′g−1 for all g ∈ G.

(vii) g ≪ h, g ∼ g′ and h ∼ h′ imply g′ ≪ h′.

For an ordered group (G,<), we will refer to the equivalence classes of G under the

Archimedean equivalent relation as the Archimedean classes of G. We will write [g] to denote

the Archimedean class of g ∈ G. We can define a linear order on the set of Archimedean

classes of G by declaring

[g] ≪ [h] if and only if g ≪ h

for g, h ∈ G. (We will abuse notation and denote the order on the Archimedean classes

also by ≪.) Proposition 1.5.8(vii) tells us that this induced linear order on the set of
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Archimedean classes is well-defined. It follows from the definitions that the identity of G

forms an Archimedean class by itself—moreover, it is the least class under the prescribed

ordering of the Archimedean classes.

We collect several useful results about ∼ and ≪.

Proposition 1.5.9. Let (G,<) be an ordered group and let g, h ∈ G.

(i) If g ̸∼ h, then |g| < |h| if and only if |g| ≪ |h|.

(ii) If g ≪ h, then h, gh and hg all have the same sign, that is to say, all elements are

either positive or negative.

Proof. (i) Assume g and h are positive. Suppose first that g < h. If h < gn for some

positive integer n, then g ∼ h, a contradiction to our assumption. So gn < h for all

positive integers n and g ≪ h. Conversely, if g ≪ h, then, by definition, gn < h for all

positive integers n and so g < h.

(ii) Suppose g ≪ h, and h and gh do not have the same sign. Consider the case when h is

positive and gh is negative. So gh < 1 and h < g−1. Then we must have that either

h ∼ g−1 or h ≪ g−1. But since g ∼ g−1, this would imply that either h ∼ g or h ≪ g,

the desired contradiction. Therefore, h and gh must have the same sign.

Proposition 1.5.10. Let (G,<) be an ordered group.

(i) If a ≪ g and b ≪ g, then ab ≪ g.

(ii) If a ≪ b, then b ∼ ab ∼ ba.

(iii) If g ̸∼ h, a ≪ g and b ≪ h, then ab ≪ gh.

(iv) Let a1, . . . , an ∈ G. Suppose there exists an i such that aj ≪ ai for all j ̸= i. Then

a1 · · · an ∼ ai.
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Proof. (i) Suppose |a| < |b|. Then |a||b| < |b|2 and |b||a| < |b|2. Note that either

|ab| ≤ |a||b| or |ab| ≤ |b||a|. In either case, we get that |ab| < |b|2 and so |ab|n < |b|2n.

Since b ≪ g, |b|2n < |g| for all n ≥ 1. Thus |ab|n < |g| for all n ≥ 1 and ab ≪ g.

Similarly, if |b| < |a|, then we will get that |ab| < |a|2. It follows that |ab|n < |a|2n < |g|

for all n ≥ 1 and ab ≪ g.

(ii) First, assume a and b are positive. Then 1 < a implies b < ab and a < b implies ab < b2.

So we get b ∼ ab and b ∼ ba follows by a similar argument. Next, assume a and b

are negative. Then a−1 and b−1 are positive and b−1 ∼ a−1b−1 ∼ b−1a−1. By taking

inverses, b ∼ ab ∼ ba.

Our next case is when a is negative and b is positive. Note |a| < |b| by our assumption

and so we get |ab| = |a|−1|b| = ab. We have ab < b because a < 1. Our assumption

a ≪ b implies a−2 < b and so 1 < aba. Thus, b < abab = (ab)2 and b ∼ ab. Likewise, we

can get b ∼ ba. The case when a is positive and b is negative can be proven similarly.

(iii) Assume g ̸∼ h and say g ≪ h. Then a ≪ g ≪ h implies a ≪ h. So we have a ≪ h and

b ≪ h and in turn ab ≪ h by (i). By (ii), h ∼ gh and we get ab ≪ gh.

(iv) If ai−1 ≪ ai, then ai−1ai ∼ ai by (ii). Next, ai+1 ≪ ai and ai−1ai ∼ ai imply

ai−1aiai+1 ∼ ai−1ai ∼ ai. We can continue along like this to get that a1 · · · an ∼ ai.

1.6 Convex subgroups

In this section we discuss an important concept in the theory of ordered groups. We start

with the definition of a convex subgroup.

Definition 1.6.1. Suppose G is an ordered group with ordering <. A subgroup C of G is

convex relative to < if c1 < g < c2 implies g ∈ C for all c1, c2 ∈ C and g ∈ G.

Remark. Definition 1.6.1 is equivalent to saying that g ∈ C whenever 1 < g < c for any c ∈ C

and g ∈ G.
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Proposition 1.6.2. Let (G,<) be an ordered group, and suppose C and D are convex

subgroups relative to <. Then either C ⊆ D or D ⊆ C.

Proof. Suppose C ̸= D. Without loss of generality, assume there exists some d ∈ D \ C. We

will argue that C ⊆ D. Let c ∈ C. There are two possibilities: 1 < |c| < |d| or 1 < |d| < |c|.

If 1 < |d| < |c|, then we have that d ∈ C by convexity of C, but this contradicts d /∈ C. Thus

it must be that 1 < |c| < |d| and so c ∈ D by convexity of D. Hence, C ⊆ D.

Corollary 1.6.3. The convex subgroups of an ordered group are linearly ordered by inclusion.

Furthermore, the union of any collection of convex subgroups is a convex subgroup and the

intersection of any collection of convex subgroups is a convex subgroup.

Example 1.6.4. The additive group Z2 with respect to the lexicographic order has the

following chain of convex subgroups: {0} × {0} ⊂ {0} × Z ⊂ Z2.

Convex subgroups allow us to give an alternative characterization of Archimedean ordered

groups.

Proposition 1.6.5. Let (G,<) be an ordered group. Then G is Archimedean if and only if

it has no nontrivial proper convex subgroups. In other words, an Archimedean ordered group

has no convex subgroups other than the whole group and the trivial subgroup.

Proof. First assume G is Archimedean. Let H be a nontrivial convex subgroup of G. We

need to show that H = G. Suppose g ∈ G and h ∈ H\{1}. Then there exists some positive

n such that 1 < |g| < |h|n. By convexity of H, we get that g ∈ H and H = G.

Conversely, assume G is not Archimedean. Then there exists two positive elements

g, h ∈ G such that hn < g for all positive n. Define

H = {x ∈ G | ∃n ∈ Z (h−n < x < hn)}.

It is straightforward to show that H is a convex subgroup of G and, furthermore, H is proper

since g /∈ H. Thus we have a nontrivial proper convex subgroup of G.
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Convex subgroups of an orderable group are closely related to the orderability of its

quotients. In particular, a quotient by a convex normal subgroup has a naturally induced

order on it.

Proposition 1.6.6. Suppose (G,<) is an ordered group and C is a convex normal subgroup

of G. Then G/C is an orderable group and the following recipe defines an ordering of it:

gC ≺ hC if and only if g < h.

Proof. We show that the given ordering is well-defined and the rest follows easily from this.

Suppose gC = g′C, hC = h′C and gC ̸= hC. Assume g < h. We have to show that g′ < h′.

We can write g′ = gc1 and h′ = hc2 for some c1, c2 ∈ C. Observe that 1 < g−1h and g−1h /∈ C,

therefore c < g−1h for all c ∈ C. In particular, c1c
−1
2 < g−1h and equivalently gc1 < hc2.

Hence g′ < h′, as desired.

The next proposition is an easy consequence of the correspondence theorem for quotient

groups. It says that the natural correspondence between subgroups of G/C and subgroups of

G that contain C preserves convexity.

Proposition 1.6.7. Suppose (G,<) is an ordered group and C a convex normal subgroup of

G. Then a subgroup H of G satisfying C ⊆ H is convex relative to < if and only if H/C is

convex relative to the natural quotient order on G/C.

We next define the notion of a convex jump.

Definition 1.6.8. If C ⊂ D is a pair of distinct convex subgroups of an ordered group, we

say that C ⊂ D is a convex jump if there are no convex subgroups strictly between them.

We will use the notation C ⊏ D to denote a convex jump.

Proposition 1.6.9. Suppose (G,<) is an ordered group.

(i) If C is a convex subgroup, then gCg−1 is a convex subgroup for all g ∈ G.

(ii) If C ⊏ D is a convex jump, then gCg−1 ⊏ gDg−1 is a convex jump for all g ∈ G.
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Proof. For (i), clearly gCg−1 is a subgroup. Let g, h ∈ G and c ∈ C. Then 1 < h < gcg−1

holds if and only if 1 < g−1hg < c, and so g−1hg ∈ C implies h ∈ gCg−1. To show (ii), let

H be a convex subgroup of G and suppose gCg−1 ⊆ H ⊆ gDg−1. Then C ⊆ g−1Hg ⊆ D.

Therefore either C = g−1Hg or D = g−1Hg, and so H = gCg−1 or H = gDg−1.

Recall the following algebraic notion: if H is a subgroup of a group G, the normalizer of

H in G is the subgroup NG(H) = {g ∈ G | gHg−1 = H}. The normalizer NG(H) contains

H and it is the largest subgroup in which H is normal.

Proposition 1.6.10. Suppose C and D are convex subgroups of an ordered group.

(i) If C ⊏ D is a convex jump, then NG(C) = NG(D).

(ii) If C ⊏ D is a convex jump, then C is normal in D and the natural quotient order on

D/C is Archimedean.

Proof. To prove (i), since C ⊏ D implies gCg−1 ⊏ gDg−1, we can conclude that if g belongs

to NG(C) or NG(D), then it belongs to the other one as well.

To prove (ii), first observe that D ⊆ NG(D) = NG(C) shows that D normalizes C. Next

to see that D/C is Archimedean, note that if D/C contained a nontrivial proper convex

subgroup H/C, then it would follow that C ⊂ H ⊂ D. But this contradicts C ⊏ D is a

jump. Thus D/C contains no nontrivial proper convex subgroups and must be Archimedean

by Proposition 1.6.5.

Corollary 1.6.11. If an ordered group G has only finitely many convex subgroups, then each

convex subgroup is normal in G.

Proof. The finitely many convex subgroups of G form a chain, say C1 ⊂ · · · ⊂ Cn = G.

Furthermore, Ci ⊏ Ci+1 for all i. Then by Proposition 1.6.10(i), NG(C1) = NG(C2) = · · · =

NG(G) = G and Ci is normal in G for all i.

Proposition 1.6.12. Suppose (G,<) is an ordered group and C is a convex subgroup. Let

g ∈ G and c ∈ C. If g /∈ C, then c ≪ g.
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Proof. If g /∈ C, then for all x ∈ C, |x| < |g|. For otherwise, there would exist x0 ∈ C with

1 < |g| < |x0|, and this would imply g ∈ C by convexity of C. Therefore |x| < |g| for all

x ∈ C. In particular, |c|n < |g| for all n and so c ≪ g.

In an ordered group every nonidentity element determines a convex jump as we now

discuss.

Definition 1.6.13. Let g be an element of an ordered group G and g ≠ 1. Define Gg to be

the intersection of all convex subgroups of G that contain g and define Gg to be the union of

all convex subgroups of G that do not contain g.

It is an immediate consequence of the definitions that the subgroups Gg and Gg form a

convex jump, i.e., Gg ⊏ Gg. The next proposition gives useful descriptions of Gg and Gg.

Proposition 1.6.14. Suppose (G,<) is an ordered group. Let g ∈ G with g ̸= 1. Then

Gg = {x ∈ G | x ≪ g} and Gg = {x ∈ G | x ≪ g or x ∼ g}.

Proof. Let g ∈ G be a nonidentity element and let A = {x ∈ G | x ≪ g}. We first want

to prove that Gg ⊆ A. Suppose h ∈ Gg. Then there exists a convex subgroup C such that

h ∈ C and g /∈ C. By Proposition 1.6.12, h ≪ g and thus h ∈ A. Now assume h ∈ A. Define

H = {x ∈ G | ∃n ∈ Z (h−n < x < hn)}.

Then H is a convex subgroup. Moreover, g /∈ H because otherwise we would have h−n < g <

hn but this contradicts h ≪ g. Therefore, H ⊆ Gg and since clearly h ∈ H, we can conclude

h ∈ Gg. Hence, A ⊆ Gg and so A = Gg, as desired.

To prove the second part, let B = {x ∈ G | x ≪ g or x ∼ g} and let h ∈ Gg. Suppose on

the contrary g ≪ h. Define

H = {x ∈ G | ∃n ∈ Z (g−n < x < gn)}.

Once again H is a convex subgroup and g ∈ H. By definition of Gg, it follows that Gg ⊆ H.
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Furthermore, it must be that h /∈ H since g ≪ h. So we have h ∈ Gg and h /∈ H but this

contradicts Gg ⊆ H. Hence, either h ≪ g or h ∼ g, and we get h ∈ B. Next, let h ∈ B. We

have to show that h ∈ Gg. Let C be a convex subgroup that contains g. It suffices to show

that h ∈ C. We know that either h ≪ g or h ∼ g. If h ≪ g, then |h| < |g| and it follows

h ∈ C. On the other hand, if h ∼ g, then |h| < |g|m for some m and again it will follow that

h ∈ C. This shows that B ⊆ Gg and the result follows.

Proposition 1.6.15. Let (G,<) be an ordered group and let a, b ∈ G. Then

[a, b] ≪ max(|a|, |b|).

Proof. Without loss of generality, assume |a| < |b|. We have to show that [a, b] ≪ |b|.

Consider the subgroup H of G generated by a and b. Let D be the intersection of all convex

subgroups in H containing b and let C be the union of all convex subgroups in H not

containing b. In other words, let C = Hb and D = Hb. In fact, D = H because a, b ∈ D.

Then C ⊂ H is a convex jump and, by Proposition 1.6.10(ii), C is normal in H. Now C

is a normal, convex subgroup of H, so we can form the quotient group H/C which will be

orderable. Because C ⊂ H is a jump, then H/C is Archimedean and, in particular, must

be abelian. Therefore [H,H] ⊆ C and so [a, b] ∈ C. (Here [H,H] denotes the commutator

subgroup of H.) By Proposition 1.6.14, we conclude that [a, b] ≪ |b|.

1.7 Cantor-Bendixson rank

Definition 1.7.1. Let X be a topological space. A point x ∈ X is called an isolated point

if {x} is open. A point x ∈ X is called a limit point if every neighborhood of x contains

a point other than x. If A ⊆ X, we say that a point x ∈ X is a limit point of A if every

neighborhood of x contains a point of A other than x.

In the context of the space of orders, an isolated point in X(G) corresponds to an order

on G that is the unique order satisfying some finite string of inequalities. Equivalently, an
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isolated order is the unique order in which some fixed finite set of elements of G are all

positive. As for trees, if T is a tree, then a path f ∈ [T ] is an isolated path if there is an

n ∈ ω such that f is the unique path in T through f ↾ n; in other words, if there exists a

σ ∈ T with Bσ ∩ [T ] = {f}. Recall that an isolated path in a Π0
1 class is computable.

Proposition 1.7.2. Let T ⊆ 2<ω be a tree. Then [T ] is finite if and only if [T ] contains only

isolated paths.

Proof. If [T ] is finite, then it is clear by the Hausdorff property that every path in [T ] is

isolated. Now suppose [T ] contains only isolated paths. For each f ∈ [T ], fix a string σf ∈ T

such that f is the unique path through σf . Then the collection {Bσf
| f ∈ [T ]} is an open

cover of [T ]. By compactness, it has a finite subcover, say {Bσ1 , . . . , Bσn}. Then [T ] can

only contain finitely many paths, else for some i there would need to be more than one path

passing through σi, a contradiction. Hence [T ] has only finitely many paths.

Definition 1.7.3. Let X be a topological space. The Cantor-Bendixson derivative of X,

denoted X ′, is the set of nonisolated points of X; equivalently, X ′ is the set of limit points of

X. For each ordinal α, define X(α) recursively as follows:

(1) X(0) = X,

(2) X(α+1) = (X(α))′,

(3) X(α) = ⋂
γ<αX

(γ) if α is a limit ordinal.

In general, if X is an arbitrary topological space, then X ′ is not necessarily closed.

However, if X is a Hausdorff space, then X ′ is closed in X and therefore X(α) is a closed

subset of X for all α.

It is clear from the definition that the subspaces X(α) form a nonincreasing sequence, that

is, X(δ) ⊆ X(γ) whenever γ < δ. As shown by the next proposition, this transfinite sequence

of derivatives must eventually be constant.
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Proposition 1.7.4. Let X be a topological space. If |X| = κ for some cardinal number κ,

then there is an ordinal α < κ+ such that X(α) = X(α+1).

Proof. Assume for a contradiction, X(α) ̸= X(α+1) for all ordinals α < κ+. Then for all

α < κ+, there exists some xα ∈ X such that xα ∈ X(α) \X(α+1). This gives a map from κ+

into X via α 7→ xα that is injective. This is a contradiction since by assumption |X| = κ.

Hence, there must exist some α < κ+ such that X(α) = X(α+1).

Definition 1.7.5. Let X be a topological space. The Cantor-Bendixson rank of X, denoted

CB(X), is the least ordinal α such that X(α) = X(α+1). We say a point x ∈ X has Cantor-

Bendixson rank α if α is the least ordinal such that x ∈ X(α) but x /∈ X(α+1). We write

CB(x) = α to denote x has Cantor-Bendixson rank α. If x ∈ X(α) for all α, then we write

CB(x) = ∞.

Remark. If X has Cantor-Bendixson rank α, then by induction it follows that X(β) = X(α)

for all β > α.

Note that CB(X) = 0 if every point of X is a limit point and for x ∈ X, CB(x) = 0 if x

is an isolated point. We make the observation that if A and B are subsets of a topological

space, then A ⊆ B implies A′ ⊆ B′.

Proposition 1.7.6. Let X be a topological space and let A ⊆ X. Suppose CB(a) ≥ α for all

a ∈ A, or equivalently, A ⊆ X(α). If x ∈ X is a limit point of A, then CB(x) ≥ α + 1.

Proof. If A ⊆ X(α), then A′ ⊆ (X(α))′ = X(α+1). Since x ∈ X is a limit point of A, we have

x ∈ A′ ⊆ X(α+1) and therefore CB(x) ≥ α + 1.

Proposition 1.7.7. If C is a countable closed subset of 2ω, then the Cantor-Bendixson rank

of C is a countable ordinal α such that α is a successor ordinal and C(α) = ∅.

Proof. Let C be a nonempty countable closed subset of 2ω. By Proposition 1.7.4, the Cantor-

Bendixson rank of C is a countable ordinal, say α. We claim that C(α) = ∅. Since C is

countable and closed, it must contain an isolated point. Because otherwise C would be a
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countable, perfect subset of 2ω and that is impossible since perfect sets are uncountable. In

addition, every nonempty derivative of C must also contain an isolated point because they

are also closed, and either finite or countable. Thus C(α) = C(α+1) implies that C(α) = ∅, as

required.

Next we want to show that α is a successor ordinal. Suppose for a contradiction α is a

limit ordinal. Then C(α) = ⋂
γ<αC

(γ) where each C(γ) is a nonempty closed set. It follows by

compactness that ⋂
γ<αC

(γ) must be nonempty and we have a contradiction. Therefore α is

a successor ordinal.

Remark. Observe that if C ⊆ 2ω is a nonempty countable closed set and C has Cantor-

Bendixson rank α, where α = β + 1 for some ordinal β, then C(β) will be nonempty, finite

and contain only isolated points.

Suppose P ⊆ 2ω is a countable Π0
1 class. Then P has isolated elements and, in turn,

computable elements. Note that P has Cantor-Bendixson rank 1 if and only if P contains

only isolated elements, and by Proposition 1.7.2, this is equivalent to P being finite. Thus we

see that countable Π0
1 classes of rank 1 are finite classes with all their members computable,

so from a computational viewpoint they are not very interesting.

1.8 Open questions

We would like to take a small prelude into ordered fields to motivate some interesting questions

about ordered groups. As with groups, there is a set of algebraic conditions that determines

if a subset of an orderable field is the positive cone of an order. Likewise, one can define the

space of orders of an orderable field to consist of all positive cones of orders on the field. It is

well-known that the space of orders of an orderable field forms a topological space, in fact, a

Boolean space (i.e. totally disconnected, compact and Hausdorff). Craven [Cra75] showed

that the converse is also true.
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Theorem 1.8.1 ([Cra75, Theorem 5]). Every Boolean space is homeomorphic to the space of

orders of some orderable field.

Furthermore, Metakides and Nerode [MN79] showed that the effective versions of these

results hold as well.

Theorem 1.8.2 ([MN79, Theorem 7.1]). The space of orders of an orderable computable

field is a Π0
1 class.

Theorem 1.8.3 ([MN79, Theorem 7.3]). Every Π0
1 class is homeomorphic to the space of

orders of some orderable computable field and the homeomorphism is Turing degree preserving.

These results motivate the question whether similar results hold for ordered groups. We

have already seen in Theorem 1.4.2 that the analogue of Theorem 1.8.2 is true for orderable

computable groups. However, unlike in the case of fields, it still remains an open question

whether Theorems 1.8.1 and 1.8.3 are true for orderable groups and orderable computable

groups, respectively.

Question 1.8.4. Given a closed subset C ⊆ 2X for some set X, is there an orderable group

G such that X(G) ∼= C?

Question 1.8.5. Given a Π0
1 class P ⊆ 2ω, is there an orderable computable group G such

that X(G) ∼= P? Does the homeomorphism preserve the Turing degrees?

It is worth pointing out that Theorem 1.8.3 cannot hold in its full generality for computable

groups. Notice that for any order of a computable group, the dual order is an order of the

same Turing degree. So in particular, the corresponding Π0
1 class of the space of orders always

contains Turing comparable members. But it is known that there do exist Π0
1 classes all

of whose members are mutually Turing incomparable (see e.g. [JS72, Theorem 4.7]). Thus

we cannot get exactly the same result as Theorem 1.8.3 for computable groups. Solomon

[Sol02] has shown that the spaces of orders of computable torsion-free abelian and nilpotent
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groups cannot represent all Π0
1 classes even in a weak manner. For more details and precise

formulations of the results, see [Sol02].

In trying to address Question 1.8.5, an obstacle to deal with is to understand the

computable presentations of orderable groups. As we saw in Theorem 1.1.4 there exists a

computable presentation of ⊕
ω Z that does not have any computable orders. At the same

time, it is clear that there do exist computable copies of ⊕
ω Z which will have computable

orders. A natural question to ask is does an orderable computable group always have a

computable presentation that admits a computable order?

Here is a remarkable result about computable groups recently shown by Darbinyan [Dar20].

It answers an open question for bi-orderable groups.

Theorem 1.8.6 ([Dar20, Corollary 1]). There exists a bi-orderable computable group which

does not have a computable presentation with a computable bi-order. Moreover, the group can

be chosen to be a solvable group of derived length 3.

Surprisingly the proof does not involve a lot of computability machinery but instead is

proven using algebraic tools involving wreath products and embedding theorems. In contrast,

Solomon [Sol02] has shown that every orderable computable abelian group has a computable

presentation which admits a computable order. These two results lead to the following open

question. Recall that a metabelian group is a solvable group of derived length 2.

Question 1.8.7. Does every bi-orderable computable metabelian group have a computable

presentation with a computable bi-order?

In the study of Π0
1 classes, there has been considerable work done studying the relationship

between the degrees of members of Π0
1 classes and the Cantor-Bendixson ranks of Π0

1 classes.

One known result in this area is the following theorem due to Cenzer, Downey, Jockusch,

and Shore [Cen+93].

Theorem 1.8.8 ([Cen+93, Theorem 2.2]). For every computable ordinal α ≥ 1, there is

a countable (thin) Π0
1 class Pα with Cantor-Bendixson rank α + 1. Furthermore, for any
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X ∈ Pα, X is an isolated path if and only if X is computable.

An interesting question to ask related to ordered groups is the following.

Question 1.8.9. For every computable ordinal α ≥ 1, is there an orderable computable group

G such that X(G) is countable, has Cantor-Bendixson rank α+ 1 and the only computable

elements of X(G) are the isolated orders?

In trying to address this question, we must first solve the problem of coming up with an

example of an orderable group that has exactly countably many orders. This turns out to

be not a trivial task and it is rather difficult to construct an example of such a group. The

only known example of such a group in the literature is given by Buttsworth [But71]. In

Section 3.1, we will prove that the group constructed in [But71], denoted G(p, q), has exactly

countably many orders. We will then carry out a further analysis of the space of orders of

G(p, q) to prove a new result that the space of orders X(G(p, q)) has Cantor-Bendixson rank

2. From here, we will show that it is possible to generalize the construction that Buttsworth

gives to deduce the following result.

Theorem 1.8.10. For all 2 ≤ n < ω, there is a countable orderable group Gn such that

X(Gn) is countable and has Cantor-Bendixson rank n.

In Section 3.3, we will show that the groups Gn all have a computable presentation. So we

have a partial answer to part of our question from above, namely, we can build an orderable

computable group such that its space of orders is countable and has Cantor-Bendixson rank

n for all 2 ≤ n < ω. There seems to be no obvious way to extend this group construction

further to be able to achieve infinite Cantor-Bendixson ranks. We conjecture that to be able

to get infinite ranks it will be necessary to come up with an entirely different example of an

orderable group that has countably many orders.

As for the other part of the question on trying to make only the computable elements

be isolated in the space of orders, we show that this method of constructing orderable

groups cannot achieve this property. Each group Gn has a “nice” computable presentation
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in which all the orders are computable. More so, it turns out that the groups Gn are all

computably categorical. This result implies that every order on every computable copy of Gn

is computable. Thus the best we can do is make all the members of the corresponding Π0
1

class of space of orders be computable. So it seems that once again it will be necessary to

come up with a new example of an orderable group to be able to have a positive answer to

this question.

1.9 Overview

In Chapter 2, we study the semidirect product in relation to orderability and computability.

We give a criteria for when a semidirect product of two orderable groups is orderable. We give

an example of a semidirect product that has the halting set coded into the homomorphism

describing its multiplication structure but it is still possible to construct a computable

presentation of this semidirect product. We prove a result giving sufficient conditions for

when is a semidirect product computably categorical.

In Chapter 3, we construct a family of orderable groups such that they have exactly

countably many orders and their space of orders has Cantor-Bendixson rank n for any

2 ≤ n < ω. We will also prove that these groups have a computable presentation and they

are all computably categorical.

In Chapter 4, we construct a computable torsion-free abelian group that is a computable

copy of ⊕
ω Z such that the group has no computable Archimedean orders but the group

does admit at least one computable order—this computable order will necessarily be non-

Archimedean.
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Chapter 2

Semidirect products

2.1 Orderability of semidirect products

In this section, we discuss the semidirect product and make connections to orderability. We

start by proving a general result about short exact sequences and extensions of groups. We

mention in passing that the notion of group extensions and short exact sequences is the

same. Any extension of groups can be viewed as a short exact sequence and any short exact

sequence can be thought of as an extension of groups.

Suppose (N,<N) and (H,<H) are ordered groups and we have a short exact sequence

1 → N ↪→ G
f−→ H → 1.

Equivalently, suppose the group G is an extension of N by H. Consider the following recipe

to define an ordering of G. Let g, g′ ∈ G. Define

g <G g
′ if and only if f(g) <H f(g′), or else f(g) = f(g′) and 1 <N g−1g′. (2.1)

Note that if f(g) = f(g′) then f(g−1g′) = f(g)−1f(g′) = 1 and so g−1g′ ∈ ker f = N . The

above recipe gives us a way to linearly order G. In the next proposition we give a necessary

and sufficient condition for when this ordering is also invariant.

30



2.1 ORDERABILITY OF SEMIDIRECT PRODUCTS

Proposition 2.1.1. Suppose G is a group with normal subgroup N and quotient group

H ∼= G/N . In other words, suppose there is a short exact sequence

1 → N ↪→ G
f−→ H → 1.

Suppose (N,<N) and (H,<H) are ordered groups. Then the recipe of (2.1) defines an

invariant ordering of G if and only if the conjugation action of G upon N preserves the given

ordering of N .

Proof. For the forward direction, let g ∈ G and suppose x, y ∈ N with x <N y. Then

f(x) = f(y) = 1 and 1 <N x−1y. So by (2.1), x <G y and this implies gxg−1 <G gyg
−1 since

<G is invariant by assumption. But f(gxg−1) = f(gyg−1) = 1 since N = ker f is a normal

subgroup. Thus by (2.1) it must be that 1 <N (gxg−1)−1(gyg−1) and so gxg−1 <N gyg−1.

For the reverse direction, suppose g, g′ ∈ G with g <G g
′. We first show that xg <G xg

′

holds for all x ∈ G. Assume f(g) <H f(g′). Then

f(xg) = f(x)f(g) <H f(x)f(g′) = f(xg′)

since <H is invariant. Next, assume f(g) = f(g′) and 1 <N g−1g′. Then

f(xg) = f(x)f(g) = f(x)f(g′) = f(xg′)

and

1 <N g−1g′ = g−1x−1xg′ = (xg)−1xg′.

Thus in either case, it follows by (2.1) that xg <G xg
′.

Lastly, we want to show that gx <G gx
′ for all x ∈ G. First assume f(g) <H f(g′). Then

f(gx) = f(g)f(x) <H f(g′)f(x) = f(g′x)

and so by (2.1) it follows that gx <G g
′x. Next assume f(g) = f(g′) and 1 <N g−1g′. Then

f(gx) = f(g)f(x) = f(g′)f(x) = f(g′x)
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and by our hypothesis

1 = x−11x <N x−1g−1g′x = (gx)−1g′x.

So by (2.1) we have that gx <G g
′x.

Remark. Notice that the order <G in (2.1) is an extension of the order <N of N . In fact, the

positive cone for the prescribed ordering of G is the union of the positive cone of N and the

pullback of the positive cone of H. That is, PG = PN ∪ f−1(PH).

With this result in hand, let us now turn towards the semidirect product. A semidirect

product of two groups can be viewed as an extension of the two groups. Even more so, a

short exact sequence of groups splits exactly when the group in the middle is a semidirect

product. Since semidirect products are a special case of group extensions, we can reformulate

Proposition 2.1.1 for semidirect products and make some important conclusions. But first,

let us interpret the recipe in (2.1) for a semidirect product.

Suppose (N,<N ) and (H,<H) are ordered groups. Suppose we have a semidirect product

G = N ⋊φ H where φ : H → Aut(N) is a group homomorphism. As a piece of notation, we

will sometimes write φh to denote the automorphism φ(h) : N → N for h ∈ H. Any element

g ∈ G can be uniquely written as g = nh for some n ∈ N and h ∈ H. Also, to be precise,

since different authors use different notations when working with semidirect products, we

will write our group multiplication as

gg′ = (nh)(n′h′) = n(hn′h−1)hh′ = nφh(n′)hh′.

So in particular, we will freely interpret the group homomorphism φ as inducing a conjugation

action inside of G, i.e., φh(n) = hnh−1. We will say that φ is order-preserving by which

we will mean that the automorphism φh is order-preserving for all h ∈ H. (Really, the

conjugation action of H on N is order-preserving.) It is important to note here that when

we say order-preserving, we mean order-preserving with respect to some fixed order of N .

Here, for example, we mean the order <N of N .
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We can express our semidirect product as a short exact sequence

1 → N ↪→ G
f−→ H → 1

where f is the projection function. So f(g) = f(nh) = h. We can now rewrite (2.1) as

g <G g
′ if and only if h <H h′, or else h = h′ and φh−1(n) <N φh−1(n′) (2.2)

for any g, g′ ∈ G with g = hn and g′ = h′n′. To see where the last inequality comes from,

observe that if h = h′, then

g−1g′ = (nh)−1n′h = h−1n−1n′h = (h−1n−1h)(h−1n′h) = φh−1(n−1)φh−1(n′).

Since <N is invariant, the inequality

1 <N φh−1(n−1)φh−1(n′)

is equivalent to

φh−1(n) <N φh−1(n′).

We make two observations related to the recipe described in (2.2) to order G = N ⋊φ H.

First, if we are checking the condition described in Proposition 2.1.1 for G, namely, whether

the conjugation action of G upon N preserves the given ordering of N , it is sufficient to only

check conjugation by all h ∈ H. To see this, let x, y ∈ N with x <N y. Then if we conjugate

this inequality by some nh ∈ G, we have

(nh)x(nh)−1 = nφh(x)n−1 <N nφh(y)n−1 = (nh)y(nh)−1.

But

nφh(x)n−1 <N nφh(y)n−1 if and only if φh(x) <N φh(y).

Thus we see that we only need to check conjugation by h ∈ H. The second observation is

that in the case when φ is order-preserving, the recipe described in (2.2) reduces to a reverse
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lexicographic ordering on G = N ⋊φ H. This is easy to see, for if φ is order-preserving, then

φh−1(n) <N φh−1(n′) if and only if n <N n′.

Above we are composing with the map φh (which we are assuming is order-preserving)

to simplify the inequality. We collect our results related to the orderability of semidirect

products.

Proposition 2.1.2. Let (N,<N) and (H,<H) be ordered groups. Let G = N ⋊φ H be a

semidirect product with φ : H → Aut(N). The recipe of (2.2) defines an invariant ordering

of G if and only if φ is order-preserving with respect to <N .

Proof. See Proposition 2.1.1 and the above discussion.

Proposition 2.1.3. Let (N,<N) and (H,<H) be ordered groups. Let G = N ⋊φ H be a

semidirect product with φ : H → Aut(N). Suppose φh : N → N is order-preserving with

respect to <N for all h ∈ H. Then G is orderable and the following recipe defines an ordering

1 <G nh if and only if 1 <H h, or else h = 1 and 1 <N n.

Proof. Follows from Proposition 2.1.2 and the observation mentioned above.

Not surprisingly, it turns out that if a semidirect product is orderable, then it always has

a reverse lexicographic ordering.

Proposition 2.1.4. Let G = N ⋊φH be a semidirect product of orderable groups and suppose

G is orderable. Then there exists orderings <N and <H of N and H, respectively, such that

the reverse lexicographic ordering of G with respect to <N and <H is an ordering.

Proof. Let <G be an ordering of G. Since N and H are subgroups of G (or more precisely,

there exists isomorphic copies of N and H inside G), we can let <N and <H be the restriction

of <G to N and H, respectively. Then φh is order-preserving with respect to <N for all

h ∈ H. Thus by Proposition 2.1.3, the reverse lexicographic ordering of G with respect to

<N and <H is an ordering.
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Notice in the above proof that if G is orderable then there exists some ordering of N with

respect to which φ is order-preserving. This in conjunction with Propositions 2.1.3 and 2.1.4

gives us the following.

Theorem 2.1.5. Let G = N ⋊φ H be a semidirect product of orderable groups. Then the

following are equivalent:

(a) G is orderable.

(b) G has a reverse lexicographic ordering.

(c) φ is order-preserving with respect to some order of N .

Proof. The implication (a) ⇒ (b) is the content of Proposition 2.1.4 and, of course, (b) ⇒ (a).

The implication (c) ⇒ (a) follows from Proposition 2.1.3. To prove (a) ⇒ (c), let <G be

an ordering of G and let <N be the restriction of <G to N . Then since the action of φ is

conjugation inside G, it readily follows that φ is order-preserving with respect to <N .

In part (b) of the above theorem, G only needs to have a reverse lexicographic ordering

with respect to some order of N and H. It does not necessarily need to have a reverse

lexicographic ordering with respect to every order of N and H. It is interesting to note that

in Theorem 2.1.5 when trying to determine if G is orderable, the specific order of H is not

important but what order we choose for N is.

We should preface everything we have said so far by adding that not every semidirect

product of two orderable groups is orderable. In lieu of Theorem 2.1.5, if we want an example

of a semidirect product that is not orderable, we want to cleverly choose φ so that it does

not preserve any order of N . The following is one such example.

Example 2.1.6 (A non-orderable semidirect product). We showed in Example 1.2.11 that

the fundamental group of the Klein bottle is not orderable. Recall

π1(Klein bottle) ∼= Z ⋊ Z ∼= ⟨x⟩ ⋊ ⟨y⟩ ∼= ⟨x, y | yxy−1 = x−1⟩.
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Note the action of y on x is inversion which is always an automorphism of an abelian group.

We already saw one argument for why this group is not orderable. Another way to see this is

to note that

(xy)2 = xyxy = xx−1yy = y2

but xy ̸= y and so we do not have unique roots. Thus we see one way to make a semidirect

product be not orderable is to force the conjugation action induced inside it to be inversion

which can never be order-preserving.

To finish this section, we mention a surprising result related to finite extensions of groups

shown by Neumann and Shepperd [NS57]. The proof makes use of a deep result from group

theory. The most difficult part is showing that the prescribed positive cone in the proof is a

semigroup. We state the result in a slightly different language. See [NS57] for details and a

proof.

Theorem 2.1.7 ([NS57, Theorem 3.1]). Let (N,<N) be an ordered normal subgroup of a

group G and assume N has finite index in G. Suppose G is torsion-free and the conjugation

action of G upon N preserves <N . Then G is orderable and can be given an ordering that

extends <N .

2.2 Semidirect products and computability

In this section, we look at the semidirect product and make connections to computability.

Given a semidirect product N ⋊φ H with φ : H → Aut(N), we can represent the map φ as

a function from H × N → N . Let f : H × N → N be defined as f(h, n) = φh(n) for all

h ∈ H and n ∈ N . Henceforth, whenever N and H are computable groups and we say φ is

uniformly computable, we will mean that f is computable. So in particular, if φ is uniformly

computable, then φh is computable for all h ∈ H.

Proposition 2.2.1. Let (N, ·N) and (H, ·H) be computable groups, and let φ : H → Aut(N)
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be a group homomorphism that is uniformly computable. Then the semidirect product N ⋊φH

has a computable presentation.

Proof. We can let the domain of G be the computable set N×H. We can define a computable

function ·G as follows

(n, h) ·G (n′, h′) = (n ·N φh(n′), h ·H h′).

Then (G, ·G) is a computable presentation of N ⋊φ H.

For two computable groups N and H the standard presentation of N ⋊φH will be a group

(G, ·G) with domain G = N ×H such that G ∼= N ⋊φ H. (Note we do not assume that in

the standard presentation the group operation ·G is a computable function.)

Proposition 2.2.2. Let (N, ·N) and (H, ·H) be computable groups, and let φ : H → Aut(N)

be a group homomorphism. Let (G, ·G) be the standard presentation of N ⋊φ H with ·G

computable. Then φ is uniformly computable.

Proof. Observe that from the standard presentation of N ⋊φ H we can recover the maps φh.

For any h ∈ H and n ∈ N , we have

(1, h) ·G (n, 1) ·G (1, h−1) = (φh(n), 1).

Thus we can define φh(n) to be the projection along the first component of the above. This

procedure is also clearly uniform so therefore φ is uniformly computable.

If the homomorphism φ is not uniformly computable then it is possible to have the

standard presentation of a semidirect product with a noncomputable group operation.

Theorem 2.2.3. There exists computable groups N and H, and a sequence of computable

group homomorphisms φh : N → N for each h ∈ H such that φ : H → Aut(N), defined via

φ(h) = φh, is a group homomorphism and for the standard presentation (G, ·G) of N ⋊φ H,

we have 0′ ≡T ·G.
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Proof. Let N and H denote the group (⊕
ω Z,+). We define a group homomorphism

φ : H → Aut(N) by specifying the images of the generators {en}n∈ω where en = 0n1. If

n ∈ 0′, then φ(en) is the automorphism of N that swaps the components in position 2n and

2n + 1. If n /∈ 0′, then φ(en) is the identity automorphism. Let φh = φ(h) for all h ∈ H.

Note that φh : N → N is a computable function for all h ∈ H.

Consider the group N ⋊φH. Let (G, ·G) be the standard presentation of N ⋊φH. Notice

that we can represent the elements of G as a pair of finite strings of integers with no leading

zeros. We claim that 0′ ≡T ·G. To see that 0′ ≤T ·G, given some n ∈ ω, we ask what is

(0, en) ·G (e2n, 0)? If the answer is (e2n, en), then n /∈ 0′. Otherwise if the answer is (e2n+1, en),

then n ∈ 0′. For ·G ≤T 0′, to find (n, h) ·G (n′, h′), decompose h into a finite string of integers.

Then from the finitely many generator elements that appear in the string, using 0′ determine

how h acts to modify the string being represented by n′. From there we can find the product

of (n, h) and (n′, h′). Hence, we have that 0′ ≡T ·G.

Next, we show that the group N ⋊φ H defined in the above proof has a computable copy

A⋊ψ B with A and B computable, and ψ uniformly computable. Moreover, A and B have

computable basis as torsion-free abelian groups.

Theorem 2.2.4. Let N and H denote the group (⊕
ω Z,+). Let φ be as defined in the proof

of Theorem 2.2.3. Then N ⋊φ H has a computable presentation.

Proof. We construct a computable group (G, ·G) that is classically isomorphic to N ⋊φ H,

i.e., we give a computable presentation of N ⋊φ H. Let K = {x ∈ ω | φx(x)↓} be the halting

set. Fix an enumeration {Ks}s∈ω of K such that |Ks+1 \ Ks| = 1 for all s ∈ ω. Assume

K0 = ∅. Let ⟨·, ·⟩ denote the pairing function. Let π1(⟨x, y⟩) = x and π2(⟨x, y⟩) = y be the

projection functions along the first and second components, respectively. We construct our

group in stages Gs such that G = ⋃
s∈ω Gs. The domain of our group will be ω and to each

n ∈ G, we will assign a pair of finite strings of integers σn = (αn, βn). We will define a total

computable function d(s) such that Gs = {0, . . . , d(s)} for all s ∈ ω. We will also define a
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sequence of finite sets Dn such that Dn ⊆ Dn+1 for all n, and if x ∈ Dn with x = ⟨i, j⟩, then

the action of the group element (0, 0i1) on the pair of strings (α, 0) will be to swap the 2j

and 2j + 1 components of α. We have the following requirements:

• (Group generators) Bn : The generators (0n1, 0) and (0, 0n1) of the group are represented

in G.

• (Group closure) Cn : If n = ⟨p, q⟩, then p ·G q is defined.

• (Group inverses) Ip : There exists q such that p ·G q = 0. (The zero of ω will be the

identity of G.)

Definition 2.2.5. (1) We say Bn requires attention at stage s + 1 if there exists no

p, q ≤ d(s) such that σp = (0n1, 0), and σq = (0, 0n1).

(2) We say Cn requires attention at stage s+ 1 if n = ⟨p, q⟩ with p, q ≤ d(s) and there is

no r ≤ d(s) such that p ·G q = r.

(3) We say Ip requires attention at stage s + 1 if p ≤ d(s) and there is no q ≤ d(s) such

that p ·G q = 0.

We fix a priority ordering on our requirements as follows

B0 < C0 < I0 < B1 < C1 < I1 < · · · .

Construction:

Stage 0: Let D0 = ∅. Set d(0) = 0 and set σ0 to be the empty string.

Stage s + 1: Let n ∈ Ks+1 \ Ks and set Ds+1 = Ds ∪ {⟨n, k⟩}, where k > 2s is a large

enough number not yet used in the construction. Find the highest priority requirement that

requires attention.

• If Bn, let d(s+ 1) = d(s) + 2. Define σd(s)+1 = (0n1, 0) and σd(s)+2 = (0, 0n1).
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• If Cn where n = ⟨p, q⟩, let d(s+ 1) = d(s) + 1. Suppose σp = (αp, βp) and σq = (αq, βq).

We will define σd(s+1) = (αd(s+1), βd(s+1)). Let βd(s+1) = βp + βq (here we mean summation

componentwise). Let D′ = {π2(x) | x ∈ Ds+1 and βp(π1(x)) is odd.}. Define the string α′
q

as follows:

α′
q(i) =



αq(2x+ 1) if i = 2x for some x ∈ D′,

αq(2x) if i = 2x+ 1 for some x ∈ D′,

αq(i) else.

Let αd(s+1) = αp + α′
q and set σd(s+1) = (αd(s+1), βd(s+1)). Note that we have set p ·G q =

d(s+ 1).

• If Ip, let d(s+1) = d(s)+1. Suppose σp = (αp, βp). We will define σd(s+1) = (αd(s+1), βd(s+1)).

Let D′ = {π2(x) | x ∈ Ds+1 and βp(π1(x)) is odd.}. Define α′
p as follows:

α′
p(i) =



αp(2x+ 1) if i = 2x for some x ∈ D′,

αp(2x) if i = 2x+ 1 for some x ∈ D′,

αp(i) else.

Set σd(s+1) = (−α′
p,−βp). Note that we have set p ·G d(s+ 1) = 0.

If no requirement needs attention, continue to the next stage. This completes the

construction. ⊣

By inspection, d(s) is a monotonically increasing function, so the domain of our group

will be ω. Each requirement needs attention at most once and since all the requirements

will eventually be met, we will have that (G, ·G) is a group. Moreover, by the subsequent

discussion, it will follow that G ∼= N ⋊φ H.

Suppose A = B = (⊕
ω Z,+) with generators {ai}i∈ω and {bj}j∈ω, respectively. (Here

ai = 0i1 and bj = 0j1.) Suppose we have a group homomorphism π : B → Aut(A) such that

we can partition the generators of B into two infinite subsets B0 and B1 as follows. All

the elements in B0 will map to the identity, and for each b ∈ B1, π(b) swaps two adjacent

components of A. Moreover, if b, b′ ∈ B1 with b ≠ b′, then the pair of components they act
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on are different. Also, there are infinitely many components of A that are never acted on by

any b ∈ B1. We claim A⋊π B ∼= N ⋊φ H.

We define two automorphisms f : N → A and g : H → B. Suppose K = {n0 < n1 < . . . }

and ω \K = {m0 < m1 < . . . }. Let B0 = {bx0 , bx1 , . . . } and B1 = {by0 , by1 , . . . }. If ni ∈ K,

then define g(eni
) = byi

, f(e2ni
) = a2j and f(e2ni+1) = a2j+1, where 2j and 2j + 1 are the

two components swapped by π(byi
). If mi ∈ ω \ K, define g(emi

) = bxi
, f(e2mi

) = a2k and

f(e2mi+1) = a2k+1, where components 2k and 2k+ 1 are never swapped by any b ∈ B1. Define

ψ : B → Aut(A) by ψ(b) = f ◦ φ(g−1(b)) ◦ f−1. We claim ψ = π.

If b ∈ B0, then π(b) is identity. Also by definition of g, φ(g−1(b)) is identity. Hence, ψ(b)

is also identity. If b ∈ B1 and say b = byi
. Then π(byi

) swaps some components 2j and 2j + 1

of A. So then φ(g−1(byi
)) swaps components 2ni and 2ni + 1. By definition of f , we have

ψ(b) = π(b). Finally, it can be shown that N ⋊φ H ∼= A⋊ψ B under the mapping that sends

(n, h) to (f(n), g(h)). This completes the proof of Theorem 2.2.4. □

It is well-known that if G = N ⋊φ H is a semidirect product, then there exists subgroups

N̂ and Ĥ of G such that

(1) N̂ ∼= N and Ĥ ∼= H,

(2) N̂ ⊴ G,

(3) N̂ ∩ Ĥ is trivial, and

(4) G = N̂Ĥ.

This is sometimes referred to as the recognition theorem for semidirect products. We can

use this recognition theorem to give a sufficient condition for when a semidirect product is

computably categorical.

Theorem 2.2.6. Let G = N⋊φH be a semidirect product that has a computable presentation.

Suppose for every computable copy A of G, there exists computable subgroups NA and HA of

A such that
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(i) NA ∼= N and HA ∼= H,

(ii) NA ⊴ A,

(iii) NA ∩HA is trivial, and

(iv) A = NAHA.

Furthermore, suppose for any two computable copies A and B of G there exists computable

isomorphisms f : NA → NB and g : HA → HB. Then G is computably categorical.

Proof. Let A and B be two computable copies of G. We want to show that A and B are

computably isomorphic. Fix the subgroups NA and HA of A that satisfy the conditions of

the hypothesis. Similarly, fix subgroups NB and HB of B. Given any a ∈ A, we can fix a

unique pair of elements x ∈ NA and y ∈ HA such that a = x ·A y. Then we can map a to

b = f(x) ·B g(y) in B. Since f and g are computable isomorphisms, and elements of NB and

HB uniquely decompose B, our mapping will be a computable isomorphism.
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Chapter 3

Space of orders and Cantor-Bendixson

rank

3.1 Space of orders with Cantor-Bendixson rank 2

In this section we provide a complete and detailed proof that the group constructed in [But71]

is orderable and has exactly countably many orders. We will then prove that its space of

orders has Cantor-Bendixson rank 2. We begin by describing the family of groups constructed

in [But71].

Let A denote the subgroup of the additive group of rational numbers consisting of the

dyadic rationals, that is,

A =
{
m

2n | m,n ∈ Z
}
.

Let X be a subset of A defined by X = {x ∈ A | 0 ≤ x < 1}. For each z ∈ Z and x ∈ X, let

Hz,x and Kz,x be copies of the group (Q,+), the rational numbers under addition. Define

Hz =
⊕
x∈X

Hz,x

and

Kz =
⊕
x∈X

Kz,x
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to be restricted direct products of copies of Q for all z ∈ Z. Let

H =
⊕
z∈Z

Hz =
⊕
z∈Z

⊕
x∈X

Hz,x,

K =
⊕
z∈Z

Kz =
⊕
z∈Z

⊕
x∈X

Kz,x,

and

P = H ×K.

Next, we want to construct a semidirect product of the groups P and A. To do this, let us

first fix some notation. Let hrz,x ∈ Hz,x and krz,x ∈ Kz,x denote the number r ∈ Q. We will

write arbitrary elements of the groups A and Z as λα and ζβ, respectively, where α ∈ A and

β ∈ Z. Fix two distinct prime numbers p and q. To construct our semidirect product we

define an action of each element of A on the elements hrz,x and krz,x. The action is defined as

λ−αhrz,xλ
α = hrp

n

z,x+α2z−n (3.1)

where n ≤ x+ α2z < n+ 1 for n ∈ Z. Analogously,

λ−αkrz,xλ
α = krq

n

z,x+α2z−n (3.2)

where n ≤ x+ α2z < n+ 1 for n ∈ Z. It can be checked that these actions define a group

homomorphism from A into Aut(P ), thus we can construct the semidirect product M = P⋊A.

Now, we define an action on the group M by Z via

ζ−βhrz,xζ
β = hrz+β,x, (3.3)

ζ−βkrz,xζ
β = krz+β,x, (3.4)

and

ζ−βλαζβ = λ

α

2β

. (3.5)

Using these group actions we can construct the semidirect product

G(p, q) = M ⋊ Z = (P ⋊ A) ⋊ Z.
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Observe that for each pair of distinct prime numbers we can construct the group G(p, q), so

in fact, we get a family of groups. We want to prove two facts about G(p, q): it has exactly

countably many different orders and its space of orders has Cantor-Bendixson rank 2. We

begin by first showing that X(G(p, q)) is countable. We will need the following results. These

results are mentioned in [But71] without proof; we provide proofs for them.

Proposition 3.1.1. Let (G,<) be an ordered group. Suppose x, yi ∈ G where i ∈ Z.

(a) If x−1yki
i x = ylii with ki, li ∈ Z and ki ̸= li, then |yi| ≪ |x| and |yi| ∼ |yj| implies

kilj = kjli.

(b) If x−1yix = yi+1 and |yi| ∼ |yi+1| does not hold, then either

· · · ≪ |yi−1| ≪ |yi| ≪ |yi+1| ≪ · · · ≪ |x|

or

· · · ≪ |yi+1| ≪ |yi| ≪ |yi−1| ≪ · · · ≪ |x|.

Proof. We first prove (a). Let x, y ∈ G. Suppose x−1ykx = yl for some k, l ∈ Z with k ̸= l.

We can assume k, l ̸= 0. Observe that

[x−1, yk] = x−1ykxy−k = yly−k = yl−k.

So [x−1, yk] ∼ |y| since l − k ̸= 0. By Proposition 1.6.15, we see that |y| ≪ max(|x|, |yk|).

But then it must be the case that max(|x|, |yk|) = |x|. For otherwise it would mean that

|y| ≪ |yk| and this is impossible. Thus |y| ≪ |x|.

Next, let x, yi, yj ∈ G. Suppose x−1yki
i x = ylii and x−1y

kj

j x = y
lj
j for ki, kj, li, lj ∈ Z with

ki ̸= li and kj ̸= lj. Assume kilj ̸= kjli. We have to show that |yi| ̸∼ |yj|. Suppose for

contradiction that |yi| ∼ |yj|. Without loss of generality, we can assume that yi and yj are

positive elements and yi < yj. Fix an integer n ≥ 1 such that yni ≤ yj < yn+1
i . Then by

raising this relation to (kilj)m power we arrive at

y
n(kilj)m

i ≤ y
(kilj)m

j < y
(n+1)(kilj)m

i
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which is true for all integers m ≥ 1. We also have

y
n(kikj)m

i ≤ y
(kikj)m

j < y
(n+1)(kikj)m

i

for all m ≥ 1. Conjugate the above relation by x to get

y
n(kj li)m

i ≤ y
(kilj)m

j < y
(n+1)(kj li)m

i .

To get a contradiction, it suffices to show that either

y
(n+1)(kj li)m

i < y
n(kilj)m

i

or

y
(n+1)(kilj)m

i < y
n(kj li)m

i

for some m. Equivalently, show that for some m either

(n+ 1)(kjli)m < n(kilj)m

or

(n+ 1)(kilj)m < n(kjli)m

holds. We have two cases to consider. For the first case, suppose kjli < kilj. Then

lim
m→∞

(n+ 1)(kjli)m
n(kilj)m

= 0.

Therefore, for sufficiently large m, we have

(n+ 1)(kjli)m
n(kilj)m

< 1.

So (n+ 1)(kjli)m < n(kilj)m and we have arrived at a contradiction. Identically, in the second

case, if kilj < kjli, we will arrive at the contradiction that (n+ 1)(kilj)m < n(kjli)m for large

enough m. Hence, we must have that |yi| ̸∼ |yj|, as desired. This completes the proof of (a).

To prove (b), assume x−1yix = yi+1 and |yi| ̸∼ |yi+1| for all integers i. Without loss of

generality, we may assume that each yi and x are positive. Notice by our initial assumptions
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it follows that x ̸= yi for all i. Suppose y0 < y1. We will show that

· · · ≪ yi−1 ≪ yi ≪ yi+1 ≪ · · · ≪ x.

If we conjugate y0 < y1 by x and x−1, we have y−1 < y0 and y1 < y2. That is, y−1 < y0 <

y1 < y2. By continuing along like this, we will get

· · · < y−2 < y−1 < y0 < y1 < y2 < · · · .

Since yi ̸∼ yi+1 for all i, this implies

· · · ≪ y−2 ≪ y−1 ≪ y0 ≪ y1 ≪ y2 ≪ · · · ,

which follows from Proposition 1.5.9(i).

To finally complete the proof, we need to show that yi ≪ x for all i. If it was the case

that x ∼ yj for some j, then there would exist some n ≥ 1 such that x < ynj and yj < xn.

Conjugating both of the previous two inequalities by x−1 would give us that x < ynj+1 and

yj+1 < xn, which together say that x ∼ yj+1. But then x ∼ yj and x ∼ yj+1 would imply

yj ∼ yj+1, a contradiction to our initial hypothesis. So then for each i, either x ≪ yi or

yi ≪ x.

Assume for a contradiction, there exists some j such that x < yj (which is equivalent

to x ≪ yj). Then x−1yjx < x−1yjyj and in turn yj+1 < x−1y2
j . Also, x−1 < yj because x is

positive, and this gives x−1y2
j < y3

j . Putting everything together, we have yj+1 < y3
j . But

then since we already know that yj < yj+1, this would mean that yj ∼ yj+1, which is a

contradiction. Therefore yi < x for all i, or equivalently, yi ≪ x for all i. This completes the

proof of (b).

Our first step is showing that the group G(p, q) is orderable.

Proposition 3.1.2. The group G(p, q) = M ⋊ Z = (P ⋊ A) ⋊ Z is orderable.

Proof. We want to argue that the group G(p, q) is orderable. We will do this by first showing
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that the semidirect product M = P ⋊ A is orderable and then using that to show G(p, q) is

orderable. Consider the following order <Hz on the group Hz. Given an element u ∈ Hz, we

can express it as hr1
z,x1 · · ·hrn

z,xn
with xi ∈ X and ri ∈ Q. Define

1 <Hz u if and only if 0 <R r1p
x1 + · · · + rnp

xn

where <R denotes the usual order of R and p is the prime fixed from earlier. (See Appendix A.2

for a proof of the fact that the set {px | x ∈ X} is a linearly independent subset of R regarded

as a Q-vector space.) The ordering <Hz is Archimedean and makes Hz an Archimedean

ordered group. We can next define an ordering on the group H. For a nonidentity element

h = hz1 · · ·hzm ∈ H with hzi
∈ Hzi

and z1 < · · · < zm, define

1 <H h if and only if 1 <Hz1
hz1 .

We can similarly order the groups Kz and K. (Note when ordering Kz we use the prime q

instead.) With an ordering on H and K fixed, we can order P = H ×K lexicographically.

That is, if hk ∈ P , then

1 <P hk if and only if either 1 <H h, or else h = 1 and 1 <K k.

Since A is a subgroup of Q and the rationals can only be ordered in one of two ways as a

group, we can simply fix one of these two orders for A and denote it by <A. Likewise, fix an

order <Z on the group Z. It can be verified that the group actions described in (3.1) and

(3.2) are order preserving with respect to the orderings <H and <K on the groups H and K.

So in turn, the conjugation action of A upon P preserves the given ordering <P of P . By way

of example, if 1 <P h
r1
z1,x1k

r2
z2,x2 , then 0 <R r1p

x1 . If we act on hr1
z1,x1k

r2
z2,x2 by λ ∈ A we have

λ−1hr1
z1,x1k

r2
z2,x2λ = hr1pn1

z1,x1+2z1 −n1k
r2qn2
z2,x2+2z2 −n2 .

But then hr1pn1
z1,x1+2z1 −n1k

r2qn2
z2,x2+2z2 −n2 is positive since r1p

n1px1+2z1 −n1 = r1p
x1+2z1 is positive with

respect to <R. Therefore by Proposition 2.1.3, the group M = P ⋊ A is an orderable group.
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Let <M be an ordering on M defined as follows. Let ρ = αβ ∈ M with α ∈ P and β ∈ A.

Define

1 <M ρ if and only if 1 <A β, or β = 1 and 1 <P α.

Note that <M is simply a lexicographic order on M . It can be checked that the conjugation

actions described in (3.3), (3.4) and (3.5) preserve the order <M of M . Therefore we can

finally define an order <G on G(p, q) = M ⋊Z. Suppose ρ = αβ ∈ G(p, q) where α ∈ M and

β ∈ Z. Then

1 <G ρ if and only if 1 <Z β, or β = 1 and 1 <M α.

The order <G is an invariant order on G(p, q). Hence, we can finally conclude that G(p, q) is

orderable.

Our next step is showing that the subgroups Hz and Kz inherit unique orders up to duals

from G(p, q).

Lemma 3.1.3. In any order of G(p, q), the order of each subgroup Hz and Kz is Archimedean

and unique up to duals.

Proof. Fix an ordering <G of G(p, q) and fix z ∈ Z. Suppose x1, x2 ∈ X with x1 < x2. Then

0 < x2 − x1 < 1 and so we may write x2 − x1 = m
2n with m < 2n and m,n ∈ Z+. Let

α = m
2n+z ∈ A. Observe that

λ−2nαhz,x1λ
2nα = hp

m

z,x1 (3.6)

and

λ−αhz,x1λ
α = hz,x2 . (3.7)

Suppose on the contrary that Hz is not Archimedean. Let ≪ denote the induced linear

order on the Archimedean classes under <G. Without loss of generality, assume hz,x1 ≪ hz,x2 .

Then if we conjugate both sides by the element λα from (3.7) we get

hz,x2 ≪ λ−2αhz,x1λ
2α.
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Since the relation ≪ is transitive, we can conclude that

hz,x1 ≪ λ−2αhz,x1λ
2α.

If we continue conjugating by λα, we will arrive at the relation hz,x1 ≪ λ−2nαhz,x1λ
2nα. But

according to (3.6), in fact, hz,x1 ≪ hp
m

z,x1 . But this is a contradiction since Q only has two

orders and both of those orders are Archimedean. Thus it must be the case that hz,x1 and

hz,x2 are Archimedean equivalent. Since x1 and x2 were arbitrary elements of X, it follows

that Hz is an Archimedean ordered group with respect to any order it inherits from G(p, q).

Next, we want to show that any order of G(p, q) restricted to Hz is unique up to duals.

Let <Hz be the restriction of <G to Hz. By above (Hz, <Hz) is Archimedean so it is order-

isomorphic to a subgroup of the real numbers under their usual ordering. Let φ : Hz → R be

the isomorphism in question, and let L = φ(Hz). Suppose hz,0 is positive under <Hz . We

can further assume that φ(hz,0) = 1 ∈ R. Fix 0 < x ∈ X. Then if x = m
2n , set α = m

2n+z . By

(3.6) and (3.7)

λ−2nαhz,0λ
2nα = hp

m

z,0 (3.8)

and

λ−αhz,0λ
α = hz,x. (3.9)

Now (3.9) is an order-preserving automorphism of Hz, so this gives an automorphism of L

which, according to Proposition 1.2.17, is determined by multiplication by a positive real

number, say r ∈ R. Now (3.8) says r2n = pm and this implies that r = p
m
2n = px. By (3.9),

φ(hz,x) = px. Therefore for all y ∈ X and s ∈ Q, we have φ(hsz,y) = spy (with py always

taken to be a positive real number). That is all to say, the choice of a sign for hz,0 completely

determines φ(Hz). The image of Hz in R will always be the same. So to compare elements

in Hz, we can instead compare elements in φ(Hz). This means there is exactly one order

possible on Hz if we choose that hz,0 is positive, while its dual occurs if we impose hz,0 is

negative. This proves that the order of Hz is unique up to duals. Of course, similar results
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are true for Kz and this completes the proof.

The next two lemmas describe the relationships among the Archimedean classes of G(p, q)

and how these classes are ordered.

Lemma 3.1.4. In any order of G(p, q), either

· · · ≪ hz−1,0 ≪ hz,0 ≪ hz+1,0 ≪ · · · ≪ λ ≪ ζ

or

· · · ≪ hz+1,0 ≪ hz,0 ≪ hz−1,0 ≪ · · · ≪ λ ≪ ζ

holds, and either

· · · ≪ kz−1,0 ≪ kz,0 ≪ kz+1,0 ≪ · · · ≪ λ ≪ ζ

or

· · · ≪ kz+1,0 ≪ kz,0 ≪ kz−1,0 ≪ · · · ≪ λ ≪ ζ

is true.

Proof. We first want to show that hz,0 ̸∼ hz+1,0 for all z ∈ Z. Suppose z ≥ 0. Then

λ−1hz,0λ = hp
2z

z,0 and λ−1hz+1,0λ = hp
2z+1

z+1,0. Since p2z ̸= p2z+1 , by Proposition 3.1.1(a) it follows

hz,0 ̸∼ hz+1,0. Now, suppose z < 0 and let z = −n. Then λ−2n+1
hz,0λ

2n+1 = hp
2

z,0 and

λ−2n+1
hz−1,0λ

2n+1 = hpz−1,0. Again, by Proposition 3.1.1(a), we have hz,0 ̸∼ hz−1,0. We are

just left to show that h−1,0 ̸∼ h0,0. Observe that λ−2h−1,0λ
2 = hp−1,0 and λ−2h0,0λ

2 = hp
2

0,0.

So h−1,0 ̸∼ h0,0. Therefore, hz,0 ̸∼ hz+1,0 for all z. Using this fact along with relation

ζ−1hz,0ζ = hz+1,0 we can apply Proposition 3.1.1(b) to get that either

· · · ≪ hz−1,0 ≪ hz,0 ≪ hz+1,0 ≪ · · · ≪ ζ

or

· · · ≪ hz+1,0 ≪ hz,0 ≪ hz−1,0 ≪ · · · ≪ ζ.

Next, by the relation λ−2−z
hz,0λ

2−z = hpz,0 and Proposition 3.1.1(a), we can conclude that
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hz,0 ≪ λ2−z . But since λ ∼ λ2−z , in fact, hz,0 ≪ λ for all z. We can also conclude that λ ≪ ζ

via ζλζ−1 = λ2. Putting everything together, it is the case that either

· · · ≪ hz−1,0 ≪ hz,0 ≪ hz+1,0 ≪ · · · ≪ λ ≪ ζ

or

· · · ≪ hz+1,0 ≪ hz,0 ≪ hz−1,0 ≪ · · · ≪ λ ≪ ζ.

If we replace hz,0 by kz,0 in the above argument we will get an analogous result that either

· · · ≪ kz−1,0 ≪ kz,0 ≪ kz+1,0 ≪ · · · ≪ λ ≪ ζ

or

· · · ≪ kz+1,0 ≪ kz,0 ≪ kz−1,0 ≪ · · · ≪ λ ≪ ζ.

Lemma 3.1.5. For all i, j ∈ Z, the elements hi,0 and kj,0 are not Archimedean equivalent.

Proof. Suppose i = j. Note that λ−2−i
hi,0λ

2−i = hpi,0 and λ−2−j
kj,0λ

2−j = kqj,0. Since p ̸= q,

we must have hi,0 ̸∼ kj,0 by Proposition 3.1.1(a). Now suppose i ̸= j. We can fix an integer

m ≥ 1 such that either m = i − j or m = j − i. Without loss of generality, say m = i − j.

Then λ−2−i+m
hi,0λ

2−i+m = hp
2m

i,0 and λ−2−j
kj,0λ

2−j = kqj,0. Since −i+m = −j and p2m ≠ q, it

follows that hi,0 ̸∼ kj,0 again from Proposition 3.1.1(a).

Using the above lemmas, we can deduce the following result.

Lemma 3.1.6. The Archimedean classes of G(p, q) with respect to any order are

{[1], [λ], [ζ]} ∪ {[hz,0] | z ∈ Z} ∪ {[kz,0] | z ∈ Z}.

Proof. This follows since we can express each element of G(p, q) in a unique way. Suppose

g ∈ G(p, q) is a nonidentity element. Then we can express g uniquely in the form hkλaζb where

h ∈ H, k ∈ K, a ∈ A and b ∈ Z. Furthermore, we can express h uniquely as hy1 · · ·hyn with

hyi
∈ Hyi

and y1 < · · · < yn, and k uniquely as kz1 · · · kzm with kzi
∈ Kzi

and z1 < · · · < zm.

Now by Proposition 1.5.10(iv), the Archimedean class of g will be whatever is the largest
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Archimedean class among the classes determined by the elements hyi
, kzj

, λa and ζb. (Note

that λa ∼ λ and ζb ∼ ζ whenever a, b ̸= 0.)

We state a definition before moving on to proving our main results for this section.

Definition 3.1.7. Let A and B be two subgroups of an ordered group.

(1) We will write A ≪ B to denote a ≪ b for all a ∈ A\{1} and b ∈ B\{1}.

(2) We will say that A and B are mixed if A ≪̸ B and B ≪̸ A.

We are now ready to prove our first main result for this section.

Theorem 3.1.8. The group G(p, q) has exactly countably many distinct orders. In other

words, the space of orders X(G(p, q)) is countable.

Proof. To fix some notation, if L is a subgroup of G(p, q), we will write XG(L) to indicate

the set of orders L inherits from G(p, q). In other words, XG(L) contains the orders of L that

are compatible with some order on G(p, q).

Let g ∈ G(p, q) be an arbitrary element. Then g can be written as ρλaζb where ρ ∈ P, a ∈ A

and b ∈ Z. By Lemma 3.1.4, since ρ ≪ λa ≪ ζb, then we have that g is positive if and only if

ζb is positive; or b = 0 and λa is positive; or a = b = 0 and ρ is positive.

Notice in particular that this means that the orders on G(p, q) are lexicographical type orders.

Therefore the number of orders of G(p, q) are

|XG(Z)| × |XG(A)| × |XG(P )|.

Note that above we are only counting the number of orders each respective subgroup inherits

from G(p, q). We have that |XG(Z)| = |XG(A)| = 2 since both Z and A are rank 1 Abelian

groups. Thus to determine the size of X(G(p, q)), it suffices to determine the size of XG(P ).

We claim that XG(P ) is a countable set and from this fact it will follow that X(G(p, q)) is

countable.
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We make some observations about the orders of H and K. By Lemma 3.1.3, the signs of

the elements hz,0 and kz,0 determines the order of Hz and Kz, respectively. Moreover, by the

relations

ζ−zh0,0ζ
z = hz,0

and

ζ−zk0,0ζ
z = kz,0

for z ∈ Z, the signs of h0,0 and k0,0 determines the order of each Hz and Kz. If h = hz1 · · ·hzn ∈

H is a nonidentity element with hzi
∈ Hzi

and z1 < · · · < zn, then by Lemma 3.1.4, either

hz1 ≪ · · · ≪ hzn (3.10)

or

hzn ≪ · · · ≪ hz1 . (3.11)

(We can assume all hzi
are nonzero.) So any order on H is either the lexicographical or the

reverse lexicographical order. Say if (3.10) is true, then h is positive if and only if hzn is

positive. And if (3.11) is true, then h is positive if and only if hz1 is positive. In each of the

two cases above, the choice of an ordering for H0 determines the order of each Hz. Since

H0 has only two orders by Lemma 3.1.3, we have that H has exactly 2 × 2 = 4 orders. In

particular, |XG(H)| = 4. Similar result also holds for K with |XG(K)| = 4.

Having determined how the subgroups H and K are ordered inside G(p, q), we now turn

to figuring out all the possible ways the subgroup P = H ×K can be ordered inside G(p, q).

We have three cases to consider:

(1) H ≪ K;

(2) K ≪ H;

(3) H and K are mixed.
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In cases (1) and (2), the orders on P are lexicographical orders. In case (1), if ρ = hk ∈ P ,

then ρ is positive if and only if either k is positive, or else k = 1 and h is positive. Since H

and K each have only 4 possible orders, this gives 4 × 4 = 16 total orders on P . Similarly, in

case (2), we will have exactly 16 possible orders on P . Thus all together the first two cases

give 32 possible different orders on P .

In case (3), there exists integers i, j, n,m such that

kj,0 ≪ hi,0 (3.12)

and

hn,0 ≪ km,0. (3.13)

Conjugate (3.12) by ζm−j to get km,0 ≪ hi+m−j,0 and this implies hn,0 ≪ km,0 ≪ hi+m−j,0.

By Lemma 3.1.4, we can fix an integer u such that either hu,0 ≪ km,0 ≪ hu+1,0 or hu,0 ≪

km,0 ≪ hu−1,0 depending on how the Archimedean classes of H are ordered. If we conjugate

these by ζ−u we get that there exists an integer v such that either

h0,0 ≪ kv,0 ≪ h1,0

or

h0,0 ≪ kv,0 ≪ h−1,0.

If we conjugate the above two relations by various integral powers of ζ we will see that either

· · · ≪ h0,0 ≪ kv,0 ≪ h1,0 ≪ kv+1,0 ≪ h2,0 ≪ · · · (3.14)

or

· · · ≪ h0,0 ≪ kv,0 ≪ h−1,0 ≪ kv−1,0 ≪ h−2,0 ≪ · · · (3.15)

holds. For each integer v, either one of (3.14) and (3.15) is possible. Meaning, for every

v ∈ Z, there exists an invariant order in XG(P ) such that either one of (3.14) and (3.15) is

true.
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As a way of example, fix an integer v and suppose we are in the case where (3.14) holds.

If ρ ∈ P is a nonzero element, then we can express it as ρ = ρ1 · · · ρn where either ρi ∈ Hs

for some s or ρi ∈ Kt for some t, and ρ1 ≪ · · · ≪ ρn. Assume all ρi are nonzero. Then ρ is

positive if and only if ρn is positive. This is simply a lexicographical ordering. The ordering

is determined by a choice of signs for h0,0 and k0,0. This gives four different choices, so we

get four total orders on P with a fixed v and fixing either one of (3.14) or (3.15).

Therefore for each integer v, we get 2 × 4 = 8 different lexicographical orderings on P .

Hence, in case (3), we have |Z| × 8 = ℵ0 many orderings on P . Putting all three cases

together, it follows that |XG(P )| = ℵ0, that is, P has exactly countably many orderings it

inherits from G(p, q). Thus

|X(G(p, q))| = |XG(Z)| × |XG(A)| × |XG(P )| = 2 × 2 × ℵ0 = ℵ0.

This proves that G(p, q) has exactly countably many different orders.

Our next goal is proving that X(G(p, q)) has Cantor-Bendixson rank 2. We will need one

more lemma to help us prove this result.

Lemma 3.1.9. Let < be an order on G(p, q) such that either

h0,0 ≪ h1,0 and k1,0 ≪ k0,0,

or

h1,0 ≪ h0,0 and k0,0 ≪ k1,0.

Then either H ≪ K or K ≪ H. In other words, H and K are not mixed.

Proof. Suppose h0,0 ≪ h1,0 and k1,0 ≪ k0,0. Assume neither H ≪ K or K ≪ H is true. So

then H and K are mixed. As shown in the proof of Theorem 3.1.8, since h0,0 ≪ h1,0, there

exists some v ∈ Z such that h0,0 ≪ kv,0 ≪ h1,0. Conjugating by ζ gives h1,0 ≪ kv+1,0 ≪ h2,0,

which implies kv,0 ≪ kv+1,0. Conjugating by ζ−v, it follows that k0,0 ≪ k1,0, contradicting

our assumption that k1,0 ≪ k0,0. Thus either H ≪ K or K ≪ H. The other case when
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h1,0 ≪ h0,0 and k0,0 ≪ k1,0 is proven similarly.

Recall that an ordering of G is isolated in X(G) if it is the only ordering satisfying some

finite set of inequalities.

Theorem 3.1.10. The space of orders X(G(p, q)) has Cantor-Bendixson rank 2.

Proof. An order on G(p, q) is determined by making a choice of signs for the elements

h0,0, k0,0, λ and ζ, and choosing how the groups H and K are ordered relative to each other.

There are three different possibilities to consider when ordering the group P = H×K. Either

(1) H ≪ K;

(2) K ≪ H;

(3) H and K are mixed.

First, we show that all the orderings that arise from case (3) are isolated. In case (3), once

we choose an integer v as in the proof of Theorem 3.1.8, there are eight possible orderings on

P and each of the orderings will satisfy exactly one of the following inequalities (depending

on the signs of h0,0 and k0,0):

(i) h0,0 < kv,0 < h1,0

(ii) h−1
0,0 < kv,0 < h−1

1,0

(iii) h0,0 < k−1
v,0 < h1,0

(iv) h−1
0,0 < k−1

v,0 < h−1
1,0

(v) h0,0 < kv,0 < h−1,0

(vi) h−1
0,0 < kv,0 < h−1

−1,0

(vii) h0,0 < k−1
v,0 < h−1,0

(viii) h−1
0,0 < k−1

v,0 < h−1
−1,0.

Furthermore, taking into account the signs of the elements λ and ζ, each of the eight

different possibilities above gives us four different orders on the group G(p, q). Each of these

orders will be isolated since, for example, say h0,0, k0,0, λ and ζ are all positive. Then the

string of inequalities

1 < h0,0 < kv,0 < h1,0 < λ < ζ (3.16)
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witnesses that the order is isolated. There is no other order possible on G(p, q) with h0,0, k0,0, λ

and ζ all positive that can also satisfy the inequality (3.16). Thus, in case (3) all the orderings

are isolated.

We now turn to the orderings arisen from cases (1) and (2). We will only discuss

case (1) since both cases are handled similarly. In case (1), there are exactly 16 different

orderings possible for P . This is so because the only ordering possible on P in case (1) is the

lexicographic ordering, and the groups H and K each have only four possible orderings. This

gives us 16 total orders on P . We show half of these orders are isolated and the other half

are limit points in X(G(p, q)).

Fix a finite set of positive elements g1, . . . , gn ∈ G(p, q). First, fix an ordering < of G(p, q)

from one of these 16 possible orders where it is the case h0,0 ≪ h1,0 and k0,0 ≪ k1,0. We

want to find another ordering ≺ of type (3) under which g1, . . . , gn are all positive. We can

write each gi as gi = hy1 · · ·hyskz1 · · · kztλ
aζb with hi ∈ Hi, kj ∈ Kj, a ∈ A and b ∈ Z. By

Lemma 3.1.6 under any ordering on G(p, q), the following are the set of equivalences classes

under the Archimedean equivalent relation: {[1], [hz,0], [kz,0], [λ], [ζ]}. Choose u ∈ Z large

enough so that no element from Hu appears in any gi, and also choose v ∈ Z small enough so

that no element from Kv appears in any gi. We can now define an ordering ≺ on G(p, q) as

follows. The elements h0,0, k0,0, λ and ζ will have the same signs as they did under < and ≺

will satisfy the following Archimedean chain

hu,0 ≪ kv,0 ≪ hu+1,0 ≪ λ ≪ ζ.

It can be checked that in the ordering ≺ the elements g1, . . . , gn will all be positive. This is

so because under ≺ for each hyi
and kzj

that appears in some gi, we will have that hyi
≪ kzj

.

So the Archimedean classes that appear in g1, . . . , gn are ordered in the exact same way as

they were under <. Thus g1, . . . , gn will remain positive under ≺. Likewise, if our fixed

ordering < satisfies h1,0 ≪ h0,0 and k1,0 ≪ k0,0. Then we can straightforwardly modify the

above argument to find another ordering in which g1, . . . , gn are all positive.
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This only leaves the cases where < satisfies either h0,0 ≪ h1,0 and k1,0 ≪ k0,0, or h1,0 ≪ h0,0

and k0,0 ≪ k1,0. In these cases, the orderings will be isolated. For example, suppose < satisfies

h0,0 ≪ h1,0 and k1,0 ≪ k0,0, and the signs of the elements h0,0, k0,0, λ, ζ are all positive. Then

the inequality

1 < h0,0 < h1,0 < k1,0 < k0,0 < λ < ζ (3.17)

witnesses that the ordering is isolated. To see this, let U be the open neighborhood determined

by (3.17). First, notice that an ordering from case (1) can only be a limit point of set of

orders from case (3) since cases (1) and (2) only give rise to finitely many orders and any

open neighborhood of a limit point in X(G(p, q)) must contain infinitely many distinct points.

Therefore, if < is to be a limit point, then U must contain infinitely many orders of type

(3). On the other hand, by Lemma 3.1.9, any order in U cannot have H and K mixed. In

particular, U cannot contain any order of type (3). So we see that it is not possible for <

to be a limit point. Thus an order where the Archimedean classes of H and K are going in

opposite directions must be an isolated order.

We can now see that X(G(p, q)) has infinitely many isolated points and only finitely many

limit points. Therefore X(G(p, q))′ is a finite set and so X(G(p, q))(2) = ∅. Hence X(G(p, q))

has Cantor-Bendixson rank 2.

We now discuss an alternative way to view the above proof. We have already seen that

we can view elements of X(G) as paths through a binary branching tree. As we progress

along the tree, at each node we choose whether an element is positive or negative. So then a

path through the tree precisely describes a positive cone of an order.

For the group G(p, q), we can build a tree T such that the paths through T correspond

to the orderings of the group G(p, q). We start at the root node that represents the empty

string. At level one, we decide whether the element ζ is positive or negative. At level two, we

decide whether λ is positive and negative. Similarly, at levels three and four, we decide the

signs of the elements h0,0 and k0,0, respectively. At level five, decide the sign of |h0,0|−1|h1,0|.

This determines whether |h0,0| < |h1,0| or |h1,0| < |h0,0| will be hold in the ordering. At level
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six, choose the sign of |k0,0|−1|k1,0|. So far we have built the first six levels of the tree. The

choices on level five and six determine the order of the Archimedean classes for groups H

and K. That is, once we have decided whether or not |h0,0|−1|h1,0| is positive or negative, we

have determined for H either

· · · ≪ h−1,0 ≪ h0,0 ≪ h1,0 ≪ · · ·

or

· · · ≪ h1,0 ≪ h0,0 ≪ h−1,0 ≪ · · ·

is true. We have a similar result for K as well.

Consider the nodes at level six that say that the chain of the Archimedean classes of H

and K go in opposite directions. All the paths that pass through these nodes will be isolated.

This is so because once the chain of the Archimedean classes are going in opposite directions,

it is no longer possible to mix the Archimedean classes of H and K.

Next, consider the nodes at level six that say that the chains go in the same direction.

At subsequent levels choose the signs of |h0,0|−1|kv,0|, |kv,0|−1|h1,0| and |kv,0|−1|h−1,0| for all

integers v. At this point, we are waiting to see if the Archimedean classes of H and K mix

together or not. If we see that either

|h0,0| < |kv,0| < |h1,0|

or

|h0,0| < |kv,0| < |h−1,0|

for some v, then the orders above these nodes will be isolated. Since once the classes are

mixed together, they will be the only orderings that satisfy an inequality of the form

|h0,0| < |kv,0| < |h1,0| < |λ| < |ζ|

or

|h0,0| < |kv,0| < |h−1,0| < |λ| < |ζ|
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depending on the order of the Archimedean classes of H and K. If we never see the

Archimedean classes mixing together, then these paths will be limit points.

We now want to argue that [T ] has Cantor-Bendixson rank 2. As mentioned above,

once we reach level six, any order whose Archimedean chain for H and K go in opposite

directions will be isolated. In addition, any order where the Archimedean chain go in the

same direction but such that either |h0,0| < |kv,0| < |h1,0| or |h0,0| < |kv,0| < |h−1,0| holds will

be isolated. Note that after the first derivative we are only left with finitely many paths

or orders, and these are precisely the ones where the Archimedean classes of H and K did

not mix together and the classes go in the same direction. These finitely many paths will

be isolated. Therefore, taking the derivative one more time will leave no paths on the tree.

Hence [T ] has Cantor-Bendixson rank 2.

3.2 Space of orders with Cantor-Bendixson rank n

In this section we want to prove that for every integer n ≥ 2 there exists an orderable group

such that its space of orders has Cantor-Bendixson rank n. We will build upon the group

G(p, q) from Section 3.1 to construct our orderable groups in question. Once again, let

A =
{
m

2n | m,n ∈ Z
}

be the additive group of dyadic rationals. Let X be a subset of A defined by

X = {x ∈ A | 0 ≤ x < 1}.

Fix an integer n ≥ 2. For each integer 1 ≤ i ≤ n, we will define the group H i. (Here H1 and

H2 will play the roles of H and K, respectively, from Section 3.1.) For all z ∈ Z and x ∈ X,

let H i
z,x be copies of the group (Q,+). For each z ∈ Z, define

H i
z =

⊕
x∈X

H i
z,x.
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Let

H i =
⊕
z∈Z

H i
z =

⊕
z∈Z

⊕
x∈X

H i
z,x

and

Pn = H1 ×H2 × · · · ×Hn.

Our goal is to construct a family of groups similar to how G(p, q) was constructed in Section 3.1.

Fix a collection of distinct primes p1, . . . , pn. First we want to construct a semidirect product

Mn = Pn ⋊ A. We will write hi,rz,x ∈ H i
z,x to denote the number r ∈ Q. Let λα for α ∈ A

denote an arbitrary element of A and let ζβ for β ∈ Z denote an arbitrary element of Z. We

define a group action on Pn by A similar to the group actions in (3.1) and (3.2). Our group

action will be

λ−αhi,rz,xλ
α = h

i,rpm
i

z,x+α2z−m

where m ≤ x+ α2z < m+ 1 for m ∈ Z. Of course, this action is only defined on the basic

components of Pn but we can extend this action to the whole group Pn componentwise.

Under these group actions, we can construct the semidirect product Mn = Pn ⋊ A. Next we

define a group action on Mn by Z via

ζ−βhi,rz,xζ
β = hi,rz+β,x

and

ζ−βλαζβ = λ

α

2β

.

With the actions described above we can finally construct the semidirect product

Gn = Mn ⋊ Z = (Pn ⋊ A) ⋊ Z.

Once again, we get a family of groups by choosing different collections of primes.

The next set of results are true for the group Gn with almost identical proofs as those

given in Section 3.1 for the group G(p, q).

Proposition 3.2.1. The group Gn = Mn ⋊ Z = (Pn ⋊ A) ⋊ Z is orderable.
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Proof. This result is proven in an analogous fashion as Proposition 3.1.2. We give an outline

of the proof without going into details. We start by defining an ordering on the each of the

subgroups H i
z as done in beginning of the proof of Proposition 3.1.2. We can extend this

to define an ordering of each H i and then an ordering of Pn. Verify that the ordering of Pn

is preserved under the group actions and then define an ordering on Mn = Pn ⋊ A. Lastly,

verify the ordering of Mn is preserved by the group actions and conclude that Gn = Mn ⋊ Z

is orderable.

We point out that in the proofs of Lemmas 3.1.3 and 3.1.4 the results were only proven

for the subgroup H (or in the notation of this section, for the subgroup H1 of G2) and it was

clear that similar arguments would lead to the same conclusions about the subgroup K. We

can prove the next two lemmas using identical arguments.

Lemma 3.2.2. In any order of Gn, the order of each subgroup H i
z is Archimedean and unique

up to duals.

Proof. We describe the unique Archimedean order on H i
z up to dual. Let h ∈ H i

z. We can

write h = hi,r1
z,x1 · · ·hi,rm

z,xm
with xj ∈ X and rj ∈ Q. Define

h is positive if and only if 0 <R r1p
x1
i + · · · + rmp

xm
i

where <R denotes the usual ordering of R. See proof of Lemma 3.1.3 for details.

Lemma 3.2.3. In any order of Gn, for all 1 ≤ i ≤ n, either

· · · ≪ hi,1z−1,0 ≪ hi,1z,0 ≪ hi,1z+1,0 ≪ · · · ≪ λ ≪ ζ

or

· · · ≪ hi,1z+1,0 ≪ hi,1z,0 ≪ hi,1z−1,0 ≪ · · · ≪ λ ≪ ζ

holds.

Proof. See Lemma 3.1.4.
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Lemma 3.2.4. For all i ̸= j, the elements hi,1u,0 and hj,1v,0 are not Archimedean equivalent for

any u, v ∈ Z.

Proof. This result is proven similar to Lemma 3.1.5.

Lemma 3.2.5. The Archimedean classes of Gn with respect to any order are

{[1], [λ], [ζ]} ∪ {[h1,1
z,0] | z ∈ Z} ∪ · · · ∪ {[hn,1z,0 ] | z ∈ Z}.

Proof. Follows from Lemmas 3.2.2, 3.2.3 and 3.2.4.

3.2.1 Invariants of orderings of Gn

In this section we show a useful way to be able to describe all the orderings of Gn. Under

any fixed order of Gn, by Lemma 3.2.3, we know that the Archimedean classes of each H i

can only ordered in exactly two ways. With this in mind we make the following definition.

Definition 3.2.6. Fix an ordering < of Gn.

(1) We will say that the direction of H i is positive if it is the case that

· · · ≪ hi,1z−1,0 ≪ hi,1z,0 ≪ hi,1z+1,0 ≪ · · · .

(2) We will say that the direction of H i is negative if it is the case that

· · · ≪ hi,1z+1,0 ≪ hi,1z,0 ≪ hi,1z−1,0 ≪ · · · .

We now introduce an auxiliary relation that will help us understand the orderings of Gn.

Fix an ordering < of Gn. Let n denote the set {1, . . . , n}. Define ∼< on n by i ∼< j if and

only if either i = j or else H i and Hj are mixed. (Recall Definition 3.1.7.)

Lemma 3.2.7. If i ∼< j, then H i and Hj have the same direction. That is, the direction of

both is either positive or negative.

64



3.2 SPACE OF ORDERS WITH CANTOR-BENDIXSON RANK n

Proof. Suppose i ̸= j. Then H i and Hj are mixed and there exists integers s, t, u, v such that

hi,1u,0 ≪ hj,1v,0

and

hj,1t,0 ≪ hi,1s,0.

Conjugate the above relation by ζv−t to get hj,1v,0 ≪ hi,1s+v−t,0 and this implies hi,1u,0 ≪ hj,1v,0 ≪

hi,1s+v−t,0. By Lemma 3.2.3, we can fix an integer m such that either hi,1m,0 ≪ hj,1v,0 ≪ hi,1m+1,0 or

hi,1m,0 ≪ hj,1v,0 ≪ hi,1m−1,0 depending on how the Archimedean classes of H i are ordered. If we

conjugate these by ζ−m we get that there exists an integer l such that either

hi,10,0 ≪ hj,1l,0 ≪ hi,11,0

or

hi,10,0 ≪ hj,1l,0 ≪ hi,1−1,0.

By conjugating the above two relations by various integral powers of ζ we will see that either

· · · ≪ hi,10,0 ≪ hj,1l,0 ≪ hi,11,0 ≪ hj,1l+1,0 ≪ hi,12,0 ≪ · · ·

or

· · · ≪ hi,10,0 ≪ hj,1l,0 ≪ hi,1−1,0 ≪ hj,1l−1,0 ≪ hi,1−2,0 ≪ · · ·

holds. Thus we see that the Archimedean classes of H i and Hj have the same direction.

Lemma 3.2.8. The relation ∼< is an equivalence relation.

Proof. It is easy to see that ∼< is both reflexive and symmetric. We just need to show that

∼< is transitive. Suppose i ∼< j and j ∼< k. Suppose H i, Hj and Hk all have positive

direction. We will only prove this case, the other case when all have negative direction is

handled similarly. From the proof of Lemma 3.2.7 we know there exists integers u and v such
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that

hi,10,0 ≪ hj,1u,0 ≪ hi,11,0 ≪ hj,1u+1,0 ≪ hi,12,0

and

hj,1u,0 ≪ hk,1v,0 ≪ hj,1u+1,0.

It follows hi,10,0 ≪ hj,1u,1 ≪ hk,1v,0 and hk,1v,0 ≪ hj,1u+1,0 ≪ hi,12,0. Thus H i and Hk are mixed, and

i ∼< k.

We will refer to the direction of an equivalence class [i] as being positive or negative, by

which we will mean that the direction of H i is positive or negative, respectively.

Lemma 3.2.9. If i ∼< k, j ∼< l and i ̸∼< j, then

H i ≪ Hj if and only if Hk ≪ H l.

Proof. Assume H i ≪ Hj. Since ∼< is an equivalence relation, it follows that k ̸∼< l. Then

either Hk ≪ H l or H l ≪ Hk. By way of contradiction, suppose H l ≪ Hk. Since j ∼< l and

i ∼< k, there exists integers u and v such that hj,10,0 ≪ hl,1u,0 and hk,10,0 ≪ hi,1v,0. By assumption

H l ≪ Hk and so hj,10,0 ≪ hl,1u,0 ≪ hk,10,0 ≪ hi,1v,0. But this contradicts the initial assumption

H i ≪ Hj. Therefore it must be that Hk ≪ H l. A similar argument shows that Hk ≪ H l

implies H i ≪ Hj.

Observe that Lemma 3.2.9 shows that the ≪ relation induces a strict total order ≲ on

the set of equivalence classes of n under ∼<. Given two equivalence classes [i] and [j], we

can define [i] ≲ [j] if and only if [i] = [j] or H i ≪ Hj.

Lemma 3.2.10. Let C be an equivalence class under ∼< with |C| = k and k ≥ 2. Let i0 be

the least integer of C.

(a) Suppose the direction of H i is positive for all i ∈ C. Then there is an enumeration
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i0, i1, . . . , ik−1 of C and integers u1, . . . , uk−1 such that

hi0,10,0 ≪ hi1,1u1,0 ≪ · · · ≪ h
ik−1,1
uk−1,0 ≪ hi0,11,0 .

(b) Suppose the direction of H i is negative for all i ∈ C. Then there is an enumeration

i0, i1, . . . , ik−1 of C and integers u1, . . . , uk−1 such that

hi0,10,0 ≪ hi1,1u1,0 ≪ · · · ≪ h
ik−1,1
uk−1,0 ≪ hi0,1−1,0.

Proof. We prove only (a). From the proof of Lemma 3.2.7 we know there exists integers

u1, . . . , uk−1 such that

hi0,10,0 ≪ hi1,1u1,0 ≪ hi0,11,0 , . . . , h
i0,1
0,0 ≪ h

ik−1,1
uk−1,0 ≪ hi0,11,0 .

The elements hi1,1u1,0, . . . , h
ik−1,1
uk−1,0 are linearly ordered with respect to ≪. So be reindexing as

necessary, we can conclude that

hi0,10,0 ≪ hi1,1u1,0 ≪ · · · ≪ h
ik−1,1
uk−1,0 ≪ hi0,11,0 .

We next want to describe a collection of invariants that uniquely describe an ordering of

Gn. Recall, we had fixed an ordering < of Gn. We can define a positivity string γ ∈ 2n+2 that

will encode the signs of the elements h1,1
0,0, . . . , h

n,1
0,0 , λ and ζ under <. The bits in positions 0

to n− 1 will encode the signs of h1,1
0,0, . . . , h

n,1
0,0 , respectively. The bit in position n will encode

the sign of λ and the bit in position n+ 1 will encode the sign of ζ. A bit of 0 will correspond

to the element being negative and a bit of 1 will correspond to the element being positive.

Fix the equivalence relation ∼< on n as defined above and suppose we have m many

equivalence classes. We have the induced ordering relation ≲ on the equivalence classes of n

under ∼<. When we say the i-th equivalence class, we will mean the i-th equivalence class

with respect to the ≲ ordering. (So for example, the 0-th equivalence class will refer to the

least class under the ≲ order.) Define a direction string δ ∈ 2m where δ(i) = 0 if the direction

of the i-th equivalence class is negative, and δ(i) = 1 if the direction of the i-th equivalence
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class is positive. Furthermore, by Lemma 3.2.10, for each equivalence class with at least two

elements, we can assign to it an enumeration of its elements and a finite set of integers that

tell us how the Archimedean classes of various H i are mixed. For example, let C be a class

with k many elements, we can fix a string of pairs of the form ⟨i1, u1⟩, . . . , ⟨ik−1, uk−1⟩ such

that the Archimedean classes of H i0 , H i1 , . . . H ik−1 are mixed as determined by this string.

To summarize, we have the following list of invariants we can assign to each order < of

Gn:

(3.I) A positivity string γ ∈ 2n+2 that will encode the signs of the elements h1,1
0,0, . . . , h

n,1
0,0 , λ

and ζ under <.

(3.II) An equivalence relation ∼< on n with m many equivalence classes.

(3.III) The induced relation ≲ on the equivalence classes of n under ∼<.

(3.IV) A direction string δ ∈ 2m where δ(i) encodes if the i-th equivalence class is positive or

negative.

(3.V) A string of pairs that encodes how the various H i in each equivalence class are mixed

under the Archimedean less than relation.

Conversely, we can start by fixing these invariants and from there define a unique ordering

of Gn.

Proposition 3.2.11. Suppose we have fixed the invariants (3.I)–(3.V) as describe above.

Then we can define a unique ordering of Gn.

Proof. We show how we can use these invariants to define a unique ordering ≺ of Gn. For (3.I),

we pick a string γ ∈ 2n+2 that will determine the signs of the elements h1,1
0,0, . . . , h

n,1
0,0 , λ and ζ

under ≺. For (3.II), we define some equivalence relation, denoted by ∼≺, on the set n. Or

equivalently, we define some partition of the set n and define ∼≺ to be the equivalence relation

corresponding to this partition. This equivalence relation will determine the Archimedean
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classes of which H i are mixed. For (3.III), fix some total ordering ≲ of the equivalence classes

of ∼≺. For (3.IV), suppose we have m many equivalence classes under ∼≺, pick a string in

δ ∈ 2m that will determine for each equivalence class whether it is positive or negative. Lastly,

for (3.V), for any equivalence class of ∼≺ with at least two elements, we fix an enumeration of

its elements and pick one less than the size of the class many integers. The enumerations and

the choice of integers will determine how are the Archimedean classes of the H i are mixed.

Next, having fixed our collection of invariants, we now explain how to define an ordering ≺

of Gn. Let g ∈ Gn be an arbitrary nonidentity element. We show how to determine whether

g is positive or negative under ≺. We can write g = ρλaζb for some unique ρ ∈ Pn, λa ∈ A

and ζb ∈ Z. We first look at γ(n+ 1) to determine the sign of ζ. Suppose γ(n+ 1) = 1. If

b > 0, then g is positive, and if b < 0, then g is negative. Next suppose γ(n + 1) = 0. If

b > 0, then g is negative, and if b < 0, then g is positive. If b = 0, then we look at the bit

in γ(n). In an analogous fashion, if γ(n) = 1 and a > 0, then g is positive, and if a < 0,

then g is negative. If γ(n) = 0 and a > 0, then g is negative and if a < 0, then g is positive.

If a = b = 0, then g = ρ. In this case, we can express g as g = hl1 · · ·hls where hli ∈ H li .

Furthermore, for each li, we can express hli as hliz1 · · ·hlizt
where hlizj

∈ H li
zj

.

Using the ≲ ordering of the equivalences classes, we can order the classes [l1], . . . , [ls].

Without loss of generality, assume [l1] ≲ · · · ≲ [ls]. (Of course, it is possible some of these

equivalence classes are equal.) Define C to the largest equivalence class, i.e., C = [ls]. Recall,

we had assumed we have m many equivalence classes under ∼≺ and so δ(m− 1) determines

whether the largest equivalence class is positive or negative. First, suppose C = {[ls]} = {[l]},

that is, C consists of a single element. In this case, we express hl as hlz1 . . . h
l
zt

with hzj
∈ H l

zj

and z1 < · · · < zt. Now, if δ(m− 1) = 0, then g is positive if hlz1 is positive, and g is negative

is hlz1 is negative. If δ(m − 1) = 1, then g is positive if hlzt
is positive, and g is negative if

hlzt
is negative. To determine the sign of hlz1 or hlzt

, we can use the positivity string γ and

Lemma 3.2.2.

Next, suppose C = {[k0], . . . , [kr]}. Assume k0, . . . , kr is the enumeration we have assigned
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to C and u1, . . . , ur are the integers we have picked. Assume δ(m− 1) = 1. Now, faithfully

in our ordering ≺ that we are defining, the Archimedean less than relation “should” behave

as following

· · · ≪ hk0,1
0,0 ≪ hk1,1

u1,0 ≪ · · · ≪ hkr,1
ur,0 ≪ hk0,1

1,0 ≪ hk1,1
u1+1,0 ≪ · · · ≪ hkr,1

ur+1,0 ≪ hk0,1
2,0 ≪ · · · .

So keeping this in mind, we search g = hl1 · · ·hls to find an element of the form hki
z ∈ Hki

z

that will be the “largest” with respect to the Archimedean less than relation given above.

Once again, g is positive if hki
z is positive, and g is negative if hki

z is negative. And we can

determine the sign of hki
z using the positivity string γ and Lemma 3.2.2. The case when

δ(m − 1) = 0 can be handled similarly. The only difference in that case will be that the

Archimedean less than relation described above will be going in the negative direction.

We mention that for the ordering ≺ described in the above proof, we can start with this

ordering and then define the invariants (3.I)–(3.V) from it. In this case, we will find that we

get exactly the same set of invariants. Therefore fixing our set of invariants is same as fixing

an ordering of Gn. In the next result, we show that this way of describing the orders of Gn

will actually completely describe any possible ordering of Gn.

Theorem 3.2.12. The group Gn has exactly countably many distinct orders. In other words,

the space of orders X(Gn) is countable.

Proof. Let g ∈ Gn be an arbitrary element. Then g can be written as ρλaζb where ρ ∈

Pn, λ
a ∈ A and ζb ∈ Z. By Lemma 3.2.3, since ρ ≪ λa ≪ ζb, then we have that g is positive

if and only if

ζb is positive; or b = 0 and λa is positive; or a = b = 0 and ρ is positive.

Therefore all the orders on Gn are lexicographical type orders. Hence we just need to count

all the ways the subgroups Pn, A and Z can be ordered inside Gn. We have that A and Z are

both rank one Abelian groups, so they can only be ordered in one of two ways. We are left
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with figuring out all the possible ways to order Pn. This is where the invariants we described

earlier will be useful.

For Pn = H1 × · · · × Hn we need to figure out all the possible ways the Archimedean

classes of H1, . . . , Hn can be ordered relative to each other. But this is precisely what the

invariants (3.I)–(3.V) are describing. They are describing which Archimedean classes should

be mixed and how exactly are they mixed, and as we showed in Proposition 3.2.11, the

invariants give us enough information to describe an ordering of Gn. Thus, we simply need

to count all the different collections of invariants we can fix.

For (3.I) and (3.IV), we are picking a finite binary string of some fixed length. There are

only finitely many such strings. For (3.II) and (3.III), there are only finitely many different

equivalence classes we can define on the set n and only finitely many different ways to order

any collection of finitely many equivalence classes. For (3.V), there are only finitely many

different ways to enumerate any particular equivalence class, but we also have to pick some

finite set of integers for each equivalence class. And here we see that we can actually make

countably many different choices when picking our finite sets of integers. Hence we have

countably many different possibilities when fixing our invariants. In turn, we get that Pn can

ordered in countably many different ways. Therefore Gn has exactly countably many distinct

orders.

3.2.2 Limit points of X(Gn)

The goal of this section is to prove that the Cantor-Bendixson rank of X(Gn) is n. Let us

first discuss the limit points of X(Gn). Let < ∈ X(Gn) be a limit point. Suppose H i, Hj and

Hk are mixed for some i, j, k ∈ n. Suppose < satisfies the following string of inequalities

1 < hi,10,0 < hj,1u,0 < hk,1v,0 < hi,11,0

where u, v ∈ Z. Notice in particular the above inequalities specify how exactly are the

Archimedean classes of H i, Hj and Hk are mixed. Another way to look at it is, the
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inequalities are specifying part of the information needed to describe invariant (3.V). These

string of inequalities also determine an open neighborhood of < in X(Gn) and any order in

this open neighborhood must also satisfy these inequalities. So any order in this neighborhood

must also have H i, Hj and Hk mixed in exactly the same way. Furthermore, if we look at the

equivalence classes under ∼<, for any equivalence class with more than one element we can

write a similar string of inequalities specifying how the Archimedean classes are mixed and

then we can put together all of these strings of inequalities as a single string of inequalities.

As an example, consider the group G6 and fix < ∈ X(G6) to be a limit point. Suppose

{1, 2, 3}, {4}, {5, 6} are the equivalence classes under ∼<. Assume the direction of all these

classes is positive and they are ordered as [1] ≲ [4] ≲ [5]. Assume h1,1
0,0, . . . , h

6,1
0,0, λ and ζ are

all positive. Then we can write

1 < h1,1
0,0 < h2,1

u,0 < h3,1
v,0 < h1,1

1,0 < h5,1
0,0 < h6,1

w,0 < h5,1
1,0

for some u, v, w ∈ Z. We can also add in the elements h4,1
0,0, λ and ζ to the above string

1 < h1,1
0,0 < h2,1

u,0 < h3,1
v,0 < h1,1

1,0 < h4,1
0,0 < h4,1

1,0 < h5,1
0,0 < h6,1

w,0 < h5,1
1,0 < λ < ζ. (3.18)

If < is a limit point then every open neighborhood of it must contain points from X(G6),

in fact, it must contain infinitely many different points from X(G6). In particular, in the

neighborhood U determined by (3.18), we need to be able find infinitely many orders that

satisfy (3.18). Let us consider what invariants (3.18) would specify. It fixes (3.I), (3.IV)

and (3.V). So for any order in U these three invariants cannot change. The only ones we

can vary are (3.II) and (3.III). Notice if we in addition keep (3.II) fixed, then we have only

finitely many different choices to make for (3.III) and this would only give us finitely many

different orders at most. Thus there must necessarily exist infinitely many orders in U such

that the invariant (3.II) is different for them compared to <. In addition, for any order

≺ ∈ U , when specifying the equivalence relation ∼≺, its equivalence classes must be coarser

compared to the equivalence classes of ∼<. That is, we can add elements to an equivalence
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class but we cannot split apart an equivalence class or make it more finer. This is so because

(3.18) is saying H1, H2, H3 are mixed and H5, H6 are mixed. Thus we can make a choice

about mixing H4 with one of these, but we cannot “unmix” any Archimedean classes that

are already mixed.

We can summarize the above discussion as saying that an ordering can only be a limit

point of a subset that contains infinitely many orders more mixed than it (mixed here again

referring to the mixing of the Archimedean classes of different H i). We finally arrive at our

main result for this section.

Theorem 3.2.13. The Cantor-Bendixson rank of X(Gn) is n.

Proof. We want to show that CB(X(Gn)) = n. In fact, we will argue that n is least positive

integer such that X(Gn)(n) = ∅. We first show that CB(X(Gn)) ≤ n. As discussed above, an

ordering can only be a limit point if there exists infinitely many orders more mixed than it in

X(Gn). Thus any order that has all of the H i mixed together must be an isolated ordering

because since all of the H i are already mixed, there aren’t any collection of orders of which it

can be a limit point of. Therefore X(Gn)(1) can only contain orders that have at most n− 1

many of H1, . . . , Hn mixed and no orders where all of the H i are mixed. Similarly, X(Gn)(2)

can only contain orders that have at most n − 2 many of H1, . . . , Hn mixed. Continuing

in this way, X(Gn)(n−1) can only contains orders that have none of the H i mixed. But now

X(Gn)(n−1) must be a finite set since Gn has only finitely many orders with no H i mixed.

Hence X(Gn)(n) = ∅ and CB(X(Gn)) ≤ n.

Next, we will show that there exists a point in X(Gn) with Cantor-Bendixson rank at least

n−1 and this will imply that CB(X(Gn)) = n. Note since we already know that X(Gn)(n) = ∅,

then for every P ∈ X(Gn), the Cantor-Bendixson rank of P is a finite number. So every

point of X(Gn) has finite rank. Thus if there exists some P ∈ X(Gn) with CB(P ) ≥ n− 1,

then X(Gn)(n−1) ̸= ∅. But since X(Gn)(n) = ∅, we will have that CB(X(Gn)) = n, as desired.

Let Ok ⊆ X(Gn) for 2 ≤ k ≤ n be defined as follows. An ordering < ∈ Ok if and only

if ζ, λ and hi,10,0 for all i are positive under <; the direction of each H i is positive, i.e., the
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Archimedean classes of each H i are ordered as

· · · ≪ hi,1−1,0 ≪ hi,10,0 ≪ hi,11,0 ≪ · · · ;

the induced order ≪ on the Archimedean classes satisfies

Hj ≪ Hk+1 ≪ · · · ≪ Hn

with 1 ≤ j ≤ k; and < satisfies an inequality of the form

h1,1
0,0 < h2,1

u1,0 < · · · < hk,1uk−1,0 < h1,1
1,0

for some u1, . . . , uk−1 ∈ Z. Observe that all of the orders in Ok have H1, . . . , Hk mixed. Let

O1 ⊆ X(Gn) be defined as follows. An ordering < ∈ O1 if and only if ζ, λ and hi,10,0 for all i

are positive under <; the direction of each H i is positive; and the induced order ≪ on the

Archimedean classes satisfies

H1 ≪ H2 ≪ · · · ≪ Hn.

Now if ≺ ∈ On, then ≺ is an isolated ordering and CB(≺) = 0. Next, each ≺ ∈ On−1 is a

limit point of the set On. As a limit point of a set of rank 0 points, we have CB(≺) ≥ 1

for all ≺ ∈ On−1. Similarly, we have that every point of On−2 is a limit point of the set

On−1, and so CB(≺) ≥ 2 for all ≺ ∈ On−2. Continuing along, we see that every ≺ ∈ Ok for

1 ≤ k ≤ n− 1 is a limit point of the set Ok+1, and it also follows that CB(≺) ≥ n− k. In

particular, we have that every point in O1 has Cantor-Bendixson rank at least n− 1. Thus

there exists a point in X(Gn) with Cantor-Bendixson rank at least n− 1 and this completes

the proof.

3.3 Gn computably categorical

In this section, we want to show that the group G(p, q) = G2 is computably categorical. A

similar argument will show that Gn is computably categorical for all n ≥ 2. First we show
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that G(p, q) has a computable presentation. Observe that each element of G(p, q) has a

normal form, that is, we can fix a unique representation for each element of the group. Let

g ∈ G(p, q) be a nonidentity element. Then g can be uniquely expressed as

hp1
i1,x1 · · ·hps

is,xs
· kq1

j1,y1 · · · kqt
jt,yt

· λa · ζb

where i1 ≤ · · · ≤ is, j1 ≤ · · · ≤ jt, xn < xn+1 if in = in+1, and yn < yn+1 if jn = jn+1. Note

that the sets X,A,Q and Z are all computable via suitable coding of them into N. Let

D = Z×X×Q∗ where Q∗ = Q\{0}. Then D is a computable set. If σ ∈ D with σ = ⟨z, x, r⟩,

then we will think of σ representing the element hrz,x ∈ Hz,x. Let C ⊆ D<ω be defined as

τ = ⟨σ1, . . . , σn⟩ ∈ C if and only if σi ̸= σj; there exists at most one σi such that σi(0) = z

and σi(1) = x for all z ∈ Z, x ∈ X; σ1(0) ≤ · · · ≤ σn(0); and σ1(1) < · · · < σn(1). The set

C is also computable. An element τ ∈ C will represent some arbitrary element of H of the

form hrn
z1,x1 · · ·hrn

zn,xn
.

Now using C we can effectively represent elements of the group H. Given some h ∈ H

either h is the identity or we can fix a τ ∈ C that uniquely represents h. We can also use C

to effectively represent elements of K, since H and K are identical as sets. The domain of

G(p, q) as a set can be written as H ×K ×A×Z. Since we can code each component of this

direct product into N, it follows we have an effective way of representing elements of G(p, q)

using each element’s unique normal form. Thus, we can code the domain of G(p, q) into N

effectively.

Next observe that the group actions that were used to build G(p, q) are uniformly

computable. (Here it is important that we have an effective way of representing the elements

of G(p, q).) So then the group multiplication is a computable function. Hence, G(p, q) has

a computable presentation. We denote this computable presentation by G. Having shown

G(p, q) has a computable presentation we now show it is computably categorical.

Theorem 3.3.1. The group G(p, q) is computably categorical.

Proof. Fix two copies M and N of G(p, q). Assume the domains of M and N are ω. Let
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n0, n1, n2, n3, n4 ∈ N correspond to elements 1G, h0,0, k0,0, λ and ζ, respectively. Similarly, let

m0,m1,m2,m3,m4 ∈ M correspond to elements 1G, h0,0, k0,0, λ and ζ, respectively. We can

non-uniformly map the elements 1G, h0,0, k0,0, λ and ζ in the two copies M and N .

Given n1, . . . , n4 ∈ N , we can determine what elements in N correspond to λa and ζb

for a ∈ A and b ∈ Z. If a = i/2j, then the unique solution to the equation 2j · y = j · n3

corresponds to λa. If b ≥ 0 then take integral powers of n4 to get b · n4 representing ζb. If

b ≤ 0, we can find n′
4 that corresponds to ζ−1 and then take its integral powers. Knowing how

to search for elements λa and ζb, we can also search for elements of the form hrz,x and krz,x. If

x ∈ X and z ∈ Z, then λ−xh0,0λ
x = h0,x and ζ−zh0,xζ

z = hz,x. Thus we can determine the

elements corresponding to hz,x and kz,x. Now, if n ∈ N represents hz,x and r = i/j, then the

unique solution to j · y = i · n represents the element hrz,x. Therefore, we can computably

search through N and enumerate over all possible normal forms of elements of G(p, q) in

some fixed order. So in particular, we can fix a computable isomorphism between N and

G. Similarly, using the same idea, we can fix a computable isomorphism between M and

G. Hence we can build a computable isomorphism between M and N and this proves that

G(p, q) is computably categorical.

We can adapt the proof of the previous theorem along with the discussion preceding it to

conclude the following theorem.

Theorem 3.3.2. The group Gn is computably categorical for all n ≥ 2.

Observe that all the orders on Gn are lexicographical type orders and for each order we

only need to specify some finite amount of information to be able to describe it. Since the

group is computably categorical and we have the computable presentation G described above,

in any given presentation we can effectively fix a unique normal form for each element of Gn

and from this normal form we can compute the set of positive elements under any fixed order.

Therefore all the orders on Gn are computable in any given computable presentation.
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Chapter 4

Group with no computable

Archimedean orders

In this chapter we construct an orderable computable group that has no computable

Archimedean orders but has at least one computable non-Archimedean order.

Theorem 4.0.1. There exists a computable torsion-free abelian group G that is classically

isomorphic to ⊕
ω Z such that G has no computable Archimedean orders but G does have a

computable non-Archimedean order.

Proof. Let H denote the group (⊕
ω Z,+). We will construct a computable group (G, ·G)

that will be isomorphic to H. We will construct our group in stages G0 ⊆ G1 ⊆ G2 ⊆ · · ·

with G = ⋃
s∈ω Gs. We will define a total computable monotonic function d(s) such that

at each stage s, the domain of our group will be Gs = {0, . . . , d(s)}. At each stage s, we

will also define a map Fs : Gs → ⊕
ω Z such that for all g ∈ Gs, Fs(g) = σg,s will be a finite

string of integers with no trailing zeros. In the end, we will ensure that lims σg,s exists, and

F : G → H defined via F (g) = lims σg,s = σg will be a ∆0
2 isomorphism between G and an

infinitely generated subgroup of H.

We will define p ·G q = r if Fs(p) + Fs(q) = Fs(r) for some s. We will build a computable

non-Archimedean order ≺ of G as follows. We will set p ≺ q if Fs(p) <lex Fs(q) for some s,
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where <lex is the usual lexicographic order on ⊕
ω Z. We will ensure that our construction

has the following two properties:

(1) If Fs(p) + Fs(q) = Fs(r), then Ft(p) + Ft(q) = Ft(r) for all t ≥ s. (Therefore in the

limit F (p) + F (q) = F (r).)

(2) If Fs(p) <lex Fs(q), then Ft(p) <lex Ft(q) for all t ≥ s.

We shall meet the following set of requirements:

• (Group generators) Bn : The generator element 0n1 of H is represented in G.

• (Group closure) Cn : If n = ⟨p, q⟩, then p ·G q is defined.

• (Group inverses) In : There exists p such that n ·G p = 0. (The zero of ω will be the

identity of G.)

• (Non-Archimedean orders) Ne : φe does not define an Archimedean order on G.

We fix a priority ordering on our requirements as follows:

B0 < C0 < I0 < N0 < B1 < C1 < I1 < N1 < · · · .

Our strategy for meeting the Ne requirements will be as so. For each Ne, we will fix

two elements p, q ∈ G and we will wait to see if φe ever says that p and q are Archimedean

equivalent. If so, then Ne will act and ensure that φe is not an ordering of G. More specifically,

we will attempt to satisfy each Ne in three steps as following. First, we will wait until the

elements 02e1 and 02e+11 are represented in Gs. Suppose σp,s = 02e1 and σq,s = 02e+11 for

some p, q ∈ Gs. Second, we wait until φe,s(0, p)↓ and φe,s(0, q)↓. Anticipating φe to be an

ordering, we will write x <e y if φe(x, y)↓ ≠ 0 and y <e x if φe(x, y)↓ = 0. Assume p and q are

both <e-positive. For the third step, we will wait until we see that for some positive integers

m and n, the elements pn, qm and qm+1 are defined in Gs and φe says that qm <e p
n <e q

m+1.

At this point, we will satisfy Ne by making sure φe is not an ordering of G. The exact details

of the diagonalization will be mentioned in the group construction.
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Definition 4.0.2. We say

(1) Bn requires attention at stage s+ 1 if there exists no p ≤ d(s) such that σp,s = 0n1.

(2) Cn requires attention at stage s+1 if n = ⟨p, q⟩ with p, q ≤ d(s) and there is no r ≤ d(s)

such that σp,s + σq,s = σr,s.

(3) In requires attention at stage s + 1 if n ≤ d(s) and there is no p ≤ d(s) such that

σn,s + σp,s = λ (the empty string).

We will say that a requirement Ne is primed at stage s+ 1 if there are p, q ≤ d(s) such

that σp,s = 02e1 and σq,s = 02e+11 with φe,s(0, p)↓ and φe,s(0, q)↓. We will say that Ne requires

attention at stage s+ 1 if Ne is primed and there exist 1 ≤ m,n ≤ s+ 1 such that one of the

following holds true depending on the “signs” of p and q:

Case (i): If 0 <e p and 0 <e q, then the elements pn, qm and qm+1 are defined in Gs (i.e.

there exists i, j, k ≤ d(s+ 1) such that σi,s = 02en, σj,s = 02e+1m and σk,s = 02e+1(m+ 1)),

and φe,s is compatible with the inequality

qm <e p
n <e q

m+1.

Case (ii): If 0 <e p and q <e 0, then the elements pn, q−m and q−m−1 are defined in Gs,

and φe,s is compatible with the inequality

q−m <e p
n <e q

−m−1.

Case (iii): If p <e 0 and 0 <e q, then the elements p−n, qm and qm+1 are defined in Gs,

and φe,s is compatible with the inequality

qm <e p
−n <e q

m+1.

Case (iv): If p <e 0 and q <e 0, then the elements p−n, q−m and q−m−1 are defined in Gs,
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and φe,s is compatible with the inequality

q−m <e p
−n <e q

−m−1.

Construction:

Stage 0: Let d(0) = 0 and let σ0,0 be the empty string.

Stage s+ 1: Find the highest priority requirement that requires attention.

• If Bn, let d(s+ 1) = d(s) + 1. For all p ≤ d(s+ 1), define

σp,s+1 =


σp,s if p ≤ d(s),

0n1 if p = d(s) + 1.

• If Cn with n = ⟨p, q⟩, let d(s+ 1) = d(s) + 1. For all r ≤ d(s+ 1), define

σr,s+1 =


σr,s if r ≤ d(s),

σp,s + σq,s if r = d(s) + 1.

• If In, let d(s+ 1) = d(s) + 1. For all p ≤ d(s+ 1), define

σp,s+1 =


σp,s if p ≤ d(s),

−σn,s if p = d(s) + 1.

• If Ne, let d(s + 1) = d(s). Let m and n be such that they satisfy the respective

inequality as witnessed by φe,s. Let

l = 2 max{|σr,s(2e+ 1)| : r ≤ d(s+ 1)} +m+ n+ 1.

We remark that we have chosen our l sufficiently large so that pl and ql are not yet defined
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in Gs. For all r ≤ d(s+ 1), define

σr,s+1(i) =



σr,s(i) if i ̸= 2e, 2e+ 1,

lσr,s(2e) + σr,s(2e+ 1) if i = 2e,

0 if i = 2e+ 1.

Our action ensures that σp,s+1 = 02el and σq,s+1 = 02e1. So in particular, we have set that

p = ql.

After a requirement has received attention and acted, we will declare it satisfied for rest

of the construction. This completes the construction. ⊣

Verification:

The following lemmas verify the required properties of the construction.

Lemma 4.0.3.

(i) The function d(s) is a monotonically increasing function, that is, lims d(s) = ∞.

(ii) Each requirement requires attention at most finitely often.

(iii) The requirements Bn, Cn and In are all met.

Proof. The first two statements are clear from our construction. For the last statement, each

of the requirements Bn, Cn and In will act at most once and be satisfied permanently. ⊣

Lemma 4.0.4. For all p ∈ ω, lims σp,s = σp exists and is a finite string.

Proof. We have σp,s ̸= σp,s+1 only when some Ne requirement received attention and acted

to diagonalize for φe. Also note that whenever an Ne requirement acts, it only modifies the

numbers in components 2e and 2e+ 1. Since each σp,s is a finite string and the length of σp,s

decreases as s → ∞, there are only finitely many Ne requirements that when they act can

modify σp,s. Since each Ne acts at most once, we can fix a large enough stage t such that any

Ne that requires attention and acts after stage t will not modify any component of σp,s. ⊣
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For the next set of lemmas, the only case of worry is when act to satisfy some Ne because

we modify our string representations only when some Ne acts. Thus we only need to check

the stages when some Ne receives attention and acts.

Lemma 4.0.5. For all p, q ≤ d(s), if p ̸= q, then σp,s ̸= σq,s.

Proof. Fix a stage s and assume Ne acts at stage s + 1. Suppose p, q ≤ d(s) with p ≠ q

and σp,s ̸= σq,s. Assume towards a contraction, σp,s+1 = σq,s+1. For i ̸= 2e, 2e + 1, we get

σp,s+1(i) = σq,s+1(i) implies σp,s(i) = σq,s(i). Next, we consider the numbers in component 2e

after Ne acts. By assumption, we have

σp,s+1(2e) = lσp,s(2e) + σp,s(2e+ 1) = lσq,s(2e) + σq,s(2e+ 1) = σq,s+1(2e).

Let x = σp,s(2e + 1) − σq,s(2e + 1) and y = σq,s(2e) − σp,s(2e). Then x = ly. By our

construction, 1 < l. If x = 0, then y = 0 as well, but this is a contradiction since σp,s ̸= σq,s.

So assume x ̸= 0. Then y ̸= 0 and |x| ≤ 2 max{|σr,s(2e + 1)| : r ≤ d(s + 1)} < l. On the

other hand, since 1 ≤ |y|, this means that l ≤ |ly|. Thus |x| < l ≤ |ly| and it is not possible

that x = ly, contrary to our assumption. Hence, we can conclude that σp,s+1 ̸= σq,s+1. The

statement now follows by induction. ⊣

Lemma 4.0.6. For all p, q, r ≤ d(s), if σp,s + σq,s = σr,s, then σp,t + σq,t = σr,t for all t ≥ s.

Proof. Suppose Ne acts at stage s+ 1. If i ̸= 2e, then it is clear from the construction that

σp,s+1(i) + σq,s+1(i) = σr,s+1(i). Next, we have that

σp,s+1(2e) + σq,s+1(2e) = lσp,s(2e) + σp,s(2e+ 1) + lσq,s(2e) + σq,s(2e+ 1).

It follows by assumption that

σp,s(2e) + σq,s(2e) = σr,s(2e)

and

σp,s(2e+ 1) + σq,s(2e+ 1) = σr,s(2e+ 1).
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Therefore,

lσp,s(2e) + σp,s(2e+ 1) + lσq,s(2e) + σq,s(2e+ 1) = lσr,s(2e) + σr,s(2e+ 1) = σr,s+1(2e).

By induction, we get that σp,t + σq,t = σr,t for all t ≥ s. ⊣

Lemma 4.0.7. For all p, q ≤ d(s), if σp,s <lex σq,s, then σp,t <lex σq,t for all t ≥ s.

Proof. We need to check that if some Ne acts at stage s+1 we do not change our lexicographic

ordering. Suppose σp,s <lex σq,s and fix the least i such that σp,s(i) < σq,s(i). Let a =

σp,s(2e), b = σp,s(2e+ 1), c = σq,s(2e) and d = σq,s(2e+ 1). We have four possibilities.

(1) Suppose i < 2e. Then Ne will not modify the ith component and σp,s+1 <lex σq,s+1.

(2) Suppose i = 2e. Then a < c by assumption and b− d ≤ |b| + |d| < l by our choice of l.

Observe that b− d < l implies b < l + d and, in turn,

la+ b < l(a+ 1) + d ≤ lc+ d.

Thus σp,s+1(2e) = la+ b < lc+ d = σq,s+1(2e) and σp,s+1 <lex σq,s+1.

(3) Suppose i = 2e+ 1. Then a = c and b < d. So la = lc and la+ b < lc+ d. It follows

σp,s+1(2e) = la+ b < lc+ d = σq,s+1(2e) and σp,s+1 <lex σq,s+1.

(4) Suppose i > 2e+ 1. Then as in the first case, Ne will not modify the ith component

and σp,s+1 <lex σq,s+1. ⊣

Define a map F : G → H by F (p) = lims σp,s = σp for all p ∈ G. This map is well-defined

by Lemma 4.0.4 and injective by Lemma 4.0.5. Define ·G via: p ·G q = r if and only if

σp,s + σq,s = σr,s for some s. By Lemma 4.0.6, this operation does not depend on s and so ·G

is computable. Moreover, p ·G q = r implies F (p) + F (q) = F (r). Hence, F is an injective

group homomorphism between G and H. Therefore, G is an infinitely generated torsion-free

abelian group.
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We define a computable non-Archimedean ordering of G by p ≺ g if and only if σp,s <lex σq,s

for some s. It is a non-Archimedean ordering because it is a lexicographic ordering and

Lemma 4.0.7 shows that ≺ is a computable ordering.

Lemma 4.0.8. Every Ne requirement is met and therefore (G, ·G) has no computable

Archimedean orders.

Proof. Consider some fixed Ne. Suppose φe is a computable Archimedean order on G. Then

φe is total and there must exist a stage s such that Ne will require attention at stage s+ 1.

Assume Case (i) applies. Then there exist integers m,n such that qm <e p
n <e q

m+1. But

now the action of Ne will ensure that ql = p and since m + 1 < l, we cannot have that

qm <e q
ln <e q

m+1.

Next, assume Case (ii) applies. Then 0 <e p, q <e 0, and there exist integers m,n such

that q−m <e p
n <e q

−m−1. Now, our action will again force that ql = p but this time we

observe that p ·G q−l = 0, that is, a product of positive elements is the identity. Thus φe is

not an order invariant under ·G.

The other two cases can be handled similarly, Case (iii) is analogous to Case (ii) and

Case (iv) is analogous to Case (i). Hence, in any case, we see that φe cannot be an Archimedean

ordering of G and Ne is met. ⊣

This concludes the proof of Theorem 4.0.1. □
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Appendix A

Miscellaneous proofs

A.1 Divisible closure of an abelian group

In this section we show that every torsion-free abelian group has a divisible closure and the

divisible closure is a vector space over Q. We will write groups additively. Informally, we say

a group is divisible if we can “divide” by integers. More precisely, a nontrivial abelian group

A is called divisible if for every g ∈ A and every nonzero integer n there exists an element

h ∈ A such that nh = g.

Theorem A.1.1. If A is an abelian group, then there exists a divisible group D such that

(i) there is an injective homomorphism φ : A → D, and

(ii) for all g ∈ D there is a positive integer n with ng ∈ φ(A).

Moreover, if A is torsion-free, then D is also torsion-free.

Proof. Let Z+ denote the set of positive integers. Consider the set A × Z+. Define an

equivalence relation on A × Z+ by (g,m) ∼ (h, n) if and only if ng = mh for all g, h ∈ A

and m,n ∈ Z+. Let D denote the set of equivalence classes of A × Z+ modulo ∼ and

write g/n to denote the equivalence class of an element (g, n). We define addition on D

by g/m + h/n = (ng + mh)/mn. It is routine to verify that this operation is well-defined
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A.2 LINEAR INDEPENDENCE

and satisfies the group axioms. For example, the identity of D is 0/n. It follows from these

verifications that D is a divisible group. Lastly, the map φ : A → D given by φ(g) = g/1 is

an injective homomorphism and satisfies property (ii) in the theorem statement.

The group D in Theorem A.1.1 is called a divisible closure of A. Next, we want to show

that the divisible closure of a torsion-free abelian group is a vector space over Q.

Theorem A.1.2. Every torsion-free divisible group D is a vector space over Q.

Proof. One short proof of this fact follows from considering the tensor product D⊗ZQ. Since

D is torsion-free, it will follow that the natural map D → D ⊗Z Q defined via g 7→ g ⊗ 1 is

injective and D ⊗Z Q is a Q-vector space.

Here is a more illuminating proof. First we claim that if D is a torsion-free divisible

group, then the equation nx = g has a unique solution for any g ∈ D and any nonzero

integer n. Suppose for contradiction there exists two distinct elements x and y of D such

that nx = ny = g. But then nx = ny implies nx − ny = n(x − y) = 0. That is x − y is a

nonzero torsion element of D, a contradiction.

We next show how to define scalar multiplication on D. Let g ∈ D and let r = m/n ∈ Q.

Define r · g to be the unique solution to the equation nx = mg. It can be verified that this

multiplication satisfies the usual properties of scalar multiplication in a vector space.

A.2 Linear independence

In this section we regard R as a vector space over Q. Fix a prime number p. For all integers

n ≥ 1, let

Bn =
{
p

m
2n | m ∈ Z and 0 ≤ m < 2n

}
.

Define

B =
⋃

1≤n
Bn =

{
p

m
2n | m,n ∈ Z, 1 ≤ n and 0 ≤ m < 2n

}
.
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A.2 LINEAR INDEPENDENCE

We want to show that B is a linearly independent subset of R. Observe that B is linearly

independent if and only if Bn is linearly independent for all n ≥ 1. Thus it suffices to show

that Bn is a linearly independent subset of R for all n ≥ 1. Fix n ≥ 1 and let α = p
1

2n .

Observe that α is a root of the polynomial x2n − p ∈ Q[x] and Bn = {1, α, . . . , α2n−1}.

Lemma A.2.1. The polynomial x2n − p ∈ Q[x] is irreducible over Q.

Proof. This follows by applying Eisenstein’s criterion with the prime p. We can express

x2n − p as

a2nx2n + a2n−1x
2n−1 + · · · + a1x+ a0

where a0 = −p, a2n = 1 and ai = 0 for 0 < i < 2n. Apply Eisenstein’s criterion with the

prime p to conclude that x2n − p is irreducible over Q.

Lemma A.2.2. The real number α is not the root of a polynomial in Q[x] of degree less than

2n.

Proof. Suppose α is the root of a polynomial f(x) ∈ Q[x] and the degree of f(x) is less than

2n. Without loss of generality, let f(x) be the monic polynomial of least degree that has α as

a root. In other words, let f(x) be the minimal polynomial for α over Q. Then f(x) divides

every polynomial in Q[x] which has α as a root. In particular, f(x) divides x2n − p, but this

contradicts the previous lemma.

Proposition A.2.3. The set Bn is linearly independent.

Proof. For a contradiction, suppose that Bn is linearly dependent. Let a0, a1, . . . , a2n−1 ∈ Q

such that not all ai are zero and a0 + a1α + · · · + a2n−1α
2n−1 = 0. Let f(x) ∈ Q[x] be the

polynomial a0 + a1x+ · · · + a2n−1x
2n−1. Note that f(x) is a polynomial of degree less than

2n and α is a root of f(x). This contradicts the above lemma and completes the proof.

Corollary A.2.4. The set B is a linearly independent subset of R.

Proof. Note that B is linearly independent if and only if Bn is linearly independent for all

n ≥ 1.
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