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ABSTRACT

Computability theoretic aspects of Polish metric spaces are studied by adapting
notions and methods of computable structure theory. In this dissertation, we mainly
investigate index sets and classification problems for computably presentable Polish
metric spaces. We find the complexity of a number of index sets, isomorphism prob-
lems and embedding problems for computably presentable metric spaces. We also
provide several computable structure theory results related to some classical Polish
metric spaces such as the Urysohn space U, the Cantor space 2V, the Baire space N,

and spaces of continuous functions.
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Chapter 1

Introduction

Computable analysis is a study of mathematical analysis from the perspective of com-
putability theory. For a background in computable analysis, see, e.g. [1], [14] and [21].
In computability theory, we mainly study computational properties of sets and func-
tions on the natural numbers, and by using codings, we can study other countable
objects such as finite strings of natural numbers, integers, or rational numbers. How-
ever, most objects we study in analysis are uncountable objects, for example, we study
the space R of real numbers, the spaces C'(X) of real-valued continuous functions on
X, LP-spaces, etc. Hence, in order to study algorithmic properties of these uncount-
able objects, we need some ways to represent them by countable objects. In 2013,
Melnikov [12] proposed a way to adapt notions and methods of computable structure
theory to Polish metric spaces. This paper introduces a notion of computable met-
ric space, and contains several results and open problems about computable metric

spaces that give us the motivation for this dissertation.



In this dissertation, we study computability theoretic aspects of Polish metric
spaces. We focuses on index sets and classification problems for computable metric
spaces. This dissertation is organized as follows. In Chapter 1, we provide some
background and terminology in computability theory and computable metric spaces.
In Chapter 2, we find the complexity of a number of basic index sets of computable
metric spaces. In Chapter 3, we investigate the complexity of isomorphism problems
and embedding problems for computable metric spaces in general and for finite metric
spaces. We also consider embedding problems for some infinite metric spaces. In
Chapter 4, we find the complexity of the index sets for perfect computable metric
spaces and for discrete computable metric spaces. In Chapter 5, we study the Urysohn
space U and bounded Urysohn spaces U<, about their characterizations, computable
presentations and index sets. In Chapter 6, we consider some embedding problems
of the Cantor space 2V and the Baire space NY. Finally, in Chapter 7, we gives a few
results on the computable categoricity of the space C(2Y) of continuous functions on

the Cantor space.

1.1 Computability Theory

In this section, we provide some background and terminology in computablity theory.

For more details, see, e.g. [16], [17] and [20].
Let N denote the set of all natural numbers, that is, N ={0,1,2,...}.
Definition 1.1.1.

o A partial function on N is a function f: N — N with dom(f) C N.



If z € dom(f), we say that f(x) converges, or is defined, and write f(x) .
If x ¢ dom(f), we say that f(z) diverges, or is undefined, and write f(z) 1.
o A total function on N is a partial function f: N — N with dom(f) = N.

Definition 1.1.2. For partial functions f and g, we write f = g if dom(f) = dom(g)
and f(z) = g(z) for all x € dom(f).

Definition 1.1.3. A partial function f : N — N is partial computable if there is
an effective procedure (or a computer program or a Turing machine) which takes a
natural number n as an input, and then either the procedure eventually halts with an
output f(n) or it never halts. We say f is computable if f is partial computable and
f is total. (For details on Turing machines and a more formal definition of partial

computable functions, see, e.g. [16], [17] and [20].)

Definition 1.1.4. A set A C N is computable if its characteristic function y, is

computable.

Let (-,-) : N x N — N be the standard (bijective) coding function (or pairing

function) defined by
+ +y+1
(z+y)l@+y+1) "

<$,y> = 9

By iteration, we can encode all tuples in N¥ where k& > 1 as natural numbers. For
example, a tuple (z,y,2) € N? is coded by (z,y, z) := {{x,y),2). So we can think of
a function f: N3 — N as the function from N into N that maps (x,y, ) to f(z,y, 2).
Since integers and rationals can be represented by tuples of natural numbers, we can

also encode them as natural numbers.

We can encode each partial computable function (or Turing machine) as a nat-



ural number e. This number e is called an index of the function. Throughout this

dissertation, we fix an effective enumeration of all partial computable functions:

Yo, P1, P2, - - -

Definition 1.1.5. A set A is computably enumerable, written c.e., if A = dom(pe)
for some e € N. Equivalently, A is c.e. if and only if A = range(p.) for some e € N,
that is, we can effectively enumerate all elements of A. For each e € N, let W, denote

the e-th c.e. set, that is, W, := dom(¢p.).

A Turing machine can be equipped with an external database, called an oracle.
During its computation, the Turing machine can ask the oracle finitely many questions
to get extra information. For example, a Turing machine with a set A C N as the

oracle can ask A finitely many questions of the form “is n in A?”.

We can effectively list all Turing machines with oracle A as

A A A
T S SO

We usually write ®, instead of ®°. Then a function f is partial computable if

and only if f = ®, for some e € w.

We can think of a Turing machine ®, as a functional that takes an oracle set
A as an input and gives the partial function ®2 as the output. We called this ®, a

Turing functional.



If ®4 on input z halts within s steps of computation and gives an output y, then

we write 7 (z) = y. If it does not halt within s steps, we write ®Z,(z) 1.

We can relativize the notions for computable functions and computable sets to

an oracle A as follows.
Definition 1.1.6. Let A C N.

o A partial function f : N — N is partial A-computable (or partial computable
relative to A or Turing computable in A), written f <7 A, if f = ®2 for some

e € N. If f is also total, then we say f is A-computable.

o A set Bis A-computable (or computable relative to A or Turing reducible to A),

written B <7 A, if xp is A-computable.
Other notions can be relativized in the same way.
Definition 1.1.7.

o Wesay A and B are Turing equivalent, written A =y B,if A <p Band B <p A.

Note that <r is reflexive and transitive. So =7 is an equivalence relation.
o The Turing degree of A is the equivalence class deg(A) :={B : B =1 A}.

Definition 1.1.8. The Halting set, denoted by (', is the set {e € N : p.(e) |}. For
each A C N, the halting set relative to A, denoted by A’, is the set {e € N : ®%(e) |}.

For each n € N, we define 0 inductively by
e 00 .— 0,
N O(n+1) — (O(n))/

Definition 1.1.9. A set A is many-one reducible to a set B, written A <,, B, if



there is a computable function f such that for all n € N,

ne€ A<= f(n) € B.

Definition 1.1.10. Let R(x; X) be a relation where x is a number variable (ranging
over natural numbers) and X is a set variable (ranging over subsets of N). A relation

R(x; X) is computable if there is an e € N such that for all z € N and X C N,

1 if R(x; X) holds
O (r) =

€

0 otherwise

Definition 1.1.11. Let n > 1. We define complezity classes ¥.0, 112, A% -3 31

11, and A} as follows.

o A CNis XY if there is a computable relation R(x,%1,...,%,) such that for all

TyY15---3Yn €N>

VS A <~ 3y1v923y3 s QynR<$7y17 cee 7yn)7

where () is 3 if n is odd, and @ is V if n is even.

« ACNisII?if N\ Ais XY that is, there is a computable relation R(z,y1, ..., Y»)

such that for all x,y1,...,y, € N,

€ A=Yy Iy ... QuunR(x, y1,. .., Yn),

where () is V if n is odd, and @ is 3 if n is even.



Ais A% if A is both X9 and IIC.

Ais d-X0 if A= B\ C for some X2 sets B and C.

A is arithmetical if A is X0 for some n € N.

A is ¥ if there is an arithmetical relation R(x; X), where X is a set variable,

such that for all x € N,

r€ A< (X CN)R(z; X).

Ais T} if N\ Ais X},

Ais Al if A is both 3{ and ITj.
Definition 1.1.12. Let I" be a complexity class.
e AisT-hardif B <,, A for all I sets B.

o Ais I'-complete if Ais ' and A is ['-hard.

Definition 1.1.13. A set A C N is an index set if for every e,¢’ € N, if e € A and

Ve = e, then € € A.
Example 1.1.14. The following sets are index sets.

0™ is ¥:0-complete for all n > 1.

Tot :={e € N: ¢, is total} is II3-complete.

Inf :={e € N:dom(p,.) is infinite} is [13-complete.

Fin := {e € N: dom(y.) is finite} is 39-complete.



Let I be a set and A C I. In some cases, given that we know e € I, the problem
of deciding if e € A might be simpler than detecting whether e belongs to the set I.
In these cases, we usually consider the complexity of index sets “within” the set I.

This leads to the following definition.
Definition 1.1.15. Let I' be a complexity class, I be a set and A C I. We say that
(1) Ais I' within I if there exists a B € I' such that A= BN I.

(2) AisI'-hard within I if for every B € I, there is a computable function f : N — N
such that for all n € N, f(n) € [ and (n € B <= f(n) € A).

(3) Ais I'-complete within I if A is I" within I and A is I'-hard within /.
Remark 1.1.16.

(1) AisT' = A is " within I.

(2) A is I'-hard within I = A is I'-hard.

The following theorem will be used throughout this dissertation when we work

with index sets.

Theorem 1.1.17. (s-m-n Theorem) For every n,m > 1, there is a computable

injective function S™ : N"*' — N such that for alle € N, T € N" and y € N™,

QSTT(E,E) @) = q)e (Ev y)

Next, we gives some standard notations for strings of natural numbers.

Let 2<V denote the set of all finite binary strings, and let N<N denote the set of

all strings of natural numbers. We can think of a finite string of natural numbers as



a function from a finite initial segment of N into N. For example, if ¢ is the string

(1,0,

o(4)

4), then we view o as the function o : {0,1,2} — N where ¢(0) = 1,0(1) = 0 and

= 4. We usually use 0,7, p,... to range over finite strings of natural numbers.
Let A denote the empty string, that is, A = ().

Let |o] denote the length of the string o, that is, |o| := |dom(c)|. For example,
|(1,0,1)] = 3.

For each o, 7 € N<N, we let 0”7 denote the concatenation of o and 7, that is, the
string obtained from joining 7 at the end of o. For example, (0,1,5)7(2,3) =
(0,1,5,2,3). For i € N, we simply write o7 or 0”7 instead of 07 ().

o is an initial segment of 7, written o C 7, if |o| < |7| and o(i) = 7(i) for all

i < |ol|. o is a proper initial segment of T, written o C 7, if 0 C 7 and o # 7.
We identify a natural number n with the set {0,1,...,n — 1}.

We identify a set A C N with its characteristic function x4, that is, A(n) =1
ifn € A, and A(n) = 0if n ¢ A. So we can think of A as an infinite binary
string.

For A C N, we write 0 C A if ¢ is an initial segment of A, that is, o(i) = A(%)
for all i < |o|. Similarly, for f : N — N, we write 0 C f if ¢ is an initial segment

of f.

For A, B C N, we let B4 denote the set of all functions from A into B. So we

can think of 2V as the set of all infinite binary strings, NY as the set of all infinite

strings of natural numbers, and 2", where n € N, as the set of all finite binary strings

of length n. We can also think of 2 as the power set P(N) := {X : X C N}.
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Definition 1.1.18.

o A tree is a subset T of N<N that is closed under initial segments, that is, if
o€ T and 7 C o, then 7 € T. So every nonempty tree 7' contains the empty

string A. We call A the root of T.
« A binary tree is a tree T such that T C 2<N,

o An (infinite) path through a tree T is a function f : N — N such that for all
n €N, f [ né&T. So we can think of a path through a binary tree as a set of

natural numbers. We let [T] denote the set of all infinite paths through 7'

Note that, by coding finite strings as natural numbers, we can think of a tree T’

as a set of natural numbers.

The following fact can be used to show Xi(or II})-hardness of an index set. For

the definition of primitive recursive trees, see, e.g. [16], [17] and [20].
Fact 1.1.19 (see [15]).
o There is a computable sequence of all primitive recursive trees.

o If (T.)een is a computable sequence of all primitive recursive trees, then the set

{e € N: T, has an infinite path} is X}-complete.
Definition 1.1.20.

o A computable sequence of rationals is a sequence (1, )nen of rationals such that
there is a computable function f : N — N such that for all n € N, f(n) = r,,

that is, f(n) is the code of the rational r,.

o A real number r is computable if there is a computable sequence (7,)nen of
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rationals such that for all n € N,
Ir—r,| <27

That is, r, is a rational approximation within 27" of r.

o A real number r is left-c.e. if the set {¢ € Q : ¢ < r} is c.e. Equivalently, r is
left-c.e. if and only if there is a computable increasing (or strictly increasing)

sequence (1, )nen of rationals such that lim r, = r. We define right-c.e. reals
n—oo

similarly.

1.2 Computable Polish Metric Spaces

First, we review the definitions of pseudometric spaces and metric spaces.

Definition 1.2.1. A pseudometric on a set X is a function d : X x X — R such that

for every z,y,z € X,

(1) d(x,z) =0
(2) d(z,y) = d(y,z) (symmetry)
(3) d(z,2) < d(z,y) + d(y, z) (triangle inequality)

Note that (1)-(3) imply that d(z,y) > 0 for all z,y € X.

A pseudometric space is a pair (X, d) where X is a set and d is a pseudometric

on X.

Note that, in a pseudometric space, it is possible that d(z,y) = 0 but = # y.
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Definition 1.2.2. A metric on a set X is a pseudometric d on X such that for every
z,y € X, d(z,y) =0 =z =y. A metric space is a pair (X, d) where X is a set and

d is a metric on X.

Definition 1.2.3. A metric space (X, d) is called a rational metric spaceif d(x,y) € Q

for all z,y € X.

For a metric space (X, d), we let diam(X) denote the diameter of X, that is,

diam(X) := sup{d(x,y) : z,y € X} € [0, 00].

For Y C X, we let cl(Y) denote the closure of Y in X, that is, z € ¢l(Y) if and only

if there is a sequence (¥, )nen in Y that converges to z in X.
Example 1.2.4. The following are metric spaces.
o The one-point metric space {x}.
» The space (N, dy) where dy(m,n) := |m — n| is the standard metric on N.

« For any vector ¥ = (z1,...,z,) and ¥ = (y1,...,yn) in R", we define

(1) Euclidean metric: deyeia(Z, ) ::\/ > (m — )2,

1<i<n

(2) Mazimum metric: dpa,(Z,7) := max |z; — i,
1<i<n

(3) Taxicab metric: digqi(Z,9) == > |zi— i

1<i<n

Then deyeid, dmaer and dyq,; are metrics on R™.

e Let G = (V,E) be a connected undirected (possibly weighted) graph, where

V' is the set of all vertices in GG, and F is the set of all edges in G. For any
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u,v € V, we define the distance dg(u,v) to be the length of a shortest path
from u to v in GG. Then dg is a metric, and we call dg the shortest path metric

on G.
Definition 1.2.5. Let (X, dx) and (Y, dy) be metric spaces.

(1) A function f:X —Y is called a distance-preserving function or an

isometric embedding, written f : X — Y if for every x1, 25 € X,

dY(f(901>7 f(%)) = dX($1, $2)-

(2) An isometry is a bijective distance-preserving function.

(3) We say that X embeds isometrically into Y, written X < Y, if there is an

isometric embedding f: X — Y.

(4) We say that X is isometric to Y, written X = Y if there is an isometry
f: X—=Y.

Note that distance-preserving functions are injective and continuous, and the

relation = is an equivalence relation.

Definition 1.2.6. A Polish space is a topological space that is homeomorphic to
a complete separable metric space. A Polish metric space is a complete separable

metric space.

To study computability theory on Polish metric spaces, we first need to find an

effective way to represent these spaces. We will use terminology from [11].

Definition 1.2.7. A computable presentation of (or a computable structure on) a
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Polish metric space (M, d) is any dense sequence (p;);en of points in M such that the
distance d(p;,p;) is a computable real number uniformly in ¢, j. That is, there exists

a computable function f : N — Q such that for all 7,7,k € N,

(2,5, %)) = dpi, ps)| < 27,

Equivalently, there is an algorithm such that if we input two indices 7, j and a positive
rational e, then it will output a rational number that approximates the distance

between p; and p; with error less than e.

Definition 1.2.8. A metric space is computably presentable if it has a computable

presentation.

Definition 1.2.9. A computable (Polish) metric space is a pair (M, d), (p;)ien) Where
(M, d) is a Polish metric space and (p;);en is a computable presentation of (M, d).

The points in the sequence (p;);en are called the rational points.

Since the rational points are dense in M, every point z € M is a limit of a
sequence (p;);en of rational points, so we might use (p;);en as an approximation of
the point z. However, we do not know the rate of convergence of (p;)ien. If (pi)ien
converges to x very slowly, then it would be a bad approximation. So, in order to get
a good approximation, we want the sequence to converge fast enough, and this leads

to the notion of Cauchy name.

Definition 1.2.10. Let (p;);en be a computable presentation of a metric space (M, d)

and x € M. A Cauchy name of x in (p;);en is a function f : N — Nsuch that (ps))ken
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converges to x, and for all k € N and [ > k,

d(pswy, pray) < 27"

This implies that d(ps),z) < 2% for all k € N.

We can think of a Cauchy name of z as a Cauchy sequence (py(x))ren of rational
points that converges to x rapidly in the sense that it satisfies the above inequalities.
So we view a Cauchy name of = as a good approximation of z. Note that, since (p;);en

is dense in M, every element x in M has a Cauchy name.

Definition 1.2.11. An element x of M is computable with respect to (p;)ien (Written
w.r.t. (p;)ien) if it has a computable Cauchy name in (p;);en. Equivalently, x is
computable if and only if there is an algorithm such that, given a positive rational ¢,
it computes a rational point p; that is e-close to . So we can effectively approximate

this element z in this sense.

Note that every rational point p; has the constant sequence (p;,p;,...) as a

computable Cauchy name. So every rational point is computable.

Next, we give some examples of computable metric spaces. Recall that a com-
putable metric space is a Polish metric space together with a dense sequence of points

whose distances are uniformly computable reals.
Example 1.2.12.

o The space (N, dy) with the usual metric dy(n,m) := |n — m/|, where (7);ey is a

computable presentation.
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o The space R with the Euclidean metric, where an effective list (g;)ien of all

rationals is a computable presentation.

o The space C[0, 1] of real-valued continuous functions on [0, 1] with the supre-

mum metric:

d(f,g) = sup |f(zx) — g()],

z€[0,1]
where an effective list (p;);en of all rational polynomials is a computable pre-

sentation.

« The Cantor space 2V equipped with the metric

d(X, Y) — 9~ min{n:X('n,);éY(n)}7
where an effective list (o] 0N);cy of all infinite binary strings that are eventually

0 is a computable presentation.

From the above examples, we know that R and C[0,1] are computably pre-
sentable. In fact, many other classical metric spaces are computably presentable. For
example, if p > 1 is a computable real, then every separable LP space is computably

presentable.

There are also many metric spaces that are not computably presentable. For
example, a two-point metric space M = {x,y} is computably presentable if and only
if d(z,y) is a computable real. So we can study computable presentability of metric

spaces. That is, for a metric space, we determine if it is computably presentable.

We already have the definition for an element = of a Polish metric space to be

computable. But what about a function between Polish metric spaces? What does
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it mean for a function between computable metric spaces to be computable? We
usually think of a computable function f as an algorithm such that, given an input
x it outputs the value of f(z). We use this as the definition of computable functions
f : N — N. However, a point in a metric space usually requires an infinite amount of
information to be specified, so we cannot use the exact value of a point as an input or
an output for algorithm. What we can do is, instead of exact specifications of points,

we use Cauchy names as approximations.

Definition 1.2.13. Let (p;);en and (g;)ien be computable presentations of metric
spaces M and N, respectively. A map F': M — N is computable with respect to
(pi)ien and (¢;)ien (written w.r.t. (p;)ien and (g;)ien) if there is a Turing functional
® such that, for every x € M and Cauchy name f of x in (p;);en, the functional ®

with oracle f is a Cauchy name of F(z) in (g;)ien.

It turns out that two computable presentations of a metric space might not have
the same computational power even though they are presentations of the same metric

space. This leads to the following definition.

Definition 1.2.14. Computable presentations (p;);en and (¢;)ien of a metric space
(M, d) are said to be equivalent up to computable isometry or computably isometric, if

there exists a (surjective) self-isometry U on (M, d) that is computable with respect
to (pi)ien and (;)ien-
If two computable presentations are computably isometric, then they have the

same computational power, that is, anything that can be done computably in one

presentation can also be done in the other presentation. For example, on the space
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C'[0, 1], the list of all rational polynomials and the list of all rational piecewise linear

functions are two computable presentations that are computably isometric.

Definition 1.2.15. A computably presentable metric space (M,d) is computably
categorical if every two computable presentations of (M, d) are computably isometric.

That is, it has a unique computable presentation up to computable isometry.

If a metric space is not computably categorical, we might want to know how much
extra computational power we need to build an isometry between two computable

presentations. So we relativize the definition as follows.

Definition 1.2.16. Let M be a Polish metric space and d be a Turing degree. We
say M is d-categorical if for any two computable presentations (p;)ieny and (¢;)ien of
M, there is an isometry F' : M — M that is d-computable with respect to (p;)ien

and (g;)ien-

The degree of categoricity of M is the least Turing degree d such that M is

d-categorical. Note that the degree of categoricity may not exist.

The degree of categoricity of M tells us how much computational power we
need (sufficient and necessary) to compute an isometry between any two computable
presentations of M. This leads to the study of computable categoricity and degree of
categoricity of Polish metric spaces. For example, Pour-El and Richards [14] showed
that every separable L? space is computably categorical. Moreover, McNicholl [9]
showed that if p > 1 is computable and p # 2, then the degree of categoricity of the

space [P is 0'.
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1.3 Computable Metric Spaces with Operations

We use terminology from [11]. An operation X on a metric space (M, d) is a function
which maps tuples of points to points (i.e. X : M*¥ — M), or tuples of points to reals
(ie. X : M* — R). A point x in M can be viewed as an operation T, : M — M

where T, (y) = x for all y € M.

We view a direct power M* of (M,d) as a metric space with the metric
dye(z,y) = supd(m;(z), m;(y)), where m; is the projection on the i-th component.
i<k

Let (p;)ien be a computable presentation of (M,d). The computable presentation

[(ps)ien]® of (M* dy) is the effective list of k-tuples of rational points from (p;)ien.

For convenience, if an operation X : M* — M is computable w.r.t. [(p;)ien]* and
(ps)ien, we simply say that X is computable w.r.t. (p;)ien. Similarly, if an operation
X : M*¥ — R is computable w.r.t. [(p;)ien]® and (¢;)ien, where (g;)ien is the usual

effective list of rationals, then we say that X is computable w.r.t. (p;);en.

Since every Turing functional @, can be effectively identified with its computable
index e, we can speak of uniformly computable families of maps betweens computable

metric spaces.

Definition 1.3.1. Let (M,d, (X,);es) be a Polish metric space with distinguished
operations (X;);es, where J is a computable set. A sequence (p;)ien is & computable
presentation of (or a computable structure on) (M,d, (X;)jes) if (M,d, (p;)ien) is a
computable metric space and the operations (X;);e; are computable w.r.t. (p;)ien
uniformly in their respective indices j € J. We say that the space (M, d, (X;);ey) is

computably presentable if it has a computable presentation.

Definition 1.3.2. Let T': M — M be an operation. We say that T respects an
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operation X : M* — M if T commutes with X (i.e. X oT =T o X). We say that T

respects an operation X : M* — R if T preserves the output of X (i.e. X oT = X).

Definition 1.3.3. A computably presentable space (M,d, (X;)cs) is computably
categorical if every two computable presentations (p;)ien and (¢;)ien of (M, d, (X;);er)

are computably isometric via an isometry which respects X, for every j € J.

Definition 1.3.4. We say that operations (Y;);c; effectively determine operations

(X;)jes on a metric space (M, d) if
(1) every isometry of M that respects (Y;);er respects (X;);es as well,

(2) for any computable presentation (p;);en of (M, d), the uniform computablity of

(Yi)ier w.r.t (pi)ieny implies the uniform computability of (X;);es w.r.t. (pi)ien.
The following fact immediately follows from Definition 1.3.3 and Definition 1.3.4.

Fact 1.3.5. If (M, d, (X;)jes, (Yi)ier) is computably categorical and (Y;);cr effectively

determine (X;) ey, then (M,d, (Y;)ier) is computably categorical.

1.4 Computable Indices of Computable Metric
Spaces

Recall that (¢e)een is a fixed effective list of all partial computable functions. By
coding, we can think of (p.)een as an effective list of all rational-valued partial com-

putable functions.

Definition 1.4.1. If d : Nx N — R is a pseudometric on N and ¢ is a rational-valued
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partial computable function such that ¢ is total and ¢ converges rapidly to d in the

sense that
(1) ,}ggo @(i,7,k) = d(i,j) for every i,j € N,
(2) |o(i,j, k) — (i, 4,k +1)] < 27F for every i, j, k,l € N,

then we say d is the pseudometric induced by p. If . induces a pseudometric, we let

d. denote this pseudometric.

For a pseudometric d on N, we let M, denote the completion of the pseudometric
space (N, d), where we identify every two points ¢, 7 € N with d(i, 7) = 0 as the same
point in My, so that My is a Polish metric space. We will write M, as a shorthand
for My,. So M, is the Polish metric space induced by ¢.. The natural number e is

called an index of M,.

Note that (M, ).cy is an effective list containing all computable metric spaces up
to isometry. So a Polish metric space M is computably presentable if and only if

M = M, for some e € N.

We define an index set
PolSp := {e € N: ¢, induces a pseudometric} = {e € N: M, is a Polish metric space}.

Then PolSp is the index set of all computable Polish metric spaces.

Note that if d is the pseudometric induced by ¢, then for every i, j, k € N,

|d(i,j) — (i, j, k)| < 27%.
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So (i, 7, k) is a rational approximation within 27* of the real number d(i, j).

Note that if z(k) and y(k) are rational approximations within 27* of real numbers

x and y, respectively, then

x =y = Vk(|z(k) — y(k)| < 27
z # y <= k(|x(k) — y(k)| > 275+)
x <y = Vk(z(k) < y(k) + 275

r <y <= Ik(x(k)+ 27" < y(k))

Hence, for computable reals z and y, the statement “z = y” is 119, “x # y” is XY,
“r <y’ isIIY, and “z < y” is X?. We can use this observation to find the complexity

of conditions involving the pseudometric d, induced by ..



Chapter 2

Basic Index Set Results

Let IC be a class of Polish metric spaces. The complexity of the classification problem

for computable members of K is measured using the following two index sets:

(1) The characterization problem (or the index set) of K is the set

{eeN: M, € KL}

(2) The isomorphism problem of K is the set

{(i,j) € N*: M;, M; € K and M; = M;}.

For a class K, we can study the complexity of the index set of K and the iso-

morphism problem of K (in arithmetical hierarchy, hyperarithmetical, and analytical

23
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hierarchy). The complexity of the isomorphism problem is the complexity of the

associated classification problem.

Suppose we have a set A C N that is I'-hard where I' is a complexity class. Let P
be a property of Polish metric spaces that is preserved under isometry. To show that
an index set of the form I := {e € N : M, has property P} is [-hard within PolSp,
by the s-m-n Theorem, it is enough to build a computable sequence (X;).en of Polish

metric spaces such that for all e € N, e € A <= X, has property P.

To see why this is true, assume we have such a computable sequence (X;)een.
Then, by the s-m-n Theorem, there is a computable function f : N — N such that
for all e € N, () induces X, and so e € PolSp and My,) = X.. Then for every

eeN,

e € A <= X_ has property P <= Mj() has property P <= f(e) € I.

So A is many-one reducible to I. Therefore, since A is I'-hard and X, is a computable

metric space for all e € N| we can conclude that [ is I'-hard within PolSp.
First, we compute the complexity of some basic index sets.

Theorem 2.0.1. PolSp is I19-complete.

Proof. Note that for any e € N, ¢, induces a pseudometric if and only if the following

conditions hold:
(1) . is total, (ie. (Vi, j, k € N)(3s € N)(ges(i, j, K) 1)),

(2) I@elis g, k) = @eli, j.k + )] < 27" for all i, j, k, 1 € N,
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(2) guarantees that klim ©e(i,j, k) exists for all 4,7 € N, so we can define
—00
de(i,7) :== lim (i, ], k).
k—o00
(3) de(i,5) >0 forall i,j € N,
(4) d.(i,7) =0 for all € N,
(5) de(i,7) = de(j,1) for all 4,5 € N,
(6) du(i,§) < do(i, k) + do(k, §) for all 4, 5, k € N.

Now, since ¢.(7, j,t) is a rational approximation within 27 of d.(i, j), it is easy

to see that the condition “p, induces a pseudometric” is I19. That is, PolSp is IT5.

More precisely, condition (1) is a IIy statement and conditions (2)-(6) are

1Y statements. For example, assuming ¢, is total, condition (5) is equivalent to
1 g ¥

(Vi, 7 € N)(Vt € N)(|pe(i, 4, t) — e, 4, t)] < 277) and so (5) is a I1Y statement (as-

suming ¢, is total).

Next, we show that PolSp is I13-hard. Recall that Tot := {e € N : ¢, is total}

is T19-complete.

For each e € N, we construct a partial computable function ). uniformly in e as

follows.

By dovetailing, we compute ¢.((i,7)) for all i,j7 € N. Whenever we see that
we((i,7)) |, we define (7, j, k) = 0 for all k € N.

This ends the construction.

Since the construction of 1, is effective uniformly in e, 1), is partial computable
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uniformly in e. Thus, by the s-m-n Theorem, there is a computable function f such

that @) = 1. for all e € N.

If e € Tot, then @) (7,7, k) = (i, j, k) = 0 for all 7, j, k € N. So it is clear from
the definition that ¢y induces a pseudometric, that is, f(e) € PolSp. In fact, the

pseudometric d. induced by ¢y () is a metric such that d.(7,j) = 0 for all 4, j € N.

If e ¢ Tot, then there are i,j € N such that ¢.((7, 7)) T. So we will never define
Ye(i,7,k) for all k € N, that is, 1.(i,j, k) T for all K € N. Hence @) = 1. is not

total. Therefore, ¢ does not induce a pseudometric, that is, f(e) ¢ PolSp.
We conclude that for all e € N, e € Tot <= f(e) € PolSp. So Tot is many-one
reducible to PolSp. Therefore, since Tot is 119-hard, PolSp is T13-hard. O
In the proof for II-hardness of PolSp, we only use the fact that PolSp C Tot
and Tot is [13-hard. The proof can be modified to obtain the following stronger result:
Theorem 2.0.2. For any nonempty class KC of computable Polish metric spaces, the
index set {e € N: M, € K} is 119-hard.
Proof. Let K be a nonempty class of computable Polish metric spaces. Then there is

an eg € N such that M., € K.

For each e € N, we construct a partial computable function ). uniformly in e as

follows.

By dovetailing, we compute ¢.((7,7)) for all i,7 € N. Whenever we see that
pe((i,5)) b we define (i, j, k) = @eq (i, j, ) for all k € N.

This ends the construction.
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Since the construction of 1), is effective uniformly in e, 1, is partial computable
uniformly in e. Thus, by the s-m-n Theorem, there is a computable function f such

that @) = 1. for all e € N.

If e € Tot, then ¢ ((i,7)) | for all 4,5 € N. So @g)(4,5,k) = ¥e(i,j,k) =
©eo (4,7, k) for all 4,7,k € N, that is, ¢re) = e, Thus, since ¢, induces the com-

putable metric space M,,, we have that M., = M., € K.

If e ¢ Tot, then there are i,j € N such that ¢.((i, 7)) T. So we will never define
Ye(i,7,k) for all k € N, that is, 1.(¢,j, k) 1 for all £ € N. Hence @) = 1. is not

total. Therefore, My is not a computable metric space, and so M) ¢ K.

We conclude that for all e € N, e € Tot <= My, € K. So Tot is many-
one reducible to {e : M, € K}. Therefore, since Tot is [Iy-hard, {e : M, € K} is
I19-hard. O

By Theorem 2.0.1 and Theorem 2.0.2, we have the following remark.
Remark 2.0.3. For any set I C PolSp and complexity class T,
(1) I is IS <= I is 113 within PolSp.
(2) (T CTI3 and I is T-complete within PolSp) = I is 113-complete.
Theorem 2.0.4. The set {e € N: d, is a metric} is I113-complete within PolSp, and

so it is 119-complete.

Proof. Note that for any e € PolSp, d,. is a pseudometric, and so

d. is a metric <= (Vi,j € N)(de(7,5) =0 =i = j)
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< (Vi,j € N)(de(i,7) >0V i=j)

<= (Vi,j € N)3Fk € N)(pe(i, 5, k) > 27F Vi = j)

Therefore, {e : d. is a metric} is II within PolSp.

Next, we show that {e : d. is a metric} is II3-hard within PolSp. For each n € N,

let a,, := 2n and b,, := 2n + 1. Then

N={a,:neN}u{b,:neN}

Let A be a II§ set. Then there exists a computable relation R4 such that for all

eeN,

e € A<= VndsRu(e,n,s).

For each e € N, we define a partial computable function . uniformly in e as follows.

For all n,m,k € N, let

1 ifn#m
we(an7ama k) - ¢e<bnabma k) =

0 ifn=m

For all n,m, k € N with m # n, let

we(ana bma k) = ¢e(bm,an, k’) =1.

At stage s where s € N: For each n < s, we do the following:
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ale,n,s), then let s, := minqys : Rale,n,s ); and for a € N let
1) If R hen 1 in{s': R ! d for all £ € N, 1

27k ifk<s,
¢e<am bm k) = ¢e(bnv Qn, k) -
275 itk > s,

(2) If =Ra(e,n,s), then for all £ < s such that ¥.(an, b,, k) and 1.(b,, a,, k) have

not been defined yet (to avoid conflicts with (1)), we let

Ve, bp, k) = 1he(bn, an, k) = 27"

This ends the construction.

Note that if we do (1) for (ay,,b,) at some stage sq, then we will never do (2) for

(an,by) at or after stage sq.

By the s-m-n Theorem, there is a computable function f such that @) = .

for all e € N.

We claim that for all e € N, (. induces a pseudometric and

e € A <= dj( is a metric.

If e € A, then for each n € N, there is the least s, € N such that R4(e,n, s,,), and
so we will do (1) for (a,,b,) at stage s = s,,. Hence ¥ (an, by, k) = e (b, an, k) = 275"
for all £ > s,. It follows that o) induces a pseudometric, namely dy.), where

dfe)(an, bp) = dg(e)(bn, an) = 27 > 0. Therefore, dy () is a metric.
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If e ¢ A, then there is an n € N such that Vs—R4(e,n,s). So we will never
do (1) for (ay,,by,), and we will do (2) for (a,,b,) at every stage s > n. Hence
©1(e)(@ns by k) = ©p(e)(bny an, k) = 27F for all k € N. Tt follows that ¢y induces a

pseudometric, namely dy), where dy((ay,b,) = klim ©1(e)(@n, by, k) = lim 277 =0
—00

k—o0

but a,, # by,. Therefore, dy () is not a metric.

We conclude that {e : d. is a metric} is T13-hard within PolSp. O
Proposition 2.0.5. The set {e € N : M, is infinite} is 113 within PolSp.

Proof. Note that for all e € PolSp, since (N, d,) is dense in M., we have

M, is infinite <= there are infinitely many (4, j) € N? such that d, (i, j) # 0
> (Vn € N) (3,5 > n) (de(i, j) # 0)

s (Yn € N) (3i,j > n) (3k € N) (Jp. (i, j, k)| > 27F+1).

Therefore, {e : M, is infinite} is II within PolSp. O

Proposition 2.0.6.
(1) The set {e € N: M, is infinite} is 1US-hard within PolSp.
(2) The set {e € N: M, is unbounded} is 113-hard within PolSp.
Proof. For each e € N, we effectively construct a Polish metric space ({x; : i € N}, d)

uniformly in e (i.e. we construct a partial computable function v, that induces a

metric d (d depends on e), and the construction is effective uniformly in e) as follows:

Stage 0: Let s := 0, d(xs,,zs,) := 0, and go to stage 1.
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(Formally, when we let d(x;,z;) := ¢, where i,j € N and ¢ € Q, it means that we

define ¥, (7, 5, t) := q and 1.(7,4,t) := ¢ for all t € N.)

Stage n + 1 where n € N: For each s > s, starting from s = s, + 1, we check if

©e.s(n) ] until we find (if ever) the least s > s,, such that ¢, s(n) .
If pes(n)T, then we let
(1) d(xs,zj) :=0for all j € {sp,...,s},
(2) d(zs,xzj) =n—iforall j € {s;,...,si11 —1}andie{0,...,n—1},
and then we check for the next value of s.

Whenever we find (if ever) the least s > s, such that ¢, 4(n) |, then we let

Sp+1 = min{s’ > s, : s (n)}} = s, and we let
(1) (5,41, %5 p0) =0,
(2) d(zs,,,,zj) =n+1—iforall j€{s;...,s,011 —1}and i€ {0,...,n},
and then go to stage n + 2.
This ends the construction.

Note that the construction is effective uniformly in e. So . is a partial com-
putable function, and by the s-m-n theorem, there is a computable function f : N — N

such that @) = 1. for all e € N.

Note that if e € Tot, then we obtain an infinite Polish metric space

({x; : i € N},d) and an infinite set {s, : n € N} C N where

(1) 25, = 25,41 ="+ =1a,,,-1 forall n e N,
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(2) d(xs,,,,xs) =n+1—iforalli <n+1andneN.

So after identifying points with zero distance, we obtain the space ({zs, : n € N}, d).
Using the map =, — n, this space is isometric to the Polish metric space (N, dy)
with dy(%,j) := |i — j|. Therefore, M) = (N, dy) is an infinite Polish metric space,
and it is also unbounded.

On the other hand, if e ¢ Tot, say N := min{n € N: ¢.(n)1}, then we obtain a

finite Polish metric space ({z; : i € N}, d) and a finite set {sg, s1,...,sny} € N where
(1) x5, = 25,41 =" =1x5,,,-1 forall n <N,
(2) x5 = zg, for all s > sy,
(3) d(zs,,,,2s) =n+1—iforalli<n+1andn < N.

So after identifying points with zero distance, we obtain the space ({zs,, s, , - - -, Tsy 1+ d)-
Using the map x5, — n, this space is isometric to the finite Polish metric space
({0,1,..., N}, dn) with dn(4, j) := |i — j|. Therefore, My = ({0,1,...,N},dy) is a

finite Polish metric space, and it is also bounded.

From the above argument, we have that there exists a computable function

f N — N such that for every e € N, we have f(e) € PolSp,

e € Tot <= My is infinite,

e € Tol <= My is unbounded.

Therefore, since Tot is I13-hard, {e : M, is infinite} and {e : M, is unbounded} are

I19-hard within PolSp. [
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By Proposition 2.0.5, Proposition 2.0.6 and Remark 2.0.3, we have the following.

Theorem 2.0.7. The set {e € N : M, is infinite} is 11S-complete within PolSp, and

so it is I13-complete.

The following theorem says that there is a uniform way to pass from an index
e such that M, is infinite, to an index ¢ such that M; = M, and d; is a metric.
Therefore, if (p;);en is a computable presentation of an infinite metric space, then we

can assume without loss of generality that (p;);en has no repetitions, that is, p; # p;

for all i # j.

Theorem 2.0.8. There is a computable function f such that for all e € PolSp, if
M. is infinite, then M) = M, and dy ) is a metric. Furthermore, the isometries
between Mgy = M, are computable uniformly in e in the sense that there is a sequence
(ge)een of partial computable functions, uniformly in e, such that for all e € PolSp,
if M, is infinite, then g. : (N,dsey)) = (N,de) is a computable isometry, and so it

extends (uniquely) to a computable isometry ge : Mgy — M.

Proof. For each e € N, we define a partial computable function g : N — N uniformly

in e by induction as follows:

Let g.(0) = 0. For each n € N, assuming by induction that g.(m) | for all
m < n, we search by dovetailing until we find the least pair (if exists) (i, k) such that
and @, (i, go(m), k) > 27% for all m < n. Then we let g.(n + 1) = i. Otherwise, we

let ge(n+1) 7.

Claim. For all e € PolSp, if M, is infinite, then g, is total, range(g.) is dense in M,

and de(ge(n), ge(m)) > 0 for all distinct n,m € N.
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Let e € PolSp. Assume that M, is infinite. Then ¢, is total, d. is the pseudo-
metric induced by ¢, and |p.(4, j, k) — d.(i, )| < 27% for all 4, j, k € N.

First, we show that g. is total. From the definition of g., we have g.(0) }= 0.
Let n € N and assume by induction that g.(m) | for all m < n. Since M, is infinite,
there must be an ¢ € N such that d (i, g.(m)) > 0 for all m < n. (Otherwise, we

would have |M,| < n + 1, a contradiction.)

Suppose for a contradiction that (Vk € N)(Im < n)(pe(i, go(m), k) < 27%). Then

there must be an m < n such that ¢.(i, g.(m), k) < 27% for infinitely many k.

So for each K € N, there is a k > K such that ¢.(i, g.(m), k) < 27% and so

0 < de(i, ge(m)) < @eli, ge(m), k) +27F < 27F 4 o7F = g7kl < o=KL

Taking limit K — oo, we have d.(i, g.(m)) = 0, but d.(i, g.(m)) > 0, a contradiction.

Therefore, there is a k € N such that ¢.(i, g.(m), k) > 27% for all m < n. So

ge(n + 1) |. We conclude that g, is total, and so it is computable.

Since g, is total, the definition of g, ensures that for all n € N, there is a k € N

such that ¢.(g.(n + 1), g.(m), k) > 2% for all m < n. Hence for all m < n,

do(ge(n + 1), ge(m)) > @e(ge(n + 1), ge(m), k) —27% > 27F —27F =,

It follows that d.(ge(n), ge(m)) > 0 for all distinct n,m € N.

It remains to show that range(g.) is dense in M,. Since (N,d.) is dense in M,,
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it suffices to show that for every i € N, i € cl(range(g.)). Let i € N. If i € range(g.),

then i € cl(range(g.)). Assume i ¢ range(ge).

We will show that (Vk € N)(3j. € range(ge))(pe(i, jx, k) < 27%). Suppose for a

contradiction that there is a k € N such that (V5 € range(ge))(@e(i, j, k) > 27F).

Let A:={i' e N: (7, k') < (i, k) for some k' € N}. Then A is finite. Let n € N.
Since ¢, is total, for each pair (i, k') < (i,k) we can check in finitely many steps
whether it works in the sense that . (i’, g.(m), k') > 27% for all m < n. If there is
the least such pair, say (i,, k,) < (i, k), we will let g.(n + 1) := i,. Then i,, € A and
in # ge(m) for all m < n. Since i ¢ range(g.), ge(n + 1) # i, and so there must be
the least such pair. (Otherwise, since the pair (i, k) works (by assumption), we will
let ge.(n + 1) = 4, a contradiction.) It follows that ,’s are all distinct and 4,, € A for

all n € N. But A is finite, a contradiction.

Therefore, for every k € N, there is a jj, € range(g.) such that o, (i, ji, k) < 27F.

Taking limit k& — oo, we have that klim de(i,7k) = 0. So (jr)ken is a sequence in
—00

range(g.) that converges to i. Hence i € cl(range(g.)). We conclude that range(g.)

is dense in M,.
This ends the proof of the claim.

Since g, is partial computable uniformly in e, by the s-m-n Theorem, there is a

computable function f such that for all e, 7, 7,k € N,
SOf(e) (i,j, k) = @e(ge(i)a ge(j)a k)

We claim that for all e € PolSp, if M, is infinite, then My,) = M, and dy)
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is a metric. Let e € PolSp and assume that M, is infinite. By Claim, g. is total,
range(g.) is dense in M, and d.(g.(n), g.(m)) > 0 for all distinct n, m € N. So for all

distinct n,m € N,

dy(o(n,m) = 1 500 (n,m, k) = T @ (ge(n), 6o (), ) = dofge(n), go(m)) > 0.

k—o00

Hence dy() is a metric and g. : (N,ds.)) — (N,d.) is distance-preserving. There-
fore, since range(g.) is dense in M, and g, is computable, g. extends uniquely to a

computable isometry ge : M) — M., and so M) = M. Il
Theorem 2.0.9. The set {e¢ € N: M, is bounded} is ¥.9-complete within PolSp.

Proof. By Proposition 2.0.6, {e : M, is bounded} is ¥9-hard within PolSp.

Note that for all e € PolSp, since (N, d,) is dense in M., we have

M, is bounded <= (IN € N)(Vz,y € M,)(de(z,y) < N)

& (AN € N)(Vi,j € N)(du(i, ) < N)

Since “d.(i,7) < N7 is a I1Y statement, {e : M, is bounded} is X9 within PolSp. [J

Next, we will show that the set {e € N : M, is bounded} is d-X9-complete by

using the following fact.

Fact 2.0.10. For every X9 set A, there is a computable sequence (Ay)sen of sets such
that for all e € N,

e € A<= 3Jt(Vs > t)(e € As).
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Proof. Let A be a 9 set. Since Fin := {e : dom(ip,) is finite} is X3-complete, there

is a computable function f such that for all e € N,

ec A<= f(e) € Fin.

Note that the projections g, 7 : N — N defined by

7o : (n,s) —nand m : (n,s) — s

are computable functions. Also note that for all m € N, there exists a u € N such

that for all n,s € N, if (n,s) > u, then n > m. So for all e € N,

e € A <= dom(yy()) is finite
<= Im(Vn > m)(¢se(n) 1)
<= 3Im(Yn > m)(Ys)(¢s(e),s(n) 1)
= Ju(Vo > u)(v = (n,s) = ©5e).(n) 1)

= Ju(Vv > u)(Ls(e)m @) (To(v)) 1).

For each v € N, let A, := {e : @f(e)m@) (m(v)) T}. Then (A,)yen is a computable

sequence of sets and for all e € N,

e € A<= JuVv > u)(e € A,). O

Theorem 2.0.11. The set {e € N : M, is bounded} is d-39-complete
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Proof. Since {e : M, is bounded} is X9 within PolSp and PolSp is I13, we have that

{e: M, is bounded} is d-39. Tt remains to show that it is d-X9-hard.

For each n € N, let a,, := 2n and b,, := 2n + 1. Then

N ={a, :n e N}uU{b, :n e N}

Let C be a d-X set, say C = A\ B where A, B are ). By Fact 2.0.10, there
exist a computable sequence (Ay)sen of sets and a computable relation Rp such that

for all e € N,

e€ A<= 3Jt(Vs >t)(e € Ay),

e € B <= dnVsRg(e,n,s).

For each e € N, we define a partial computable function 1. uniformly in e as follows.
Let
o Ye(ag,bn, k) = Ye(bn,a0, k) =1for all n, k € N,
o Ye(an,a,, k) =0 forall n,k €N,
o Ve(bp, by, k) =1 for all n,m, k € N with n # m.
At stage s where s € N: We do the following:
(1) For each n < s, if (3t < s)=Rp(e,n,t), then let 1 (b, by, k) = 0 for all k € N,

(2) If s > 0 and e € Ag, then for all k € Nand u € N\ {a; : i > s}, let

Ve(as, u, k) = Ye(u, as, k) = e(as_1, bo, k).
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(3) If s> 0 and e ¢ A, then for all k € Nand v € N\ {a; : i > s}, let

we(a&ua k) - ¢e<u7 g, k) - we(as—la b07 k) + 1.

This ends the construction.

By the s-m-n Theorem, there is a computable function f such that @) = 1.

for all e € N.
We claim that foralle € N, e € A\B <= My, is a bounded Polish metric space.

If e € B, then there is an n € N such that VsRg(e,n,s). So we will never do
(1), that is, for all k& € N, ¢.(by, by, k) is never defined in the construction. Hence

©f(e) = Ve is not total, and so () does not induce a pseudometric.

If e ¢ B, then for each n € N, there is an s, € N such that =Rg(e,n, s,), and
so we will define 1. (by,, b,, k) = 0 for all k& € N at or before stage s = max{n, s, }. It
follows that o) = 1. is total and it is easy to see that o) induces a pseudometric,

namely dg.). In fact, dy() is a metric and dy()(u,v) € N for all u,v € N.

If e¢ Bande € A, then since e ¢ B, @) induces a pseudometric. Since e € A,
there is a t € N such that (Vs > t)(e € A;), and so we will do (2) and never do (3)
at every stage s > t. It follows that {dy)(as,u) : s,u € N} is bounded. Now it is
clear from the construction that {ds.)(u,v) : u,v € N} is bounded, and so My is
bounded.

Ife¢ Bande¢ A, then since e ¢ B, ¢y induces a pseudometric. Since e ¢ A,
we have Vt(3s > t)(e ¢ As), and so we will do (3) infinitely many times. It follows

that lim dy(as, by) = oo. Therefore, My is unbounded.

§—00
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From all cases, we conclude that for all e € N,

e € A\ B < My is a bounded Polish metric space.

Therefore, {e : M, is bounded} is d-X9-hard. O

Theorem 2.0.12.
(1) The set {e € N: |M,| > 1} = PolSp is 1I3-complete.
(2) Theset{e e N:|M,| =1} ={e € N: M, ={0}} is I9-complete within PolSp,
and so it is I13-complete.
Proof. Tt is clear that {e : |[M,.| > 1} = PolSp and {e : |M.| =1} = {e : M. = {0}}.
So (1) follows from Theorem 2.0.1.

Note that for all e € PolSp,

|Me| =l (VZ,] S N)(de(z>]> = O)

Thus, since “d,(i,j) = 0" is a II{ statement, {e : |M,| = 1} is 11 within PolSp.

It remains to show that {e : [M.| = 1} is II%-hard within PolSp. Let A be a 119

set. Then there is a computable relation R(e,y) such that for all e € N,

e € A<= YyR(e,y).

For each e € N, we construct a computable metric space (X, d) uniformly in e

as follows.
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For each y € N, starting from y = 0, we check if R(e,y) until we find (if ever)

the least y such that = R(e, y).
For each y € N such that R(e,y), we let d(i, ) := 0 for all ¢, 5 € {0,...,y}.
Whenever we find (if ever) the least y such that —=R(e,y), we let
e d(i,y) =1forallie N\ {y}.
 dy,y) =0.
e d(i,j)=0foralli,j € N\ {y}.
Then we stop the construction.
This ends the construction.

Let (X.,d) be the completion of the resulting pseudometric space (N, d). The
key point is that, whenever we find (if ever) the least y such that —R(e,y), we make

sure that there are i,y € X, such that d(i,y) > 0, and so |X.| > 1.

Note that for all e € N,

e€ A= VyR(e,y) = (Vi,j € N)(d(i,j) =0) = | X| =1
e¢ A= Jy-R(e,y) = (Fi,y e N)(d(i,y) = 1) = (Fi,y € X.)(d(i,y) = 1)

— | X,| > L.

It follows that A is many-one reducible to {e : |M.| = 1}. Therefore, {e : |M.| = 1}
is TI%-hard within PolSp. [

Theorem 2.0.13. Let n > 2.
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(1) The set {e € N : |M,| > n} is X9-complete within PolSp, and so it is 13-
complete.

(2) The set {e € N : |M,| = n} is d-30-complete within PolSp, and so it is 113-

complete.

Proof. Note that for all e € PolSp,

M| > n <= (3x1,...,2, e N)(Vi,j € {1,...,n})(i # j = dc(x;,2;) > 0),

M| =n <= |M.| >nA-(|]M| >n+1).

Thus, since “de(x;, ;) > 07 is a XY statement, {e : |M,| > n} is XY within PolSp,

and so {e: | M| =n} is d-3? within PolSp.

It remains to show that {e:|M.|>n} is ¥%hard within PolSp, and
{e: M, =n} is d-X{-hard within PolSp. Let (X,dx) be any finite computable

metric space with | X|=n — 1, say X = {xg,...,Tn 2}

Let C be a d-X9 set. Then C' = A\ B where A, B are X! sets. So there are

computable relations RY(e,y) and R%(e,y) such that for all e € N,

e € A= EIyR%(e,y),

e € B <= JyRY%(e,v).

Define computable relations R4(e,y) and Rg(e,y) by

Ra(e,y) <= (32 < y)RY(e, 2),

Rp(e.y) <= (3z < y)Ryp(e, 2).
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Then for all e,m € N,

e € A<= (Jy > m)Rale,y),

e € B<= (Jy > m)Rg(e,y).

Since X is finite, there is an r € N such that dx(z,y) < r for all z,y € X. For

example, we can choose any r € N such that r > diam/(X).

For each e € N, we construct a computable metric space (X, d) uniformly in e

as follows.
Step 1: Let d(i,j) = dx(x;, ;) for all 4,5 € {0,...,n —2}.

Step 2: For each y > n — 1, starting from y = n — 1, we check if R(e,y) until

we find (if ever) the least y > n — 1 such that R4(e,y).
For each y > n — 1 such that =Ra(e,y), we let
e d(i,j)=0foralli,je{n—1,...,y},
o d(i,j)=d(i,n—2) =dx(x;,rp o) foralli<n—2and je{n—1,...,y}.

Whenever we find (if ever) the least y > n — 1 such that R4(e,y), we call it y4

and let
o d(i,ya) =7 forallie{0,...,ys — 1},
« d(ya,ya) =0.

Then we go to Step 3.

Step 3: We have found y4 from Step 2. For each y > y4 + 1, starting from
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y =1ya+ 1, we check if Rp(e,y) until we find (if ever) the least y > y4 + 1 such that

Rg(e,y).
For each y > y4 + 1 such that =Rg(e,y), we let
e d(i,j)=0foralli,jc{ys+1,...,y},
o d(i,j) =d(i,ya) foralli € {0,...,ya} and j € {ya +1,...,y}.

Whenever we find (if ever) the least y > y4 + 1 such that Rg(e,y), we call it yp

and let
e d(i,j)=d(i,yg) =7 for all i < yp and j > yp,
e d(i,j) =0forall i,j > yg.
Then we stop the construction.
This ends the construction.

Let (X.,d) be the completion of the resulting pseudometric space (N, d). The
idea is that, we put a copy of X into X, at Step 1. Then, at Step 2, we search for the
least y > n — 1 such that Ra(e,y). Whenever find such a y, we call it y4, put y4 into
X, as a new element, and go to Step 3. At Step 3, we search for the least y > y4 + 1
such that Rp(e,y). Whenever find such a y, we call it yg, put yp into X, as a new

element (yp # ya), and stop the construction.

If e ¢ A, then there is no y > n — 1 such that R4(e,y). So we will never put a
new element y,4 into X, in Step 2, and never go to Step 3. From the construction,
we identify all points ¢ > n — 1 with the point n — 2. So (X,,d) = (X, dx), and so

| Xe| =|X]=n—-1<n.
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If e € A, then there is a y > n — 1 such that R(e,y), and we will call it y4.
From the construction, we will put y4 into X, as a new element by letting d(i,y4) = r
for all i < ya. The fact that dx(x,y) < r for all x,y € X ensures that d satisfies the
triangle inequality. Then we identify all points i € {n —1,...,y4 — 1} with the point
n—2. So | X.| > |X|+1=n. After we have found y4, we go to Step 3 to search for

the least y > y4 + 1 such that Rg(e,y).

If e € A\ B, then, since e € A, we will put y4 into X, and go to Step 3. Since
e ¢ B, there is noy > n—1 such that Rg(e,y). So we will never put a new element yp
into X, in Step 3. From the construction, we identify all points ¢ > y4+1 with y4. So

X, is isometric to the space X with one extra element y4. Hence | X.| = | X|+1=n.

If e € AN B, then, since e € A, we will put y4 into X, and go to Step 3. Since
e € B, there is a y > ya + 1 such that Rg(e,y), and we will call it yg. From the
construction, we will put yp into X, as a new element by letting d(i, j) = d(i,yp) = r
for all © < yp and 7 > yp. Then we identify all points ¢ > yp + 1 with yg. So X, is
isometric to the space X with two extra elements y4 and yp. Hence | X.| = | X|+2 =

n+1>n.

We can conclude as follows:

et A= (X,,d) = (X,dx) = [X| = [X[=n—-L

e€ A= |X.|>|X|+1=n.

ec A\B= X, 2 XU{ya} = |X|=|X]+1=n.

ec ANB = X, =2 X U{ya,yp} = |Xc| = |X|+2=n+1.
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It follows that C' = A\ B is many-one reducible to {e: |M.| = n}. Therefore,

{e:|M.] =n} is d-X9-hard within PolSp.

If we let A be any Y9-complete set and B be any XY set, and use the same
construction, then we will have that A is many-one reducible to {e: |M.| > n}, and

so {e: |M,| > n} is ¥9-hard within PolSp. O



Chapter 3

Isomorphism Problems and
Embedding Problems

In this chapter, we consider isomorphism problems and the following embedding prob-

lems for computable metric spaces:

o {(i,7) € N*: M; — M;}: Given a pair of computable metric spaces M; and

M;, determine if M; embeds into M;.

e« {e€N: X < M.,}: For a fixed computable metric space X, given a computable

metric space M., determine if X embeds into M,.

e« {eeN: M, — X}: For a fixed computable metric space X, given a computable

metric space M,, determine if M, embeds into X.

Throughout this chapter, we fix an effective list (7,).cn of all primitive recursive
trees T, € N<N. By Fact 1.1.19, the set 7 := {e € N : T, has an infinite path} is

Y1-complete. Thus, by the s-m-n Theorem, to show that an index set of the form

47
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I = {e € N: M, has property P} is Yi-hard, it is enough to build a computable

sequence (X.)een of Polish metric spaces such that for all e € N,

T, has an infinite path <= X, has property P.

3.1 Basic Results

First note that Theorem 2.0.2 gives the following remark.

Remark 3.1.1. For every computably presentable metric space X, the sets

{feeN: M, =2 X} {eeN: X < M.} and {e e N: M, — X} are [13-hard.

Proposition 3.1.2. The set {(i,j) € N*: M; & M;} is X1.

Proof. Let I := {(i,j) € N* : M; = M;}. Then (i,5) € I if and only if M; and M;
are Polish metric spaces and M; = M;. Since PolSp is I3, it remains to show that
“M; = M;” is a ¥{ statement. The argument below is essentially the same as in the

proof of Lemma 3.2 in [4].

For a function f : N> — N, we define f,,(n) := f(m,n) for all m,n € N. Let
pm denote the m-th rational point in M;, and ¢,, denote the m-th rational point in
M;. We will show that M; = M; if and only if there are functions f, g : N> — N that

satisfy the following conditions.

(1) For all m,n,l € N,

dj(gf(m,n)a Qf(m,n+l)) S 27" and di(pg(m,n)apg(m,nJrl)) < 27",
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(2) For all m,m’,n,n’ € N,

|di(pm7pm’) - dj(Qf(m,n)7 Qf(m’,n’))| < 27" + 2—n/ and

(3) For all m,n,n’ € N,

di(pmapg(f(m,n),n’)) S 27" + 2—n’ and dj(QTm Qf(g(m,n),n’)) S 27" + 2_71,-

Note that conditions (1), (2) and (3) are I19 statements.

(=) Assume that M; = M; via an isometry « : M; — M;. Let §:= a~'. Then
there exist f, g : N> — N such that for every m € N, f,, is a Cauchy name of a(p,,)
in M; and g, is a Cauchy name of 3(g,,) in M;. So f and g satisfy condition (1),
n11_1>1010 Af(mm) = (pm) and Jgrgopg(mm) = B(gm). Note that for all m,m’,n,n" € N,

since « is distance-preserving, we have

di(Pms ) = dj(a(pm), @ (prr))
S d]<a(pm)7qf(mn ) + d; (Qf (m.n)s qf(m’ n’ ) + d; (qf m/n'), Oé(pm’))

< 2 n + d (Qf mn) Qf(m/m/)) + 27nl.

Similarly, we have that d;(q;(mny, @remrn) < di(Pm,Pmr) + 27" + 27, Hence
\di (P D) — A (A mm) s Qpome )| < 277 427 " Since § is distance-preserving, by
the same argument, we have that |d;(¢m, ¢m') — di(Pg(mn)> Pgm/ )| < 27" + 2= So

condition (2) is satisfied.
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Now note that for all m,n,n’ € N, since f(a(pn)) = pm and S is distance-

preserving, we have

di(pmapg(f(m,n),n’)) = di(ﬁ<a(pm))’pg(f(mvn):n'))
< di(B(a(pm)), B(arimmy)) + di(B(qfnm))s Po(f(mom) )

= dj<05(pm)a qf(m,n)) + di(ﬁ(qf(m,n))apg(f(m,n),n’))

)

Similarly, we have d;(gm, qf(gmnynny) < 27"+ 2. So condition (3) is satisfied.

(<) Assume that there are f,g: N? — N that satisfy condition (1), (2) and (3).
By condition (1), we have that for all m € N, f,, is a Cauchy name in M; and g, is
a Cauchy name in M;, and so, in particular, nh_)rglO qf(mn) exists in M; and nh_{glo Dg(m,n)
exists in M;. Define a(p,,) = T}Ln;o Qf(mn) and B(gm) = Jilﬁlopg(m:n)' From condition
(2), by taking n,n’ — oo, we have that « is distance-preserving on the rational points

Pm, and so it has an isometric extension to M;, also denoted by «. Similarly for f.

We claim that S(a(pn)) = pm for all m € N. Suppose for a contradiction
that S(a(pm)) # pm for some m € N. Then, by continuity of 5, nh_)nolo B(qfmmn)) =
B(c(pm)) # Pm- So there must be an n € N such that d;(pm, B(qf@mn))) > 27". Hence
there is an n’ € N such that d(pm, Pg(rmm)n)) > 27" + 2-" contradicting condition
(3). Therefore, f(a(pm)) = pm for all m € N. Similarly, we have a(5(¢mn)) = ¢ for
all m € N. Thus, by continuity, o' = 8. We now conclude that o : M; — M; is an

isometry, and so M; = M;.

Now we have proved that M; = M; if and only if there are functions f, g : N> — N

that satisfy condition (1), (2) and (3). Thus, since condition (1), (2) and (3) are
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I1Y statements, it follows that “M; = M;” is a ¥{ statement. Therefore, the set

Proposition 3.1.3. The set {(i,j) € N? : M; = M;} is ¥1-hard.

Proof. We use the fact that there is a computable sequence (H.)een of directed
graphs such that the set {(i,j) € N* : H; = H;} is Xj-complete (see [5]). By
applying the coding method in Section 3.1 of [6] to the sequence (H.)cen, we ob-
tain a computable sequence (Ge)een of connected undirected graphs such that the set

J:={(i,j) € N*: G; 2 G;} is ¥}-complete.

Let I := {(i,j) € N? : M; = M;}. To show that I is ¥i-hard, it is enough to
show that J is many-one reducible to I. Recall that we can think of a connected
graph G as the Polish metric space (G,dg) where dg is the shortest path metric.
Then, by the s-m-n Theorem, there is a computable function f : N — N such that

for every e € N, My = (Ge, dg. ).

For a graph GG, we let V7 denote the set of vertices in GG, and Eg denote the set of

edges in G. We claim that for every 4,5 € N, G; = G (as graphs) <= M) = My(;).

(«=) Assume My = My via an isometry « : (G4, dg,) — (Gj,dg;). Then for

every u,v € N,

(u,v) € Eg, & dg,(u,v) =1 & dg,(a(u),a(v)) =1 & (a(u),a(v)) € Eg,.

Therefore, o : G; — G is a graph isomorphism, and so G; = Gj.

(=) Assume G; = G; via a graph isomorphism « : G; — G;. Then for any

path (vg,v1,...,v) in G;, the sequence (a(wvp),(v1),...,a(vx)) is a path in Gj.
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This implies that for every u,v € Vg,, dg,(a(u), a(v)) < dg,(u,v). Similarly, since
a': G; — G; is a graph isomorphism, we have that dg, (o' (), a7 (y)) < dg,(z,y)
for every x,y € Vg,, and so dg,(u,v) < dg,(a(u),a(v)) for every u,v € Vig,. Hence

da,(u,v) = dg,(a(u),a(v)) for every u,v € Vg,. Therefore, a : (Gy,dg,) — (G, dg,)

J

is an isometry, and so My = My(j).

Define g(i,7) := (f(i), f(j)). Then g is a computable function and by the claim,
we have that (i,7) € J <= ¢(i,j) € I for every i,j € N. Therefore, J is many-one
reducible to I, and so I is ¥}-hard. O

By Proposition 3.1.2 and Proposition 3.1.3, we have the following.

Theorem 3.1.4. The set {(i,7) € N? : M; = M;} is X1-complete.

Proposition 3.1.5. The set {(i,j) € N? : M; < M,} is 37.

Proof. From the argument in the proof of Proposition 3.1.2, we have that M; — M;
if and only if there is a function f : N? — N that satisfies the following conditions.

(1) For all m,n,l € N,

d] (qf(mﬂ’b)a Qf(m,n-‘,—l)) S 27",

(2) For all m,m’,n,n’ € N,

\di (P> Pmr) — A (Qpemm)s Qpmeny)| <2774+ 277

Thus, since conditions (1) and (2) are I} statements, the set {(i,7) € N* : M; — M,}

is 21. O
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Proposition 3.1.6. For every computably presentable Polish metric space X, the
sets {e EN: X — M} and {e e N: M, — X} are ¥}.

Proof. Follows immediately from Proposition 3.1.5. O

Proposition 3.1.7. The set {e € N: (N,dy) < M.} is X1-complete, where dy is the

usual metric on N.

Proof. Let I :={e € N: (N,dy) — M.}. Since dy is computable, there is an ey € N
such that dy = d, (i.e. dy is the metric induced by ¢.,). So M., = (N,dy). Thus,

by Proposition 3.1.6, I is X1.

To show I is Yl-hard, it is enough to build a computable sequence (X,)cen of

Polish metric spaces such that
T. has an infinite path <= (N, dy) — X..
Fix a computable bijection i + ¢; from N onto N<N such that oy = \. For each
e € N, we define a pseudometric d (depending on e) on N as follows.
o If o, ¢ T., let d(i,0) := 0 and d(i, j) := d(0, j) for all j € N.
o If 0;,0; € T¢, let d(i, j) be the length of the shortest path in 7, from o; to o;.
o Let d(i,j) =d(j,i) for all 4,5 € N.

Let X, be the completion of (N, d). Note that the construction of X, is effective

uniformly in e. Thus, (X,)cen is a computable sequence of Polish metric spaces.

It is easy to see that for every e € N,
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T, has an infinite path <= (N, dy) — X..
Therefore, I is ¥1-hard, and so it is X1-complete. O
Theorem 3.1.8. The set {(i,7) € N*: M; — M;} is 3i-complete.

Proof. Let I :={(i,j) € N*: M; — M} and J := {e € N: (N,dy) < M.}. Fix an
index ey € N such that (N,dy) = M,,. So for every e € N, e € [ <= (eg,e) € J.
Thus, since J is Yl-hard by Proposition 3.1.7, I is also Yl-hard. Therefore, by

Proposition 3.1.5, I is ¥}-complete. O

3.2 Results on Finite Metric Spaces

For a finite computable metric space X, the embedding problem M, — X is quite
simple. This is because P(X) is finite, and so there are only finitely many metric

spaces (up to isometry) that embeds into X.

Theorem 3.2.1. For every computably presentable finite metric space X, the set

{e e N: M, — X} is I{-complete within PolSp, and so it is TI3-complete.

Proof. Let (X,dx) be a computably presentable finite metric space. Note that for all
e € PolSp,

M, — X <= M, is finite and (3f : M, — X)(f is distance-preserving)
<= (V finite Y C M,)(3f : Y — X)(f is distance-preserving)

— (v finite Y C N)(Elf Y — X)(\V/Z,j € Y)(de(za]) = dX(f(Z)vf(j)))
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Since X and Y are finite, the quantifier (3f : ¥ — X) is bounded. Therefore,
{e: M, — X} is IIY within PolSp.

It remains to show that {e : M, — X} is II{-hard within PolSp. We use a
similar argument as in the proof of Theorem 2.0.12. In fact, Theorem 2.0.12(2) is the

special case of Theorem 3.2.1 when | X| = 1.

Let A be a II9-complete set. Then there is a computable relation R(e,y) such
that for all e € N,

e € A<= VyR(e,y).

Since X is finite, there is an r € N such that dx(z,y) # r for all z,y € X. (For
example, we can choose any r € N such that r > diam(X).) So for any metric space

(Y, dy) such that dy(a,b) = r for some a,b € Y, we have Y < X.

For each e € N, we effectively construct a computable metric space (X.,d)

uniformly in e as follows.

For each y € N, starting from y = 0, we check if R(e,y) until we find (if ever)

the least y such that = R(e,y).
For each y € N such that R(e,y), we let d(i, ) := 0 for all i, 5 € {0,...,y}.
Whenever we find (if ever) the least y such that —=R(e,y), we let
e d(i,y) =rforalli e N\ {y},
* d(y,y) =0,
o d(i,j)=0foralli,je N\ {y}.

Then we stop the construction.
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This ends the construction.

Let (X.,d) be the completion of the resulting pseudometric space (N, d). The
key point is that, whenever we find (if ever) the least y such that —R(e,y), we make
sure that there are ¢,y € X, such that d(i,y) = r, which is not equal to any distance
in X, and so X, 4+ X.

Note that for all e € N,

e€ A= VyR(e,y) = (Vi,j € N)(d(i,j) =0) = (X.,d) =2 {0} = X, = X
e¢ A= Jy-R(e,y) = (Ji,y e N)(d(i,y) =r) = (Fi,y € Xe)(d(i,y) =7)

= X, % X.

It follows that A is many-one reducible to {e : M, < X}. Therefore, {e : M. — X}
is TI%-hard within PolSp. O

Corollary 3.2.2. Let X = {xz} be the one-point metric space.

(1) The set {fe e N: M, 2 X} ={e € N: M, — X} is IIY-complete within PolSp,

and so it is I13-complete.

(2) The set {e € N: X — M.} = PolSp is T13-complete.

Proof. Since X is the one-point metric space, it is clear that

{e: M. =X} ={e: M, — X} and {e: X — M.} = PolSp.

Then (1) follows from Theorem 3.2.1, and (2) follows from Theorem 2.0.1. N
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Note that the embedding problem M, — X is also simple for some infinite
computable metric spaces X. For example, if X contains an isometric copy of
every Polish metric space (e.g. the Urysohn space U, the space C[0,1], etc), then
{e e N: M, < X} = PolSp, which is [I3-complete.

Another example is the metric space (N, cAli) defined by c?l(z, j)=1for all i # j.
Then for all e € PolSp,

M, < (N,d\) <= (Vi,j € N)(de(i, j) = 1 V de(i, j) = 0).

Therefore, {e: M, — (N, cﬂ)} is 119 within PolSp. By the same argument as in the
proof of Theorem 3.2.1 (we can choose any r € N\ {0,1}), {e: M, — (N, d;)} is

[19-hard within PolSp, and so it is I1{-complete within PolSp.

Theorem 3.2.3. For every computably presentable finite metric space X with
| X| > 1, the set {e € N : M, = X} is d-X0-complete within PolSp, and so it is

I19-complete.

Proof. Let X be a computably presentable finite metric space with |X| > 1, say

X =A{zo,...,2n_1}. Since |X| = n, we have that for all e € PolSp,
M, =2 X < |M,| =nANM,— X.

By Theorem 3.2.1, {e: M, X} is IIY within PolSp. By Theorem 2.0.13,
{e:|M.] =n} is d-X? within PolSp. Therefore, {e : M, = X} is d-X? within PolSp.

It remains to show that {e: M, = X} is d-X0-hard within PolSp. Let X be

the Polish metric space obtained by removing the point x,_; from X. So we have



o8

X = {zg,21,...,2,_2} and |)}| =n—1. Since X is computably presentable, so is X.
Let C' be a d-X set. Then C = A\ B where A and B are ©¢ sets. Then there are

computable relations R4(e,y) and Rp(e,y) such that for all e € N,

e€ A< (Jy>n—1)Ra(z,y),

e€ B« (Jy>n—1)Rp(x,y).

Since X is finite, there is an r € N such that dx(x,y) < r for all z,y € X.

We construct a computable sequence (X.).en of Polish metric spaces by using
the same construction as in the proof of Theorem 2.0.13, but we work with X instead
of X, and we let y4 be a copy of the point z,,_; in X instead of just some new point.

That is, we modify Step 2 and leave Step 1 and Step 3 the same.

For each e € N, we effectively construct a computable metric space (Xe,d)

uniformly in e as follows.
Step 1: Let d(i, j) = dg(z;,z;) for all 4,5 € {0,...,n — 2}.

Step 2: For each y > n — 1, starting from y = n — 1, we check if R4(e,y) until

we find (if ever) the least y > n — 1 such that Ra(e,y).
For each y > n — 1 such that =R4(e,y), we let
e d(i,j)=0foralli,je{n—1,...,y},
o d(i,7) =d(i,n —2) =dg(x;, xn) foralli <n—2and j € {n—-1,...,y}.

Whenever we find (if ever) the least y > n — 1 such that R4(e,y), we call it y4

and let
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o d(i,ya) =dg(i,z,-1) forall i € {0,...,ya — 1},
* d(ya,ya) =0.
Then we go to Step 3.

Step 3: We have found y4 from Step 2. For each y > ya + 1, starting from

y =ya + 1, we check if Rp(e,y) until we find (if ever) the least y > y4 + 1 such that

Rg(e,y).
For each y > y4 + 1 such that =Rpg(e,y), we let
e d(i,j)=0foralli,j € {ya+1,...,y},
o d(i,j) =d(i,ya) for alli € {0,...,ya} and j € {ya +1,...,y}.

Whenever we find (if ever) the least y > y4 + 1 such that Rp(e,y), we call it yp

and let
e d(i,j) =d(i,yg) =r for all i < yg and j > yp,
e d(i,j)=0foralli,j > ygp.
Then we stop the construction.
This ends the construction.
From the construction, we have that for all e € N,
e A= (X d) = (X, dg) = |X.| = K| =n—1<|X| = X, %X,
c ccA\B= X, ¥ XU{ys} = X. ¥ X,

e € ANB = X, = XU{ya, yp} = | X.| = [X|+2 = n+1> |X| = X, % X.
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We conclude that for all e € N,

e € A\ B < (X,,d) = (X,dx).

It follows that C' = A\ B is many-one reducible to {e: M. = X}. Therefore,
{e: M, = X} is d-X0-hard within PolSp. O

To find the complexity of the embedding problem X < M, when 1 < |X| < oo,

we use the following theorem as the main tool.

Theorem 3.2.4. Fiz an effective list (T.)een of all primitive recursive trees T, C N<N,
Letr > 0 be a computable real. Then there is a computable sequence (X.)een of Polish

metric spaces such that for every e € N, the following conditions hold:

(1) X, is the completion of the tree T,, where we add weights to T, and use the

shortest path metric d.
(2) d(\ x) <r forallz € X..
(3) If T. has an infinite path, then there is an T € X, such that d(\,T) = r.

(4) If T. has no infinite paths, then there are no x,y € X, such that d(x,y) = r,
and so d(A\,x) <r for all x € X..

Proof. First, we show the following.

Claim 1. There is a computable strictly increasing sequence (7,)nen of rationals

converging to r such that ro = 0 and r,,.1 > r, + %(r —ry,) for all n € N.

Since r > 0 is a computable real, there is a computable strictly increasing se-
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quence (g, )nen of rationals converging to r such that ¢o = 0 and ¢, <7 < ¢, +27"

for all n > 0.
We define a subsequence (7,,)nen 0f (¢n)nen by induction as follows.
Let rg := g9 = 0.

Now let n € N and assume that we have defined r, such that r, = ¢, for some
m € N. Suppose that (VN > m)(Vk > 1)(qv < ¢m + 3(qx + 27 — ¢,n)). Then,

by taking limit & — oo, we have that (VN > m)(gy < ¢m + 3(r — ¢n)). Taking

N — oo, Wehaverﬁqm—ir%(r—qm),but qm+%(r—qm)<qm+(r—qm):r,a

contradiction. So there must be the least pair (N, k) such that N > m, k > 1 and

Since k > 1, we have g, + 27" > r, and so

1 _ 1 1
r”+1:qN>qm+§(qk+2 k_(Jm)>Qm+§(r_qm)zrn+§<r—rn).

This ends the construction of (7, )nen-

From the construction, it is clear that (7,).en is a subsequence of (g,)nen. SO

(rn)nen 18 a strictly increasing sequence of rationals converging to r. It is also clear

1

that rpy1 > 7, + 5(r —ry) for all n € N.

This ends the proof of Claim 1.

For each i € N, let w; := r;y; —r; > 0. Then > w; = r,,; for all n € N and
=0

7=
oo

dYow; = lim r, =7.
i=0 n—00

Note that (wy,)nen is strictly decreasing. This is because for all n € N, since
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Tpa1 > Th + %(r —1,), we have 2r, .1 > 2r, +r —1r, =1, + 7, and so

Wntl = Tnt2 = Tntl < T —Tptl < Tppl — Tn = Wy

Fix an effective list (0;);en of all finite strings in N<N with oy = A\. We construct

a computable sequence (X, )een of Polish metric spaces as follows.

For each e € N, we put weight w,, on each edge between level n and level n + 1

in the tree T,. Then we define a pseudometric d (depending on e) on N by

o il 0y e, let a(2,0) := 0 an 1,7) = ,7) tor all 7 € N, that 13, we identity
if T,, let d(z,0 0 and d(z, d(0,7) for all j € N, that i identif;

every o; € NN\ T, with oy = A,
o if 0;,0; € T¢, let d(i, j) := the length of the shortest path in 7, from o; to o;.

Let (X, d) be the completion of the resulting pseudometric space (N, d). There-
fore, X, is the completion of the tree 7T, with the shortest path metric d, where we
put weight w,, on each edge between level n and level n + 1. Note that the height of

o
each weighted tree T, is at most Y w; = r.
i=0

n o0
S w; = Tpaa >w; = limr,=r
1=0 i=0 n—o00
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We can compute the distances d(i, j) in term of wy’s and r,,’s as follows. For any
oi,0; € T, if 7 is the longest common initial segment of o; and o}, i.e. the longest

string in 7¢ such that 7 C ¢, and 7 C 05, then we have that

loi]—1 loj|—1
di,j) = Y wit Y wy = (Mo = 7r1) + (Floy| = Tr1) = Tlou] + Tyl = 27
p— p—
loi| -1
(If |7] = |0y, then 3" wy, = 0.)
k=r]

In particular, for any o0;,0, € T¢, if 0; C 0, then 7 = 0, and so
lojl—1

d(i,j) = D Wk ="y = o).
|

k=|0’¢

Claim 2. d(\, z) <r for all z € X..
Since gg = A, A is the rational point 0 in (N, d). Note that for all i € N,
|oi| -1
d(A\ i) = Z W = T)o,| < T
k=0
Thus, since (N, d) is dense in X, we have that d(\,z) <r for all z € X..
This ends the proof of Claim 2.

Claim 3. For all e € N, if T, has an infinite path, then there is an 7 € X, such that

d(\,T) =r.

Let e € N and assume that 7, has an infinite path, say g € NY. Then for each
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n € N, there is a unique ¢,, € N such that o;, = ¢ [ n. So ig = 0 and for all m,n € N,
A(ims in) = Toiy,| = Tlownll = |T1gtml = Tigingl = [7m — 7al.

Thus, since (7, )nen converges, (i, )nen is a Cauchy sequence in (X,,d). Hence, since

(Xe, d) is complete, (i, )nen converges to a point € X,.. Therefore,

d(\,7) = nll_rgo d(ig,im) = nllj}noo ro —Tm| =|ro—71|=[0—1| =7

This ends the proof of Claim 3.

Claim 4. For all e € N, if T, has no infinite paths, then there are no x,y € X, such

that d(z,y) = r, and so d(\,z) < r for all z € X_.

Let e € N. Since d(\,z) < r for all x € X, to prove Claim 4, we assume that

there are =,y € X, with d(z,y) = r, and then show that 7T, has an infinite path.

Since z,y € X, there are Cauchy sequences (i,)neny and (j,)nen in (N, d)
such that (i,)nen converges to = in X, and (j,)neny converges to y in X.. Then
lim d(i,, j,) = d(x,y) = 7.

n—o0
From the definition of d, we identify each o; € N<N\ T, with oy = A. So we can

assume without loss of generality that o;,,0;, € T; for all n € N.

Note that vy > ¢ + %(r —719) = %r, and so 2r; > r. Hence we can fix a § € Q

such that 0 < 6 < min{3r,2r; —r}.
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Then there is an N € N such that

(Vmyn > N)(|d(ins Gn) — 7 < 6 A d(imyin) < 6 A d(jms jn) < ). (4.1)

Claim 4.1. For all 7, j € N, if 0, 0; € T, are incomparable, then |d(i, j) —r| > 0.

Let i, 7 € N and assume 0, 0; € T, are incomparable. Then |o;| > 1 and |o;| > 1.

Let 7 be the longest common initial segment of o; and o;.

Case 7 = A: Then |7| = 0, and so

d(i,§) = Tio,) + Tioy| = 27}s) = Tlos| + Tloy| = 250 = Tloy| + oy 2 71+ 71 = 211

Hence d(i,j) —r > 2ry —r > 6, and so |d(i,j) — | > 0.

Case 7 # A: Then |7| > 1, and so

d(i,§) = Tioy| + Tjoy| = 2rjr| <7 +7 = 2rpp St — 2,

Hence r — d(i,7) > 2ry —r > 9, and so |d(i,j) — 7| > 6.
This ends the proof of Claim 4.1.

Claim 4.2. For alln > N,

either (A =0y, C 0j, Nip=0Aj, >0)or (A=0j, C o, ANjn=0A1,>0).

Let n > N. By (4.1), |d(in, jn) — 7| < 6, and so, by Claim 4.1, o;, and o, are

comparable.
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Case 0, C 0j,: If 0;, # A, then

d(lnajn) = Toj.| = o, | <r-— o, <r—r <r-— 57' <7r— 5,

but |d(in, jn) — 7] < d, a contradiction. Hence o;, = A = 0y, and so i,, = 0.

If 05, = A, then j, = 0 = i,, and so

1
|d(z’n,jn)—r|:|0—7’\:r>§7’>5,

but |d(i,,J,) — 7| < 6, a contradiction. Hence ¢, # . Therefore, j, > 0 and

Case 0;, C 0;,: Similarly, we have that A = 05, C 0;,, jn» = 0, and 4, > 0.

=

This ends the proof of Claim 4.2.

By Claim 4.2, without loss of generality, we can assume that A = o;, € 0,,,

iNZO, andjN > 0.

If o;, # X\ for some n > N, then
o 1
A(in; IN) = Tioi,| = Tlouy| = Tloi, = 70 = Tloy, | 271> 57 > 0,

which contradicts (4.1). So 0;, = A for all n > N. Thus, by Claim 4.2, we have that

foralln > N, A =0y, € 0j,, i = 0, and j, > 0. So for all n > N, d(iy, jn) =

=

d(0,jn) = 7s,,| < 7. Thus, since lim r,, | = lim d(in, j,) = r and (7 )nen is a
m n—o00 n n—00

strictly increasing sequence converging to r, we must have that lim |o;, | = oo.
n—oo

For each k € N, since wy = 1541 — rx > 0 and (j,)nen is a Cauchy sequence in
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(N,d), we have that there is an Ny, € N such that d(j,, j,) < wg for all m,n > Nj.

We can choose Nj, so that N < Nyg < Ny < ....

For each m,n € N, let 7,,,,, be the longest common initial segment of o;, and
;.. Note that for all £ € N and m,n > Ny, if ¢;,, # oj,, then |0, | > |Tn| or

|0]n| > |7—m7n|7 SO

‘Ujm‘_l ‘Ujm‘_l
Wy > d(]ma]n) = E w; + E w; 2 w|7'm,n|7
1=|Tm,n| 1=|Tm,n|

and so, since (w;);en is strictly decreasing, we have |7, ,| > k. Therefore,

(Vk € N)(VYm,n > Ni)(0j,, # 0;, = |Tmn| > k). (4.2)

Claim 4.3. There is a sequence (pg)ren C T such that
(i) (Vk € N)(Vn > Ni)(px C 05,),
(i) |l =+ 1,
(it) (Vk > 0)(pr-1 & pr)-
We prove Claim 4.3 by induction on k as follows.

Let £ € N and assume by induction that we have defined py, ..., pr_1 € T. that

satisfy (i),(ii) and (iii).

Recall that lim [o;,| = co. So there is an m > Ny, such that |oy,, | > |0}y, |, and
n—oo

80 0y # 0j,. Since m > Ny and oj, # 0, by (4.2), we have |7y, n| > k. Thus,

since 7,,m C 0y, we have |oj, [ > |Tnm| > k.
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Hence we can define py, := 0, [ (k+1) € T.. Then pj, C 0, and |pi| =k + 1.

We claim that p, C o;, for all n > Nj. Suppose for a contradiction that p, € o,
for some n > Nj. Then, since pp C Tjn, s We have Tjn, # o, and T, n © pi. SO
[Tvenl < lpkl =1 = (k+1) — 1= k. But, since n > Ny, and 0, # 0y, by (4.2), we

have |7y, »| > k, a contradiction. Therefore, p, C o, for all n > Nj.

Since py—1 satisfies (i), |pr—1| = k. Since py C 0y, pr—1 € 0, and |pp—1| =
k <k+1=|pg|, we must have py_1 C p.

This ends the proof of Claim 4.3.

By Claim 4.3, |J px is an infinite path in T,. So we have proved Claim 4.

keN

We conclude that the sequence (X.)nen satisfies conditions (1)-(4), and this

completes the proof. O

Theorem 3.2.5. For every computably presentable finite metric space X with

| X| > 1, the set {e e N: X — M,} is Z1-complete.
Proof. Let (X, dx) be a computably presentable finite metric space X with | X| > 1.
By Proposition 3.1.6, {e : X — M.} is 3.
To show that {e : X — M,} is ¥i-hard, we consider three cases:
Case 1: |X| =2.

Case 2: | X| > 2 and X satisfies the strict triangle inequality, that is,

for any distinct a,b,c € X, dx(a,b) < dx(a,c) + dx(c,b).

Case 3: X does not satisfy the strict triangle inequality.
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Case 1: |[X| =2

Let X = {z,y}. Since X is computably presentable, r := dx(z,y) > 0 is a
computable real. Let (X)een be the computable sequence of Polish metric spaces

obtained from Theorem 3.2.4. Then for all e € N,

T, has an infinite path <= (Ja,b € X.)(d(a,b) = 1)

— X < X,.

Therefore, {e : X — M.} is Xi-hard.
This ends the proof for the case | X| = 2.
Case 2: |X| > 2 and X satisfies the strict triangle inequality

Let

dx :=min{dx(a,b) :a #be€ X},

ex :=min{dy(a,c) + dx(c,b) — dx(a,b) : a,b,c € X are distinct}.

Since 1 < | X| < 00, dx > 0. Since X satisfies the strict triangle inequality and X is

finite, ex > 0. So we can fix an [ € Q such that 0 <[ < min{%éx, %5)(}.

For any distinct a,b € X, let I, := dx(a,b) — 2]. We construct a computable

sequence (X,).en of Polish metric spaces as follows.

First, we shrink the metric space X by [ to obtain a finite computable metric
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space (X, d) where X = {Z : 2 € X} and d is a metric defined by

d(a,b) := I, = dx(a,b) — 20 for all distinct a,b € X.

(d(a,b) :=01ifa=0.)

We need to check that d is a metric. Since [ < %5 x, we have that for all distinct
a,be X,

d(Ei, )de(a,b) — 2l > 5)( — 20 > 0.

Since | < %5)(, we have that for all distinct a,b,c € X,

2l < ex < dx(a,c) + dx(c,b) — dx(a,b),and so
d(@,b) = dx(a,b) — 21

< (dx(a,c) + dx(c,b) — 21) — 2

= (dx(a,c) — 21) + (dx(c,b) — 21)

= d(a@,e) + d(G,b).

It follows that d is a metric on X.

Note that d(a,b) is a computable real uniformly in a,b because dx(a,b) is a

computable real uniformly in a, b.

For each a € X, we attach the weighted tree T, , constructed in the proof of
Theorem 3.2.4 to the point a by using [ as the maximum height of T,. Let (X, d) be

the completion of the resulting space with the shortest path metric d.

More formally, we construct (X, d) as follows.
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For each a € X, let T, , be the weighted tree constructed in the proof of Theo-
rem 3.2.4 by adding weights to T, using the point @ as the root and using [ as the

maximum height of T, ,.

We can think of the metric space ()? ,d) as the weighted graph where the set of

vertices is {a : @ € X'} and every distinct a,b € X are connected by an edge of weight

d(a,b). Note that d is the shortest path metric in X.

Let (X,,d) be the completion of the weighted graph | | T¢,, equipped with the
acX

shortest path metric d.

\
AY
Al : 1 1
}\l I <min{50x, 3ex}

d(a,b) = 1,5 := dx(a,b) — 2l

By the proof of Theorem 3.2.4, we have that for each a € X, there is a computable

metric space (Y. q,d. ) that satisfies the following conditions:

(1) (Yea,deq) is the completion of the tree Tt ,, equipped with the shortest path

metric de 4.

(2) deg(a,x) <lforall z €Y,,.
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(3) If T, has an infinite path, then there is an @ € Y., such that d. ,(a,a) = (.

(4) If T, has no infinite paths, then there are no x,y € Y, such that d.(z,y) =1,

and for all x € Y, 4, deq(a, z) <.

Then for all z,y € X,, there are a,b € X such that z € Y., and y € Y, and

the distance between x and y is

deo(z,y) ifa=0
d(z,y) = ~ ~
dea(v,@) + d(a,b) + dep(b,y) ifa#0b

Since the construction of X, is effective uniformly in e, (X)een is @ computable
sequence of Polish metric spaces.
We claim that for all e € N, T, has an infinite path <—= X — X..

(=) Assume that T, has an infinite path. By (3), for each a € X, there is an

a €Y., such that d. ,(a,a) = [. Then for all distinct a,b € X,

o~ ~ ~ o~

d(@,b) = deqo(a,a) + d(a,b) + dep(b, b)
=1+ (dx(a,b) —2l) +1

= dx(a, b)

Therefore, X — X, via the isometric embedding f : a — a.

(<=) Assume that 7. has no infinite paths. Since X is finite, diam(X) =

max{dx(z,y) : z,y € X} < oc.

We claim that for all z,y € X, d(x,y) < diam(X).



73

Let z,y € X.. Then there are a,b € X such that v € Y., and y € Y. Since T

has no infinite paths, by (4), de.(a,z) <1 and d.,(b,y) < I.

If a =0, then

d(z,y) =deo(z,y) < deo(x,a) +deol(a,y) <l+1<0x < diam(X).

If a # b, then

d(z,y) = deo(z,a) + d(a,b) + dep(b,y) < 1+ d(a,b) +1

=1+ (dx(a,b) —2]) + 1 =dx(a,b) < diam(X).

Therefore, d(z,y) < diam(X) for all z,y € X..

Since X is finite, there are a,b € X such that dx(a,b) = diam(X). Thus, if
X < X, via an isometric embedding f, then f(a), f(b) € X, and d(f(a), f(b)) =
dx(a,b) = diam(X), but d(z,y) < diam(X) for all z,y € X., a contradiction.
Therefore, X + X..

We conclude that for all e € N, T, has an infinite path <= X < X.. Therefore,

{e: X < M.} is ¥i-hard.

This ends the proof for the case |X| > 2 and X satisfies the strict triangle

inequality.
Case 3: X does not satisfy the strict triangle inequality

Since X does not satisfy the strict triangle inequality, there are distinct a, b, c € X



74

such that

dx(a,b) = dx(a,c) + dx(c,b).

Let

Ox = min{dx(z,y) 1z #y € X},

vx = min{dx(a,c) —dx(z,c) : dx(a,c) > dx(x,c) and z € X \ {c}}.

Since 1 < |X| < oo, dx > 0 and vx > 0. So we can fix an [ € Q such that

0 <! <min{30x,7x}

We will construct a computable sequence (X, )een of Polish metric spaces such

that for all e € N, T, has an infinite path <— X — X..

The idea of how to build (X,,d) is as follows. First, we remove the point ¢
from X, and add two new points ag and by. Define d(a,ag) := dx(a,c) — [ and
d(b,by) := dx(b,c) —I. Then, at the points ag and by, we attach the weighted tree T,
constructed in the proof of Theorem 3.2.4 by using [ as the maximum height of 7.
We can define a metric d on the resulting space such that d “looks like” the shortest

path metric. Let (X, d) be the completion of the resulting metric space.

I < min{30x,vx}

Tree T, |
o
a Qo c bo b
[ { i l |
——dx(a,c) ; dx(b,¢) ——

———odx(a,b) = dx(a,c) + dx(c,b) ——
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More formally, we construct (X, d) as follows.

We use the same setting as in the proof of Theorem 3.2.4, where we use [ as the

maximum height instead of . So we have the following:

e (rn)neny € Q is a computable strictly increasing sequence converging to [ such

that ro =0 and r,,.1 > r, + %(7“ —1,) for all n € N.

e Foreachie N, w; :=r;y1 —r; >0.

e > w;=rpy foralln € Nand > w; = lim r, = 1.

1=0 =0 n—00
o We think of T, as the weighted tree where we put the weight w, on each edge

between level n and level n+1. Then we equip T, with the shortest path metric.

e The maximum height of T, is > w; = .
i=0

Let 1. , be the weighted tree T, with the point ay as the root. We define 7, in

the same way. (1., and T, are disjoint.)

By the proof of Theorem 3.2.4, we have that there is a computable metric space

(Yea, de o) that satisfies the following conditions:

(1) (Yeq,deq) is the completion of the tree T¢,, equipped with the shortest path

metric d .
(2) deq(ag,x) <lforall z €Y,,.
(3) If T, has an infinite path, then there is an @ € Y, , such that d. ,(ag,a) = [.

(4) If T, has no infinite paths, then there are no z,y € Y, , such that d. ,(z,y) =,

and for all x € Y, 4, deo(ag, z) <.

Similarly, there is a computable metric space (Y, d. ) that satisfies (1)-(4).
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To build (X, d), we construct a weighted graph G, as follows.

Step 1: We start with the weighted graph X \ {c}, where for any distinct

x,y € X \ {c}, we put an edge of weight dx(x,y) between z and y.

Step 2: We put two new points ag and by into X \ {c}. Then put an edge of
weight dx(a,c) — [ between a and ag, and put an edge of weight dx (b, c) — | between

b and by.
Step 3: We attach the weighted trees T; , and 7., at ap and by, respectively.

Step 4: Let G, be the resulting weighted graph. Then the set of vertices of G, is

V(G,) = (X \ {c}) UT,. UT.,.

Fix an index ¢y € N such that 7,, = N<N.
We define a weighted graph G (does not depend on ¢) as follows.
Step 1: We start with the weighted graph G.,.

Step 2: For each f € NY, we add a new point f to G.,, and for each

z € X\ {a,b,c}, we put an edge of weight dy(z,c) between z and f.

Step 3: For each 0 € T, .\ {ao} and f € NV, if o is an initial segment of f, then
we put an edge of weight | — d¢ (a9, 0) = | — 1|, between o and f. (Recall that
dey.a(ao, o) is the length of the shortest path in 7, , from ay to 0.) We do the same
for Tt p.
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Step 4: Let G be the resulting weighted graph. Then the set of vertices of G is

V(G) = (X\{c)UTaU T U {f: feN}=V(G,)U{f: feN}

Let d be the shortest path metric on G. Let ()N( ,c?) be the completion of the
metric space (é, g) The idea is that for each f € N, we think of the point ]?as the
limit of the sequence (f | n)nen in X. If T, has an infinite path f, then there would
be a copy of f in the tree T, , and another copy of f in the tree T;;. We will show
later that these two copies will give the same limit point fin Xe, and then fwill be

a copy of the point ¢ € X, and so X — X..

Since T,, = N<N_ it is clear that G, is a subgraph of G for every e € N. Let d
be the restriction of d to G, ie. d:= gl]gexge. Thus, since d is a metric on G and
G, C CNJ, we have that d is a metric on G,. Let (X, d) be the completion of the metric

space (Ge,d).

Note that the construction of (X, d) is effective uniformly in e. So (X¢)een is a

computable sequence of Polish metric spaces.

Also note that (X, d) is universal for (X.)eey in the sense that (X, d) < (X, d)

for all e € N. So we can think of each X, as a subset of X.

The metric d on G, might not be the shortest path metric on G.. However,
d “looks like” the shortest path metric in the sense that d is the restriction of the

shortest path metric d on the extension G of Ge.

For each o € NN, we let o, denote the copy of the string ¢ in the tree T.,.q. For

each f € NV we have that f is an infinite path in T,,, and we let f, denote the copy
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of the infinite path f in the tree T¢,,. That is, f, [ n = (f [ n), for all n € N. We

define o, and f;, similarly.
For each o, p € NN let 7, , denote the longest initial segment of o and p.
We claim that for all e € N, T, has an infinite path «<—= X — X..

(=) Assume that T, has an infinite path, say f € NY. For each n € N, let

on = f [ n. Then for all m,n € N|

d((om)a, (On)a) = de,a((am)av (On)a) = |r\am| - T\Un|| = |T|ffm\ - TIan|| = " — Tl

Thus, since (r,)neny converges, ((0,)a)nen € Tt is a Cauchy sequence in (X.,d).
Hence, since (X,,d) is complete, ((0,)a)nen converges to a point ¢, € X,. Similarly,

((0n)b)nen C Tt is a Cauchy sequence in (X, d) converging to a point ¢, € X..

Note that for all n € N, since 0, C f and [ < dx, we have that the path

((0n)as [, (0)3) is a shortest path in G from (o,), to (6,)s, and so

d((n)ar (@0)s) = d((00)a; (00)s) = d((0n)as f) + d(f, (00))

Hence

d(cq,cp) = im d((op)a, (0n)p) = lim 2(l —r,) =2(1 —1) = 0.

n—o0 n—oo

So ¢, = ¢p. Therefore, the infinite paths f, in T, , and f, in T, ; give the same limit

point at ¢, = ¢p.
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Let ¢ := ¢, = ¢,. We will show that ¢ € X, is a copy of the point ¢ € X in the
sense that d(¢,z) = dx(c,z) for all x € X \ {c}.

Note that

d@, f) = lim d((0n)a, f) = lim (I —7,) =1 — 1 =0.

n—oQ n—oo

Soc= fin X.

Recall that for each z € X \ {a,b,c}, there is an edge of weight dx(c,z) in G

between f and z. So for all z € X \ {a,b,c}, d(& z) = d(© z) = d(f,z) = dx(c, z).

Note that for all n € N,

d(a, (on)a) = d(a, (o)) = d(a,ag) + d(ag, (04)a) = (dx(a,c) = 1) + 7.
So

d(a,c) =d(a,c,) = lim d(a, (0,),) = lim (dx(a,c) =l +r,) = dx(a,c).

n—oo n—oo

Similarly, we have d(b,¢) = dx (b, c).

We conclude that d(¢, z) = dx(c,z) for all z € X \ {c}. It is easy to see that for

all 7,y € X\ {c}, d(z,y) = d(z,y) = dx(z,y).

Therefore, X — X, via the map ¢ := Idx\( U {(c, )}, that is,

ifz=c

o)

U(r) =
r ifzeX\{c}
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(«<=) Assume that 7, has no infinite paths. By (4), there are no x,y € Y, , such

that d(z,y) =1, and for all x € Y, ,, d(ap,z) < [. The same is true for Y, ;. Let

L :=dx(a,c),
Ex ={(z,y) € X :dx(z,y) = L},

Ex, ={(z,y) € X, :d(z,y) = L}.

Note that if X < X, via a map 1, then

{(¥(2), ¥(y)) - (z,y) € Ex} C Ex,,

|Ex| = [{(¢(x),¢(y)) : (x,y) € Ex}| < |Ex,

Therefore, to show that X < X, it is enough to show that |EY,

< |Ex|

From the construction of X., we have X \ {¢} C X, and ¢ ¢ X.. Thus,
since dx(a,c) = L and |Ex| < oo, we have that if d(z,y) # L for all

(2,) € (X, x X.)\ (X x X), then |Ex.

< |Ex|. So it is enough to show that

d(z,y) # L for all (z,y) € (X x X¢) \ (X x X).

Note that for any o,p € NN =T, |

d(aaa pa) = d(aav (Ta,p)a) + d(Ta,p)m pa) = (r\a\ - TITa,pI) + (Tlpl - TITo',pI)

< To| + 7| <l+1=2l

Thus, since T, , is dense in Y,  ,, we have that d(z,y) < 2[ for all z,y € Y., ,. The

same is true of Yy 5.
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Recall that for each f € N<N| the sequences ((f | n)a)neny and ((f | n)p)nen

converge in X to the same limit point, say ¢y, in (X, g), and so ¢; € Yy, o NYeyp. Also

recall that ¢y = f

Note that for all o, p € N<V_ if o, p are comparable, then there is an f € NY such

that o C f and p C f, and so

d(04, py) = d(04, Cp) +d(Cp, pp) = (I = 11o)) + (1= 7))

<l+4+1=2L

Note that for all o, p € N<N_if ¢, p are incomparable, then for any f € NY such

that o C f, we have 7, ,, C 0 C f, and so

d(aaa pb) = d(Ua, C/}) + d(é}’ (7_070)1?) + d((Tmp)ln pb)
= =710) + (=71 ,) + (T} = T1r, )

<l+14+1=3l

Thus, since T¢, , U Ty, s is dense in Y, , U Y, 5, we can conclude that

d(z,y) <3l forall z,y € Y, o U Yep. (%)

Now we will show that d(z,y) # L for all (x,y) € (X, x X.) \ (X x X).

Let (z,y) € (Xe x Xe) \ (X x X). Without loss of generality, assume y € X\ X.

Then y € Y., or y € Y.,. Without loss of generality, assume y € Y.,. Then

d(ao, y) <.
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Note that for any f € NN, we have ¢; = f and giv(ao, ¢y) = l. Since J(ao,y) <,
we have y # ¢; for all f € NN, If y € Y., \ T, 4, then y is a limit point of T, ,, and so
we must have y = ¢; for some f € NN, which is a contradiction. Therefore, y € T ,,

and so y = o, for some o € N<N,

Case 1. x = a: Then

d(z,y) = d(a,y) < d(a,a0) + d(ao,y) = (dx(a,c) — 1) + d(ao,y)

< (dx(a,c)—=1)+1= L.

Case 2. x = b: Since y = o,, for any f € NN such that ¢ C f, we have

J(f, y) =1 -1, <1, and so

d(z,y) = d(b,y) < d(b,be) + d(bo, f) +d(f,y) < d(b,be) +1+1

— (dx(b,¢) — 1) + 20 = dx (b, c) + 1.

We also have that

d(x,y) =d(b,y) > d(a,b) — d(a,ao) — d(ag,y)
= dx(a,b) — (dx(a,¢) — 1) — d(ao, )
> dx(a,b) — (dx(a,c) — 1) —1
= dx(a,b) — dx(a,c)

= dx(b, C).

So dx(b,c) < d(z,y) < dx(b,c)+ 1.
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If dx(a,c) < dx(b,c), then d(x,y) > dx(b,c) > dx(a,c) = L.

If dx(a,c) > dx(b,c), then | < yx < dx(a,c) — dx(b,c), and so

d(z,y) <dx(b,c)+1 <dx(b,c)+vx
<dx(b,c)+ (dx(a,c) —dx(b,c))

=dx(a,c) = L.

From both cases, we have d(z,y) # L.

Case 3. z € Y, ,UY.;: Then by (),

T 1
d(l‘,y) = d(l‘,y) S 3 <3- §5X - (SX S dX(a,c) S L.

Case 4. v € X \ {a,b,c}: Then, since y € T, , C G., we have z,y € G, C G.

Case 4.1. dx(a,c) > dx(z,c): Then |l < vx < dx(a,c) — dx(z,c). Since y = oy,

for any f € NN such that o C f, we have J(f: y) =1—1js <1, and so

d(w,y) < d(w, )+ d([.y) < e, f) +1 = dx(@,¢) +1
<dx(z,c)+vx < dx(z,c)+ (dx(a,c) —dx(x,c))

=dx(a,c) = L.

Case 4.2. dx(a,c) < dx(z,c):

Note that for every z € X \ {a,b, ¢}, all vertices in G that are adjacent to z are

in {a,b} U (X \{a,b,c,z})U{f: feN"} Recall that for all distinct u,v € X \ {c},
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there is an edge of weight dx(u,v) in G between u and v. For all f € NV and

u € X \ {a,b,c}, there is an edge of weight dx(u,c) in G between u and ]?

Let p be a shortest path in G from z to y. Then p must have the form
p=(x,w,vy,...,0%9y), where k € N, x,w,vy,...,vx,y are all distinct, vy,...,v; €

T.oUT,,U{f: feN"}and w € {a,b} U {f : f € NV}. Therefore, we have

d(x,y) = the length of the shortest path p

=d(z,w) + d(w,y)

Case 4.2.1. w = [ for some f € NY: Then y # & = f, and so

d(z,y) = d(x, f) +d(f,y) = dx(z,¢) + d(f,y) > dx(z,¢) > dx(a,c) = L.

Case 4.2.2. w = a: Then, since = # a, 2l < 0x < dx(z,a), and so

> d(x,a) + d(a, a) — d(ao, y)

= dx(z,a) + (dx(a,c) — 1) — d(ao, y)
> dx(z,a) + (dx(a,¢) — 1) — 1
=dx(z,a) + dx(a,c) — 2l

> dx(z,a) + dx(a,c) — dx(z, a)

=dx(a,c) = L.
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Case 4.2.3. w = b: By Case 2, dx(b,c) < d(b,y) = d(b,y). So

d(z,y) = d(z,b) + d(b,y) > d(z,b) + dx(b,c)

= dX(xa b) +dX(b7C> 2 dx(l’,0> 2 dx((l,C) = L.

From all cases, we conclude that d(x,y) # L for all (z,y) € (X, x X,)\ (X x X).

It follows that |E,

< |Ex|, and so X < X..

So for all e € N, T, has an infinite path <= X < X,. Therefore, {e¢ : X — M.}
is ¥1-hard.

This ends the proof for the case X does not satisfy the strict triangle inequality.

We conclude that {e: X < M.} is Xi-hard for every computably presentable

finite metric space X with |X| > 1. This completes the proof of Theorem 3.2.5. [

We can use the construction for Case 2 in the proof of Theorem 3.2.5 for infinite
metric spaces X that satisfy all properties that are necessary for the proof in Case
2. Note that, by dovetailing, we can construct Y., for each a € X uniformly in e, a,

and let X, = || Y.,. This gives the following.
aeX

Corollary 3.2.6. Let (X,dx) be a computably presentable metric space with | X| > 1

(X can be infinite) that satisfies the following conditions:
(1) 0x :=inf{dx(a,b):a#be X} > 0.
(2) ex :=inf{dx(a,c) + dx(c,b) — dx(a,b) : a,b,c € X are distinct} > 0.

(3) There are x,y € X such that dx(x,y) = diam(X) < oco.
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Then the set {e € N: X < M.} is X1-complete.

Note that (1) implies that X is discrete, (2) implies that X satisfies the strict

triangle inequality, and (3) implies that X is bounded.

For example, let (X, dx) be any bounded computably presentable metric space
such that dx(a,b) is an odd number for all distinct a,b € X. Then X satisfies

conditions (1)-(3), and so {e : X < M.} is ¥}-complete.

3.3 Results on Infinite Metric Spaces

In this section, we find the complexity of the embedding problem X — M, for some

infinite computably presentable metric spaces X.

Theorem 3.3.1. For every unbounded subset X of R (equipped with the Fuclidean
metric), the set {e € N: X < M,} is Xi-hard. If X is also a computably presentable
metric space, then the set {e € N: X — M,} is Xi-complete. In particular, the set

{e e N: R < M.} is X1-complete

Proof. Let X be an unbounded subset of R, equipped with the Euclidean met-
ric. If X is also a computably presentable metric space, then by Proposition 3.1.6,

{ee N: X < M.}isX]. So we only need to show that {e € N: X < M.} is Xi-hard.

It is enough to build a computable sequence (X,).en of Polish metric spaces such

that for all e € N, T, has an infinite path «<— X — X_.

The idea to build (X.,d) is as follows. We attach two copies of the tree T,

together at the root. Then for every o € T, \ {A}, we put a copy of all rationals p
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in (Jo| — 1, |o|] on the edge between o and o [ (|o| — 1). Then we let (X,,d) be the

completion of the resulting graph with the shortest path metric d.

For each 0 € NN\ {\} and s € N, let

A7, ={peQ :|o|-1<p<|o| andp:%Wherea,bGN\{O}andbgs},

Al =—-Al,={-p:pe AL}

0,8

Note that for any infinite path f € NY, we have J U Aj,, = QF and
s€N neN\{0} ’

U A;fn,s = Q_’ and so U U (A}_{n,s U A;{n,s) = Q \ {O}

sEN neN\{0} s€N neN\{0}

Fix an effective list (0;);en of all finite strings in N<N with og = . To build X,
we build a computable sequence G,y C G.; C ... of weighted (undirected) graphs

in stages, and let G, = |J G.s, then let (X, d) be the completion of G, with the
seN

shortest path metric d. For each e,s € N, we let V, ; denote the set of all vertices in

G, and E. ; denote the set of all weighted edges in G s, where

E.s={({u,v},w) : u,v are connected by an edge of weight w in G.}.

Fix a set {vop}U{vpo : 0 € NN\ {A}Ape U (AT ,UA; )} of distinct vertices.
seN

Construction of (G )sen

Stage 0: Let V.o = {vo} and E.q = 0.

Stage s + 1: We have built G.s. Since T; is a computable tree, we can check

computably if o, € T.. If o, ¢ T., then let G 511 := Ge s, and go to the next stage.
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If o5 € T., then we let Ge 11 := (Vest1, Eest1) wWhere

Vest1 :=Ves U{vpo i AF 0 Co, Ap € AIS U A;s}, and
Eesi1:= Ees U{({vpo,v9- 1,0 —4ql) : A # 0,7 CosApe AJ ,JUA Nge AT, UAZ}

U{({vor, tpo}, p|) i A F o Cos Ap e AIS U A;s}.

This ends the construction.
We claim that for every e € N, T, has an infinite path <— X — X,.

(=) Assume that 7, has an infinite path, say f € NY. Then we have
U U (A‘—;m’SUA;m’S) :Q\{O}’ and if A 7& g, T - f’ p € Aots U A;,S and

seNneN\{0}
q € Al , U A7, then vyq,v,r € Ge and d(vy0,v7) = |p — q| = dr(p,q). So

Q\ {0} — Ge.. Thus, since Q \ {0} is dense in R, we have R < X,. Therefore,
X — X,.

(«<=) Assume that T, has no infinite paths. To show that X < X, suppose for a
contradiction that X — X, via an isometric embedding ¢g. Since X is an unbounded
subset of R, there is a strictly monotone sequence (z;);eny C X such that llgglo |z;| = o0.
Then, since g : X — X, is an isometric embedding, d(g(x;), g(z;)) = |z; — x;| for all
i,7 € Nand Zlg?o d(g(xo), g(z;)) = Zlgglo |zg —x;| = 00. So the sequence (g(z;))ieny must
form a path of infinite length in X, without tracing back. However, if we start from
a point in G, and try to walk along edges in (G., without tracing back, as long as

possible, since T, has no infinite paths, we will eventually reach a dead end in finitely

many steps at some vertex v,,, where o is a leaf of T, and p € {|o|, —|o|}. So the
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length of the path we walked on is finite, a contradiction. Therefore, X < X.. In
particular, R ¢ X..

So we have proved the claim. Therefore, {e : X < X_} is 3{-hard. O]

Theorem 3.3.2. For every computable real v > 0, the set {e € N:[0,7] — M.} is

Y1-complete, where [0,7] is equipped with the Fuclidean metric.

Proof. Let " > 0 be a computable real. Let r := %/ > (. Then r is a computable real

and [—r,r] = [0,7'] via the isometry ¢ : x +— x + 7.

Since 7 > 0 is a computable real, there is a computable strictly increasing
sequence (17 )nen converging to /. Then an effective list (¢;)nen of all rationals ¢; such
that 0 < ¢; < r}, for some n € N forms a computable presentation of [0, 7']. Therefore,

[0,7'] is computably presentable. Thus, by Proposition 3.1.6, {e : [0,7/] — M.} is X1.

To show that {e: [0,7] < M.} is 3i-hard, it is enough to build a computable

sequence (X,)een of Polish metric spaces such that for all e € N,

T, has an infinite path <= [—r,r] — X..

Our construction will be a combination of the constructions for Theorem 3.2.4,

and Theorem 3.3.1.

Since r > 0 is a computable real, there is a computable strictly increasing se-

quence (r,)nen € Q converging to r such that ro = 0 and r,.1 > r, + %(r — 1) for

n
all n € N. For each ¢ € N, let w; := r;11 —r; > 0. Then w,41 < w, and > w; = 41
i=0

o0
foralln € N, and > w; = lim r, = r.
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The idea to build (X,,d) is as follows. We attach two copies of the weighted
tree T, constructed in the proof of Theorem 3.2.4 by putting weight w,, on each edge
between level n and level n+1 together at the root. So the height of the weighted tree
T, is at most iwi = r. Then for every o € T, \ {\}, we put a copy of all rationals

p in (r|s-1,7)s(] on the edge between o and o [ (|o| — 1). Then we let (X,,d) be the

completion of the resulting weighted graph with the shortest path metric d.

For each 0 € NN\ {\} and s € N, let

A7, ={peQ :ry_1<p<r,andp= % where a,b € N\ {0} and b < s}, and

Al = —A;S ={-p:pe€ A;S}.

Note that for any infinite path f € N, since lim 7, = r, we have |J | A}Lm =
n—00 seNneN\{0} ’

0,7]NQ*and U U A, =[-r0NQ ,andso U U (Aj{ms UAZ,,) =
s€N neN\{0} ’ s€N neN\{0} ’ ’

([=r, 7N Q) \ {0}.

Fix an effective list (0;);en of all finite strings in NN with oy = A. To build X,
we build a computable sequence G,y C G.1 C ... of weighted (undirected) graphs
in stages, and let G, = UN Gles, then let (X.,d) be the completion of G, with the

sE

shortest path metric d. For each e,s € N, we let V; ; denote the set of all vertices in

G.s, and E. ; denote the set of all weighted edges in G. s, where

E.s ={({u,v},w) : u,v are connected by an edge of weight w in G, }.

Fix a set {vox}U{vpo 10 € N\ {A}Ap e |J(AF,UA,)} of distinct vertices.
seN

Construction of (G.s)sen
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Stage 0: Let V.o = {vo} and E.q = 0.

Stage s + 1: We have built G.s. Since T¢ is a computable tree, we can check
computably if o, € T.. If 0, ¢ T., then let G¢ 511 := G, and go to the next stage.

If o5 € T., then we let Ge 11 := (Vest1, Eest1) Where

Vest1:=VesU{vpo : AF o CosApE AIS U A;S}, and
Eeoi1 = Ees U{({vpo,vgr} I —4ql) : AN # 0, T CosApe AT JUA Nqge AT, UAZ}

U{({vor, tpo}, p|) i A F o C o, Ap e AIS U A;s}.

This ends the construction.

We claim that for every e € N,
T, has an infinite path <= [—r,r] — X..

(=) Assume that 7T, has an infinite path, say f € NY. Then we have

U U 0,070 = ([N @\ {0 and if A # 0.7 C £ p € A7, U A,
and g € Aj,s U A7, then vy,, v, € Ge and d(vp0,v47) = |p — q| = dr(p,q). So

((=r,r)NQ) \ {0} = G.. Thus, since ((—r,7) N Q) \ {0} is dense in [—r, 7], we have

[—r, 1] = X.

(«<=) Assume that T, has no infinite paths. To show that [—r,r] /> X, suppose

for a contradiction that [—r,r] < X, via an isometric embedding g.

From the construction, we have that the set of all vertices in the graph G, is

Ve ={voa} U U{vpﬁ ANA£oCo,Ap€ A;SUA;S}.

seN
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Let

‘/:_ = {UO,)\} U U{Up,o : >\ ?é o g Os /\p € A:,s}7

seN

V;_ = {UO’)\} U U{Up,o AF£oCosApe Ao_',s}‘

seN

Let G be the subgraph of G, induced from V¥, and let X be the completion of

G} with the shortest path metric d. We define G_ and X_ in the same way.

By the proof of Theorem 3.2.4, we have that for all x € X, d(vo.x,z) < r. The

same holds for X . Thus, since g(r),g(—r) € X = X} U X, we have

d(g(~r). 9(r)) < d(g(~r).v0x) + d(von,g(r)) <7+ 7 =2r

But since g : [-7r, 7] — X, is an isometric embedding, we must have

which is a contradiction. Therefore, [—r, 7] > X..

So we have proved the claim. Therefore, {e : [0,7] — X .} is X]-hard, and so it

is 2j-complete. O

Corollary 3.2.6, Theorem 3.3.1 and Theorem 3.3.2 give some examples of infinite
computable metric spaces X such that the embedding problem X < M, is Xi-
complete. In Chapter 6, we will see that the embedding problems for the Cantor
space 2V and the Baire space NV are also Yl-complete. We strongly believe that

the same holds for all infinite computable metric spaces. Since we used different
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techniques for each X depending on the structure of X (e.g. X has a straight line
structure, X has a tree-like structure, etc), it would be surprising if one can give a

single proof or technique that covers all infinite computable metric spaces.

Conjecture. For every infinite computably presentable metric space X, the set

{e e N: X < M.} is 3{-complete.



Chapter 4

Topological Properties

Given a topological property, one can investigate how hard it is to determine whether
a computable metric space M, has that property. For example, Melnikov and Nies
[13] showed that the index set of compact computable metric spaces is I13-complete.
In this chapter, we compute the complexity of the index set of perfect computable

metric spaces and the index set of discrete computable metric spaces.

Theorem 4.0.1. The set {e € N : M, is perfect} is I13-complete within PolSp, and

so it is I13-complete.

Proof. Recall that a topological space is perfect if and only if it has no isolated points.
Since (N, d.) is dense in M., a point x is an isolated point of M, if and only if = is an

isolated point of (N, d.). So we have

M. is perfect <= (N, d.) has no isolated points

94



95

< (Vz e N)(Vr e QY)(Ty € N)(y € B(z,r) \ {z})

< (Vz e N)(Vr € Q") (Ty € N)(d(x,y) <r Ad(z,y) > 0),

where B(z,7) denotes the open ball around z of radius r. Thus, since “d(z,y) < r”
and “d(x,y) > 07 are ¥{ statements, we have that {e : M, is perfect} is II3 within

PolSp.

To show that {e : M, is perfect} is II3-hard within PolSp, it is enough to con-

struct a computable sequence (X, )cen of Polish metric spaces such that for all e € N,

e € Tot <= X, is perfect.

Let (¢;)ien be an effective list of all elements in Q N [0, 1] with go = 0. The idea
to build (Xe)een is that, whenever we see that ¢.(i) | for all i < n, we will put a copy

of the rational ¢, into X..

For each e € N, we effectively construct a Polish metric space (X, d) uniformly

in e as follows.
Stage 0: Let sp = 0 and d(sg, sg) = 0.

Stage n + 1: For each s > s, starting from s = s,, + 1, we check if ¢, s(n) | until

we find (if ever) the least s > s, such that ¢, s(n) |-
For each s such that ¢, s(n) 1, we let
e d(s,j)=0forall je {s,,...,s}.

o d(s,7) =|gn —qi| forall j € {sy,...,s;0.1 — 1} and i € {0,...,n —1}.
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Whenever we find (if ever) the least s > s,, such that ¢, s(n) |, we let
o Spp1 =min{s’ > s, 1@ g(n) [} =s.
o d(Spt1,Snt+1) =0.
o d(Sp+1,7) = |gns1 — qi| for all j € {s;,...,s;41 —1} and i € {0,...,n}.
Then we go to stage n + 2.
This ends the construction.

Let (Xe,d) be the completion of the resulting pseudometric space (N,d). The
key point is that, at stage n + 1, whenever we find (if ever) an s > s, such that
©es(n) J, we put a new element s,,41, which is a copy of the rational g,1, into X,

and then we go to the next stage.

If ¢, is total, then we will put a copy of the rational g, into X, for all n € N,
and so X, = [0, 1] because (¢,)nen is dense in [0, 1]. Since [0, 1] is perfect, X, is also

perfect.

If ¢, is not total, say n is the least such that p.(n) 1, then we will put a copy
of qo,...,q, into X,, and then we will be at stage n 4+ 1 forever. It follows that
Xe 2 {qo,-.-,qn}. So every point in X, is an isolated point. In particular, X, is not

perfect.

We conclude that e € Tot <= X, is perfect. Thus, since Tot is ITy-complete,
{e: M, is perfect} is I19-hard within PolSp, and so it is I13-complete within PolSp.
O

Theorem 4.0.2. The set {e € N: M, is discrete} is II1-complete.
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Proof. Recall that a topological space is discrete if and only if every point is an
isolated point. Note that for every x € M,, x has a Cauchy name f, : N — N in M,.
On the other hand, we can think of each Cauchy name f: N — N in M, as a point

xy in M., where z; is the limit of the sequence (f(k))gen in M.. So we have

M, is discrete <= (Va € M, )(x is an isolated point)

<= (Vf: N —= N)(f is a Cauchy name in M, — z is an isolated point).

Note that f is a Cauchy name in M, <= (Vk,l € N)(d.(f(k), f(k+1)) <27%), and

since (N, d,) is dense in M,, we have

z; is an isolated point <= (Ir € Q) (B(zy,7) \ {z;} = 0)
< (Ir € QN)(Vy € Me)(y =y Vde(zy,y) 2 7)
— (FreQN)(Vy e N)(y =y Vde(xy,y) > 1)

= (Fr € Q")(Vy € N)(de(y, xf) = 0V de(ws,y) 2 1)

So “f is a Cauchy name in M,” is a II{ statement and “z; is an isolated point” is a

Y9 statement. Therefore, we can conclude that {e : M, is discrete} is ITj.

It remains to show that {e : M, is discrete} is IT{-hard. Fix any computable real

r > 0. We use the same construction as in the proof of Theorem 3.2.4.

Since r > 0 is a computable real, there is a computable strictly increasing se-

quence (1, )neny € Q converging to r such that ro = 0 and 7,41 > r, + %(r —r,) for all
n
n € N. For each i € N, let w; := r;41 —r; > 0. Then w,+1 < w, and > w; = r,41 for

=0
oo oo

alln € Nand Y w; = lim r, = r. So the height of each tree T, is at most > w; = r.

=0 n—0o0 =0



98

Fix an effective list (0;);eny of all finite strings in N<N with 0y = . For each
e € N, we put weight w,, on each edge between level n and level n + 1 in the tree T..

Then we define a pseudometric d (depending on e) on N by
o ifo; ¢ T,, let d(i,0) := 0 and d(, 5) := d(0, ) for all j € N,
o if 0;,0; € T¢, let d(i, j) := the length of the shortest path in T, from o; to o;.

Let (X.,d) be the completion of the pseudometric space (N, d). Therefore, X, is the
completion of the tree T, with the shortest path metric d, where we put weight w,

on each edge between level n and level n + 1.

By the proof of Theorem 3.2.4, (X, )een is a computable sequence of Polish metric

spaces such that for every e € N, the following conditions hold:
(1) d(\ z) <rforall z € X.
(2) If T, has an infinite path, then there is an = € X, such that d(\,z) = r.

(3) If T, has no infinite paths, then there are no z,y € X, such that d(z,y) = r,
and for all x € X, d(\,z) <.

We will show that for every e € N, T, has an infinite path <= X, is not discrete.

(=) Assume that T, has an infinite path, say ¢ € N¥. Then for each n € N,

there is a unique 7,, € N such that o;, = ¢ [ n. So 7p = 0 and for all m,n € N,

d(im,i,) = the length of the shortest path in T, between o;  and o,

= Ploin| = Tloinll = |Tigim| = Tigin)l = |Tm — Tal.

Thus, since (7, )nen converges, (i,)nen is a Cauchy sequence in (X,,d). Hence, since
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(Xe, d) is complete, (i, )nen converges to a point ¢ € X,. So for all n € N,

d(i, i) = n%l_I}Iéo Ay, in) = nll_rgo T —rn| = |1 — 1| =7 =1, > 0.

Hence i,, # i for all n € N, and so ¢ is not an isolated point of X,.. Therefore, X, is

not discrete.

(«<=) Assume that X, is not discrete. Then there is an = € X, such that z is
not an isolated point of X,.. So there is a sequence in X, converging to x. Thus, since
(N,d) is dense in X, there is a Cauchy sequence (i, )nen in (N, d) such that (i,)nen
converges to z in X.. Without loss of generality, we can assume that o;, € T, for all

n € N.

Claim 1. lim |o;,| = 0.
n—oo

Suppose for a contradiction that there is an M € N such that for every k£ € N,
there is an n; > k such that |a,;nk| < M. We can choose ni sothat ng < ny <ng < ....
S0 (in, Jken is a subsequence of (in)nen and |o;, | < M for all k € N. Thus, since
(in)nen converges to x in X, (in, )rken also converges to z in X.. We will use the

following claims.
Claim 1.1. For every i € (N,d), i is an isolated point of X,.

Let i € (N,d). Without loss of generality, assume o; € T,. Let n := |o;]. Then
for every j € (N,d) with d(i,5) > 0, we have 0; # 0, and so it follows from the
definition of d that d(i,5) > w,. So (Vj € (N,d))(d(i,7) > 0 = d(i,7) > wy).
Thus, since (N, d) is dense in X,, we have (Vy € X.)(d(i,y) > 0 = d(i,y) > wy).

Therefore, ¢ is an isolated point of X..
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Claim 1.2. (VN € N)(3k,1 > N)(d(in, ,in,) # 0).

Suppose for a contradiction that there is an N € N such that for all £, > N,
A(ipy, s 0n,) = 0. SO d(in,,iny) = 0 for all k > N. Thus, since (i, )ren converges to x in
Xe, we have d(z,i,,) =0, and so = = i,, (in X.). Since z = i,, € (N,d), by Claim

1.1, x is an isolated point of X, but x is not an isolated point of X, a contradiction.
Claim 1.3. (VN € N)(3k, 1 > N)(d(in,,, in,) > war).

Let N € N. By Claim 1.2, there are k,l € N such that d(iy,,,i,,) # 0. Then
iy, #+ Ty, - Let 7;; be the longest common initial segment of iy, and iy i.e.
the longest string such that 7;; C Tipy s O, - Then 7,; C i, OF Ty & Oiy, - Hence

- -

Tig| < |04, | — 1 or |1y, <o, | —1. Also, since |1;| < |0y, y Wiry,,| > War. SO
|Tia| < i, | =1 or || < oy, | — 1. Al Tl < i, | < M > S

‘Uink|_1 |0—’inl‘_1
A(in,,in,) = E w; + E Wi 2 Wigy,,| > Wi
i=|7p 1] i=|7g 1]

Claim 1.3 implies that (i, )ren is not Cauchy, but (i,, )ren converges to x in X,

a contradiction. Therefore, lim |o;,| = 0o, and we have proved Claim 1.
n—o0

Recall that (i,)neny converges to = in X.. By Claim 1,

d(0,z) = lim d(0,i,) = lim |rg — 7)o, || = lim |rg —ry| = lim 7, =r.
n—00 n—00 " n—00 n—00

Hence 0, z are points in X, with d(0,z) = r, and so, by condition (3), T, must have

an infinite path.

Therefore, we can conclude that for every e € N, T, has an infinite path <= X_ is
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not discrete. Thus, since {e : T, has an infinite path} is ¥l-hard, {e : M, is discrete}

is IT}-hard. ]



Chapter 5

The Urysohn Space

5.1 Fraissé Limits

Urysohn spaces are closely related to Fraissé limits. We will see later that they can
be built from the Fraissé limits of some classes of metric spaces. In this section, we
give some background and classical results on Fraissé limits, which can be found in

[7]-

Definition 5.1.1. Let £ be a language and D be an L-structure. The age of D is
the class of all finitely generated structures that can be embedded in D. A class K
of finitely generated structures is called an age of D if the structures in K are, up to
isomorphism, exactly the finitely generated substructures of D. A class is called an

age if it is the age of some structure.

Definition 5.1.2. Let K be a class of finitely generated structures.

102
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o K has the hereditary property (HP) if, whenever A € K and B is a finitely

generated substructure of A, we have that B is isomorphic to a structure in K.

o K has the joint embedding property (JEP) if, for every A, B € K, there is a
C € K such that both A and B can be embedded into C.

« K has the amalgamation property (AP) if, whenever A, B,C € K, and e : A — B
and f: A — C are embeddings, we have that there exist a D € K and embed-

dings g : B<— D and h : C — D such that goe =ho f.

Theorem 5.1.3 (Fraissé, see [7]). A class of finitely generated structures K is an age

if and only if K satisfies HP and JEP.

Definition 5.1.4. An L-structure D is homogeneous if every isomorphism between

finitely generated substructures of D extends to an automorphism of D.

Definition 5.1.5. Let K be a class of finitely generated structures. A structure D is

the Fraissé limit of K if D is countable, homogeneous and has age K.

Theorem 5.1.6 (Fraissé, see [7]). The Fraissé limit of a class of finitely generated

structures is unique up to isomorphism.

Theorem 5.1.7 (Fraissé, see [7]). A class K of finitely generated structures has a
Fraissé limit if and only if K satisfies HP, JEP and AP.
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Definition 5.1.8. We say that a countable structure D of age K is universal (for K)

if every countable structure of age C K is embeddable in D.

Theorem 5.1.9 (Fraissé, see [7]). If D is the Fraissé limit of a class K of finitely

generated structures, then D is universal for K.
The following gives us a way to construct Fraissé limits.

Theorem 5.1.10 (see [7]). Let K be a class of finitely generated structures that
satisfies HP, JEP and AP. Let (D;)ien be a chain of structures in K with the property
that for every A, B € K andi € N, if f : A — B ande : A — D; are embeddings, then
there exist a j > i and an embedding h : B — D; which extends f. Then D = |J D;

ieN
is the Fraissé limit of K.

5.2 Fraissé Limits for Metric Spaces

Consider a language £ = {R, : ¢ € Qf} where Qf := Q" U {0} and R,’s are
binary relation symbols. We can think of a rational-valued metric space (X, d) as an

L-structure where, for every z,y € X and ¢ € Qf,

R,(z,y) is true in (X, d) <= d(z,y) = q.
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Since £ has no function symbols, the finitely generated L-structures are exactly the fi-
nite L-structures. The embeddings from X into Y are exactly the distance-preserving
maps from X into Y. The isomorphisms between metric spaces are exactly the isome-
tries. We will simply write f : X < Y to denote that f is an (isometric) embedding

from X into Y.

Henceforth, we let K be the class of all finite rational metric spaces, and for
each r € Rt U {oo}, we let K., be the class of all finite rational metric spaces with
diameter less than r, and let K<, be the class of all finite rational metric spaces with

diameter less than or equal to r. Note that K. = K<, = K.

Proposition 5.2.1. For allr € Rt U{co}, K., and K<, satisfies HP, JEP and AP,

and so they have Fraissé limits.

Proof. Let r € Rt U {oo}. First, we show that K., satisfies HP. Let A € K_, and
B C A. Then diam(B) < diam(A) < r, and so B € K_,. Therefore, K_, satisfies
HP.

Next, we show that K_, satisfies AP. Assume that A, B,C € K_,,ande: A — B

and f : A < C are embeddings.

We write A = {ag,...,ar}, B\ e(A) = {by,...,b,—1}, and C \ f(A) =
{co,...,Ccm—1} where k,n,m € N. Let d4,dg and dc be the metrics associated with

A, B and C, respectively

Define a metric space D = (D, dp) by

D :={ag,...,ax} U{bo, ..., bu1} U{Gos ..., Cn 1},
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and dp is the metric on D defined by
N dD<ai7aj) = d.A(aiaaj)a dD(giagj) = dB<bi>bj>7 dp(avé) = dC(Ci>cj)>

o dp(a;, b;) = dp(e(ai), by), dp(ai, ¢;) = de(f(ai), c;),

« dp(bi, ¢;) = max{|ds(b;, e(ar)) — de(f(aw), ¢;)| : 1 < K}

It is straightforward to check that dp is a metric, and it is clear that diam(D) =

max{diam(B), diam(C)} < r. So D € K_,.

Define g: B— D and h : C — D by

g:e(a;) — a;b; »—>E~,

h: f(a;) ¥ a;,c;— ¢.

It is easy to see that g and h are embeddings and goe = ho f. Therefore, K.,
satisfies AP.

Finally, we show that K_, satisfies JEP. Let B,C € K_,. Let A = {0} be the
one-point metric space. Then A € K., A — Band A < C. Thus, since K_, satisfies

AP, there is a D € K_, such that B < D and C < D. Therefore, K., satisfies JEP.
Since K., satisfies HP, JEP and AP, by Theorem 5.1.7, it has a Fraissé limit.

We can use the same argument for K,.. O

Definition 5.2.2.
« The rational Urysohn space, denoted by Ug, is the Fraissé limit of K.

o The Urysohn space, denoted by U, is the completion of Ug.
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o For each r € R™, the bounded rational Urysohn space of diameter r, denoted

by Ug,<,, is the Fraissé limit of K<, .

« For each r € R, the bounded Urysohn space of diameter r, denoted by U<, is

the completion of Ug <.

Similarly, for each r € R*, we can define Ug -, and U, from K_,. However, it

can be shown that U., = U,.

Recall that K., = K<, = K. Our arguments for U, U., and U<, would be the

same in most cases. So, for convenience, we will let U.o, = U<, = U.

It follows from Definition 5.1.5 and Theorem 5.1.9 that for every r € RT U {o0},
U<, is the unique (up to isometry) Polish metric space with diameter < r that has

the following properties:

(1) U, is universal for separable metric spaces with diameter < r, that is, every

separable metric space X with diam(X) < r can be embedded into U,.

(2) U<, is homogeneous, that is, every isometry between two finite subsets of U,

extends to a self-isometry of U<,.
Note that diam(U<,) = diam(U.,) = r for all r € RT U {c0}.

Note that if (X, d) is a finite rational metric space, say X = {xo,...,2,}, then
(X, d) is a finitely generated structure (because X is finite), and it can be represented

by the natural number that codes the finite set

{<ZJJ7Q> : Z?] E {07"'7n}7q e Qg7d<x’l7x]> = q}'
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This implies that (X, d) is computably presentable. Also note that for any n € N,
we can effectively determine if n represents a finite rational metric space. So K is a
computable set of finite metric spaces. In particular, we can effectively enumerate all

finite rational metric spaces (up to isometry), that is, K is c.e.

Now suppose r € RT is left-c.e. Then there is an index j € N such that
(pj(n))neny € QF is an increasing sequence converging to r. It is easy to see that

K<y, ) is computable uniformly in n. Therefore, Ko, = |J Kcy,m) is c.e.
neN

Definition 5.2.3. A computable chain of finite metric spaces is a chain
5 5
Do < Dy > ...

of computable presentations of finite metric spaces, where both the presentations D;

and the embeddings 9; : D; < D;,, are computable uniformly in 3.

The following theorem, which is a special case of Lemma 2.9 in [2], allows us to
construct a computable metric space from a computable chain of finite computable
metric spaces. We will use this theorem together with Theorem 5.1.10 to build a

computable presentation of the Urysohn space and the bounded Urysohn spaces.

5 5
Theorem 5.2.4. Let Dy < D; < ... be a computable chain of finite metric spaces.
Then there exist a computable presentation C of the completion of the union |J D;
ieN
of the chain over these embeddings, and embeddings 0; : D; — C that are computable

uniformly in i.

s 5
Theorem 5.2.4 also applies when the chain Dy < Dy <> ... stabilizes, that is,

j
there is a j € N such that D; = D; for all ¢ > j. In this case, we have D = |J D;,
i=0
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which is finite, and so the completion of D is just D itself. To build a computable
presentation of D, we define a computable function ¢ that induces the finite metric
space D. We ensure that ¢ is total by adding rational points that are distance 0 from
some fixed point in D. For example, if D = ({0,...,n},dp), then we can identify all

rational points ¢ > n with the rational point 0 by defining for all £ € N,
« (i, ], k) = dp(i,j) for all i, j < n,
o 0(i,5,k) = v(j,1,k) =dp(0,7) for all i > n and j < n,

e (i,5,k) =0 for all 4, j > n.

5.3 Katétov Maps and Extension Properties

Definition 5.3.1. Let (X, d) be a metric space. A map f: X — R is a Katétov map

on X if
(Va,y € X)(|f(z) = fW)| < d(z,y) < f(z) + f(y).

Let E(X) denote the set of all Katétov maps on X, and Eg(X) denote the set of all

rational-valued Katétov maps on X.

For each r € RT U {00}, we write |f| < r to mean that |f(z)| < r for all z € X.
For each r € Rt U {00}, we let E..(X) :={f € E(X) :|f] <r} and Eg . (X) :=
{f € Eo(X) : |f| < r}. We define E.,(X) and Eg <,(X) similarly. Note that, if
f € E(X), then |f(z)| < oo for all z € X. So we have E.(X) = F<o(X) = E(X).

Observe that if f € E(A), then for all x € X, 0 =d(z,z) < f(z) + f(x), and so

f(x) > 0. Therefore, Katétov maps are non-negative functions.
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The Katétov maps on (X, d) correspond to the one-point metric extensions of
X in the sense that, f is a Katétov map on X if and only if, setting d(z, 2) = f(z)

defines a metric extension to X U {z} of the metric d on X.
Definition 5.3.2. Let (X, d) be a metric space.

o X has the extension property if

(V finite A C X)(Vf € E(A))(3z € X)(Va € A)(d(z,a) = f(a)).

o X has the approzimate extension property if

(v finite A C X)(Vf € E(A))(Ve > 0)(3z € X)(Va € A)(|d(z,a) — f(a)] < &).

e For a dense subset D C X, we say X has the rational approximate extension

property with respect to D if

(V finite A € D)(Vf € Eg(A))(Ve € Q7)(3z € D)(Va € A)(|d(z,a)—f(a)| < e).

o X has the dense approximate extension property if X has the rational approxi-

mate extension property with respect to some dense subset D.

Similarly, for each » € RT U {oco}, we define the above properties for F<, and E., by
replacing F(A) with E<,(A) and E.,.(A), respectively.

Remark 5.3.3.

(1) If X has the extension property, then X has the approzimate extension property.
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(2) If X has the approzimate extension property, then for every dense subset D C X,
X has the rational approrimate extension property with respect to D.
The same s true for the properties for E<, and E_,.

Theorem 5.3.4 (see, e.g. Melleray [10], Urysohn [19]). If X is a complete metric

space and has the approximate extension property, then X has the extension property.

By the same argument as the proof of Theorem 5.3.4 (Theorem 3.4 in [10]), we

have the following.

Theorem 5.3.5. Let r € RT U {00} and X be a complete metric space with
diam(X) <r. If X has the approximate extension property for E_., then X has

the extension property for E_,.

Proof. Let v € RT U {oo}. Assume that X is a complete metric space with
diam(X) <r and X has the approximate extension property for E_.. We want

to show that X has the extension property for E_,.

The case when r = 0o is Theorem 3.4 in [10]. Now assume 7 € RT. Let A C X

be finite and f € E.,.(A). We write A = {ay,...,a,}.

Fix a 0 such that 0 < 0 < r —max{f(a):a € A}. By the same argument as the

proof of Theorem 3.4 in [10], we can construct a Cauchy sequence (zj)gen in X such

that for all k € Nand i € {1,...,n},
° |d(zk7 &i) - f(a2)| < 2_k57
. d(Zk,Zk_H) < 21k,

It follows that X has the extension property for E_,. O
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It turns out that the approximate extension property gives a characterization of

the Urysohn space U.

Theorem 5.3.6 (see, e.g. [10], Urysohn [19]). A Polish metric space has the approz-

imate extension property if and only if it is isometric to the Urysohn space U.

By the same argument as the proof of Theorem 5.3.6, we have the same result

for bounded Urysohn spaces.

Corollary 5.3.7. Letr € RTU{oo} and X be a Polish metric space with diam(X) <
r. Then X has the approzimate extension property for E<, if and only if X = Uc,.

The same is true for E_,.

The following theorem says that if a metric space X has a dense subset D, then
we can approximate any finite set A C X and any Katétov map f € E_,.(A) with a

finite set A C D and a Katétov map fv@,q(g) with any degree of accuracy.

Theorem 5.3.8. Let r € Rt U{oo}. If (X,d) is a metric space with diam(X) < r
and D is a dense subset of X, then for all finite sets A C X, f € E_.(A) and ¢ > 0,

there exist an A= {a:a € A} C D and an f € Eg.<+(A) such that for all a € A,
d(@,a) <e and |f(@)— f(a)| <e.

Proof. Assume (X, d) is a metric space with diam(X) < r and D is a dense subset

of X. Let A C X be finite, f € E.,(A), and € > 0.
The case when A = () is trivial. Now assume that A # (). Then f(A) # 0.

Write f(A) = {f(x1) < f(za) < -+ < f(zp)} where zy,..., 2, € Aand m > 1.

Then for each x € A, there is a unique k € {1,...,m} such that f(z) = f(xx). Since
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f € E(A), f(xm) < r. So there exists an ¢ > 0 such that ¢/ < min{e,r — f(z,,)}.
If r = oo, then for all a € R, we let » —a = r + a = oco. Thus, in this case, if r = oo,

then r — f(z,,) = 0o, and so £ < min{e, 00} =¢.

First, we consider the case when m = 1. Then f(A) = {f(z1)}, and so for every
x € A, f(x) = f(x1). Since D is dense in X, for each x € A, there exists an z € D

such that d(z,z) < %/ Let A:={%Z:2 € A} C D. Since A is finite, A is finite.

Define a function f: A-Q by

f()=q forallxze A,

where ¢ € Q is such that f(z1) + 5 < ¢ < f(21) +¢". (Note that f is well-defined

because it is a constant function.) Then for all x € A,

f@)+ 5= fl@) + 5 <a=F@) < flo) + = fla) + ¢,

So for all z,y € A,

d(z,y) < d(z,z) + d(z,y) +d(y,y) (by the triangle inequality)
/

/

< %+d(9x,y)—l—%
<G HI@ W +G (o f € BalA)



114

Hence for all 2,y € A, |f(Z) — f()| =g —q/ =0 < d#7) < f(&) + f(7). So [ is a
Katétov map on fT, and so ]76 E@(ﬁ) We also have that for all z € A,

f@) < f(z)+e" = flz) +& < flo) + (r = flam)) = 7.

Therefore, fe Eg<r(A).

Note that forall z € A, 0 < § < F(@) = flz) <& <e and so |f(T) — f(z)| <e.
Recall that for all z € A, d(Z,z) < %/ < & <. Therefore, AC D and f € Eg.<(A)

have the desired properties.

Now, we consider the case when m > 1. Let

0 := min ({f(ka) —flzg): 1 <k<m-1}U {%}) > 0,
§ = min{d(z,y) : z,y € A,z # y},

v = min{%,d’}.

Since m > 1, we have x1,x9 € A with 21 # 29, so &' > 0, and so v > 0. Since D is

dense in X, for each x € A, there exists an ¥ € D such that d(Z,z) < 3.

Let A := {Z:z € A} C D. Since A is finite, A is finite. Note that for all

x,y € A, if x # y, then by the triangle inequality,

d(z,y) = d(z,y) — d(z, T) >d($,y)—%25’_% >

N |2

v _
=5> d(y,v),

and so T # .
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Now we can define a function fv: A->Q by

f(f) =Tk

where k € {1,...,m} is the unique number such that f(z) = f(zx), and 7, € Q is

such that

30 40
f($k)+ﬁ <rp < flaw) + SR

First note that for all x € A with f(z) = f(zx), we have f(z) = rp = f(z),

30 ~ 46
Flaw) + g < @) < flow) + 5557

and so, since k > 1,

Note that for all k£ € {1,...,m — 1},

40 30 49
ohtl  oki2 = kil <0< flawe) = flaw),

and so

~ ) ) ~
Fl@) < Flo) + g < Fonn) + song < @)

Hence for all k,1 € {1,...,m},

kE>1= f(zx) > f(7)). (2)
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Claim 1. v < (f(z) + f(v)) — (f(z) + f(y)) for all z,y € A.

Let z,y € A, say f(x) = f(zx) and f(y) = f(x;) where k,l € {1,...,m}. Then

(f@) +F@) = (f) + fv) = (F(@) + F@)) — (f(zx) + f(a))

= (f(zr) = fwr) + (F(71) = f(21))

30 30
> et g (0 (1)
30 30
— 9m+1 gm+1 ( ki< m)
50
om
> 7.

Claim 2. v < |f(z) — f(y)| = [f(2) = f(¥)] for all z,y € A with f(z) # f(y).

Let x,y € A be such that f(z) # f(y), say f(z) = f(zx) and f(y) = f(x;) where
kle{l,..., m}. Since f(x) # f(y), k # I. Without loss of generality, assume k > [.

Then I+ 1 <k <m, f(xy) > f(x;), and by (2), f(zx) > f(z;). So we have

f(@) = FW) = |F@) = F@)| = [ f(z) = fl@)| = 1f @) — f@)]
= (f(fl?k) - f(ﬂfz)) - (f@k} - J?(%l))

= (f(fl) - f(l’z)) - (f(fk) - f(l’k))

30 46
> 51 T R (by (1))
30 46
> = (k2141
)
frd F
)
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2.

Now we claim that f € Eg(A). Since f+ A — Q from the definition, it remains to
show that ]?is a Katétov map on A. Let x,y € A, say f(z) = f(zy) and f(y) = f(x)
where k,1 € {1,...,m}. Then

d(z,y) < d(z,z)+d(z,y) +d(y,y) (by the triangle inequality)

v g
< =-+d =

<fl@)+ fly)+v (- feB(A)

< f(@)+ f(y). (by Claim 1)

If f(x) = f(y), then k =1, s0 f(F) = f(&x) = f(3)) = f(7), and s0

1f(z) = f(y)] = 0 <d(z,y).

It f(x) # f(y), then

d(z,y) > d(z,y) — d(z,x) — d(y,y) (by the triangle inequality)
T
d _ L7

> [f(7) = f(®)]- (by Claim 2)

Hence for all 2,y € A, |f(Z) — f()| < d(Z.7) < f(Z) + f(7). That is, f is a Katétov

map on A, and so f € E@(ﬁ)
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From (1), we have that for all z € A,

0< fz) < f(@) < flx)+ %/ < @)+ < flam) +e < flam) + (r = flam)) =7

Therefore, f € Eg o, (A).

From (1), we also have that for all z € A, |f(F) — f(z)| < EZ/ < ¢’ < e. Also note
that for all x € A, d(z,z) < § <6 < & < e. Therefore, ACDand f e EQ7<,"(Z)

have the desired properties.

We conclude that there exist an A = {@:a € A} C D and an f € Eg.<(A) such
that for all a € A,

d(@,a) <e and |f(@) — f(a)| <e. O

Theorem 5.3.9. Letr € RTU{oo} and X be a Polish metric space with diam(X) < r.
If X has the dense approximate extension property for E_., then X has the approxi-

mate extension property for E,.

Proof. Assume that (X, d) has the dense approximate extension property for E_.(A).

Then there exists a dense subset D C X such that
(¥ finite A C D)(Vf € Eg.«,(A))(Ve' € QF)(3z € D)(Va € A)(|d(z,a) — f(@)| < &).

To show that X has the approximate extension property for F_,, let A C X be finite,
f € E..(A)and € > 0. We want to show that (3z € X)(Va € A)(|d(z,a)— f(a)| < €).

By Theorem 5.3.8, there exist an A = {#:a € A} C Dand an f € Eg <-(A)
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such that for all a € A,

and  |f(@) - f(a)| < -

d(a,a) <

Since A C D is finite, f € E@7<r(g) and X has the rational approximate extension
property for E_, with respect to D, we have that there exists a z € D such that for
all a € A,

. Ty €
|d(z,a) = f@)] < 5.
Hence for all a € A, |d(z,a) — d(z,a)| < d(a,a) < £, and so

|d(z,a) = fla)] < d(z,a) — d(z,a)| + |d(z,a) — f(a)| + [f(a) - f(a)]

<€+€+€
4 2 4
=e.

We conclude that

(¥ finite A C X)(Vf € B~ (A))(Ve > 0)(32 € X)(Ya € A)(|d(z,a) — f(a)] < &),

that is, X has the approximate extension property for F_,. Il

By Theorem 5.3.9 and Remark 5.3.3, we have the following corollary.

Corollary 5.3.10. Let r € RT U {00} and X be a Polish metric space with
diam(X) <r. If X has the dense approximate extension property for E_,., then
for every dense subset D C X, X has the rational approrimate extension property for

E_, with respect to D.
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Theorem 5.3.11. Let r € RT U {oo} and X be a Polish metric space with
diam(X) <r. If X has the approximate extension property for E_., then X has

the approximate extension property for E<,.

Proof. The case when r = oo is trivial. Assume that » € R* and (X,d) has the
approximate extension property for E.,.. By Theorem 5.3.5, X has the extension
property for E_,.. We want to show that X has the approximate extension property
for E<,, that is,

(V finite A C X)(Vf € E<.(A))(Ve > 0)(3z € X)(Va € A)(|d(z,a) — f(a)| < ¢),

Let A C X be finite, f € F<.(A) and € > 0. The case A = () is trivial. Assume
A#0.

First, we consider the case when |A| = 1, say A = {a}. Since f € E<.(A),
0< f(a) <r. If f(a) < r, then f € E_.(A), and so, since X has the approximate

extension property for E_,, we are done.

Assume f(a) = r. Then r € R*. Let § := min{%,%} > 0. Define f : A » R

r e
272

by f(a) = r — 4. Then f € E_.(A) and |f(a) — f(a)] = 6 < . Thus, since X

has the approximate extension property for E_,., there exists a z € X such that

|d(z,a) — f(a)| < 5. Therefore,

|d(z,a) = f(a)| < |d(z,a) = f(a)| + |f(a) = fla)] <

TR
T
I
R

It remains to consider the case when |A| > 2. We write A = {ay,...,a,} where
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n > 1. Let ry := diam(A). Since |A| > 2, r4 > 0. Since A C X, r4 < diam(X) < r.
Fix a 6 such that 0 < § < min{2,1}. Since 0 < § < 1 and r4 > 0, we have

0<5TA<TA§T.

Our plan is to shrink the set A a little bit to get a set A = {ay,...,a,} C X

such that dz’am(ﬁ) < r, and then apply the extension property for E-, of X to A.
By induction, we construct points ag, ..., a, € X such that for every i,j < n,
(1) d(as, a;) = (1 = d)d(ai, a;),

(2) d(a;,a;) = 26ra+ (1 = 0)d(a;, a;) = d(a;, a;) + d(a;, a;), in particular,

d(ai, Zi,) = %57”14.

First, we define fy: A — R by
1
fo(ai) = 5(57’A + (1 — 6)d(CL“ ao).
Then for all 7,7 < n,

fola)) < =dr+ (1 —=0)r <,

| foai) = folay)| = (1 = d)|d(ai, ap) — d(a;, ao)| < (1 —d)d(ai, a;) < d(a;,ay),

N | —

folas) + folas) = dra+ (1= 6)(d(as, ao) + d(a;, ao))
> 0ra+ (1 —0)d(a;, ay)
> 6d(ai, aj) + (1 - 5)d(a17 aj)

= d(ai, CLj).

Therefore, fo € E..(A), and so, since X has the extension property for E_,, there
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exists an ap € X such that for all x € A, d(ag,x) = fo(z). So for all i < n,
~ ~ 1
d(aia CLO) - d(CL(]? ai) = fO(ai) - §5TA + (1 - 6>d(a27 CL())-

Note that d(ag, ap) = 0 = (1 — d)d(ag, ap). Therefore, ay satisfies (1) and (2).

Now let k& < n and assume by induction that we have constructed points

ag, - .., ar € X that satisfy (1) and (2). Define fr11: AU {ag,...,ax} = R by
o frr(a) = (1= 6)d(a;, ars1),
o frrr(a) = 36ra + (1 —6)d(a;, ary1).

Then for all : <n and 5 < k,

1
0< ka(ai) < 557"“‘ (1 — 5)7" <r,

0< fk+1(aj) < (1 — 5)7” <.

We claim that fyy1 € Eo.(AU{ao,...,ax}).

Let Ay := AU {ao,...,ar}. Then the Katétov maps on Ay correspond to the
one-point metric extensions of Ay, where we add a new (imaginary) point, say dg1.

Define a function dj, : Ay U {axi1} — R by
o dp(ai,a;) = (1 —0)d(a;,a;) for all i,j < k+1,
o di(a;,a) = %(5714 + (1 —9d)d(ai,a;) for all i <mn and j < k+1,
o di(a;,aj) = d(a;,a;) for all i, 7 <mn,

o di(z,x) =0for all x € Ay U{ay+1},
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® dk<xay) = dk(yv‘r) for all xr,y € Ak U {ak+1}'
Then di(z,ary1) = fer1(z) for all @ € Ay, Since ayg,...,a; satisfy (1) and (2),

di|axa, = d|a,xa, is a metric on Ag. So fry1 is a Katétov map on Ay if and only if

dy is a metric on Ay U {axy1}. We check that dj, satisfies the triangle inequality as

follows.

di(as, ar) + de(ar, a;) = d(as, @) + d(ar, a;)
> d(a;, ;)
= dy(a;, a;),

d(ai, 1) + di (@, ay) = (%m + (1= 6)d(as, ar)) + (%m + (1= 8)d(ay, ay)
— Sra+ (1= 6)(d(as, ar) + d(a, a;))
> §d(as, a) + (1 — 8)d(as, a;)
— d(as, ;)
= di(ai, a;),

_ 1
di(a;, ar) + di(ay, a;) = d(a;, a;) + (55734 + (1 = d0)d(ar, a;))

> (1 —06)d(a;,a;) + %MA + (1 —d0)d(w, aj)
> %5771 + (1 —96)d(a;, a;)
= dy(a;, a;),

di(a;, @) + d(G, a;) = (%m + (1= d)d(ai, ar)) + (1 — d)d(ar, a;)
> %MA + (1 —6)d(a;, a;)
= di(ai, a;),

dk(a” al) + dk(al,Ej) = (%67“,4 + (1 — 5)d(a“ al)) + (%57”,4 + (1 - 5)d(al, aj))
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> 61 a+ (1= 6)d(as, a;)
> (1 —d)d(a;, a;)
= di(a;, a ),

di(a;, @) + di(a, a;) = (1 = 6)d(a;, ;) + (1 — 6)d(ay, a;)
> (1= d)d(ai, a;)

= di(a;, a;).

We conclude that dj, is a metric on A U {axy1}, and so fry1 is a Katétov map
on Ag. Therefore, fri1 € E-.(Ag), and so, since X has the extension property for

E_., there exists an ag41 € X such that for all x € Ay, d(dgs1,2) = frr1(x).

So for all ¢ < n,

- - 1
d(a;, ar1) = d(art1, @) = frea(a;) = 557“/1 + (1 —d)d(ai, ags1),

(@i, ags1) = d(@ps1, @) = fror1(a;) = (1 = 6)d(as, ar+1).

Therefore, since ay, ..., a; satisfy (1) and (2), we have that ao, ..., ax;1 satisfy (1)
and (2).
This ends the construction of ay, ..., a,.

Let A := {do,...,d,} C X. Define f : A — R by

f(ai) = (1 - 5)f(ai)-
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Since f € E<.(A), we have that for all 7, j <mn,

fla) =1 —=0)f(a;) < (1 —0)r <,
@) = F(@) = (1= 0)|f(a:) — flay)] < (1= 8)d(as, a5) = d(@s;, ),
@) + flag) = (1= 0)(f(ar) + flag)) = (1 = )d(ai, a5) = d(a@, ay).
Therefore, f € E<,,(g), and so, since X has the extension property for E_,., there
exists a z € X such that for all i <n, d(z,@) = f(a). So for all i < n,

d(z,a) — F@)| = |d(z, a5) — d(z, )| < d(as, &) — %m < %

f(@) — fa)| = (1 = 8)f(a;) — flai)| = df(a;) < or,

|d(z, ai) = flai)| < 1d(z, @) = (@) + |f(@:) = f(ai)]

1 3 3 (2
< drddr==dr<=(=)r=ec
_2r+r 2r<2<3r)r €

We conclude that

(V finite A C X)(Vf € E<,(A))(Ve > 0)(3z € X)(Va € A)(|d(z,a) — f(a)| < &),

that is, X has the approximate extension property for E<,. O
Now we can conclude the relationship among the extension properties in the
following theorem.

Theorem 5.3.12. Let r € RT U {oo} and X be a Polish metric space with

diam(X) < r. The following are equivalent:
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(1) X has the dense approximate extension property for E_,.
(2) X has the approximate extension property for E,.

(3) X has the approximate extension property for E<,.

(4) X =2U0,,.

Proof. 1t is clear that (3) = (2) = (1). By Theorem 5.3.9, we have (1) = (2).

By Theorem 5.3.11, we have (2) = (3). By Corollary 5.3.7, we have (3) <= (4). O

By applying Corollary 5.3.7 and Theorem 5.3.12 to X := U.,, we have the

following.

Corollary 5.3.13. For all € RT U{o0}, U,, = Ug,.

5.4 Computable Presentations of U and U,
Theorem 5.4.1. Ifr = co orr € RT is left-c.e., then U<, is computably presentable.

Proof. Assumer = oo or r € R is left-c.e. Then K_, is c.e., that is, we can effectively

list all finite metric spaces in K., say K., = {A4; : i € N}.

Recall that U<, = U., and U, is the completion of Ug <, where Ug <, is the

Fraissé limit of K_,.

To construct a computable presentation of U<,, we build a computable chain
5 5
Dy < Dy <= ... of finite metric spaces that satisfies the property in Theorem 5.1.10
for K.,. Then, by Theorem 5.2.4, there is a computable presentation C of the com-

pletion of the union D := |J D,. By Theorem 5.1.10, D is the Fraissé limit of K_,,
seN
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and so D = Ug «,. Hence their completions are isometric, that is, C = U, = U,.
Therefore, C is a computable presentation of U<,, and so U, is computably pre-

sentable.

s 5
It remains to build a computable chain Dy < D; < ... of finite metric spaces

that satisfies the property in Theorem 5.1.10 for K_,..

We will use a similar argument as the proof of Theorem 3.9 in [2]. For i < j, we

let 0;; denote the embedding 6;_; 0---06; : D; = D;.

For D to be the Fraissé limit of K_,, it is enough to satisfy the following require-

ments:

Riirpap @ fa: Ay — D, and §: A; — Ay, then there exist an s > 7 and

an embedding 7, : Ay < D,y such that 6, 441 0a =50p.

N
\(STjJrl
D
%
k

D
.Ai s+1
N
A
. do 61
Construction of Dy — D; — ...

Stage 0: Let Dy := {0} be the one-point metric space.

Stage s + 1 = (i, k,a, ) + 1 where i, 7, k, a, f € N: We have constructed D; for

all t < s and d; for all t < s. Without loss of generality, assume r < s. We check if
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a: A — D, and §: A; — Ai. (We decode o and f as functions on a finite subset

of N.)

If so, then we apply AP (amalgamation property) of K., to d,s0a : A; — D;
and 5 : A; — A to get Dyyq € K, 05 : Dy < Dy q and 7, : A, — D, such that

05 00,5 0a = o, Then go to the next stage.

If not, then let Dy y := Dy and 65 := Idp, : Dy — Dsyq, and go to the next

stage.
This ends the construction.

5 5
Note that the construction is effective. So Dy < D; <> ... is a computable
chain of finite metric spaces. It is clear from the construction that the chain (Ds)sen

satisfies the requirements R; ;i q,3)-

It follows that there is a computable presentation C of the completion of the
union D := |J D, and D is the Fraissé limit of K., Therefore, C = U, = U.,, and

seN
so U<, is computably presentable. [

We will use the construction of Fraissé limits in the proof of Theorem 5.4.1 again
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to prove some results about U<,. Thus, for convenience, we will call the construction
in the proof of Theorem 5.4.1 the “Fraissé limit construction”, and we will call the

requirements R, .5 the “Fraissé limit requirements”.

We can relativize the notions for computable metric spaces in an obvious way.
For example, we let d”' denote the pseudometric induced by the partial A-computable
function 2. The Polish metric space induced by 2 is an A-computable metric space,
denoted by M. A Polish metric space X is A-computably presentable if it has an

A-computable presentation, that is, X = M for some e € N.

Theorem 5.4.2. Let A C N. If X is an A-computably presentable metric space, then
diam(X) = oo or diam(X) is a left-A-c.e. real.

Proof. Assume X is an A-computably presentable metric space. Then X =2 M for
some ¢ € N. Since 2 induces the Polish metric space M2, 7 is total. Assume
diam(X) < oo. Let r := diam(X). Then diam(M*) = diam(X) = r € R{. Define

an A-computable function f : N — Q inductively by
o £(0) = ¢ (io, jo, ko) — 27* where 0 = (i, jo, ko),

w(i, g, k) =27 ifn+1=(i,j,k) and f(n) < (i, 4, k) — 27"
« fln+1)=

f(n) otherwise

It is clear that f is an increasing function.

We will show that lim f(n) =r.

n—oo

Claim 1. f(n) <r for alln € N.
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Note that for all 7,7,k € N,

i, j, k) —27F < d(i, §) < diam(M2) =r.

So, by induction on n, f(n) <r for all n € N.
Claim 2. (Ve > 0)(3n € N)(f(n) >r —¢).

Let € > 0. Let k € N be such that 27% < £. Since r — 27% < r = diam(M,) =

£
3

sup{d2(i,j) : i,7 € N}, there exist i, j € N such that r — 27% < d4(i, j). So

©2(i, g, k) —27% > (i, j) —27F) —2F >r—2F —oF _oh—p 3.27F 5y ¢

Let n = (i,j,k). If f(n) = ©2(i,5,k) — 27F, then f(n) > r —e. Otherwise,
we must have n > 0 and f(n) = f(n — 1) where f(n — 1) > ©2(i,5,k) — 27, so

f(n) > @A(i,7,k) —27F > r —e. In both cases, we have f(n) >r —¢.

Since f is increasing, by Claim 1 and Claim 2, we have lim f(n) =sup f(n) =r.
n—o0 neN
Therefore, since (f(n))nen is an A-computable increasing sequence of rationals con-

verging to r = diam(X), we have that diam(X) is a left-A-c.e. real. O
By Theorem 5.4.2 and the relativized version of Theorem 5.4.1, we have the
following.

Theorem 5.4.3. Let r € R and A C N. Then U, is A-computably presentable if

and only if v is a left-A-c.e. real.

We have proved that if 7 = oo or r € RY is left-c.e., then the bounded Urysohn
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space U<, has a computable presentation. It turns out that U<, has a unique com-

putable presentation (up to isometry).
Theorem 5.4.4 (Melnikov [12]). The Urysohn space U is computably categorical.

The proof of Theorem 5.4.4 (see Theorem 7.3 in [12]) also works for the bounded

Urysohn spaces. So we have the following corollary.

Corollary 5.4.5. For every left-c.e. real r € RY, U<, is computably categorical.

5.5 Index Set Results on U and U,

Proposition 5.5.1. If r = co orr € RY is left-c.e., then the set

{e € N: M, has the rational approzimate extension property for E. w.r.t. (N,d.)}
is 115.

Proof. Assume r = oo or r € R7 is left-c.e. Then there is a computable increasing

sequence (7, )nen of rationals such that lim r, = r. For the case when r = oo, we
n—oo

can choose r,, = n for all n € N.

Let e € PolSp. Then M, is a computable Polish metric space with a dense subset
D := (N,d.)

Note that

M., has the rational approximate extension property for E., w.r.t. (N, d,)

<= (V finite A C D)(Ve € Q") (Vf € Eg.<-(A))(3z € D)(Va € A)(|de(2,a) — f(a)| < &)
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<= (V finite A C D)(Ve € Q) (Vf € QM)

[f ¢ Eq.<r(A)V (32 € D)(Va € A)(|de(z,a) — f(a)| <e)].

Now note that

feEyA) = f: A= QA Vr,yc A)(|f(z) = fy)| < de(,y) < f(x) + f(y))

Thus, since A is finite, “f € Fg(A)” is a IIY statement.
Since A is finite and (r,),en is @ computable increasing sequence of rationals

such that lim 7, = r, we have
n—oo

[fl <r <= (Vae A)(|fla)] <7)
= (Ya € A)(Fn € N)(|f(a)| < )

< (Im e N)(Va € A)(|f(a)|] < rm),

and so “|f] < r” is a Xy statement.

Hence we have

f€Eg«(A) = feEg(A)N|f|<r

— (Vk € N)R(e, A, £, k) A (Gm € N)Q(A, f,m),

where R and () are computable relations.
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Since A is finite and “|d.(z,a) — f(a)| < &” is a X statement, we have
(Va € A)(|de(2,a) — fa)] <€) == (Bl e N)P(e, A,e, f,2,1),

where P is a computable relation.

From all of the above, we have

M, has the rational approximate extension property for E., w.r.t. (N, d,)
<= (V finite A C D)(Ve € Q7)(Vf € Q<N)
[f ¢ Eg<r(A)V (32 € D)(Va € A)(|de(2,a) — f(a)] < )]
<= (V finite A C D)(Ve € Q) (Vf € Q°N)
[(3k € N)=R(e, A, f, k) V (Vm € N)=Q(A, f,m)
V (3z € D)(3l € N)P(e, A, ¢, f, 2,1)]
<= (V finite A C D)(Ve € Q") (Vf € Q<) (Vm € N)(Ik € N)(Iz € D)(3l € N)

[—R(e, A, f,k)V—=Q(A, f,m)V P(e, A,e, f,z,1)].

Therefore, the set

{e € N: M, has the rational approximate extension property for F_, w.r.t. (N,d.)}
is T19. ]

The following theorem is our main tool to find the complexity of several index

sets involving the spaces U,.

Theorem 5.5.2. Assume r = 0o or r € RY is left-c.e. Let (r,)nen be a computable
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strictly increasing sequence of rationals such that lim 7, = r. Let A be a X set and
n—oo

B be a 113 set. Then there exist computable functions f,g : N — N and a uniformly
c.e. sequence (K.)een of classes of finite metric spaces such that for all e € N, the

following conditions hold:

(1) f(e) € PolSp, and so My is a computable Polish metric space.

(2) e€ A= Ky =K., for somen €N,

(3) e ¢ A= Ky = Ker,

(4) e € B= (N, dy()) is the Fraissé limit of Kg().

(5) e ¢ B = My is finite = Myy % U<y for all v € R* U {oo}.

(6) e€c AN B = My = Us,, for somen € N.

(7) e € B\ A= My, = Us,.
Proof. Recall that Fin := {e:dom(p.) is finite} is 39-complete and Tot :=
{e : dom(p.) = N} is [I3-complete.

Thus, since A is X9 and B is I19, there are computable functions g and h such

that for all e € N,

e € A<= g(e) € Fin,

e € B<= h(e) € Tot.

Recall that K is the class of all finite rational metric spaces and K is c.e. So we
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can effectively list all finite metric spaces in K as

For each e,s € N, let n. s := |dom(pes)|. Then n.g < ne; < ... and we can

compute n. s uniformly in e, s. Let

|dom(p.)| € N if dom(g.) is finite

Ne 1= lim ne s = |dom(p.)| =
S— 00

00 if dom(p.) is infinite

Without loss of generality, assume that r, > 0 for all n € N. Then for all e € N,

Tn, = lim 7, _,

5§—00

(=3

where roo = lim r,, = r.
n—o0

For each e € N| let

K = K<rne = U K<rne’s

seN

= {A;: (3s € N)(diam(A;) <y, )i € N} CK.

Then, since (r,)nen is a computable sequence of rationals and n. s are computable
uniformly in e, s, we have that (K.).ey is a uniformly c.e. sequence of nonempty

classes of finite metric spaces. So we can effectively enumerate all metric spaces in
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K. uniformly in e as

Ke == {Ae,i NS N}

So for all e € N, since lim r,, = r, we have
n—oo

e € A= g(e) € Fin = ny(e) = |dom(pge))| € N
— Ky(e) = K<Tng(e> and Trgey < T
e ¢ A= g(e) ¢ Fin = ny) = |dom(pge))| = 00 =1y, =Teoc =7

> KQ(B) — K<r”g(e) — K<T“

Hence conditions (2) and (3) are satisfied. Therefore, for all e € N, K, satisfies HP,

JEP and AP, and so Ky has a Fraissé limit.

For each e € N, we construct a computable Polish metric space X, uniformly in

e as follows.
Construction of (X.)cen

To construct a computable Polish space X., we build a computable chain

[ [
Dy < Dy < ... of finite metric spaces such that for all e € N,

e € B = (D;)sen satisfies the Fraissé limit requirements for K,y = K.,

9(e)’

e ¢ B —> the chain (D;),cy is eventually stable.

Then we let D := |J Ds, and let X, be the completion of D.

seN

For i < j, we let 0; ; denote the embedding 6;_y 0---06; : D; = D;.
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For the union D = |J D; to be the Fraissé limit of K, it is enough to satisfy
seN

the following Fraissé limit requirements:

Riiriap @ a:Agye s = Dy and B: Age)i = Age) i, then there exist an s > r

and an embedding s : Age)x — Dsy1 such that 6, .41 0a =, 0.

D,
/ &*1
D
N
A

Age),i

s+1

A

g(e)k

5 5
Construction of Dy < D; < ...
Stage 0: Let Dy := {0} be the one-point metric space.

Stage s + 1 = (i, k,a, ) + 1 where i, 7, k, a, f € N: We have constructed D; for

all t < s and ¢; for all t < s. Without loss of generality, assume r < s. We have 2

steps.

Step 1: For each ¢t € N, starting from ¢ = 0, we check if ) +(s) |. Whenever

we find (if ever) the least ¢, such that @p) 4, (5) |, we go to Step 2.
Step 2: We do the Fraissé limit construction for Ay.); € Ky). That is, we check
if o : .Ag(em — D, and 3 : .Ag(e)ﬂ' — Ag(e)’k.

If so, then we apply AP (amalgamation property) of Ky to 6, s0a : Age); — Ds
and 8 Age)i = Age)x 10 get Doyy € Kyey, 05 1 Dy — Dyyr and 7y, : Agieyr — Dogr

such that 05 00,50 0a = ;0. Then go to the next stage.
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D,
6T S \\\\ 65
.
Dr Ds—i—l

/ o

Ag(e).i e’
x e
Ag(e),k

If not, then let Dyyy := D, and 65 := Idp, : Ds — Dsyq, and go to the next

stage.
This ends the construction.

Note that the construction is effective uniformly in e. So D (6—0> Dy <ﬁ>
is a computable chain of finite metric spaces. Then, by Theorem 5.2.4, there is
a computable presentation X,., computable uniformly in e, of the completion of the
union D := J D;,. By the s-m-n Theorem, there is a computable function f: N — N

seN

such that f(e) € PolSp and X, = My for all e € N.
Next, we consider the following cases.

Case e € B: Then h(e) € Tot, and so gy is total. Hence, at every stage s +
1, we will always find the least ¢, such that @p()(s) | in Step 1, and then we
will go to Step 2 and do the Fraissé limit construction. So it is clear from the
construction that the chain (D;),cn satisfies the Fraissé limit requirements R; ;. k. q.5)-
Thus, by Theorem 5.1.10, D := |J D; is the Fraissé limit of Ky = K., and

seN 9(9)’
so D= Ugx<r,, - Note that (N,djey) = D, and so (N,dy() is the Fraissé limit of
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Kg(e)- Thus, the completion X, of D is isometric to the completion of UQ,Q%(@), that

is7 Xe = [U<7"ng ) = UST

(e ng(e)”

Case e ¢ B: Then h(e) ¢ Tot, and so there is the least sy such that ¢pe)(so) 1.
So we will do the construction until stage so + 1, and we will never find a least t,
such that p(e)4,(s0) | in Step 1. Hence we will never go to Step 2. It follows that
the resulting chain is

Do‘—>D1‘—>"“—>D

S0

(We never defined D; for all s > sp.) So we have D = Dy, which is a finite metric
space. Hence X, = D is a finite metric space. Therefore, for all v’ € RT U {o0}, X,

is not universal for K<,,, and so X, 2 U,.

Case e € AN B: Since e € A, we have nge) = |dom(pye)| € N, Kye) = Koy,

g(e)

and rng(E) <r. Since (NS B) we haVe Xe = UST"Q(E)'

Case e € B\ A: Since e ¢ A, we have ny() = |dom(pge))| = 00, 4, = r and

U,

Kye) = K<Tng(e) = K_,. Thus, since e € B, we have X, = Ugrng(e) =

From all of the above, we conclude that conditions (1)-(7) are satisfied. O

Theorem 5.5.3. If r = oo orr € RT is left-c.e., then the set {e € N: M, 2 U<, } is

[19-complete within PolSp, and so it is 11-complete.

Proof. Assume r = oo or r € R is left-c.e. Then there is a computable strictly
increasing sequence (r,),en of rationals such that lim r, = r. For the case when
n—oo

r = 00, we can choose r, = n for all n € N.

By Theorem 5.3.12 and Remark 5.3.3, we have that for all e € PolSp, M, = U,
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if and only if diam(M,) < r and M, has the rational approximate extension property

for E., w.r.t. the dense set (N, d,).
Since (7,)nen IS a computable increasing sequence of rationals such that

lim r, = r, we have
n—oo

diam(M,) < r <= (Vi,j € N)(d.(i,5) <)

< (¥i,j € N)(Ve € Q7)(Fn € N)(de(i, j) — £ < pe(n)).

Hence “diam(M,) < r” is a IIy statement. Therefore, by Proposition 5.5.1,
{e: M, = U} is II9.

To show that {e: M, = U, } is II3-hard within PolSp, we apply Theorem 5.5.2
to A:=( and B := Tot. So we have that there is a computable sequence (X, )cen of

Polish metric spaces such that for all e € N,

ecTot=e€ B\A= X, =U,,

e¢ Tot = e ¢ B= X, is finite = X, 2 U.,.

Therefore, {e : M, = U, } is I13-hard within PolSp. O

Theorem 5.5.4. The set

{eeN: (@ eRY U{ool) (M. 2Us,)} = {e € N: M, 2 Ugiamor}

is T19-complete within PolSp, and so it is 113-complete.
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Proof. 1t is clear that

{e: (Fr e RTU{oo})(M. = U<, )} ={e: M. = Ugiamm.)}-

By Theorem 5.3.12 and Remark 5.3.3, we have that for all e € PolSp,
M. = U<giam(m,) if and only if M, has the rational approximate extension property

for Egiam(m,) W.r.t. the dense set (N, d.).

For each ¢ € QT, let

I, :={e: M, has the rational approximate extension property for E, w.r.t. (N,d.)}.

We can use a similar argument as in the proof of Proposition 5.5.1. (We will have
“Ifl < q” is a AY statement, and so “f € FEg ,(A)” is a IIY statement.) It follows
that I, is IIJ uniformly in ¢ € QT, that is, there is a computable relation R(n,m, g, e)

such that for all ¢ € QT,

e € I, <= VnamR(n,m,q,e).

Then for all e € PolSp,

M, = U<giomm,) <= (Vg € Q") (¢ < diam(M.) = e € 1,

< (Vg€ QY)((Vi,j € N)(do(i,j) < q)Ve€El).

Therefore, {e : (Ir € RT U {oo})(M, = U.,)} is 113 within PolSp.

To show that {e : (Ir € RT U {oo})(M, = U,)} is II-hard within PolSp, we
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apply Theorem 5.5.2 to A := 0, B :=Tot, r := oo and r,, := n for all n € N. So we
have that there is a computable sequence (X.).ey of Polish metric spaces such that

for all e € N,

e€Tot=e€ B\A=—= X, 2 U, = Uy,

e¢ Tot = e ¢ B= X, is finite = X, ¥ U, for all ' € R" U {oc0}.

Therefore, {e: (Ir € RT U{oo})(M, = U.,)} is I13-hard within PolSp. O

Theorem 5.5.5. The set

{eeN:(3reR") (M, = U, )} ={e € N: M, = Ucgigmu,) and M, is bounded}

is d-Y.9-complete within PolSp, and so it is d-X9-complete.

Proof. 1t is clear that

{e: (Fr e RT) (M, = Us,)} = {e: M. = Uc<gigm(m,) and M, is bounded},

and so, by Theorem 5.5.4 and Theorem 2.0.9, it is d-X9 within PolSp.

To show that {e : (Ir € RT)(M, = U.,)} is d-X9-hard within PolSp, we let C
be a d-XY set, say C' = AN B where A is X9 and B is II5.

Then we apply Theorem 5.5.2 to A, B, r := oo and r,, :=n for all n € N. So we

have that there is a computable sequence (X.).cn of Polish metric spaces such that
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for all e € N,

ecC=ANB= (In e N)(X, = U.,,) = (In € N)(X. = U<,),
e ¢ B= X, is finite = X, % U, for all ¥’ € R* U {00},

e€e B\A= X, 22U, =U = X, 2 U for all ' € RY.

Therefore, {e : (Ir € RT)(M, = U,)} is d-39-hard within PolSp. O



Chapter 6

Cantor Space and Baire Space

6.1 Cantor Space

We consider the Cantor space 2 equipped with the metric
d(X,Y) = 27 mininelRX A MY for all XY € 2V,

where d(X,Y)=0if X =Y.

The Cantor space is a Polish metric space, and the infinite binary strings that
are eventually 0 (i.e. the strings 0”0 where o € 2<) form a computable presenta-
tion. In this section, we find the complexity of the embedding problem 2% < M,

homeomorphically and the embedding problem 2N < M, isometrically.

Theorem 6.1.1. The set {e € N: 2N < M, homeomorphically} is 1.

144
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Proof. To show that {e : 2% — M, homeomorphically} is X1, we will construct a

computable sequence (S.)cen of trees such that for all e € PolSp,

S, has an infinite path <= 2" < M, homeomorphically.

Since (S.)een is a computable sequence of trees, {e : S, has an infinite path} is X1,

and so {e : 2% — M, homeomorphically} is 31.

Recall that for each e € PolSp, (M,,d.) is a computable metric space where
(N,d,) is a countable dense subset consisting of all rational points. For each p € N
and r € Qt, we let B(p,r) denote the rational open ball in M, around p of radius r,
that is,

B(p,r) :={x € M, :d.(x,p) <r}.

Then the closure B(p,r) = {x € M, : d.(z,p) < r} is a rational closed ball. It follows

from the triangle inequality that

o d.(q,p) <rT—5= B(q,s) C B(p,r),

e do(p,q) >s+r = B(p,r)N B(q,s) = 0.

For any pair (B(p,r), B(q, s)) of rational open balls, we consider the following condi-

tions:

(1) de(q,p) < r —s. (This implies B(q,s) C B(p,r).)

(2) d.(p,q) > s+ r. (This implies B(p,r) N B(q,s) = 0.)

Since conditions (1) and (2) are X statements, 0’ can determine whether a pair of

rational open balls satisfies (1) and (2).



146

By using a fixed computable coding function, we can code each finite sequence
(Bi, ..., By,) of rational open balls by a natural number. Let (B, ..., B,) denote the

code of the sequence (By, ..., B,).

We say that a family of nonempty open balls (Bjy),eo<mqa} in M, is a Cantor

scheme if it satisfies the following conditions:
o If 7 and o are incompatible, then B, N B, = 0.
o If 7 C o, then B, C B,.
o diam(B,) < 27l
o The center of the ball B,, denoted by x,, is a rational point of M,.

If M, has such a Cantor scheme, then by the same argument as the standard
proof of the fact that every Polish space contains an homeomorphic copy of 2V (see,
e.g. [8]), 2 can be embedded homeomorphically into M, via the map 1 : 28 — M,
defined by

Y(X) = lim xx;, forall X € 2",

n—o0

Construction of S,
For each e € N, we define a computable tree S, uniformly in e as follows.

Let X € S, and for each ¢ € N<N with |o] = n+1, we let o be in S, if and only if

there exist rational open balls By, By, Bog, Bo1, Bio, Bi1, ..., B11..1 in M,, where the
(n+1)-copies
indices are finite binary strings ordered by the lexicographic order on 2<%, such that

the following conditions hold:
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¢ 0= (<BO7 B1>7 <BOOJ BOlJ BIO7 Bll>7 ) <BOO...07 BOO...017 s 7Bll...1>)
2 =

(n+1)-copies (n+1)-copies

diam(Bs) < 27Pl for all § € 2<N\ {A\} with |§| <n + 1.

65 260 ’ I < I = = 7o
(Bs, Bso) and (Bs, Bsy) satisfy (1) for all § € 2<N with 1 < |[§] < n

(Bso, Bs1) satisfies (2) for all § € 2<N with |§] < n.
This ends the construction of S..

It is clear from the definition of S, that S, is a computable tree uniformly in e.

Note that

S. has an infinite path <= (3X € NY)(Vn € N)(X [ n € S,).

Therefore, since S, is computable uniformly in e, {e : S, has an infinite path} is X].

It remains to show that for all e € PolSp, S, has an infinite path <= 2N < M,

homeomorphically. Let e € PolSp.

(=) Assume that S, has an infinite path, say X € NY. For each n € N*,
we can decode each finite string X | n to get a finite collection of rational open
balls {B, : @ € 2N\ {\},|a| < n}. So the infinite path X gives an infinite family
(Ba)ae2<m ay of rational open balls in M,. By the construction of S, it is easy to see

that (Ba)ae2<m () is a Cantor scheme. Therefore, 2N < M, homeomorphically.

(<) Assume that 2% < M, homeomorphically via an injective continuous map
f: (2N d) — (M., d.). We construct a Cantor scheme (Ba)ae2<m 1ry that satisfies the

following condition:
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(x) For all § € 2<N (Bgsg, Bs1) satisfies (2), and if |o| > 0, then (Bs, Bsy) and
(Bs, Bs1) satisfy (1).

Construction of (B, )aca<m z}
Stage 0: Do nothing.

Stage 1: Choose any X, X; € 2 with X, # X;. Since f is injective, f(X,) #
f(X1). Choose an g1 € Q7 such that

o1 < minf2 7%, Zdu(F(Xo), F(X)}
Since (N, d.) is dense in M., there exist rational points pg, p; € N such that
d.(f(Xi),pi) <& forallie{0,1}.
Choose an r; € Q% such that
g1 <7 < min{27?% %de(f(Xo), f(Xy)) —er}

Let By := B(po,r1) and By := B(p1,71).

Note that for all i € {0,1}, do(f(X;),pi) < &1 <71 < 272 and diam(B;) < 2r; <

271, Also note that (By, By) satisfies (2) because

de(po, 1) > de(f(Xo), f(X1)) — de(f(Xo), o) — de(f(X1),p1)
> do(f(Xo), f(X1)) —e1— &1

> 2r1.
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Stage n + 1 where n > 0:

We have defined ¢, 7, and X5, p; for all § € 2<% with |§| = n. We assume by

induction that

de(f(X5),ps5) < epn <Tp < 2=+ for all § € 2<N with |0] = n.

For each 6 € 2<N with |§| = n, since f is continuous at X5, we can choose

Xs0, Xs1 € 2V such that
o Xso # Xo1,
o do(f(Xs), f(X5)) < 3(rn —e,) for all i € {0,1}.

Note that

de(f(X50), [(X1)) < de(f(Xs0), f(X5)) +de(f(X5), F(X51)) < 10— <10 < 270D,

Choose an €,41 € Q" such that

it < mip A (F(Xio), £ (X))}

Note that

Ent1 < ide(f(X%)a f(Xél)) < %L(rn - 5n) < %(Tn - 5n)a

and for all i € {0, 1},

1 1 1 1

Ent1 < Z(Tn - 5n> = 5[(7% - En) - §(Tn - En)] < 5[(rn - 571) - de(f(X&)a f(Xé))]
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Since (N, d,) is dense in M., for each § € 2", there exist rational points pso, ps1 € N
such that

de(f(ws:i),psi) < eny1 forall i € {0,1}.

Note that ¢,1 < %(rn —ep) < %rn < 272 For each § € 2", since £,,1 <
de(f(Xs0), f(Xs1)), we have e,11 < %de(f(Xgo),f(X(;l)) — €pq1. Also, since ,,11 <
[(Tn - 5n) - de(f(Xﬁi)a f<X5>)]7 we have Entl < Tph — [de(f<X6i)7 f(X5)) +én+ 5n+1]'

We conclude that

. —(n 1
Ent1 < Iin {2 ( +2)a7“n—[de(f(X6i)af(Xa))+5n+€n+1]a§de(f(X60),f(X51))—€n+1}-
1€{0,1}

Choose an 7,41 € Q7 such that
. —(n 1
Enit < Tner < min {27y —[d(F(Xa), F(X5))Fentenial, 5de(f (Xoo), f(Xor))—enia}-
1€{0,1}
For each § € 2" and i € {0, 1}, let Bs; := B(psi, "n+1)-

Note that for all § € 2" and i € {0, 1}, do(f(Xsi),psi) < Ens1 < Ty < 27(F2)

and diam(Bs;) < 2rp,41 < 27D Also note that (Bs, Bs;) satisfies (1) because

de(Psi, Ps) < de(Dsi, f( X)) + de(f(Xsi), f( X)) + de(f(X5), ps)
< éent1 + de(f(Xsi), f(X5)) + €n

<Tp— Tnt1- ( Tl < Tp — [de(f(X5i>7 f(X(S)) +e, + 5n+1]>
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Also, (Bso, Bs1) satisfies (2) because

de(pso, ps1) > de(f(Xs0), f(Xs1)) — de(f(Xs0), pso) — de(f(X51),p51)
> de(f(Xéo)a f(Xél)) —&ntl — Entl

> 2t (2w < el (Xan), f(X02)) = nia)

This ends the construction of (Ba)aeca<m (r}-

It is clear from the construction that (B,)aea<m g} is a Cantor scheme in M, that
satisfies (x). Recall that each infinite path X € [S,] gives a Cantor scheme in M,.
Moreover, [S.] gives all possible Cantor schemes that satisfies (x). So S, must have
an infinite path corresponding to (Bg)aea<m a3 More specifically, for every n € N,

the finite string o,, of length n + 1 defined by

Op = (<Bo, B1>, <Boo, 3017 3107 Bll)a ceey <Boo...o, BOO...Ola - 7311...1>)
~—~ ~~

(n+1)-copies (n+1)-copies

must be in the tree S, and so |J o, € NV is an infinite path in S..
neN

We conclude that for all e € PolSp, S. has an infinite path <= 2N — M,

homeomorphically. It follows that {e : 2% < M, homeomorphically} is 3. O
Theorem 6.1.2. The set {e € N : 2N < M, homeomorphically} is X} -hard.

Proof. Recall that (T,)cen is a fixed effective enumeration of all primitive recursive
trees T, C N<N. To show that {e: 2N < M, homeomorphically} is ¥i-hard, it is
enough to build a computable sequence (X, )cen of Polish metric spaces such that for

all e € N, T, has an infinite path <= 2 < X, homeomorphically.
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For each 0,7 € 2<N with |o| = |7, we let o @ T denote the string in 2<N defined
by

o(k) ifn=2k
(0@ 7)(n) =
(k) ifn=2k+1

For each e € N, let

Se:={oc@7:7€T, and ¢ € 2<% with |o| = |7|},

g@ ={p 0" :pe s} C2

Define a metric d on ge by

d(X,Y) = 27z min{neNXmAY (M} for a1l XY € S,

where d(X,Y) = 0if X =Y. Let X, be the completion of (S, d).

The idea is that each 7 € T, will correspond to an isometric copy of the full
binary tree 2<N up to level |7| in S,. So if T, has an infinite path, then S, will contain

an isometric copy of the full binary tree 2<V, and so 2% < X, isometrically.

Since (T:)een is a computable sequence of trees, (Se)een is also a computable
sequence of trees. It follows that (X.)een is a computable sequence of Polish metric

spaces.
We claim that T, has an infinite path <= 2~ < X, homeomorphically.

(=) Assume T, has an infinite path, say f € NY. Let A := {oc"0" : ¢ € 2<N}
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and define a map ¢ : A — S, by
Y@ 0Ny = (e @ (f [|o]))"0N  for all ¢ € 2<N.

Then for all o € 2<N and n € N,

(

o(k) ifn=2kand k < |o|
(W(e"0M)(n) =% f(k) ifn=2k+1andk < |o]

0 otherwise

\

It follows that for all XY € A with X # Y, we have

min{n : ($(X))(n) # ((Y))(n)} = 2min{n : X(n) # Y(n)}, and so
d(X,Y) = 2~ min(mX AV ()} _ 9=} minfreN@COWAEINMY — G(oh(X), (V).

So : (A, d) — (56, cj) is a distance-preserving map. Thus, since A is dense in (28, d),

¢ can be extended to an isometric embedding v : (2¥,d) — (X,,d). Therefore,

2N < X, isometrically. In particular, 2V < X, homeomorphically.

(«<=) Assume that 7T, has no infinite paths. By the definition of S, S. also
has no infinite paths. It follows that (§e, c?) is countable and it has no limit points.
So the completion X, is just §e, which is countable. Since 2V is uncountable, 2
does not embed into X, homeomorphically. In particular, 2% does not embed into X,

isometrically.

We conclude that for all e € N, 7, has an infinite path <= 2% < M, homeo-

morphically. Therefore, {e : 2 < M, homeomorphically} is ¥}-hard. [
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By Theorem 6.1.1, Theorem 6.1.2 and the well-known fact that a Polish metric
space is uncountable if and only if it contains a homeomorphic copy of the Canter

space 2N (see, e.g. [8]), we have the following theorem.

Theorem 6.1.3. The set

{e € N: 2V < M, homeomorphically} = {e € N : M, is uncountable}
is Y1-complete.
Theorem 6.1.4. The set {e € N : 2 < M, isometrically} is ¥i-complete.

Proof. By Proposition 3.1.6, {e : 2V < M, isometrically} is ¥1. The proof of Theo-

rem 6.1.2 also shows that {e : 2% < M, isometrically} is 3{-hard. O

6.2 Baire Space

We consider the Baire space N equipped with the metric
d(X,Y) =27 mn{neRXAMY - for all X,V € NV,

where d(X,Y) =0if X =Y.

The Baire space is a Polish metric space, and the infinite strings that are even-

tually 0 (i.e. the strings 0~0Y where o € N<V) form a computable presentation.

First, we consider the embedding problem NY <+ M, homeomorphically. It

is clear that 2 < NY isometrically and homeomorphically. It is also known that
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NN < 2N homeomorphically. For example, we can define a function f : NN — 2N by

f : (‘rn>n€N = 1‘%001‘%101‘%20 cey

where 17 is the finite string of length x,, consisting only 1s. Then it is not hard to

show that f : NY — 2V is a homeomorphic embedding. In fact, the range of f is

{(Y)nen € 2V : y, = 0 for infinitely many n},

which is dense in 2. Therefore, we have that

{e: N¥ < M, homeomorphically} = {e : 2" < M, homeomorphically},

which is Xl-complete by Theorem 6.1.3.

Also note that the proof of Theorem 6.1.2 for 2V also works for N¥ by using

S.:={oc@7:7€T, and 0 € N with || = |7|}.

Therefore, we have the following.
Theorem 6.2.1.
o The set {e € N: NN < M, homeomorphically} is ¥}-complete.
o The set {e € N: NN < M, isometrically} is ¥1-complete.

It was shown in [12] that the Cantor space 2V is computably categorical as a
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metric space. We show that the same is true for the Baire space. We start with
proving the following lemmas.

Lemma 6.2.2. For all n,l € N, if Bo,...,3, € NN and ; [ | = B; | L for all

i,7 €{0,...,n}, then the set
{p e N1 (Vi <n)(d(B;, p) = 27")}

is an infinite open set of NV,

Proof. Assume n,l € N, fy,...,8, € NV and 3; [ | = ; [ L for all 4,5 € {0,...,n}.
Let V :={p e NV: (Vi <n)(d(B;,p) =27")}. Note that for each i < n,

[8: 1] = {p € N" = d(B;, p) <27'}.

By the definition of the metric d, if d(5;, p) > 27UV, then d(5;, p) > 27" It follows

that
V= (18 1] (NV\ [B; 11 +1])).

i<n

Thus, since the basic open sets of N are clopen, V is open.

Let M := max{f;(l) :i <n}+1and 0 := (fy [ {)"M. Then ;(I) # M for all
i <n. Thus, since 5; [ I = By [ [ for all i < n, we have that [¢] C V. So V is infinite

since [o] is infinite. O
Lemma 6.2.3. For all o, 3,y € NY, if d(o, 8) < d(cv,7), then d(B3,7) = d(a, 7).

Proof. Let o, 3,7 € NY be such that d(«a, 3) < d(a,7). If a = B, then d(3,7) =
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d(a,y) and we are done. Assume a # 3. Then d(a, ) = 27! for some | € N. Since

d(a, B) < d(a,7), d(a,y) = 27™ for some m < [. By the definition of d, we have that
aTl=B11a(l)#B8(), am=~m, anda(m) £ (m). Sincea [ =] I

and m < [, we have 8 | m =a [ m =~ [ m and 5(m) = a(m) # v(m). Therefore,

d(3,7) = 27" = d(a, 7). =

It was proved by Melnikov [12] that the Cantor space 2V is computably categor-

ical. We show that the same is true for the Baire space NV.

Theorem 6.2.4. The Baire space NV is computably categorical.

Proof. Let (a;)ien and (8;)ieny be computable presentations of NY. Without loss of
generality, we can assume that (a;);eny and (5;);eny have no repetitions. We will build

a computable bijection f : N — N such that

d(ov, o) = d(Byeay, Brjy) foralli,j € N,
Then the map ¢ : NN — NN defined by

7,0(}1}1& Qgi)) = zliglo Brgay) for all Cauchy names (o )ien in (0 )ien

is a computable isometry w.r.t. (o;)ieny and (3;)ien. So NV is computably categorical

as a metric space.
Construction of f

We use a back-and-forth construction to build a computable sequence (fs)sen of
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isometries, that is,

d(cv, o) = d(By, ), Br.jy)  for all 4, j € dom(fs),

then we let f :=J, fs.
Stage 0: Let fo := {(0,0)}.

Stage s + 1 = 2n + 1: We make sure that n € dom(fsy1). If n € dom(f), then

let foi1:= fs. If n & dom(fs), then we do the following.

Let [ be the largest number such that (3i € dom(f,))(d(, a,) = 27%), and let

I:={i € dom(f,):d(oy,a,)=2""}#0.

Find the least £ € N such that

k ¢ range(fs) and d(By,q), Bx) = 27 for all i € 1.

(We will show below that such a number k exists.) Let foi1:= fs U{(n,k)}.

Stage s + 1 = 2n +2: We make sure that n € dom(f. ) = range(fsi1). If

s

n € dom(f;!), then let foi1 := f,. If n ¢ dom(f; 1), then we do the following.

Let [ be the largest number such that (3i € dom(f;1))(d(B;, Bn) = 27), and let

I:={i€dom(f"):d(B;,B,) =27 #0.



159

Find the least £ € N such that
k & range(f; ') and Aoy, ) = 27 for alli € 1.

Let fs+1 = fsU {(]{?, n)}
This ends the construction.

We will show by induction that for every s € N, f, is an isometry and we can

find such a number k in the construction at stage s if s > 0.

Clearly, fo = {(0,0)} is an isometry. Now let s € N. By the induction hypothesis,
fs is an isometry and we can such a number k in the construction at stage s if s > 0.

We consider the construction at stage s + 1 as follows.

Case s + 1 = 2n + 1: We only need to consider when n ¢ dom(f;). Note that for

every i € I, d(oi, ) =27 and so a; [l =, [ I. Soforalli,j €I, a; [l =a; |1,
and so d(a;, o) < 271 Thus, since I C dom(fs) and f, is an isometry, we have that
for all 7,7 € I, d(ﬁfs(i)aﬂfs(j)) = d(ai,aj) < 2_1, and so 5fs(i) [ = /st(j) 1. Also

note that [ is finite because dom(fs) is finite. Thus, by Lemma 6.2.2, the set

Vi={pecN':(Vie D)(d(Bs.@y, p) = 271}

is an infinite open set. So, since (3;)ien is dense in N, {3;};eny NV is infinite. Hence,

since range(fs) is finite, there must be the least &k € N such that

k ¢ range(fs) and By € V, and so d(By,q), Bx) = 2 for all i € I.
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Then we will define fy1q := f, U{(n,k)}.

Next, we show that f,,; is an isometry. By the choice of k, we have that for all

i €1, d(B, (), Brom) = d(Bray Br) = 27" = d(cu, o). Thus, since dom(fo1) =

dom(fs) U {n} and f; is an isometry, it remains to show that for all j € dom(fs) \ I,
d(6f3+l(j)’ /8f5+1(n)) == d(aj, Oén)

Let j € dom(fs) \ I.. Then d(aj,a,) # 27", Since n ¢ dom(fs), j # n, and
so, since (a;);en has no repetitions, o; # a,. By the maximality of [, we must have
d(aj, a,) = 27 for some m < [. Since I # (), we can fix an ¢ € I. Then d(a,, ;) =
270 < 27™ = d(ay, @j). Thus, by Lemma 6.2.3, d(a;, o) = d(av,, ;) = 27™. Since

i,7 € dom(fs) and fs is an isometry, we have

d(Bt, (s Brara () = d(Br.iiy, Broy) = dlau, o) =27

Also, since 7 € I, we have

A(Bfois (i) Bromm) = 271 <27 = d(Bros (i) Bru(i))-

Thus, by Lemma 6.2.3,

d(ﬁfsﬂ(n)? st+l(j)) = d(ﬁferl(i)’ 6fs+1(j)) =2""= d(am aj)'

We have shown that for all j € dom(fs) \ I, d(Bs...(), Br.m) = d(oy,an).

Therefore, fs. is an isometry.

Case s + 1 = 2n + 2: We only need to consider when n ¢ dom(f;!). By a similar
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argument as Case s + 1 = 2n + 1, there is the least £ € N such that
k & range(f; ') and A1y, ) = 27 for all i € 1.

Since f, is an isometry, so is f;'. Then we can use a similar argument as Case

s+ 1=2n+ 1 to show that f,,; is an isometry.

We conclude that f: N — N is a computable bijection such that

d(ai, Oéj) = d(ﬁf(l), 510(])) fOI' all Z,j € N

It follows that (oy)ien and (3;)seny are computably isometric. Therefore, NY is com-

putably categorical as a metric space. [



Chapter 7

Spaces of Continuous Functions

For a compact metric space X, we consider the Polish metric space C'(X) of continuous

real-valued functions on X, equipped with the pointwise supremum metric:

d(f,g) == sup|f(z) — g(x)|.

zeX

It is well-known that for any compact metric space X, the space C'(X) is a Banach

space.

Recall that a Banach space is a complete normed vector space. We can write a
Banach space B as the tuple (B, d,0,+, (r),cq), where B is the underlying set, d is
the metric induced by the norm, 0 denotes the additive identity (or zero), + denotes
the vector addition, and for each r € Q, r- denotes the scalar multiplication by 7.

The signature of Banach spaces consists of d, 0, +, (7).

162
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7.1 The Space C|0, 1]

In this section, we provide several relevant results on Banach spaces and on C[0, 1]
due to Melnikov (see [11] and [12]). We will refer to these results when we consider

the space C'(2V) in the next section.

Fact 7.1.1 (Melnikov [12]). Let B = (B,d,0,+, (r),cq) be a Banach space. Suppose
(pi)ien @s a computable presentation of (B,d) w.r.t. which + and (r-),cq are uni-
formly computable, and (¢;)ien is a computable presentation of (B,d) w.r.t. which 0
is computable. If (g;)ien is computably isometric to (p;)ien, then + and (-),cq are

uniformly computable w.r.t. (¢;)ien-

Fact 7.1.2 (Melnikov [11]). In a computably separable Banach space, the operation

+ and d(-,-) effectively determine the operations (r-),eq, — and the zero element 0.

Definition 7.1.3 (Melnikov [11]). Two computable presentations A and B of a sepa-
rable metric space (M, d) are said to be limit equivalent if there is a total computable
function g : A x N — B of two arguments such that f(z) := Sli_)rgo g(z, s) is a surjective
isometry from A onto B, where the limit is taken with respect to the standard metric

on N (i.e. the sequence (g(z, s))sen is eventually stable on every z).

Definition 7.1.4 (Melnikov [11]). A computable presentation A of a separable metric
space (M,d) is rational-valued if d(z,y) € Q for every z,y € A, and the distance
function d is represented by a computable function of two arguments mapping each

pair of rational points (z,y) to the corresponding rational number d(zx, ).

Theorem 7.1.5 (Melnikov [11]). Suppose A and B are two rational-valued com-

putable presentations on a separable metric space (M, d) which are not computably
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isometric. If A and B are limit equivalent, then (M, d) has infinitely many computable

presentations which are pairwise not computably isometric.

Theorem 7.1.6 (Melnikov [11]). There exist infinitely many computable presenta-
tions of (C[0,1],d) which are pairwise not computably isometric. In particular, the

space C[0, 1] is not computably categorical as a metric space.

Theorem 7.1.7 (Melnikov [11]). The space C[0,1] is not computably categorical as

a Banach space.

7.2 The Space C(2Y)

Consider the Polish metric space C(2Y) equipped with the pointwise supremum met-
ric:

d(f,g) == sup [f(X) —g(X)|.

Xe2N

Since 2" is compact, C'(2") is a Banach space.

In this section, we modify Melnikov’s idea for proving that the space C0,1] is

computably categorical as a metric space and as a Banach space to prove the same

results for C'(2V).

For each o € 2<N, [o] := {X € 2V : 0 C X} is the basic clopen set of 2V w.r.t.

o. We define y, : 2% — R by

1 ifeCX
XO'(X) = X[[a]](X) =
0 ifeZ X
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Let D be the linear span of {x, },co<v over Q, that is,

D = {Z%‘Xw :neN o €2 g € Q}'
i=0

We will call the elements of D the rational simple functions.

Note that each rational simple function can be written in the form zn: 4iXo; Where
LI olo:] = 2% and ¢; € Q. -
Proposition 7.2.1. D is a countable dense subset of C(2V).

Proof. 1t is clear that D is countable. It is easy to see that D satisfies the following
conditions:

(1) f+ge Dforall f,g e D.

(2) f-ge Dforall f,g € D.

(3) gf e Dforallg e Q and f € D.

(4) D contains the constant function 1.

(5) D separates points, i.e. for every XY € 2V with X # Y, there is an f € D
such that f(X) # f(Y).

Therefore, by the Stone-Weierstrass Theorem (see, e.g. [18]), D is dense in C(2V). [

Let £ := (I;)ien be an effective list of all rational simple functions, without

repetition.

Proposition 7.2.2. L is a computable presentation of C(2Y). Moreover, L is effec-

tively closed under + and x. That is, there are computable functions f and g such
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that for every i,j € N, we have
li + lj = lf(i,j) and lz X lj = lg(i,j)‘

It follows that the operations + and X are computable w.r.t. L.

Proof. To show that £ is a computable presentation of C'(2"), we need to show that

d(li, ;) == sup |l;(X) —1;(X)| is a computable real uniformly in ¢ and j.
X2l

Let 7,7 € N. Then we can effectively find n,m € N, q,,r; € Q and o4, 7; € 2<N

such that
L= GXo, and L= rxs.
k=0 =0

It is clear that
(Vo € 25)(VX, Y € 2)(X [ |o] =Y | o] = xo(X) = xo(Y))-
Let N := max{|oy|,|n| : k € {0,...,n},1 €{0,...,m}}. Then
VX, Y €2)X [N =Y | N = (Li(X) = L,(Y) AL(X) = [;(Y))).

It follows that
d(l;, ;) = max |;(0”0) — 1;(o”0M)|.
oe2N

Thus, since 2V = {o € 2<V : |o| = N} is a finite set of strings, we can compute d(I;, [;).
Note that d(l;,1;) can be computed in this way uniformly in ¢ and j. Therefore, £ is

a computable presentation of C/(2V).

Next, we show that L is effectively closed under + and x. Let 7,57 € N. Then
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we can effectively write [; and [; as linear combinations of x, as before. So we
can effectively write ; and [; as linear combinations of x, where o € 2V. Since
[e] N [7] = 0 for every distinct o, 7 € 2V, I; and [; are constant on [o] for all o € 2V,
So we can compute the value of [; + [; on [o] for each o € 2V, and write [; 4+ [; as
a linear combination of x, where o € 2. Hence we can effectively find a number
ni; such that l; +[; = I, ,, and then let f(i,j) = n;;. So f is computable and
li+1; =l  for all 4, j € N. Therefore, L is effectively closed under +. By the same

argument, £ is also effectively closed under x. O

Note that 1 is a computable point w.r.t. £ since it is a rational point of £. By

Proposition 7.2.2 and Fact 7.1.2, we have the following corollary.

Corollary 7.2.3. The constant functions 0 and 1, and the operations +, X, (r+),cq

are uniformly computable w.r.t. L

Theorem 7.2.4. There exists a rational-valued computable presentation A = (f;)ien
of (C(2Y),d) such that A is limit equivalent to L, the constant zero function 0 is

computable w.r.t. A, and the operation (%) cf %f is not computable w.r.t. A.

Proof. We use the idea of the proof of Theorem 7.1.6 (see Theorem 3.10 in [12]).
Fix an effective list (¥.)een of all Turing functionals of one argument. We build
a computable presentation A = (f;);en of (C'(2V),d) by constructing a computable
double sequence (f; ); sen of rational simple functions in stages and let f; := lim, f; .
At the end of stage s, we will have a finite collection fo, ..., fn(s),s Of rational simple

functions, where n(s) is a nondecreasing function in s.

We need the following properties:
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fi == lim, f; s exists for every 7.

o (fi)ien is dense in (C(2Y),d).

d(fi, f;) is computable uniformly in ¢, j.

The zero function 0 is a computable point w.r.t (f;);en.

The operation (3-) : f — 3 f is not computable w.r.t. (f;)ien.

A is limit equivalent to L.

To satisfy the above properties, we will construct (f;s);sen that satisfies the

following conditions:
(1) For every i, there is an s; such that f;; = fi,, for every t > s;.
(2) For every j, there is a unique kj; such that fi, = [;.
(3) For every s € N and i,j < n(s), d(fis, fi.s) = d(fist1, fis41)-
(4) For every s, fos =0.
(5) For every e, ¥, does not represent (3-) in (fi)ien.

After the construction, we can define a map using condition (1) to show that A

is limit equivalent to L.

To ensure that the operation (%) is not computable w.r.t. (f;);en, we diagonalize
against W, potentially witnessing the computability of (%) as follows. We choose a
basic open set U, C 2 and a rational point f,. Whenever the value of ¥, on f,
becomes close to % fp on U, in our current approximation (if ever), we change the

approximation so that U, on f, is far enough from % fp in the new approximation,
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and we will never change the approximation on U, again. This will make ¥, on f,
too far from %fp, and so ¥, does not represent (%) in (fi)ien-
To satisfy condition (2), we will satisfy the Pj-requirements:
P; : There is a unique k; such that fi, =1;.
To satisfy the Pj-requirements, we use the following P;-strategies.
The Pj-strategy

At stage s + 1 = 2(k, j) where k,j € N: If [; is not among fo, ..., fu(s),s, then

let fr(s)4+1,0 := [ for every v < s+ 1.
This ends the Pj-strategy.

Note that the Pj-strategies guarantee that for every j € N,
lie{fis:i<n(s)} for infinitely many s € N.

After the construction, we verify that, in fact, I; € {fis : ¢ < n(s)} for cofinitely

many stages.

To make sure that (%) is not computable w.r.t. (f;)ien, we diagonalize against
U, so that ¥, does not represent (%) in (f;)ien for every e € N. If W, represents (%)
in (f;)ien, then for every p € N, since the constant sequence (f, fp,...) is a Cauchy

name of f, in (f;)ien, o) enumerates a Cauchy name of %fp in (f;)ien-

Fix an effective list (®.).en of all partial computable functions of two arguments.



170

By the s-m-n Theorem, there is a computable function a : N — N such that
GUnle)(n) = Oy (p,n)  for all e,p,n € N.

So it is enough to make sure that for every e € N, ®. does not represent (%) in

(fi)ien, i.e. there exists a p € N such that (fe,(pn))nen is not a Cauchy name for 1 f,.

If @, represents (3-) in (fi)ien, then for every p € N, (fo,(pn))nen is a Cauchy

name for % fp, and so
1 _
d(fo.pm), ifp) <2™ forallneN.

Therefore, to ensure that ®, does not represent (3-) in (f;)ien for every e € N, it is

enough to satisfy the N -requirements:
N, : (3p)(3)(R)[@c(p, n) b= h —> d(fi, 1fy) > 277,

Fix an effective list (U, ).cn of disjoint basic open sets of 2V, say U, = [7.] where
7. € 2<N. For example, we can let U, := [1°0] for all e € N. The strategy for each
Ne-requirement will act on its own basic open set U,. This is to avoid any conflict

with our attempt to satisfy the Pj-requirements and to preserve distances.

For each e € N, we let §, := 2773 and we define a constant function ¢, € C'(2V)
by c.(X) = 2¢t1 for all X € 2N, The function ¢, will become our witness to satisfy

the N,.-requirement.
The N,.-strategy

(a) At stage t +1 =2(0,e) + 1 where e € N:
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If the constant function ¢, is not already among fo,, ..., fuw) s, then let froo11,, = ce

for every v <t + 1.

So, in any case, there exists a p < n(t) + 1 such that f, ;1 = ¢ = 2¢T1

We fix such p.

(b) At stage s + 1 =2(k,e) + 1 where k > 0 and e € N:

We consider the computation for ®. s(p, e + 3):
If ®.(p,e+ 3) 1, then do nothing and go to the next stage.
If . (p,e+ 3) = h, then we have the following cases:

Case 1. f5 s has not been defined so far (i.e. h > n(s)):
Do nothing and go to the next stage.
(The Pj-strategies will ensure that lim n(s) = co. So we will wait until the first stage

S§—00

s +1>s+1 where h <n(s).)

Case 2. sup |fs(X) — 3 fps(X)| > 27¢73 =6
XeU.
Do nothing and stop the strategy.

(Note that we can compute sup | fps(X)—3 f,,s(X)|) because f, and f,, ; are rational
XeU.

simple functions and U, = [7.].)

Case 3. sup | fs(X) — 3 fps(X)| <2778 = 6.
XeUe
We effectively find a basic open set V = [[p.] C U, a point Y € V, and a sequence

(fo,s415 - - - » fu(s),s+1) of rational simple functions such that
o fost1= fos=0and f; 1= fis on 2V \ V for all i < n(s),
e for all ¢ S n(s), if fi,s SV 267 then fi,s—l—l = fi,s;

® d(f’i,Sle’ fj,s+1) = d(fi,su fj,s) fOI' all Z?j S Tl(S),
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* fp,erl(Y) = 2°.

(Here, f <y g means f(z) < g(x) for all z € V. Similarly for <y, >y, =y, and >y.)

Stop the strategy.

The procedure for finding such V)Y and f; 41 is as follows. Since f;,’s are
rational simple functions, we can effectively find a basic open set V' = [p.] C U, such
that f; s is constant on V for all i < n(s). This implies that for all 7, j < n(s), we

have f; s <y fjs or fis >v fjsor fis=v fjs. Welet Y := poON e V.

Recall that we fixed p < n(t) + 1 such that f,;.1 = c. = 2°7'. Since the
value of f,;11 on U, can be changed only by the N-strategy, and the N.-strategy

never changes the approximations before this stage s + 1, we must have that f, s =¢,

foa1 =v. Ce = 2¢T1. In particular, f, (V) = 2¢71.

Let Vo := [p20] and V; :=[po1]. Then V =V, U Vi and Y € 1.

For each i < n(s), define a rational simple function f; s as follows.
If fis <v 2¢ thenlet f; 41 = fis.

It fis >v 2° then let

2¢ if X eV
fi,s+1 (X> -
fis(X) otherwise

This ends the N,-strategy.

We need to show that VY and f; ;41 satisfy the desired properties. It is clear

from the construction that fos = 0 <y 2°. So, by the procedure, we have fy 11 =
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fo.s = 0. Tt is clear from the procedure that f; .1 = f; on 28\ V for all i < n(s).
It is also clear that for all i < n(s), if fis <y 2° then f;s11 = fis, Recall that
fos =v. 271 So f, s =y 2¢T1 >y 2¢. Thus, by the procedure, we have f, 11 =y, 2°,

in particular, f,1(Y) = 2°.

It remains to show that d(f;si1, fjsr1) = d(fis, fs) for all i,j < n(s). Let
i,7 < n(s). Let M := )s(ul‘)/ |fis(X) — f;s(X)]. Since f; s and f;, are constant on V,
€

we have that

sup [fis(X) = fs(X)] = M = sup |f;o(X) = f;:(X)].
XeW XeW,

Note that f;s11 = fis and fjs11 = f;s on 28\ V5. So

sup [ fiep1(X) = e (X)[ = sup [fio(X) = f5(X)] = M.

Xe2M\Vy Xe2M\Vy
Hence d(fis, fjs) = sup |fis(X) — f;s(X)]. Now it is enough to show that
Xe2M\ Wy
sup [fis1(X) = fisn(X)] < M.

XeWy

Case 1. fis >v 2° and f;, >v 2% Then fio1 =vw fist1 =w 2¢ and so

sup | fis+1(X) = fie1 (X)) =0 < M.
XeWy

M fi,s >y 2¢ and fj,s SV 2¢: Then fi,s+1 =V 2¢ <V0 fi,s and fj,erl = fj,s

Thus, for all X € V;, we have f; +1(X) — fjs+1(X) =2°— f;5 > 0, and so

|fi,s+1<X) - fj,s+1(X)| =2°— fj,s(X) < fz,s(X) - fj,s(X) < M.

Hence sup |fist1(X) — fjst1(X)| < M.
XeW
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Case 3. fis <y 2°and f;, >y 2° Similar to Case 2.

From all cases, we have that sup |f; s+1(X) — fjs+1(X)| < M. Therefore,
XeWs

d(fi,s+lafj,s+1): sup ‘fi,s+1(X)_fj,s+1(X)‘: sSup ‘fi,s(X)_fj,S(X)‘:d<fi,safj,5)'

XeaN\V, Xe2M\Vy

Construction
At stage 0: Let foo:= 0.
At even stage s + 1 = 2(k, j) > 0 where k,j € N: Use the P;-strategy.
At odd stage s + 1 = 2(k,e) + 1 where k,e € N: Use the N,-strategy.

At the end of stage s + 1: For each ¢ < n(s), if f; 41 has not been defined by

any strategies, then we let f; 11 1= fis.
This ends the construction.
Verification

Our construction is effective because at each stage we have a finite collection of
rational simple functions and all questions we ask about these collections are effec-

tively decidable. Therefore, (f;s)isen is a computable double sequence.

It is clear from the construction that

fos = foo =0 and d(fis, fjs) = d(fis+1, fjs+1) for all s € N and 4,5 < n(s).

That is, conditions (3) and (4) are satisfied. So fy = lim fo, = 0 and d(f;, f;) =
S$—00

d(fis, fjs) for all s € N and ¢,j < n(s). This implies that 0 is a computable point
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w.r.t. (fi)ien and d(f;, f;) is computable uniformly in 7,j. Note that, since f;,’s
are rational simple functions, we have d(f;, f;) € Q for all i,j € N, and so A is

rational-valued.

We remark that only the N.-strategies can change an approximations (f;s)sen
of (fi)ien in Case 3, and the change from N, occurs within its own basic open set Uk,
which is disjoint from other basic open sets U; where j # e. Also, each N,-strategy

can change an approximations at most once.

Next, we show that condition (1) is satisfied. Let i € N and let ¢ be the first
stage at which f; gets its approximation, namely f;;. Fix a C' € N large enough so
that || fi¢|| = d(fis,0) < 2. By conditions (3) and (4), we have that for all i € N and
s>t

[ fisll = d(fis,0) = d(fis, fos) = d(fir, for) = d(fir; 0) = || firll-

At each stage s + 1, the N,-strategies can change an approximation of f; only if we
are in Case 3 in the N.-strategies where f; s >y 2° in particular, ||f; ]| > 2°. So
only an N,.-strategy where e < C can possibly change an approximation after stage
t. Since each N-strategy acts at most once, there is a stage sy large enough so that
No, ..., Nc_1 never act after stage sg. So the approximation of f; will eventually reach
its final value at or before stage sy, and so condition (1) is satisfied. In particular,

fi = lim, f; ¢ exists for every i.

Next, we show that the Pj-requirements are satisfied. Let j € N. Fix a C € N
large enough so that ||/;|| < 2¢. By the same argument as before, there is a stage
so after which Np,---, No_; no longer act, and so every approximation f; s with

| fisll < 29 and s > sy will become stable. Thus, since the Pj-strategy guarantees
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that I; € {fis : @ < n(s)} for infinitely many s € N, there must be some s > sy and
k < n(s) such that I; = fx s = fr. The uniqueness of k follows from the Pj-strategy
and the observation that for every s € Nand i, j < n(s), fist1 = fis+1 < fis = fjs-
Hence the Pj-requirements are met, and so condition (2) is satisfied. Therefore, since

(1;)jen is dense in (C’(2N), d), so is (fi)ien-

Finally, to show that (3-) is not computable w.r.t (f;)ien, it is enough to show

that (f;)ien satisfies the Ne-requirements:
N, Gp)Gn)(W)Be(p,n) 1= h = d(fu, 1f,) > 2]

Let e € N. Choose n :=e+3. So §, :=27¢% = 27" From (a) in the N.-strategy,

there exists a p < n(t) + 1 such that f, ;1 = 2°T', where t + 1 =2(0,¢) + 1.

Assume that ®.(p,n) = h. Then &, (p,n) = h for some s € N. So we will

eventually do Case 2 or Case 3 in the N,-strategy at some stage s large enough.

If the N.-strategy stops in Case 2, then sup |fssi1(X) — %f%sH(X)] > 0O,
XEUe
Io =v. fns+1, and fp =u, fps1. S0
1 1 1 “n
d(frr 5 fp) 2 sup [fu(X) = 5 fp(X)| = sup [frs11(X) = S fpsr1(X)] > de =27
2 XeU. 2 XeU. 2
If the N-strategy stops in Case 3, then sup |fy(X) — 2 f,s(X)| < b, and there
XeUc
exist a basic open set V' C U, and a point Y € V such that f, (YY) = 2° Since

the approximation on U, will never be changed again after the N.-strategy acts, we

have that f,(Y) = f,s1(Y) = 2¢ and fo(Y) = fas+1(Y) = min{2°, f, ((Y)}. Since
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sup | frs(X) — %fp7s(X)| < e, fps(Y) =21 and Y € V C U,, we have
XeU.

FusV) 2 3 fpalV) = 6 = 2° 5.

So fr(Y) = frnsr1(Y) = min{2° f, (Y)} > 2° — .. Hence

FulY) = 1Y) = V) = 5 -
>2¢—§, —2¢7!
— 2671 _ 6@

1
> 56. ( 56 — 27e73 < 5 . 2671)

So d(fn, 3 fp) > 6 = 27™. Therefore, the N -requirements are satisfied, and so (3-) is

not computable w.r.t. (f;)ien.

Finally, we show that A := (f;)ien is limit equivalent to £ = (;)jen. Define
g : Nx N — N by g(z,s) = the unique number such that f,, = lys. Then g is

(total) computable. We think of ¢ as a function g : A x N — L.

From condition (1), we have that for each x € N, for all s > s, fo = fos = frs.s

and so g(x,s) = g(z, s;). Hence lim g(x,s) = g(z, s,).
5—00

Define f : A — L by f(z) = lim g(z,s) = g(x,s,), i.e. f: far=lg@s.)-
Eavdee]

We claim that f: A — L is an isometry. To show that f is distance-preserving,
let z,y € N. Then lyus,) = fos. = fo and lyys) = fys, = fy- So d(fa, fy) =
d(lg(@,50)> lg(y,s,) = A(l@);lpy)). Therefore, f is distance-preserving. Thus, since

(1;);jen and (f;)ien have no repetitions, f is also injective.
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It remains to show that f is surjective. Let 7 € N. By condition (2), there
is a unique k; € N such that f, = [;. Then lothysy) = Jrjs, = fo = 12 So

f(k;) = g(k;j, sk;) = j. Therefore, f is surjective.

We conclude that f : A — L is an isometry, and so A is limit equivalent to

L. ]

Theorem 7.2.5. There exist infinitely many computable presentations of (C(2Y), d)
which are pairwise not computably isometric. In particular, the space C(2Y) is not

computably categorical as a metric space.

Proof. By Fact 7.1.1 and Theorem 7.2.4, there exist two limit equivalent rational-
valued computable presentations on (C(2V), d) which are not computably isometric.

The theorem then follows from Theorem 7.1.5. L]

By Fact 7.1.2, we also have the following corollary.

Corollary 7.2.6. There is a computable presentation of (C(2Y),d) in which + is not

computable.

Next, we show that C(2V) is not computably categorical as a Banach space.
Recall that the signature of Banach spaces consists of d,0,+, (7),cq. By Fact 7.1.2,

we can assume that the signature of Banach spaces only contains +.

We will build a computable presentation A of (C(2Y),d,+) that is not com-
putably isometric to the standard presentation £ in the signature of Banach spaces.

Suppose that £ is computably isometric to A via a computable Banach space isomor-

phism 7 : C(2V) — C(2V) w.r.t. £ and A. By the Banach-Stone Theorem (see, e.g.
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[3], Theorem 2.1.1 on page 25), T' must have the form

Tf(x) = h(z)f(p(z)) forallxzc2¥and f e C(2),

where ¢ is a homeomorphism from 2% onto itself and h is a (real-valued) continuous
unimodular function on 2V (i.e. h € C(2V) and |h(z)] = 1 for all z € 2V). Since
the constant function 1 is a computable point w.r.t. £ and T : C(2Y) — C(2V) is a

computable map w.r.t. £ and A, T(1) = h is a computable point w.r.t. A.

Let | - | denote the absolute value function |- | : f + |f] from C(2V) into C(2V).
Then, since h is unimodular, |h| = 1. So, if the operation |- | is computable w.r.t. A,
then the constant function 1 is also computable w.r.t. A. Therefore, if we can build
A so that the operation | - | is computable w.r.t. A, but the constant function 1 is
not computable w.r.t. A, then we will have that A is not computably isometric to L,

and so C(2V) is not computably categorical as a Banach space.

Theorem 7.2.7. There is a computable presentation A = (f)ien of (C(2V),d, +)
such that the operation | -| is computable w.r.t. A, but the constant function 1 is not

computable w.r.t. A.

Proof. We use the idea of the proof of Theorem 7.1.7 (see Theorem 4.2 in [12]).
Fix an effective list (®.)cen of all partial computable functions of one argument.
We build a computable presentation A = (f;)ien of (C(2Y),d) by constructing a
computable double sequence (f; ) sen of rational simple functions in stages and then
let f; := lim, f; ;. At the end of stage s, we will have a finite collection fo, ..., fu(s),s

of rational simple functions, where n(s) is a nondecreasing function in s.
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We need the following properties:

fi == lim, f; s exists for every 7.

(fi)ien is dense in (C(2V),d).

d(fi, f;) is computable uniformly in i, j.

+ and | - | are computable w.r.t. (f;)ien.

The constant function 1 is not a computable point w.r.t (f;)en-

To satisfy the above properties, we will construct (f;s);sen that satisfies the

following conditions:
(1) For every i, limy f; s exists.
(2) For every j and e, there is some k such that d(fy,{;) <27°.
(3) For every s € N and 4,7 < n(s), d(fis, fi.s) = d(fis+1s fist1)-
(4) For every s € N and i,j,k <n(s), fis+ fis = fos = fist1+ Fist1 = frst1-
(5) For every s € Nand i,k < n(s), |fis| = fos = |fist1] = frst1-
(6) For every e, @, is not a Cauchy name of the constant function 1 in (f;)en.

To ensure that condition (2) is satisfied and the operations + and | - | are com-
putable, we will implement at odd stages a strategy similar to the Pj-strategy in the

proof of Theorem 7.2.4.

Recall that a point in a computable metric space is computable if it has a com-

putable Cauchy name. To make sure that the constant function 1 is not computable
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w.r.t. (fi)ien, we diagonalize against ®. so that ®. is not a Cauchy name of 1 in

(fi)ien for every e € N. That is, we want to satisfy condition (6).

If ®. is a Cauchy name of 1, then @ is total and d(fs,(n),1) < 27" for all n € N.
Therefore, to ensure that 1 is not a computable point w.r.t. (f;);en, it is enough to

satisfy the N.-requirements:
N : (In)(Vh)[®e(n) 4= h = d(fn, 1) > 27"].

Fix an effective list (U,).cn of disjoint basic open sets of 2V, say U, = [7.] where

7, € 2<N. For each e € N, let 6, := 2772
The N.-strategy

Wait until a stage s+1 = 2(k, e) +2 where k, e € N such that ®, ;(e+2) converges

to a natural number h < n(s). Then we have the following cases:

Case 1. sup |frs(X) —1] >27¢2=4,:
XeUe

Do nothing and stop the strategy.

Case 2. sup |frs(X) — 1] <2772 =4,
XeUe
Then for all X € Ue, |fns(X)| > 1—|fns(X)—1] > 1—6. > 0. Since f; ;’s are rational
simple functions, we can effectively find a basic open set V' = [p.] C U. such that f;
is constant on V for all # < n(s). Let Vg := [po0], V1 := [po1] and YV := po 0N € V4.
Then V =V, UV and Y € V. For each i < n(s), define a rational simple function

fi,erl by

(1= 2 ) fis(X) = (1= 2 ) i, (Y) i X €V
fi,s+1(X) =
Jis(X) if X €2¥\Vp
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Stop the strategy.
This ends the N_-strategy.

From the N,-strategy, it is clear that for all i < n(s), fis1 = fis on 2V \ Vg,
frsn1(Y) = (=271 fu,s(Y), and d(fis, fis1) = 27 fis(Y)| < 27°71| fisll. Note
that for all i < n(s), |fise1(X)] = (1 =27 Y| fis(X)] < |fis(X)] for all X € Vj,
and so ||fist1ll < [[fisll- It is also clear from the definition of f; 11 that for every

i,7,k <n(s),
o fist fis=frs= fist1+ fist1 = fros+1,

° |fi,s| = fk,s = |fi,s+1| - fk,s—i—l-

We claim that d(fist1, fjs41) = d(fis, fis) for all i,j < n(s). Let ,5 < n(s).

Let M := sup |fis(X) — f;s(X)|. Since f; s and f; s are constant on V', we have that
Xev

sup | fis(X) = fjs(X)| = M = sup |f;o(X) — fjs(X)].

XeW XeWn

So d(fis, fis) = sup |fis(X) — fjs(X)|. Recall that, on 2N\ 14, fis+1 = fis and

XGQN\VO
fis+1 = fjs- Hence

sup | fis11(X) = fisn(X)[ = sup [fio(X) = f;:(X)| = M.

Xe2M1, Xe2M\Vo

Note that for every X € Vg,
| fist1(X) = Framn ()] = [(1 =271 fis(X) = (1 = 2771 f,5(X))]

= (1 =27 fis(X) = fis(X)]
< [fis(X) = fi.s(X)]
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So sup |fis+1(X) — fjs+1(X)| < M. Therefore,
XeWy

d(fi,s+17fj,s+1): sup |fi,s+1(X)_fj,s+1<X)|: sup ‘fi,S(X>_fj7S(X)‘:d<fi,87fj,8)'

XM\, Xe2M\1p

We conclude that the operations d(-, ), +, and |-| are preserved under the action

of the N.-strategies.
Construction
At stage 0: Let foo:=0.
At odd stage s + 1 = 2(p,q,7,e) + 1 where p,q,r,e € N and r = (rg,r):

We let

(

P if ¢ = 0(mod 3)

J = § a number such that I; = f,, .+ fr.s if ¢ = 1(mod 3)

a number such that [; = |f, | if ¢ = 2(mod 3)
\
If I; is not among (fis)i<n(s), We let fr(o11,0 :=1; for all v < s+ 1.

At even stage s + 1 = 2(k, e) + 2 where k,e € N: Use the N.-strategy.

At the end of stage s + 1: For each ¢ < n(s), if f; s11 has not been defined, we

let fi,s—i—l = fi,s-
This ends the construction.
Verification

Our construction is effective because at each stage we have a finite collection
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of rational simple functions, and all questions we ask about these collections are

effectively decidable. Therefore, (f;s)isen is a computable double sequence.

We remark that only the N.-strategies can change an approximation (f;)sen of
(fi)ien in Case 2, and the change from N, occurs within its own basic open set U,,
which is disjoint from other basic open sets U; where j # e. Also, each N.-strategy
can change an approximations at most once, and if an N.-strategy acts at some stage

S, then d(fi,s; fi,erl) S 2_6_1Hfi,sH and ”fi,erIH S Hfz,s“ for all 7 S Tl(S)

Next, we show that conditions (1) and (2) are satisfied. By the above remark,
we have that for every e, there is a stage s. such that the strategies Np,..., N._1
never act at or after stage s.. For each ¢ € N| let t; be the first stage at which f;
gets its approximation, namely f;;,, and let M; := ||fi.||. It follows that for every
i,e,s € Ny if s > s, and i < n(s), then for every u,v > max{s,t;}, d(fiu, fin) <
27¢| finll < 27°M,;. This implies that for every i € N, (fis)sen is a Cauchy sequence,
and so Sli_glo fis exists, that is, condition (1) is satisfied. To show that condition (2) is
satisfied, let j,e € N and let ¢/ € N be large enough so that 27¢||l;|| < 27¢. Consider
a stage of the form s'+1 = 2(j, 3¢, 7,m)+1 > s where q,7,m € N. The construction

at this stage ensures that I, = f; 41 for some k& < n(s’ +1). Since s’ +1 > 5./, we

have that d(fis, fes+1) < 2_6/ka,5/+1H = 2_8/Hlj\| for every s > s’ + 1. So
d(fx,lj) = d(sh_?olo Fros Fowrs1) 279Nl < 27°.

Therefore, condition (2) is satisfied. Then condition (2) and the density of (;) ey in

C(2Y) implies that (f;)ien is dense in C/(2N).

Since the operations d(+,-) is preserved under the action of the N.-strategies, we
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have

d(fi,sa fj,s) = d(fi,s-i-h fj,s+1) for all s € Nand 7,j < n(s)

That is, condition (3) is satisfied. Hence d(f;, f;) = d(fis, f;s) for all s € N and

i,7 <n(s), and so d(f;, f;) is computable uniformly in ¢, j.

Since the operations + and |-| are preserved under the action of the N.-strategies,
we have that conditions (4) and (5) are satisfied. To see why this is true, let i, j € N
and let s be large enough so that f; ; and f; s are both defined (i.e. 7,5 < n(s)), and
let p be such that f; s + f;s = [,. Then the construction at odd stages ensures that
fi+ f; must receive a definition at or before stage s’ := 2(p,3s+1, (i, j),e) +1 > s+1
where e € N. That is, at the end of stage s’, we will have f; ¢ + f; ¢ = firs for
some k < n(s'), and so, by condition (4), we have that f; + f; = fi. Therefore, +

is computable w.r.t. (f;);en. Similarly, condition (5) implies that | - | is computable

w.r.t. (fz)zGN
It remains to show that (f;);en satisfies the N.-requirements:
N, : (In)(Vh)[Pc(n) = h = d(fn,1) > 27"].

Let e € N and choose n := e + 2. Then §, = 272 = 27", Assume that
®.(n) J= h. Then &, (n) = h for some s € N. So we will eventually do Case 1 or

Case 2 in the N -strategy at some stage s large enough.

If the N.-strategy stops in Case 1, then sup |frs1(X) — 1] > J. and
XeU.

fh =U. fh,s+1- So

d(fn,1) > sup |fu(X) — 1] = sup |frsr1(X)—1] > e =27".
XeU. XeU.
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If the N.-strategy stops in Case 2, then sup |f5s(X) — 1] <. and there exist a
XeU.

basic open set V' C U, and a point Y € V such that f; .1(Y) = (1 —2771) fi,5(Y).

Since the approximation on U, will never be changed again after the N -strategy
acts, we have that f,(Y) = fre1(Y) = (1 =271 f,4(Y). Since Y € V C U, and

sup | fs(X) — 1] < 8., we have f;, (V) < 1+ 0. Thus, since 1 —27¢! > 0, we have
XeU.

n(Y) = fasnr(Y) = (1 =277 f(Y)
<(1—27YH(1+56)
=(1-2"H1+2°7?
=1 -—2¢2_g ¢l .gme2

<1-—2"°2

Sod(fn,1) > |fn(Y)—1] > 27¢72 = 27", Therefore, the N, -requirements are satisfied,

and so the constant function 1 is not computable w.r.t. (f;)en-

This completes the proof of Theorem 7.2.7. 0

By the discussion before Theorem 7.2.7, we have the following theorem.

Theorem 7.2.8. The space (C(2N), d, +) is not computably categorical. Equivalently,

C(2Y) is not computably categorical as a Banach space.
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