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ABSTRACT

Computability theoretic aspects of Polish metric spaces are studied by adapting

notions and methods of computable structure theory. In this dissertation, we mainly

investigate index sets and classification problems for computably presentable Polish

metric spaces. We find the complexity of a number of index sets, isomorphism prob-

lems and embedding problems for computably presentable metric spaces. We also

provide several computable structure theory results related to some classical Polish

metric spaces such as the Urysohn space U, the Cantor space 2N, the Baire space NN,

and spaces of continuous functions.
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Chapter 1

Introduction

Computable analysis is a study of mathematical analysis from the perspective of com-

putability theory. For a background in computable analysis, see, e.g. [1], [14] and [21].

In computability theory, we mainly study computational properties of sets and func-

tions on the natural numbers, and by using codings, we can study other countable

objects such as finite strings of natural numbers, integers, or rational numbers. How-

ever, most objects we study in analysis are uncountable objects, for example, we study

the space R of real numbers, the spaces C(X) of real-valued continuous functions on

X, Lp-spaces, etc. Hence, in order to study algorithmic properties of these uncount-

able objects, we need some ways to represent them by countable objects. In 2013,

Melnikov [12] proposed a way to adapt notions and methods of computable structure

theory to Polish metric spaces. This paper introduces a notion of computable met-

ric space, and contains several results and open problems about computable metric

spaces that give us the motivation for this dissertation.
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In this dissertation, we study computability theoretic aspects of Polish metric

spaces. We focuses on index sets and classification problems for computable metric

spaces. This dissertation is organized as follows. In Chapter 1, we provide some

background and terminology in computability theory and computable metric spaces.

In Chapter 2, we find the complexity of a number of basic index sets of computable

metric spaces. In Chapter 3, we investigate the complexity of isomorphism problems

and embedding problems for computable metric spaces in general and for finite metric

spaces. We also consider embedding problems for some infinite metric spaces. In

Chapter 4, we find the complexity of the index sets for perfect computable metric

spaces and for discrete computable metric spaces. In Chapter 5, we study the Urysohn

space U and bounded Urysohn spaces U≤r about their characterizations, computable

presentations and index sets. In Chapter 6, we consider some embedding problems

of the Cantor space 2N and the Baire space NN. Finally, in Chapter 7, we gives a few

results on the computable categoricity of the space C(2N) of continuous functions on

the Cantor space.

1.1 Computability Theory

In this section, we provide some background and terminology in computablity theory.

For more details, see, e.g. [16], [17] and [20].

Let N denote the set of all natural numbers, that is, N = {0, 1, 2, . . . }.

Definition 1.1.1.

• A partial function on N is a function f : N → N with dom(f) ⊆ N.
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If x ∈ dom(f), we say that f(x) converges, or is defined, and write f(x) ↓.

If x /∈ dom(f), we say that f(x) diverges, or is undefined, and write f(x) ↑.

• A total function on N is a partial function f : N → N with dom(f) = N.

Definition 1.1.2. For partial functions f and g, we write f = g if dom(f) = dom(g)

and f(x) = g(x) for all x ∈ dom(f).

Definition 1.1.3. A partial function f : N → N is partial computable if there is

an effective procedure (or a computer program or a Turing machine) which takes a

natural number n as an input, and then either the procedure eventually halts with an

output f(n) or it never halts. We say f is computable if f is partial computable and

f is total. (For details on Turing machines and a more formal definition of partial

computable functions, see, e.g. [16], [17] and [20].)

Definition 1.1.4. A set A ⊆ N is computable if its characteristic function χA is

computable.

Let 〈·, ·〉 : N × N → N be the standard (bijective) coding function (or pairing

function) defined by

〈x, y〉 = (x+ y)(x+ y + 1)

2
+ x.

By iteration, we can encode all tuples in Nk where k ≥ 1 as natural numbers. For

example, a tuple (x, y, z) ∈ N3 is coded by 〈x, y, z〉 := 〈〈x, y〉, z〉. So we can think of

a function f : N3 → N as the function from N into N that maps 〈x, y, z〉 to f(x, y, z).

Since integers and rationals can be represented by tuples of natural numbers, we can

also encode them as natural numbers.

We can encode each partial computable function (or Turing machine) as a nat-
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ural number e. This number e is called an index of the function. Throughout this

dissertation, we fix an effective enumeration of all partial computable functions:

ϕ0, ϕ1, ϕ2, . . . .

Definition 1.1.5. A set A is computably enumerable, written c.e., if A = dom(ϕe)

for some e ∈ N. Equivalently, A is c.e. if and only if A = range(ϕe) for some e ∈ N,

that is, we can effectively enumerate all elements of A. For each e ∈ N, let We denote

the e-th c.e. set, that is, We := dom(ϕe).

A Turing machine can be equipped with an external database, called an oracle.

During its computation, the Turing machine can ask the oracle finitely many questions

to get extra information. For example, a Turing machine with a set A ⊆ N as the

oracle can ask A finitely many questions of the form “is n in A?”.

We can effectively list all Turing machines with oracle A as

ΦA
0 ,Φ

A
1 ,Φ

A
2 , . . . .

We usually write Φe instead of Φ∅
e. Then a function f is partial computable if

and only if f = Φe for some e ∈ ω.

We can think of a Turing machine Φe as a functional that takes an oracle set

A as an input and gives the partial function ΦA
e as the output. We called this Φe a

Turing functional.
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If ΦA
e on input x halts within s steps of computation and gives an output y, then

we write ΦA
e,s(x) ↓= y. If it does not halt within s steps, we write ΦA

e,s(x) ↑.

We can relativize the notions for computable functions and computable sets to

an oracle A as follows.

Definition 1.1.6. Let A ⊆ N.

• A partial function f : N → N is partial A-computable (or partial computable

relative to A or Turing computable in A), written f ≤T A, if f = ΦA
e for some

e ∈ N. If f is also total, then we say f is A-computable.

• A set B is A-computable (or computable relative to A or Turing reducible to A),

written B ≤T A, if χB is A-computable.

Other notions can be relativized in the same way.

Definition 1.1.7.

• We say A and B are Turing equivalent, written A ≡T B, if A ≤T B and B ≤T A.

Note that ≤T is reflexive and transitive. So ≡T is an equivalence relation.

• The Turing degree of A is the equivalence class deg(A) := {B : B ≡T A}.

Definition 1.1.8. The Halting set, denoted by 0′, is the set {e ∈ N : ϕe(e) ↓}. For

each A ⊆ N, the halting set relative to A, denoted by A′, is the set {e ∈ N : ΦA
e (e) ↓}.

For each n ∈ N, we define 0(n) inductively by

• 0(0) := ∅,

• 0(n+1) := (0(n))′.

Definition 1.1.9. A set A is many-one reducible to a set B, written A ≤m B, if
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there is a computable function f such that for all n ∈ N,

n ∈ A⇐⇒ f(n) ∈ B.

Definition 1.1.10. Let R(x;X) be a relation where x is a number variable (ranging

over natural numbers) and X is a set variable (ranging over subsets of N). A relation

R(x;X) is computable if there is an e ∈ N such that for all x ∈ N and X ⊆ N,

ΦX
e (x) =


1 if R(x;X) holds

0 otherwise

Definition 1.1.11. Let n ≥ 1. We define complexity classes Σ0
n, Π0

n, ∆0
n, d-Σ0

n, Σ1
1,

Π1
1, and ∆1

1 as follows.

• A ⊆ N is Σ0
n if there is a computable relation R(x, y1, . . . , yn) such that for all

x, y1, . . . , yn ∈ N,

x ∈ A⇐⇒ ∃y1∀y2∃y3 . . . QynR(x, y1, . . . , yn),

where Q is ∃ if n is odd, and Q is ∀ if n is even.

• A ⊆ N is Π0
n if N\A is Σ0

n, that is, there is a computable relation R(x, y1, . . . , yn)

such that for all x, y1, . . . , yn ∈ N,

x ∈ A⇐⇒ ∀y1∃y2∀y3 . . . QynR(x, y1, . . . , yn),

where Q is ∀ if n is odd, and Q is ∃ if n is even.
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• A is ∆0
n if A is both Σ0

n and Π0
n.

• A is d-Σ0
n if A = B \ C for some Σ0

n sets B and C.

• A is arithmetical if A is Σ0
n for some n ∈ N.

• A is Σ1
1 if there is an arithmetical relation R(x;X), where X is a set variable,

such that for all x ∈ N,

x ∈ A⇐⇒ (∃X ⊆ N)R(x;X).

• A is Π1
1 if N \ A is Σ1

1.

• A is ∆1
1 if A is both Σ1

1 and Π1
1.

Definition 1.1.12. Let Γ be a complexity class.

• A is Γ-hard if B ≤m A for all Γ sets B.

• A is Γ-complete if A is Γ and A is Γ-hard.

Definition 1.1.13. A set A ⊆ N is an index set if for every e, e′ ∈ N, if e ∈ A and

ϕe = ϕe′ , then e′ ∈ A.

Example 1.1.14. The following sets are index sets.

• 0(n) is Σ0
n-complete for all n ≥ 1.

• Tot := {e ∈ N : ϕe is total} is Π0
2-complete.

• Inf := {e ∈ N : dom(ϕe) is infinite} is Π0
2-complete.

• Fin := {e ∈ N : dom(ϕe) is finite} is Σ0
2-complete.
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Let I be a set and A ⊆ I. In some cases, given that we know e ∈ I, the problem

of deciding if e ∈ A might be simpler than detecting whether e belongs to the set I.

In these cases, we usually consider the complexity of index sets “within” the set I.

This leads to the following definition.

Definition 1.1.15. Let Γ be a complexity class, I be a set and A ⊆ I. We say that

(1) A is Γ within I if there exists a B ∈ Γ such that A = B ∩ I.

(2) A is Γ-hard within I if for everyB ∈ Γ, there is a computable function f : N → N

such that for all n ∈ N, f(n) ∈ I and (n ∈ B ⇐⇒ f(n) ∈ A).

(3) A is Γ-complete within I if A is Γ within I and A is Γ-hard within I.

Remark 1.1.16.

(1) A is Γ =⇒ A is Γ within I.

(2) A is Γ-hard within I =⇒ A is Γ-hard.

The following theorem will be used throughout this dissertation when we work

with index sets.

Theorem 1.1.17. (s-m-n Theorem) For every n,m ≥ 1, there is a computable

injective function Smn : Nn+1 → N such that for all e ∈ N, x ∈ Nn and y ∈ Nm,

ΦSm
n (e,x)(y) = Φe(x, y).

Next, we gives some standard notations for strings of natural numbers.

Let 2<N denote the set of all finite binary strings, and let N<N denote the set of

all strings of natural numbers. We can think of a finite string of natural numbers as



9

a function from a finite initial segment of N into N. For example, if σ is the string

(1, 0, 4), then we view σ as the function σ : {0, 1, 2} → N where σ(0) = 1, σ(1) = 0 and

σ(4) = 4. We usually use σ, τ, ρ, . . . to range over finite strings of natural numbers.

• Let λ denote the empty string, that is, λ = ∅.

• Let |σ| denote the length of the string σ, that is, |σ| := |dom(σ)|. For example,

|(1, 0, 1)| = 3.

• For each σ, τ ∈ N<N, we let σ⌢τ denote the concatenation of σ and τ , that is, the

string obtained from joining τ at the end of σ. For example, (0, 1, 5)⌢(2, 3) =

(0, 1, 5, 2, 3). For i ∈ N, we simply write σi or σ⌢i instead of σ⌢(i).

• σ is an initial segment of τ , written σ ⊆ τ , if |σ| ≤ |τ | and σ(i) = τ(i) for all

i < |σ|. σ is a proper initial segment of τ , written σ ⊊ τ , if σ ⊆ τ and σ 6= τ .

• We identify a natural number n with the set {0, 1, . . . , n− 1}.

• We identify a set A ⊆ N with its characteristic function χA, that is, A(n) = 1

if n ∈ A, and A(n) = 0 if n /∈ A. So we can think of A as an infinite binary

string.

• For A ⊆ N, we write σ ⊆ A if σ is an initial segment of A, that is, σ(i) = A(i)

for all i < |σ|. Similarly, for f : N → N, we write σ ⊆ f if σ is an initial segment

of f .

For A,B ⊆ N, we let BA denote the set of all functions from A into B. So we

can think of 2N as the set of all infinite binary strings, NN as the set of all infinite

strings of natural numbers, and 2n, where n ∈ N, as the set of all finite binary strings

of length n. We can also think of 2N as the power set P(N) := {X : X ⊆ N}.
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Definition 1.1.18.

• A tree is a subset T of N<N that is closed under initial segments, that is, if

σ ∈ T and τ ⊆ σ, then τ ∈ T . So every nonempty tree T contains the empty

string λ. We call λ the root of T .

• A binary tree is a tree T such that T ⊆ 2<N.

• An (infinite) path through a tree T is a function f : N → N such that for all

n ∈ N, f ↾ n ∈ T . So we can think of a path through a binary tree as a set of

natural numbers. We let [T ] denote the set of all infinite paths through T .

Note that, by coding finite strings as natural numbers, we can think of a tree T

as a set of natural numbers.

The following fact can be used to show Σ1
1(or Π1

1)-hardness of an index set. For

the definition of primitive recursive trees, see, e.g. [16], [17] and [20].

Fact 1.1.19 (see [15]).

• There is a computable sequence of all primitive recursive trees.

• If (Te)e∈N is a computable sequence of all primitive recursive trees, then the set

{e ∈ N : Te has an infinite path} is Σ1
1-complete.

Definition 1.1.20.

• A computable sequence of rationals is a sequence (rn)n∈N of rationals such that

there is a computable function f : N → N such that for all n ∈ N, f(n) = rn,

that is, f(n) is the code of the rational rn.

• A real number r is computable if there is a computable sequence (rn)n∈N of
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rationals such that for all n ∈ N,

|r − rn| ≤ 2−n.

That is, rn is a rational approximation within 2−n of r.

• A real number r is left-c.e. if the set {q ∈ Q : q < r} is c.e. Equivalently, r is

left-c.e. if and only if there is a computable increasing (or strictly increasing)

sequence (rn)n∈N of rationals such that lim
n→∞

rn = r. We define right-c.e. reals

similarly.

1.2 Computable Polish Metric Spaces

First, we review the definitions of pseudometric spaces and metric spaces.

Definition 1.2.1. A pseudometric on a set X is a function d : X×X → R such that

for every x, y, z ∈ X,

(1) d(x, x) = 0

(2) d(x, y) = d(y, x) (symmetry)

(3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Note that (1)-(3) imply that d(x, y) ≥ 0 for all x, y ∈ X.

A pseudometric space is a pair (X, d) where X is a set and d is a pseudometric

on X.

Note that, in a pseudometric space, it is possible that d(x, y) = 0 but x 6= y.
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Definition 1.2.2. A metric on a set X is a pseudometric d on X such that for every

x, y ∈ X, d(x, y) = 0 =⇒ x = y. A metric space is a pair (X, d) where X is a set and

d is a metric on X.

Definition 1.2.3. A metric space (X, d) is called a rational metric space if d(x, y) ∈ Q

for all x, y ∈ X.

For a metric space (X, d), we let diam(X) denote the diameter of X, that is,

diam(X) := sup{d(x, y) : x, y ∈ X} ∈ [0,∞].

For Y ⊆ X, we let cl(Y ) denote the closure of Y in X, that is, z ∈ cl(Y ) if and only

if there is a sequence (yn)n∈N in Y that converges to z in X.

Example 1.2.4. The following are metric spaces.

• The one-point metric space {x}.

• The space (N, dN) where dN(m,n) := |m− n| is the standard metric on N.

• For any vector ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) in Rn, we define

(1) Euclidean metric: deuclid(~x, ~y) :=
√ ∑

1≤i≤n
(xi − yi)2,

(2) Maximum metric: dmax(~x, ~y) := max
1≤i≤n

|xi − yi|,

(3) Taxicab metric: dtaxi(~x, ~y) :=
∑

1≤i≤n
|xi − yi|.

Then deuclid, dmax and dtaxi are metrics on Rn.

• Let G = (V,E) be a connected undirected (possibly weighted) graph, where

V is the set of all vertices in G, and E is the set of all edges in G. For any
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u, v ∈ V , we define the distance dG(u, v) to be the length of a shortest path

from u to v in G. Then dG is a metric, and we call dG the shortest path metric

on G.

Definition 1.2.5. Let (X, dX) and (Y, dY ) be metric spaces.

(1) A function f : X → Y is called a distance-preserving function or an

isometric embedding, written f : X ↪→ Y , if for every x1, x2 ∈ X,

dY (f(x1), f(x2)) = dX(x1, x2).

(2) An isometry is a bijective distance-preserving function.

(3) We say that X embeds isometrically into Y , written X ↪→ Y , if there is an

isometric embedding f : X ↪→ Y .

(4) We say that X is isometric to Y , written X ∼= Y , if there is an isometry

f : X → Y .

Note that distance-preserving functions are injective and continuous, and the

relation ∼= is an equivalence relation.

Definition 1.2.6. A Polish space is a topological space that is homeomorphic to

a complete separable metric space. A Polish metric space is a complete separable

metric space.

To study computability theory on Polish metric spaces, we first need to find an

effective way to represent these spaces. We will use terminology from [11].

Definition 1.2.7. A computable presentation of (or a computable structure on) a
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Polish metric space (M,d) is any dense sequence (pi)i∈N of points in M such that the

distance d(pi, pj) is a computable real number uniformly in i, j. That is, there exists

a computable function f : N → Q such that for all i, j, k ∈ N,

|f(〈i, j, k〉)− d(pi, pj)| ≤ 2−k.

Equivalently, there is an algorithm such that if we input two indices i, j and a positive

rational ε, then it will output a rational number that approximates the distance

between pi and pj with error less than ε.

Definition 1.2.8. A metric space is computably presentable if it has a computable

presentation.

Definition 1.2.9. A computable (Polish) metric space is a pair ((M,d), (pi)i∈N) where

(M,d) is a Polish metric space and (pi)i∈N is a computable presentation of (M,d).

The points in the sequence (pi)i∈N are called the rational points.

Since the rational points are dense in M , every point x ∈ M is a limit of a

sequence (pi)i∈N of rational points, so we might use (pi)i∈N as an approximation of

the point x. However, we do not know the rate of convergence of (pi)i∈N. If (pi)i∈N

converges to x very slowly, then it would be a bad approximation. So, in order to get

a good approximation, we want the sequence to converge fast enough, and this leads

to the notion of Cauchy name.

Definition 1.2.10. Let (pi)i∈N be a computable presentation of a metric space (M,d)

and x ∈M . A Cauchy name of x in (pi)i∈N is a function f : N → N such that (pf(k))k∈N
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converges to x, and for all k ∈ N and l > k,

d(pf(k), pf(l)) ≤ 2−k.

This implies that d(pf(k), x) ≤ 2−k for all k ∈ N.

We can think of a Cauchy name of x as a Cauchy sequence (pf(k))k∈N of rational

points that converges to x rapidly in the sense that it satisfies the above inequalities.

So we view a Cauchy name of x as a good approximation of x. Note that, since (pi)i∈N

is dense in M , every element x in M has a Cauchy name.

Definition 1.2.11. An element x of M is computable with respect to (pi)i∈N (written

w.r.t. (pi)i∈N) if it has a computable Cauchy name in (pi)i∈N. Equivalently, x is

computable if and only if there is an algorithm such that, given a positive rational ε,

it computes a rational point pi that is ε-close to x. So we can effectively approximate

this element x in this sense.

Note that every rational point pi has the constant sequence (pi, pi, . . . ) as a

computable Cauchy name. So every rational point is computable.

Next, we give some examples of computable metric spaces. Recall that a com-

putable metric space is a Polish metric space together with a dense sequence of points

whose distances are uniformly computable reals.

Example 1.2.12.

• The space (N, dN) with the usual metric dN(n,m) := |n−m|, where (i)i∈N is a

computable presentation.
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• The space R with the Euclidean metric, where an effective list (qi)i∈N of all

rationals is a computable presentation.

• The space C[0, 1] of real-valued continuous functions on [0, 1] with the supre-

mum metric:

d(f, g) := sup
x∈[0,1]

|f(x)− g(x)|,

where an effective list (pi)i∈N of all rational polynomials is a computable pre-

sentation.

• The Cantor space 2N equipped with the metric

d(X,Y ) := 2−min{n:X(n) ̸=Y (n)},

where an effective list (σ⌢
i 0

N)i∈N of all infinite binary strings that are eventually

0 is a computable presentation.

From the above examples, we know that R and C[0, 1] are computably pre-

sentable. In fact, many other classical metric spaces are computably presentable. For

example, if p ≥ 1 is a computable real, then every separable Lp space is computably

presentable.

There are also many metric spaces that are not computably presentable. For

example, a two-point metric space M = {x, y} is computably presentable if and only

if d(x, y) is a computable real. So we can study computable presentability of metric

spaces. That is, for a metric space, we determine if it is computably presentable.

We already have the definition for an element x of a Polish metric space to be

computable. But what about a function between Polish metric spaces? What does
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it mean for a function between computable metric spaces to be computable? We

usually think of a computable function f as an algorithm such that, given an input

x it outputs the value of f(x). We use this as the definition of computable functions

f : N → N. However, a point in a metric space usually requires an infinite amount of

information to be specified, so we cannot use the exact value of a point as an input or

an output for algorithm. What we can do is, instead of exact specifications of points,

we use Cauchy names as approximations.

Definition 1.2.13. Let (pi)i∈N and (qi)i∈N be computable presentations of metric

spaces M and N , respectively. A map F : M → N is computable with respect to

(pi)i∈N and (qi)i∈N (written w.r.t. (pi)i∈N and (qi)i∈N) if there is a Turing functional

Φ such that, for every x ∈ M and Cauchy name f of x in (pi)i∈N, the functional Φ

with oracle f is a Cauchy name of F (x) in (qi)i∈N.

It turns out that two computable presentations of a metric space might not have

the same computational power even though they are presentations of the same metric

space. This leads to the following definition.

Definition 1.2.14. Computable presentations (pi)i∈N and (qi)i∈N of a metric space

(M,d) are said to be equivalent up to computable isometry or computably isometric, if

there exists a (surjective) self-isometry U on (M,d) that is computable with respect

to (pi)i∈N and (qi)i∈N.

If two computable presentations are computably isometric, then they have the

same computational power, that is, anything that can be done computably in one

presentation can also be done in the other presentation. For example, on the space
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C[0, 1], the list of all rational polynomials and the list of all rational piecewise linear

functions are two computable presentations that are computably isometric.

Definition 1.2.15. A computably presentable metric space (M,d) is computably

categorical if every two computable presentations of (M,d) are computably isometric.

That is, it has a unique computable presentation up to computable isometry.

If a metric space is not computably categorical, we might want to know how much

extra computational power we need to build an isometry between two computable

presentations. So we relativize the definition as follows.

Definition 1.2.16. Let M be a Polish metric space and d be a Turing degree. We

say M is d-categorical if for any two computable presentations (pi)i∈N and (qi)i∈N of

M, there is an isometry F : M → M that is d-computable with respect to (pi)i∈N

and (qi)i∈N.

The degree of categoricity of M is the least Turing degree d such that M is

d-categorical. Note that the degree of categoricity may not exist.

The degree of categoricity of M tells us how much computational power we

need (sufficient and necessary) to compute an isometry between any two computable

presentations of M. This leads to the study of computable categoricity and degree of

categoricity of Polish metric spaces. For example, Pour-El and Richards [14] showed

that every separable L2 space is computably categorical. Moreover, McNicholl [9]

showed that if p ≥ 1 is computable and p 6= 2, then the degree of categoricity of the

space lp is 0′.
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1.3 Computable Metric Spaces with Operations

We use terminology from [11]. An operation X on a metric space (M,d) is a function

which maps tuples of points to points (i.e. X :Mk →M), or tuples of points to reals

(i.e. X : Mk → R). A point x in M can be viewed as an operation Tx : M → M

where Tx(y) = x for all y ∈M .

We view a direct power Mk of (M,d) as a metric space with the metric

dMk(x, y) := sup
i≤k

d(πi(x), πi(y)), where πi is the projection on the i-th component.

Let (pi)i∈N be a computable presentation of (M,d). The computable presentation

[(pi)i∈N]
k of (Mk, dMk) is the effective list of k-tuples of rational points from (pi)i∈N.

For convenience, if an operation X :Mk →M is computable w.r.t. [(pi)i∈N]k and

(pi)i∈N, we simply say that X is computable w.r.t. (pi)i∈N. Similarly, if an operation

X : Mk → R is computable w.r.t. [(pi)i∈N]k and (qi)i∈N, where (qi)i∈N is the usual

effective list of rationals, then we say that X is computable w.r.t. (pi)i∈N.

Since every Turing functional Φe can be effectively identified with its computable

index e, we can speak of uniformly computable families of maps betweens computable

metric spaces.

Definition 1.3.1. Let (M,d, (Xj)j∈J) be a Polish metric space with distinguished

operations (Xj)j∈J , where J is a computable set. A sequence (pi)i∈N is a computable

presentation of (or a computable structure on) (M,d, (Xj)j∈J) if (M,d, (pi)i∈N) is a

computable metric space and the operations (Xj)j∈J are computable w.r.t. (pi)i∈N

uniformly in their respective indices j ∈ J . We say that the space (M,d, (Xj)j∈J) is

computably presentable if it has a computable presentation.

Definition 1.3.2. Let T : M → M be an operation. We say that T respects an
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operation X :Mk →M if T commutes with X (i.e. X ◦ T = T ◦X). We say that T

respects an operation X :Mk → R if T preserves the output of X (i.e. X ◦ T = X).

Definition 1.3.3. A computably presentable space (M,d, (Xj)j∈J) is computably

categorical if every two computable presentations (pi)i∈N and (qi)i∈N of (M,d, (Xj)j∈J)

are computably isometric via an isometry which respects Xj for every j ∈ J .

Definition 1.3.4. We say that operations (Yi)i∈I effectively determine operations

(Xj)j∈J on a metric space (M,d) if

(1) every isometry of M that respects (Yi)i∈I respects (Xj)j∈J as well,

(2) for any computable presentation (pi)i∈N of (M,d), the uniform computablity of

(Yi)i∈I w.r.t (pi)i∈N implies the uniform computability of (Xj)j∈J w.r.t. (pi)i∈N.

The following fact immediately follows from Definition 1.3.3 and Definition 1.3.4.

Fact 1.3.5. If (M,d, (Xj)j∈J , (Yi)i∈I) is computably categorical and (Yi)i∈I effectively

determine (Xj)j∈J , then (M,d, (Yi)i∈I) is computably categorical.

1.4 Computable Indices of Computable Metric
Spaces

Recall that (ϕe)e∈N is a fixed effective list of all partial computable functions. By

coding, we can think of (ϕe)e∈N as an effective list of all rational-valued partial com-

putable functions.

Definition 1.4.1. If d : N×N → R is a pseudometric on N and ϕ is a rational-valued
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partial computable function such that ϕ is total and ϕ converges rapidly to d in the

sense that

(1) lim
k→∞

ϕ(i, j, k) = d(i, j) for every i, j ∈ N,

(2) |ϕ(i, j, k)− ϕ(i, j, k + l)| ≤ 2−k for every i, j, k, l ∈ N,

then we say d is the pseudometric induced by ϕ. If ϕe induces a pseudometric, we let

de denote this pseudometric.

For a pseudometric d on N, we let Md denote the completion of the pseudometric

space (N, d), where we identify every two points i, j ∈ N with d(i, j) = 0 as the same

point in Md, so that Md is a Polish metric space. We will write Me as a shorthand

for Mde . So Me is the Polish metric space induced by ϕe. The natural number e is

called an index of Me.

Note that (Me)e∈N is an effective list containing all computable metric spaces up

to isometry. So a Polish metric space M is computably presentable if and only if

M ∼= Me for some e ∈ N.

We define an index set

PolSp := {e ∈ N : ϕe induces a pseudometric} = {e ∈ N :Me is a Polish metric space}.

Then PolSp is the index set of all computable Polish metric spaces.

Note that if d is the pseudometric induced by ϕ, then for every i, j, k ∈ N,

|d(i, j)− ϕ(i, j, k)| ≤ 2−k.
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So ϕ(i, j, k) is a rational approximation within 2−k of the real number d(i, j).

Note that if x(k) and y(k) are rational approximations within 2−k of real numbers

x and y, respectively, then

x = y ⇐⇒ ∀k(|x(k)− y(k)| ≤ 2−k+1)

x 6= y ⇐⇒ ∃k(|x(k)− y(k)| > 2−k+1)

x ≤ y ⇐⇒ ∀k(x(k) ≤ y(k) + 2−k+1)

x < y ⇐⇒ ∃k(x(k) + 2−k+1 < y(k))

Hence, for computable reals x and y, the statement “x = y” is Π0
1, “x 6= y” is Σ0

1,

“x ≤ y” is Π0
1, and “x < y” is Σ0

1. We can use this observation to find the complexity

of conditions involving the pseudometric de induced by ϕe.



Chapter 2

Basic Index Set Results

Let K be a class of Polish metric spaces. The complexity of the classification problem

for computable members of K is measured using the following two index sets:

(1) The characterization problem (or the index set) of K is the set

{e ∈ N :Me ∈ K}.

(2) The isomorphism problem of K is the set

{(i, j) ∈ N2 :Mi,Mj ∈ K and Mi
∼= Mj}.

For a class K, we can study the complexity of the index set of K and the iso-

morphism problem of K (in arithmetical hierarchy, hyperarithmetical, and analytical

23
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hierarchy). The complexity of the isomorphism problem is the complexity of the

associated classification problem.

Suppose we have a set A ⊆ N that is Γ-hard where Γ is a complexity class. Let P

be a property of Polish metric spaces that is preserved under isometry. To show that

an index set of the form I := {e ∈ N :Me has property P} is Γ-hard within PolSp,

by the s-m-n Theorem, it is enough to build a computable sequence (Xe)e∈N of Polish

metric spaces such that for all e ∈ N, e ∈ A⇐⇒ Xe has property P .

To see why this is true, assume we have such a computable sequence (Xe)e∈N.

Then, by the s-m-n Theorem, there is a computable function f : N → N such that

for all e ∈ N, ϕf(e) induces Xe, and so e ∈ PolSp and Mf(e)
∼= Xe. Then for every

e ∈ N,

e ∈ A⇐⇒ Xe has property P ⇐⇒Mf(e) has property P ⇐⇒ f(e) ∈ I.

So A is many-one reducible to I. Therefore, since A is Γ-hard and Xe is a computable

metric space for all e ∈ N, we can conclude that I is Γ-hard within PolSp.

First, we compute the complexity of some basic index sets.

Theorem 2.0.1. PolSp is Π0
2-complete.

Proof. Note that for any e ∈ N, ϕe induces a pseudometric if and only if the following

conditions hold:

(1) ϕe is total, (i.e. (∀i, j, k ∈ N)(∃s ∈ N)(ϕe,s(i, j, k)↓)),

(2) |ϕe(i, j, k)− ϕe(i, j, k + l)| ≤ 2−k for all i, j, k, l ∈ N,
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(2) guarantees that lim
k→∞

ϕe(i, j, k) exists for all i, j ∈ N, so we can define

de(i, j) := lim
k→∞

ϕe(i, j, k).

(3) de(i, j) ≥ 0 for all i, j ∈ N,

(4) de(i, i) = 0 for all i ∈ N,

(5) de(i, j) = de(j, i) for all i, j ∈ N,

(6) de(i, j) ≤ de(i, k) + de(k, j) for all i, j, k ∈ N.

Now, since ϕe(i, j, t) is a rational approximation within 2−t of de(i, j), it is easy

to see that the condition “ϕe induces a pseudometric” is Π0
2. That is, PolSp is Π0

2.

More precisely, condition (1) is a Π0
2 statement and conditions (2)-(6) are

Π0
1 statements. For example, assuming ϕe is total, condition (5) is equivalent to

(∀i, j ∈ N)(∀t ∈ N)(|ϕe(i, j, t)− ϕe(j, i, t)| ≤ 2−t+1), and so (5) is a Π0
1 statement (as-

suming ϕe is total).

Next, we show that PolSp is Π0
2-hard. Recall that Tot := {e ∈ N : ϕe is total}

is Π0
2-complete.

For each e ∈ N, we construct a partial computable function ψe uniformly in e as

follows.

By dovetailing, we compute ϕe(〈i, j〉) for all i, j ∈ N. Whenever we see that

ϕe(〈i, j〉) ↓, we define ψe(i, j, k) = 0 for all k ∈ N.

This ends the construction.

Since the construction of ψe is effective uniformly in e, ψe is partial computable
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uniformly in e. Thus, by the s-m-n Theorem, there is a computable function f such

that ϕf(e) = ψe for all e ∈ N.

If e ∈ Tot, then ϕf(e)(i, j, k) = ψe(i, j, k) = 0 for all i, j, k ∈ N. So it is clear from

the definition that ϕf(e) induces a pseudometric, that is, f(e) ∈ PolSp. In fact, the

pseudometric de induced by ϕf(e) is a metric such that de(i, j) = 0 for all i, j ∈ N.

If e /∈ Tot, then there are i, j ∈ N such that ϕe(〈i, j〉) ↑. So we will never define

ψe(i, j, k) for all k ∈ N, that is, ψe(i, j, k) ↑ for all k ∈ N. Hence ϕf(e) = ψe is not

total. Therefore, ϕf(e) does not induce a pseudometric, that is, f(e) /∈ PolSp.

We conclude that for all e ∈ N, e ∈ Tot⇐⇒ f(e) ∈ PolSp. So Tot is many-one

reducible to PolSp. Therefore, since Tot is Π0
2-hard, PolSp is Π0

2-hard.

In the proof for Π0
2-hardness of PolSp, we only use the fact that PolSp ⊆ Tot

and Tot is Π0
2-hard. The proof can be modified to obtain the following stronger result:

Theorem 2.0.2. For any nonempty class K of computable Polish metric spaces, the

index set {e ∈ N :Me ∈ K} is Π0
2-hard.

Proof. Let K be a nonempty class of computable Polish metric spaces. Then there is

an e0 ∈ N such that Me0 ∈ K.

For each e ∈ N, we construct a partial computable function ψe uniformly in e as

follows.

By dovetailing, we compute ϕe(〈i, j〉) for all i, j ∈ N. Whenever we see that

ϕe(〈i, j〉) ↓, we define ψe(i, j, k) = ϕe0(i, j, k) for all k ∈ N.

This ends the construction.
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Since the construction of ψe is effective uniformly in e, ψe is partial computable

uniformly in e. Thus, by the s-m-n Theorem, there is a computable function f such

that ϕf(e) = ψe for all e ∈ N.

If e ∈ Tot, then ϕe(〈i, j〉) ↓ for all i, j ∈ N. So ϕf(e)(i, j, k) = ψe(i, j, k) =

ϕe0(i, j, k) for all i, j, k ∈ N, that is, ϕf(e) = ϕe0 . Thus, since ϕe0 induces the com-

putable metric space Me0 , we have that Mf(e) =Me0 ∈ K.

If e /∈ Tot, then there are i, j ∈ N such that ϕe(〈i, j〉) ↑. So we will never define

ψe(i, j, k) for all k ∈ N, that is, ψe(i, j, k) ↑ for all k ∈ N. Hence ϕf(e) = ψe is not

total. Therefore, Mf(e) is not a computable metric space, and so Mf(e) /∈ K.

We conclude that for all e ∈ N, e ∈ Tot ⇐⇒ Mf(e) ∈ K. So Tot is many-

one reducible to {e : Me ∈ K}. Therefore, since Tot is Π0
2-hard, {e : Me ∈ K} is

Π0
2-hard.

By Theorem 2.0.1 and Theorem 2.0.2, we have the following remark.

Remark 2.0.3. For any set I ⊆ PolSp and complexity class Γ,

(1) I is Π0
2 ⇐⇒ I is Π0

2 within PolSp.

(2) (Γ ⊆ Π0
2 and I is Γ-complete within PolSp) =⇒ I is Π0

2-complete.

Theorem 2.0.4. The set {e ∈ N : de is a metric} is Π0
2-complete within PolSp, and

so it is Π0
2-complete.

Proof. Note that for any e ∈ PolSp, de is a pseudometric, and so

de is a metric ⇐⇒ (∀i, j ∈ N)(de(i, j) = 0 =⇒ i = j)
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⇐⇒ (∀i, j ∈ N)(de(i, j) > 0 ∨ i = j)

⇐⇒ (∀i, j ∈ N)(∃k ∈ N)(ϕe(i, j, k) > 2−k ∨ i = j)

Therefore, {e : de is a metric} is Π0
2 within PolSp.

Next, we show that {e : de is a metric} is Π0
2-hard within PolSp. For each n ∈ N,

let an := 2n and bn := 2n+ 1. Then

N = {an : n ∈ N} t {bn : n ∈ N}.

Let A be a Π0
2 set. Then there exists a computable relation RA such that for all

e ∈ N,

e ∈ A⇐⇒ ∀n∃sRA(e, n, s).

For each e ∈ N, we define a partial computable function ψe uniformly in e as follows.

For all n,m, k ∈ N, let

ψe(an, am, k) = ψe(bn, bm, k) =


1 if n 6= m

0 if n = m

For all n,m, k ∈ N with m 6= n, let

ψe(an, bm, k) = ψe(bm, an, k) = 1.

At stage s where s ∈ N: For each n ≤ s, we do the following:
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(1) If RA(e, n, s), then let sn := min{s′ : RA(e, n, s
′)} and for all k ∈ N, let

ψe(an, bn, k) = ψe(bn, an, k) =


2−k if k < sn

2−sn if k ≥ sn

(2) If ¬RA(e, n, s), then for all k ≤ s such that ψe(an, bn, k) and ψe(bn, an, k) have

not been defined yet (to avoid conflicts with (1)), we let

ψe(an, bn, k) = ψe(bn, an, k) = 2−k.

This ends the construction.

Note that if we do (1) for (an, bn) at some stage s0, then we will never do (2) for

(an, bn) at or after stage s0.

By the s-m-n Theorem, there is a computable function f such that ϕf(e) = ψe

for all e ∈ N.

We claim that for all e ∈ N, ϕf(e) induces a pseudometric and

e ∈ A⇐⇒ df(e) is a metric.

If e ∈ A, then for each n ∈ N, there is the least sn ∈ N such that RA(e, n, sn), and

so we will do (1) for (an, bn) at stage s = sn. Hence ψe(an, bn, k) = ψe(bn, an, k) = 2−sn

for all k ≥ sn. It follows that ϕf(e) induces a pseudometric, namely df(e), where

df(e)(an, bn) = df(e)(bn, an) = 2−sn > 0. Therefore, df(e) is a metric.
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If e /∈ A, then there is an n ∈ N such that ∀s¬RA(e, n, s). So we will never

do (1) for (an, bn), and we will do (2) for (an, bn) at every stage s ≥ n. Hence

ϕf(e)(an, bn, k) = ϕf(e)(bn, an, k) = 2−k for all k ∈ N. It follows that ϕf(e) induces a

pseudometric, namely df(e), where df(e)(an, bn) = lim
k→∞

ϕf(e)(an, bn, k) = lim
k→∞

2−k = 0

but an 6= bn. Therefore, df(e) is not a metric.

We conclude that {e : de is a metric} is Π0
2-hard within PolSp.

Proposition 2.0.5. The set {e ∈ N :Me is infinite} is Π0
2 within PolSp.

Proof. Note that for all e ∈ PolSp, since (N, de) is dense in Me, we have

Me is infinite ⇐⇒ there are infinitely many (i, j) ∈ N2 such that de(i, j) 6= 0

⇐⇒ (∀n ∈ N) (∃i, j > n) (de(i, j) 6= 0)

⇐⇒ (∀n ∈ N) (∃i, j > n) (∃k ∈ N) (|ϕe(i, j, k)| > 2−k+1).

Therefore, {e :Me is infinite} is Π0
2 within PolSp.

Proposition 2.0.6.

(1) The set {e ∈ N :Me is infinite} is Π0
2-hard within PolSp.

(2) The set {e ∈ N :Me is unbounded} is Π0
2-hard within PolSp.

Proof. For each e ∈ N, we effectively construct a Polish metric space ({xi : i ∈ N}, d)

uniformly in e (i.e. we construct a partial computable function ψe that induces a

metric d (d depends on e), and the construction is effective uniformly in e) as follows:

Stage 0: Let s0 := 0, d(xs0 , xs0) := 0, and go to stage 1.
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(Formally, when we let d(xi, xj) := q, where i, j ∈ N and q ∈ Q, it means that we

define ψe(i, j, t) := q and ψe(j, i, t) := q for all t ∈ N.)

Stage n+ 1 where n ∈ N: For each s > sn, starting from s = sn + 1, we check if

ϕe,s(n)↓ until we find (if ever) the least s > sn such that ϕe,s(n)↓.

If ϕe,s(n)↑, then we let

(1) d(xs, xj) := 0 for all j ∈ {sn, . . . , s},

(2) d(xs, xj) := n− i for all j ∈ {si, . . . , si+1 − 1} and i ∈ {0, . . . , n− 1},

and then we check for the next value of s.

Whenever we find (if ever) the least s > sn such that ϕe,s(n) ↓, then we let

sn+1 := min{s′ > sn : ϕe,s′(n)↓} = s, and we let

(1) d(xsn+1 , xsn+1) := 0,

(2) d(xsn+1 , xj) := n+ 1− i for all j ∈ {si, . . . , si+1 − 1} and i ∈ {0, . . . , n},

and then go to stage n+ 2.

This ends the construction.

Note that the construction is effective uniformly in e. So ψe is a partial com-

putable function, and by the s-m-n theorem, there is a computable function f : N → N

such that ϕf(e) = ψe for all e ∈ N.

Note that if e ∈ Tot, then we obtain an infinite Polish metric space

({xi : i ∈ N}, d) and an infinite set {sn : n ∈ N} ⊆ N where

(1) xsn = xsn+1 = · · · = xsn+1−1 for all n ∈ N,
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(2) d(xsn+1 , xsi) = n+ 1− i for all i < n+ 1 and n ∈ N.

So after identifying points with zero distance, we obtain the space ({xsn : n ∈ N}, d).

Using the map xsn 7→ n, this space is isometric to the Polish metric space (N, dN)

with dN(i, j) := |i− j|. Therefore, Mf(e)
∼= (N, dN) is an infinite Polish metric space,

and it is also unbounded.

On the other hand, if e /∈ Tot, say N := min{n ∈ N : ϕe(n)↑}, then we obtain a

finite Polish metric space ({xi : i ∈ N}, d) and a finite set {s0, s1, . . . , sN} ⊆ N where

(1) xsn = xsn+1 = · · · = xsn+1−1 for all n < N ,

(2) xs = xsN for all s > sN ,

(3) d(xsn+1 , xsi) = n+ 1− i for all i < n+ 1 and n < N .

So after identifying points with zero distance, we obtain the space ({xs0 , xs1 , . . . , xsN}, d).

Using the map xsn 7→ n, this space is isometric to the finite Polish metric space

({0, 1, . . . , N}, dN) with dN(i, j) := |i− j|. Therefore, Mf(e)
∼= ({0, 1, . . . , N}, dN) is a

finite Polish metric space, and it is also bounded.

From the above argument, we have that there exists a computable function

f : N → N such that for every e ∈ N, we have f(e) ∈ PolSp,

e ∈ Tot⇐⇒Mf(e) is infinite,

e ∈ Tot⇐⇒Mf(e) is unbounded.

Therefore, since Tot is Π0
2-hard, {e : Me is infinite} and {e : Me is unbounded} are

Π0
2-hard within PolSp.
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By Proposition 2.0.5, Proposition 2.0.6 and Remark 2.0.3, we have the following.

Theorem 2.0.7. The set {e ∈ N :Me is infinite} is Π0
2-complete within PolSp, and

so it is Π0
2-complete.

The following theorem says that there is a uniform way to pass from an index

e such that Me is infinite, to an index i such that Mi
∼= Me and di is a metric.

Therefore, if (pi)i∈N is a computable presentation of an infinite metric space, then we

can assume without loss of generality that (pi)i∈N has no repetitions, that is, pi 6= pj

for all i 6= j.

Theorem 2.0.8. There is a computable function f such that for all e ∈ PolSp, if

Me is infinite, then Mf(e)
∼= Me and df(e) is a metric. Furthermore, the isometries

between Mf(e)
∼= Me are computable uniformly in e in the sense that there is a sequence

(ge)e∈N of partial computable functions, uniformly in e, such that for all e ∈ PolSp,

if Me is infinite, then ge : (N, df(e)) → (N, de) is a computable isometry, and so it

extends (uniquely) to a computable isometry g̃e :Mf(e) →Me.

Proof. For each e ∈ N, we define a partial computable function g : N → N uniformly

in e by induction as follows:

Let ge(0) = 0. For each n ∈ N, assuming by induction that ge(m) ↓ for all

m ≤ n, we search by dovetailing until we find the least pair (if exists) 〈i, k〉 such that

and ϕe(i, ge(m), k) ↓> 2−k for all m ≤ n. Then we let ge(n + 1) = i. Otherwise, we

let ge(n+ 1) ↑.

Claim. For all e ∈ PolSp, if Me is infinite, then ge is total, range(ge) is dense in Me

and de(ge(n), ge(m)) > 0 for all distinct n,m ∈ N.
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Let e ∈ PolSp. Assume that Me is infinite. Then ϕe is total, de is the pseudo-

metric induced by ϕe and |ϕe(i, j, k)− de(i, j)| ≤ 2−k for all i, j, k ∈ N.

First, we show that ge is total. From the definition of ge, we have ge(0) ↓= 0.

Let n ∈ N and assume by induction that ge(m) ↓ for all m ≤ n. Since Me is infinite,

there must be an i ∈ N such that de(i, ge(m)) > 0 for all m ≤ n. (Otherwise, we

would have |Me| ≤ n+ 1, a contradiction.)

Suppose for a contradiction that (∀k ∈ N)(∃m ≤ n)(ϕe(i, ge(m), k) ≤ 2−k). Then

there must be an m ≤ n such that ϕe(i, ge(m), k) ≤ 2−k for infinitely many k.

So for each K ∈ N, there is a k ≥ K such that ϕe(i, ge(m), k) ≤ 2−k, and so

0 ≤ de(i, ge(m)) ≤ ϕe(i, ge(m), k) + 2−k ≤ 2−k + 2−k = 2−k+1 ≤ 2−K+1.

Taking limit K → ∞, we have de(i, ge(m)) = 0, but de(i, ge(m)) > 0, a contradiction.

Therefore, there is a k ∈ N such that ϕe(i, ge(m), k) > 2−k for all m ≤ n. So

ge(n+ 1) ↓. We conclude that ge is total, and so it is computable.

Since ge is total, the definition of ge ensures that for all n ∈ N, there is a k ∈ N

such that ϕe(ge(n+ 1), ge(m), k) > 2−k for all m ≤ n. Hence for all m ≤ n,

de(ge(n+ 1), ge(m)) ≥ ϕe(ge(n+ 1), ge(m), k)− 2−k > 2−k − 2−k = 0.

It follows that de(ge(n), ge(m)) > 0 for all distinct n,m ∈ N.

It remains to show that range(ge) is dense in Me. Since (N, de) is dense in Me,



35

it suffices to show that for every i ∈ N, i ∈ cl(range(ge)). Let i ∈ N. If i ∈ range(ge),

then i ∈ cl(range(ge)). Assume i /∈ range(ge).

We will show that (∀k ∈ N)(∃jk ∈ range(ge))(ϕe(i, jk, k) ≤ 2−k). Suppose for a

contradiction that there is a k ∈ N such that (∀j ∈ range(ge))(ϕe(i, j, k) > 2−k).

Let A := {i′ ∈ N : 〈i′, k′〉 < 〈i, k〉 for some k′ ∈ N}. Then A is finite. Let n ∈ N.

Since ϕe is total, for each pair 〈i′, k′〉 < 〈i, k〉 we can check in finitely many steps

whether it works in the sense that ϕe(i′, ge(m), k′) > 2−k
′ for all m ≤ n. If there is

the least such pair, say 〈in, kn〉 < 〈i, k〉, we will let ge(n+ 1) := in. Then in ∈ A and

in 6= ge(m) for all m ≤ n. Since i /∈ range(ge), ge(n + 1) 6= i, and so there must be

the least such pair. (Otherwise, since the pair 〈i, k〉 works (by assumption), we will

let ge(n+ 1) = i, a contradiction.) It follows that in’s are all distinct and in ∈ A for

all n ∈ N. But A is finite, a contradiction.

Therefore, for every k ∈ N, there is a jk ∈ range(ge) such that ϕe(i, jk, k) ≤ 2−k.

Taking limit k → ∞, we have that lim
k→∞

de(i, jk) = 0. So (jk)k∈N is a sequence in

range(ge) that converges to i. Hence i ∈ cl(range(ge)). We conclude that range(ge)

is dense in Me.

This ends the proof of the claim.

Since ge is partial computable uniformly in e, by the s-m-n Theorem, there is a

computable function f such that for all e, i, j, k ∈ N,

ϕf(e)(i, j, k) = ϕe(ge(i), ge(j), k).

We claim that for all e ∈ PolSp, if Me is infinite, then Mf(e)
∼= Me and df(e)
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is a metric. Let e ∈ PolSp and assume that Me is infinite. By Claim, ge is total,

range(ge) is dense in Me and de(ge(n), ge(m)) > 0 for all distinct n,m ∈ N. So for all

distinct n,m ∈ N,

df(e)(n,m) = lim
k→∞

ϕf(e)(n,m, k) = lim
k→∞

ϕe(ge(n), ge(m), k) = de(ge(n), ge(m)) > 0.

Hence df(e) is a metric and ge : (N, df(e)) → (N, de) is distance-preserving. There-

fore, since range(ge) is dense in Me and ge is computable, ge extends uniquely to a

computable isometry g̃e :Mf(e) →Me, and so Mf(e)
∼= Me.

Theorem 2.0.9. The set {e ∈ N :Me is bounded} is Σ0
2-complete within PolSp.

Proof. By Proposition 2.0.6, {e :Me is bounded} is Σ0
2-hard within PolSp.

Note that for all e ∈ PolSp, since (N, de) is dense in Me, we have

Me is bounded ⇐⇒ (∃N ∈ N)(∀x, y ∈Me)(de(x, y) ≤ N)

⇐⇒ (∃N ∈ N)(∀i, j ∈ N)(de(i, j) ≤ N)

Since “de(i, j) ≤ N” is a Π0
1 statement, {e :Me is bounded} is Σ0

2 within PolSp.

Next, we will show that the set {e ∈ N : Me is bounded} is d-Σ0
2-complete by

using the following fact.

Fact 2.0.10. For every Σ0
2 set A, there is a computable sequence (As)s∈N of sets such

that for all e ∈ N,

e ∈ A⇐⇒ ∃t(∀s ≥ t)(e ∈ As).
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Proof. Let A be a Σ0
2 set. Since Fin := {e : dom(ϕe) is finite} is Σ0

2-complete, there

is a computable function f such that for all e ∈ N,

e ∈ A⇐⇒ f(e) ∈ Fin.

Note that the projections π0, π1 : N → N defined by

π0 : 〈n, s〉 7→ n and π1 : 〈n, s〉 7→ s

are computable functions. Also note that for all m ∈ N, there exists a u ∈ N such

that for all n, s ∈ N, if 〈n, s〉 ≥ u, then n ≥ m. So for all e ∈ N,

e ∈ A⇐⇒ dom(ϕf(e)) is finite

⇐⇒ ∃m(∀n ≥ m)(ϕf(e)(n) ↑)

⇐⇒ ∃m(∀n ≥ m)(∀s)(ϕf(e),s(n) ↑)

⇐⇒ ∃u(∀v ≥ u)(v = 〈n, s〉 =⇒ ϕf(e),s(n) ↑)

⇐⇒ ∃u(∀v ≥ u)(ϕf(e),π1(v)(π0(v)) ↑).

For each v ∈ N, let Av := {e : ϕf(e),π1(v)(π0(v)) ↑}. Then (Av)v∈N is a computable

sequence of sets and for all e ∈ N,

e ∈ A⇐⇒ ∃u(∀v ≥ u)(e ∈ Av).

Theorem 2.0.11. The set {e ∈ N :Me is bounded} is d-Σ0
2-complete
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Proof. Since {e :Me is bounded} is Σ0
2 within PolSp and PolSp is Π0

2, we have that

{e :Me is bounded} is d-Σ0
2. It remains to show that it is d-Σ0

2-hard.

For each n ∈ N, let an := 2n and bn := 2n+ 1. Then

N = {an : n ∈ N} t {bn : n ∈ N}.

Let C be a d-Σ0
2 set, say C = A \ B where A,B are Σ0

2. By Fact 2.0.10, there

exist a computable sequence (As)s∈N of sets and a computable relation RB such that

for all e ∈ N,

e ∈ A⇐⇒ ∃t(∀s ≥ t)(e ∈ As),

e ∈ B ⇐⇒ ∃n∀sRB(e, n, s).

For each e ∈ N, we define a partial computable function ψe uniformly in e as follows.

Let

• ψe(a0, bn, k) = ψe(bn, a0, k) = 1 for all n, k ∈ N,

• ψe(an, an, k) = 0 for all n, k ∈ N,

• ψe(bn, bm, k) = 1 for all n,m, k ∈ N with n 6= m.

At stage s where s ∈ N: We do the following:

(1) For each n ≤ s, if (∃t ≤ s)¬RB(e, n, t), then let ψe(bn, bn, k) = 0 for all k ∈ N.

(2) If s > 0 and e ∈ As, then for all k ∈ N and u ∈ N \ {ai : i ≥ s}, let

ψe(as, u, k) = ψe(u, as, k) = ψe(as−1, b0, k).
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(3) If s > 0 and e /∈ As, then for all k ∈ N and u ∈ N \ {ai : i ≥ s}, let

ψe(as, u, k) = ψe(u, as, k) = ψe(as−1, b0, k) + 1.

This ends the construction.

By the s-m-n Theorem, there is a computable function f such that ϕf(e) = ψe

for all e ∈ N.

We claim that for all e ∈ N, e ∈ A\B ⇐⇒Mf(e) is a bounded Polish metric space.

If e ∈ B, then there is an n ∈ N such that ∀sRB(e, n, s). So we will never do

(1), that is, for all k ∈ N, ψe(bn, bn, k) is never defined in the construction. Hence

ϕf(e) = ψe is not total, and so ϕf(e) does not induce a pseudometric.

If e /∈ B, then for each n ∈ N, there is an sn ∈ N such that ¬RB(e, n, sn), and

so we will define ψe(bn, bn, k) = 0 for all k ∈ N at or before stage s = max{n, sn}. It

follows that ϕf(e) = ψe is total and it is easy to see that ϕf(e) induces a pseudometric,

namely df(e). In fact, df(e) is a metric and df(e)(u, v) ∈ N for all u, v ∈ N.

If e /∈ B and e ∈ A, then since e /∈ B, ϕf(e) induces a pseudometric. Since e ∈ A,

there is a t ∈ N such that (∀s ≥ t)(e ∈ As), and so we will do (2) and never do (3)

at every stage s > t. It follows that {df(e)(as, u) : s, u ∈ N} is bounded. Now it is

clear from the construction that {df(e)(u, v) : u, v ∈ N} is bounded, and so Mf(e) is

bounded.

If e /∈ B and e /∈ A, then since e /∈ B, ϕf(e) induces a pseudometric. Since e /∈ A,

we have ∀t(∃s ≥ t)(e /∈ As), and so we will do (3) infinitely many times. It follows

that lim
s→∞

df(e)(as, b0) = ∞. Therefore, Mf(e) is unbounded.
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From all cases, we conclude that for all e ∈ N,

e ∈ A \B ⇐⇒Mf(e) is a bounded Polish metric space.

Therefore, {e :Me is bounded} is d-Σ0
2-hard.

Theorem 2.0.12.

(1) The set {e ∈ N : |Me| ≥ 1} = PolSp is Π0
2-complete.

(2) The set {e ∈ N : |Me| = 1} = {e ∈ N :Me
∼= {0}} is Π0

1-complete within PolSp,

and so it is Π0
2-complete.

Proof. It is clear that {e : |Me| ≥ 1} = PolSp and {e : |Me| = 1} = {e : Me
∼= {0}}.

So (1) follows from Theorem 2.0.1.

Note that for all e ∈ PolSp,

|Me| = 1 ⇐⇒ (∀i, j ∈ N)(de(i, j) = 0).

Thus, since “de(i, j) = 0” is a Π0
1 statement, {e : |Me| = 1} is Π0

1 within PolSp.

It remains to show that {e : |Me| = 1} is Π0
1-hard within PolSp. Let A be a Π0

1

set. Then there is a computable relation R(e, y) such that for all e ∈ N,

e ∈ A⇐⇒ ∀yR(e, y).

For each e ∈ N, we construct a computable metric space (Xe, d) uniformly in e

as follows.
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For each y ∈ N, starting from y = 0, we check if R(e, y) until we find (if ever)

the least y such that ¬R(e, y).

For each y ∈ N such that R(e, y), we let d(i, j) := 0 for all i, j ∈ {0, . . . , y}.

Whenever we find (if ever) the least y such that ¬R(e, y), we let

• d(i, y) = 1 for all i ∈ N \ {y}.

• d(y, y) = 0.

• d(i, j) = 0 for all i, j ∈ N \ {y}.

Then we stop the construction.

This ends the construction.

Let (Xe, d) be the completion of the resulting pseudometric space (N, d). The

key point is that, whenever we find (if ever) the least y such that ¬R(e, y), we make

sure that there are i, y ∈ Xe such that d(i, y) > 0, and so |Xe| > 1.

Note that for all e ∈ N,

e ∈ A =⇒ ∀yR(e, y) =⇒ (∀i, j ∈ N)(d(i, j) = 0) =⇒ |Xe| = 1

e /∈ A =⇒ ∃y¬R(e, y) =⇒ (∃i, y ∈ N)(d(i, y) = 1) =⇒ (∃i, y ∈ Xe)(d(i, y) = 1)

=⇒ |Xe| > 1.

It follows that A is many-one reducible to {e : |Me| = 1}. Therefore, {e : |Me| = 1}

is Π0
1-hard within PolSp.

Theorem 2.0.13. Let n ≥ 2.
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(1) The set {e ∈ N : |Me| ≥ n} is Σ0
1-complete within PolSp, and so it is Π0

2-

complete.

(2) The set {e ∈ N : |Me| = n} is d-Σ0
1-complete within PolSp, and so it is Π0

2-

complete.

Proof. Note that for all e ∈ PolSp,

|Me| ≥ n⇐⇒ (∃x1, . . . , xn ∈ N)(∀i, j ∈ {1, . . . , n})(i 6= j =⇒ de(xi, xj) > 0),

|Me| = n⇐⇒ |Me| ≥ n ∧ ¬(|Me| ≥ n+ 1).

Thus, since “de(xi, xj) > 0” is a Σ0
1 statement, {e : |Me| ≥ n} is Σ0

1 within PolSp,

and so {e : |Me| = n} is d-Σ0
1 within PolSp.

It remains to show that {e : |Me| ≥ n} is Σ0
1-hard within PolSp, and

{e : |Me| = n} is d-Σ0
1-hard within PolSp. Let (X, dX) be any finite computable

metric space with |X| = n− 1, say X = {x0, . . . , xn−2}.

Let C be a d-Σ0
1 set. Then C = A \ B where A,B are Σ0

1 sets. So there are

computable relations R0
A(e, y) and R0

B(e, y) such that for all e ∈ N,

e ∈ A⇐⇒ ∃yR0
A(e, y),

e ∈ B ⇐⇒ ∃yR0
B(e, y).

Define computable relations RA(e, y) and RB(e, y) by

RA(e, y) ⇐⇒ (∃z ≤ y)R0
A(e, z),

RB(e, y) ⇐⇒ (∃z ≤ y)R0
B(e, z).
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Then for all e,m ∈ N,

e ∈ A⇐⇒ (∃y ≥ m)RA(e, y),

e ∈ B ⇐⇒ (∃y ≥ m)RB(e, y).

Since X is finite, there is an r ∈ N such that dX(x, y) < r for all x, y ∈ X. For

example, we can choose any r ∈ N such that r > diam(X).

For each e ∈ N, we construct a computable metric space (Xe, d) uniformly in e

as follows.

Step 1: Let d(i, j) = dX(xi, xj) for all i, j ∈ {0, . . . , n− 2}.

Step 2: For each y ≥ n − 1, starting from y = n − 1, we check if RA(e, y) until

we find (if ever) the least y ≥ n− 1 such that RA(e, y).

For each y ≥ n− 1 such that ¬RA(e, y), we let

• d(i, j) = 0 for all i, j ∈ {n− 1, . . . , y},

• d(i, j) = d(i, n− 2) = dX(xi, xn−2) for all i ≤ n− 2 and j ∈ {n− 1, . . . , y}.

Whenever we find (if ever) the least y ≥ n− 1 such that RA(e, y), we call it yA

and let

• d(i, yA) = r for all i ∈ {0, . . . , yA − 1},

• d(yA, yA) = 0.

Then we go to Step 3.

Step 3: We have found yA from Step 2. For each y ≥ yA + 1, starting from
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y = yA + 1, we check if RB(e, y) until we find (if ever) the least y ≥ yA + 1 such that

RB(e, y).

For each y ≥ yA + 1 such that ¬RB(e, y), we let

• d(i, j) = 0 for all i, j ∈ {yA + 1, . . . , y},

• d(i, j) = d(i, yA) for all i ∈ {0, . . . , yA} and j ∈ {yA + 1, . . . , y}.

Whenever we find (if ever) the least y ≥ yA + 1 such that RB(e, y), we call it yB

and let

• d(i, j) = d(i, yB) = r for all i < yB and j ≥ yB,

• d(i, j) = 0 for all i, j ≥ yB.

Then we stop the construction.

This ends the construction.

Let (Xe, d) be the completion of the resulting pseudometric space (N, d). The

idea is that, we put a copy of X into Xe at Step 1. Then, at Step 2, we search for the

least y ≥ n− 1 such that RA(e, y). Whenever find such a y, we call it yA, put yA into

Xe as a new element, and go to Step 3. At Step 3, we search for the least y ≥ yA + 1

such that RB(e, y). Whenever find such a y, we call it yB, put yB into Xe as a new

element (yB 6= yA), and stop the construction.

If e /∈ A, then there is no y ≥ n − 1 such that RA(e, y). So we will never put a

new element yA into Xe in Step 2, and never go to Step 3. From the construction,

we identify all points i ≥ n − 1 with the point n − 2. So (Xe, d) ∼= (X, dX), and so

|Xe| = |X| = n− 1 < n.
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If e ∈ A, then there is a y ≥ n − 1 such that RA(e, y), and we will call it yA.

From the construction, we will put yA into Xe as a new element by letting d(i, yA) = r

for all i < yA. The fact that dX(x, y) < r for all x, y ∈ X ensures that d satisfies the

triangle inequality. Then we identify all points i ∈ {n− 1, . . . , yA− 1} with the point

n− 2. So |Xe| ≥ |X|+ 1 = n. After we have found yA, we go to Step 3 to search for

the least y ≥ yA + 1 such that RB(e, y).

If e ∈ A \ B, then, since e ∈ A, we will put yA into Xe and go to Step 3. Since

e /∈ B, there is no y ≥ n−1 such that RB(e, y). So we will never put a new element yB

into Xe in Step 3. From the construction, we identify all points i ≥ yA+1 with yA. So

Xe is isometric to the space X with one extra element yA. Hence |Xe| = |X|+1 = n.

If e ∈ A ∩ B, then, since e ∈ A, we will put yA into Xe and go to Step 3. Since

e ∈ B, there is a y ≥ yA + 1 such that RB(e, y), and we will call it yB. From the

construction, we will put yB into Xe as a new element by letting d(i, j) = d(i, yB) = r

for all i < yB and j ≥ yB. Then we identify all points i ≥ yB + 1 with yB. So Xe is

isometric to the space X with two extra elements yA and yB. Hence |Xe| = |X|+2 =

n+ 1 > n.

We can conclude as follows:

• e /∈ A =⇒ (Xe, d) ∼= (X, dX) =⇒ |Xe| = |X| = n− 1.

• e ∈ A =⇒ |Xe| ≥ |X|+ 1 = n.

• e ∈ A \B =⇒ Xe
∼= X t {yA} =⇒ |Xe| = |X|+ 1 = n.

• e ∈ A ∩B =⇒ Xe
∼= X t {yA, yB} =⇒ |Xe| = |X|+ 2 = n+ 1.
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It follows that C = A \ B is many-one reducible to {e : |Me| = n}. Therefore,

{e : |Me| = n} is d-Σ0
1-hard within PolSp.

If we let A be any Σ0
1-complete set and B be any Σ0

1 set, and use the same

construction, then we will have that A is many-one reducible to {e : |Me| ≥ n}, and

so {e : |Me| ≥ n} is Σ0
1-hard within PolSp.



Chapter 3

Isomorphism Problems and
Embedding Problems

In this chapter, we consider isomorphism problems and the following embedding prob-

lems for computable metric spaces:

• {(i, j) ∈ N2 : Mi ↪→ Mj}: Given a pair of computable metric spaces Mi and

Mj, determine if Mi embeds into Mj.

• {e ∈ N : X ↪→Me}: For a fixed computable metric space X, given a computable

metric space Me, determine if X embeds into Me.

• {e ∈ N :Me ↪→ X}: For a fixed computable metric space X, given a computable

metric space Me, determine if Me embeds into X.

Throughout this chapter, we fix an effective list (Te)e∈N of all primitive recursive

trees Te ⊆ N<N. By Fact 1.1.19, the set T := {e ∈ N : Te has an infinite path} is

Σ1
1-complete. Thus, by the s-m-n Theorem, to show that an index set of the form

47
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I = {e ∈ N :Me has property P} is Σ1
1-hard, it is enough to build a computable

sequence (Xe)e∈N of Polish metric spaces such that for all e ∈ N,

Te has an infinite path ⇐⇒ Xe has property P.

3.1 Basic Results

First note that Theorem 2.0.2 gives the following remark.

Remark 3.1.1. For every computably presentable metric space X, the sets

{e ∈ N :Me
∼= X}, {e ∈ N : X ↪→Me} and {e ∈ N :Me ↪→ X} are Π0

2-hard.

Proposition 3.1.2. The set {(i, j) ∈ N2 :Mi
∼= Mj} is Σ1

1.

Proof. Let I := {(i, j) ∈ N2 : Mi
∼= Mj}. Then (i, j) ∈ I if and only if Mi and Mj

are Polish metric spaces and Mi
∼= Mj. Since PolSp is Π0

2, it remains to show that

“Mi
∼= Mj” is a Σ1

1 statement. The argument below is essentially the same as in the

proof of Lemma 3.2 in [4].

For a function f : N2 → N, we define fm(n) := f(m,n) for all m,n ∈ N. Let

pm denote the m-th rational point in Mi, and qm denote the m-th rational point in

Mj. We will show that Mi
∼= Mj if and only if there are functions f, g : N2 → N that

satisfy the following conditions.

(1) For all m,n, l ∈ N,

dj(qf(m,n), qf(m,n+l)) ≤ 2−n and di(pg(m,n), pg(m,n+l)) ≤ 2−n.
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(2) For all m,m′, n, n′ ∈ N,

|di(pm, pm′)− dj(qf(m,n), qf(m′,n′))| ≤ 2−n + 2−n
′ and

|dj(qm, qm′)− di(pg(m,n), pg(m′,n′))| ≤ 2−n + 2−n
′
.

(3) For all m,n, n′ ∈ N,

di(pm, pg(f(m,n),n′)) ≤ 2−n + 2−n
′ and dj(qm, qf(g(m,n),n′)) ≤ 2−n + 2−n

′
.

Note that conditions (1), (2) and (3) are Π0
1 statements.

(⇒) Assume that Mi
∼= Mj via an isometry α : Mi → Mj. Let β := α−1. Then

there exist f, g : N2 → N such that for every m ∈ N, fm is a Cauchy name of α(pm)

in Mj and gm is a Cauchy name of β(qm) in Mi. So f and g satisfy condition (1),

lim
n→∞

qf(m,n) = α(pm) and lim
n→∞

pg(m,n) = β(qm). Note that for all m,m′, n, n′ ∈ N,

since α is distance-preserving, we have

di(pm, pm′) = dj(α(pm), α(pm′))

≤ dj(α(pm), qf(m,n)) + dj(qf(m.n), qf(m′,n′)) + dj(qf(m′,n′), α(pm′))

≤ 2−n + dj(qf(m.n), qf(m′,n′)) + 2−n
′
.

Similarly, we have that dj(qf(m.n), qf(m′,n′)) ≤ di(pm, pm′) + 2−n + 2−n
′ . Hence

|di(pm, pm′)− dj(qf(m,n), qf(m′,n′))| ≤ 2−n + 2−n
′ . Since β is distance-preserving, by

the same argument, we have that |dj(qm, qm′)− di(pg(m,n), pg(m′,n′))| ≤ 2−n + 2−n
′ . So

condition (2) is satisfied.
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Now note that for all m,n, n′ ∈ N, since β(α(pm)) = pm and β is distance-

preserving, we have

di(pm, pg(f(m,n),n′)) = di(β(α(pm)), pg(f(m,n),n′))

≤ di(β(α(pm)), β(qf(m,n))) + di(β(qf(m,n)), pg(f(m,n),n′))

= dj(α(pm), qf(m,n)) + di(β(qf(m,n)), pg(f(m,n),n′))

≤ 2−n + 2−n
′
.

Similarly, we have dj(qm, qf(g(m,n),n′)) ≤ 2−n + 2−n
′ . So condition (3) is satisfied.

(⇐) Assume that there are f, g : N2 → N that satisfy condition (1), (2) and (3).

By condition (1), we have that for all m ∈ N, fm is a Cauchy name in Mj and gm is

a Cauchy name in Mi, and so, in particular, lim
n→∞

qf(m,n) exists in Mj and lim
n→∞

pg(m,n)

exists in Mi. Define α(pm) = lim
n→∞

qf(m,n) and β(qm) = lim
n→∞

pg(m,n). From condition

(2), by taking n, n′ → ∞, we have that α is distance-preserving on the rational points

pm, and so it has an isometric extension to Mi, also denoted by α. Similarly for β.

We claim that β(α(pm)) = pm for all m ∈ N. Suppose for a contradiction

that β(α(pm)) 6= pm for some m ∈ N. Then, by continuity of β, lim
n→∞

β(qf(m,n)) =

β(α(pm)) 6= pm. So there must be an n ∈ N such that di(pm, β(qf(m,n))) > 2−n. Hence

there is an n′ ∈ N such that d(pm, pg(f(m,n),n′)) > 2−n + 2−n
′ , contradicting condition

(3). Therefore, β(α(pm)) = pm for all m ∈ N. Similarly, we have α(β(qm)) = qm for

all m ∈ N. Thus, by continuity, α−1 = β. We now conclude that α : Mi → Mj is an

isometry, and so Mi
∼= Mj.

Now we have proved that Mi
∼= Mj if and only if there are functions f, g : N2 → N

that satisfy condition (1), (2) and (3). Thus, since condition (1), (2) and (3) are
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Π0
1 statements, it follows that “Mi

∼= Mj” is a Σ1
1 statement. Therefore, the set

{(i, j) ∈ N2 :Mi
∼= Mj} is Σ1

1.

Proposition 3.1.3. The set {(i, j) ∈ N2 :Mi
∼= Mj} is Σ1

1-hard.

Proof. We use the fact that there is a computable sequence (He)e∈N of directed

graphs such that the set {(i, j) ∈ N2 : Hi
∼= Hj} is Σ1

1-complete (see [5]). By

applying the coding method in Section 3.1 of [6] to the sequence (He)e∈N, we ob-

tain a computable sequence (Ge)e∈N of connected undirected graphs such that the set

J := {(i, j) ∈ N2 : Gi
∼= Gj} is Σ1

1-complete.

Let I := {(i, j) ∈ N2 : Mi
∼= Mj}. To show that I is Σ1

1-hard, it is enough to

show that J is many-one reducible to I. Recall that we can think of a connected

graph G as the Polish metric space (G, dG) where dG is the shortest path metric.

Then, by the s-m-n Theorem, there is a computable function f : N → N such that

for every e ∈ N, Mf(e) = (Ge, dGe).

For a graph G, we let VG denote the set of vertices in G, and EG denote the set of

edges in G. We claim that for every i, j ∈ N, Gi
∼= Gj (as graphs) ⇐⇒Mf(i)

∼= Mf(j).

(⇐) Assume Mf(i)
∼= Mf(j) via an isometry α : (Gi, dGi

) → (Gj, dGj
). Then for

every u, v ∈ N,

(u, v) ∈ EGi
⇔ dGi

(u, v) = 1 ⇔ dGj
(α(u), α(v)) = 1 ⇔ (α(u), α(v)) ∈ EGj

.

Therefore, α : Gi → Gj is a graph isomorphism, and so Gi
∼= Gj.

(⇒) Assume Gi
∼= Gj via a graph isomorphism α : Gi → Gj. Then for any

path (v0, v1, . . . , vk) in Gi, the sequence (α(v0), α(v1), . . . , α(vk)) is a path in Gj.
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This implies that for every u, v ∈ VGi
, dGj

(α(u), α(v)) ≤ dGi
(u, v). Similarly, since

α−1 : Gj → Gi is a graph isomorphism, we have that dGi
(α−1(x), α−1(y)) ≤ dGj

(x, y)

for every x, y ∈ VGj
, and so dGi

(u, v) ≤ dGj
(α(u), α(v)) for every u, v ∈ VGi

. Hence

dGi
(u, v) = dGj

(α(u), α(v)) for every u, v ∈ VGi
. Therefore, α : (Gi, dGi

) → (Gj, dGj
)

is an isometry, and so Mf(i)
∼= Mf(j).

Define g(i, j) := (f(i), f(j)). Then g is a computable function and by the claim,

we have that (i, j) ∈ J ⇐⇒ g(i, j) ∈ I for every i, j ∈ N. Therefore, J is many-one

reducible to I, and so I is Σ1
1-hard.

By Proposition 3.1.2 and Proposition 3.1.3, we have the following.

Theorem 3.1.4. The set {(i, j) ∈ N2 :Mi
∼= Mj} is Σ1

1-complete.

Proposition 3.1.5. The set {(i, j) ∈ N2 :Mi ↪→Mj} is Σ1
1.

Proof. From the argument in the proof of Proposition 3.1.2, we have that Mi ↪→Mj

if and only if there is a function f : N2 → N that satisfies the following conditions.

(1) For all m,n, l ∈ N,

dj(qf(m,n), qf(m,n+l)) ≤ 2−n.

(2) For all m,m′, n, n′ ∈ N,

|di(pm, pm′)− dj(qf(m,n), qf(m′,n′))| ≤ 2−n + 2−n
′
.

Thus, since conditions (1) and (2) are Π0
1 statements, the set {(i, j) ∈ N2 :Mi ↪→Mj}

is Σ1
1.
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Proposition 3.1.6. For every computably presentable Polish metric space X, the

sets {e ∈ N : X ↪→Me} and {e ∈ N :Me ↪→ X} are Σ1
1.

Proof. Follows immediately from Proposition 3.1.5.

Proposition 3.1.7. The set {e ∈ N : (N, dN) ↪→Me} is Σ1
1-complete, where dN is the

usual metric on N.

Proof. Let I := {e ∈ N : (N, dN) ↪→Me}. Since dN is computable, there is an e0 ∈ N

such that dN = de0 (i.e. dN is the metric induced by ϕe0). So Me0
∼= (N, dN). Thus,

by Proposition 3.1.6, I is Σ1
1.

To show I is Σ1
1-hard, it is enough to build a computable sequence (Xe)e∈N of

Polish metric spaces such that

Te has an infinite path ⇐⇒ (N, dN) ↪→ Xe.

Fix a computable bijection i 7→ σi from N onto N<N such that σ0 = λ. For each

e ∈ N, we define a pseudometric d (depending on e) on N as follows.

• If σi /∈ Te, let d(i, 0) := 0 and d(i, j) := d(0, j) for all j ∈ N.

• If σi, σj ∈ Te, let d(i, j) be the length of the shortest path in Te from σi to σj.

• Let d(i, j) = d(j, i) for all i, j ∈ N.

Let Xe be the completion of (N, d). Note that the construction of Xe is effective

uniformly in e. Thus, (Xe)e∈N is a computable sequence of Polish metric spaces.

It is easy to see that for every e ∈ N,
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Te has an infinite path ⇐⇒ (N, dN) ↪→ Xe.

Therefore, I is Σ1
1-hard, and so it is Σ1

1-complete.

Theorem 3.1.8. The set {(i, j) ∈ N2 :Mi ↪→Mj} is Σ1
1-complete.

Proof. Let I := {(i, j) ∈ N2 : Mi ↪→ Mj} and J := {e ∈ N : (N, dN) ↪→ Me}. Fix an

index e0 ∈ N such that (N, dN) ∼= Me0 . So for every e ∈ N, e ∈ I ⇐⇒ (e0, e) ∈ J .

Thus, since J is Σ1
1-hard by Proposition 3.1.7, I is also Σ1

1-hard. Therefore, by

Proposition 3.1.5, I is Σ1
1-complete.

3.2 Results on Finite Metric Spaces

For a finite computable metric space X, the embedding problem Me ↪→ X is quite

simple. This is because P(X) is finite, and so there are only finitely many metric

spaces (up to isometry) that embeds into X.

Theorem 3.2.1. For every computably presentable finite metric space X, the set

{e ∈ N :Me ↪→ X} is Π0
1-complete within PolSp, and so it is Π0

2-complete.

Proof. Let (X, dX) be a computably presentable finite metric space. Note that for all

e ∈ PolSp,

Me ↪→ X ⇐⇒Me is finite and (∃f :Me → X)(f is distance-preserving)

⇐⇒ (∀ finite Y ⊆Me)(∃f : Y → X)(f is distance-preserving)

⇐⇒ (∀ finite Y ⊆ N)(∃f : Y → X)(∀i, j ∈ Y )(de(i, j) = dX(f(i), f(j))).
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Since X and Y are finite, the quantifier (∃f : Y → X) is bounded. Therefore,

{e :Me ↪→ X} is Π0
1 within PolSp.

It remains to show that {e : Me ↪→ X} is Π0
1-hard within PolSp. We use a

similar argument as in the proof of Theorem 2.0.12. In fact, Theorem 2.0.12(2) is the

special case of Theorem 3.2.1 when |X| = 1.

Let A be a Π0
1-complete set. Then there is a computable relation R(e, y) such

that for all e ∈ N,

e ∈ A⇐⇒ ∀yR(e, y).

Since X is finite, there is an r ∈ N such that dX(x, y) 6= r for all x, y ∈ X. (For

example, we can choose any r ∈ N such that r > diam(X).) So for any metric space

(Y, dY ) such that dY (a, b) = r for some a, b ∈ Y , we have Y 6↪→ X.

For each e ∈ N, we effectively construct a computable metric space (Xe, d)

uniformly in e as follows.

For each y ∈ N, starting from y = 0, we check if R(e, y) until we find (if ever)

the least y such that ¬R(e, y).

For each y ∈ N such that R(e, y), we let d(i, j) := 0 for all i, j ∈ {0, . . . , y}.

Whenever we find (if ever) the least y such that ¬R(e, y), we let

• d(i, y) = r for all i ∈ N \ {y},

• d(y, y) = 0,

• d(i, j) = 0 for all i, j ∈ N \ {y}.

Then we stop the construction.
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This ends the construction.

Let (Xe, d) be the completion of the resulting pseudometric space (N, d). The

key point is that, whenever we find (if ever) the least y such that ¬R(e, y), we make

sure that there are i, y ∈ Xe such that d(i, y) = r, which is not equal to any distance

in X, and so Xe 6↪→ X.

Note that for all e ∈ N,

e ∈ A =⇒ ∀yR(e, y) =⇒ (∀i, j ∈ N)(d(i, j) = 0) =⇒ (Xe, d) ∼= {0} =⇒ Xe ↪→ X

e /∈ A =⇒ ∃y¬R(e, y) =⇒ (∃i, y ∈ N)(d(i, y) = r) =⇒ (∃i, y ∈ Xe)(d(i, y) = r)

=⇒ Xe 6↪→ X.

It follows that A is many-one reducible to {e : Me ↪→ X}. Therefore, {e : Me ↪→ X}

is Π0
1-hard within PolSp.

Corollary 3.2.2. Let X = {x} be the one-point metric space.

(1) The set {e ∈ N :Me
∼= X} = {e ∈ N :Me ↪→ X} is Π0

1-complete within PolSp,

and so it is Π0
2-complete.

(2) The set {e ∈ N : X ↪→Me} = PolSp is Π0
2-complete.

Proof. Since X is the one-point metric space, it is clear that

{e :Me
∼= X} = {e :Me ↪→ X} and {e : X ↪→Me} = PolSp.

Then (1) follows from Theorem 3.2.1, and (2) follows from Theorem 2.0.1.
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Note that the embedding problem Me ↪→ X is also simple for some infinite

computable metric spaces X. For example, if X contains an isometric copy of

every Polish metric space (e.g. the Urysohn space U, the space C[0, 1], etc), then

{e ∈ N :Me ↪→ X} = PolSp, which is Π0
2-complete.

Another example is the metric space (N, d̃1) defined by d̃1(i, j) = 1 for all i 6= j.

Then for all e ∈ PolSp,

Me ↪→ (N, d̃1) ⇐⇒ (∀i, j ∈ N)(de(i, j) = 1 ∨ de(i, j) = 0).

Therefore, {e :Me ↪→ (N, d̃1)} is Π0
1 within PolSp. By the same argument as in the

proof of Theorem 3.2.1 (we can choose any r ∈ N \ {0, 1}), {e :Me ↪→ (N, d̃1)} is

Π0
1-hard within PolSp, and so it is Π0

1-complete within PolSp.

Theorem 3.2.3. For every computably presentable finite metric space X with

|X| > 1, the set {e ∈ N : Me
∼= X} is d-Σ0

1-complete within PolSp, and so it is

Π0
2-complete.

Proof. Let X be a computably presentable finite metric space with |X| > 1, say

X = {x0, . . . , xn−1}. Since |X| = n, we have that for all e ∈ PolSp,

Me
∼= X ⇐⇒ |Me| = n ∧Me ↪→ X.

By Theorem 3.2.1, {e :Me ↪→ X} is Π0
1 within PolSp. By Theorem 2.0.13,

{e : |Me| = n} is d-Σ0
1 within PolSp. Therefore, {e :Me

∼= X} is d-Σ0
1 within PolSp.

It remains to show that {e :Me
∼= X} is d-Σ0

1-hard within PolSp. Let X̃ be

the Polish metric space obtained by removing the point xn−1 from X. So we have
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X̃ = {x0, x1, . . . , xn−2} and |X̃| = n− 1. Since X is computably presentable, so is X̃.

Let C be a d-Σ0
1 set. Then C = A \ B where A and B are Σ0

1 sets. Then there are

computable relations RA(e, y) and RB(e, y) such that for all e ∈ N,

e ∈ A⇐⇒ (∃y ≥ n− 1)RA(x, y),

e ∈ B ⇐⇒ (∃y ≥ n− 1)RB(x, y).

Since X is finite, there is an r ∈ N such that dX(x, y) < r for all x, y ∈ X.

We construct a computable sequence (Xe)e∈N of Polish metric spaces by using

the same construction as in the proof of Theorem 2.0.13, but we work with X̃ instead

of X, and we let yA be a copy of the point xn−1 in X instead of just some new point.

That is, we modify Step 2 and leave Step 1 and Step 3 the same.

For each e ∈ N, we effectively construct a computable metric space (Xe, d)

uniformly in e as follows.

Step 1: Let d(i, j) = dX̃(xi, xj) for all i, j ∈ {0, . . . , n− 2}.

Step 2: For each y ≥ n − 1, starting from y = n − 1, we check if RA(e, y) until

we find (if ever) the least y ≥ n− 1 such that RA(e, y).

For each y ≥ n− 1 such that ¬RA(e, y), we let

• d(i, j) = 0 for all i, j ∈ {n− 1, . . . , y},

• d(i, j) = d(i, n− 2) = dX̃(xi, xn−2) for all i ≤ n− 2 and j ∈ {n− 1, . . . , y}.

Whenever we find (if ever) the least y ≥ n− 1 such that RA(e, y), we call it yA

and let
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• d(i, yA) = dX̃(i, xn−1) for all i ∈ {0, . . . , yA − 1},

• d(yA, yA) = 0.

Then we go to Step 3.

Step 3: We have found yA from Step 2. For each y ≥ yA + 1, starting from

y = yA + 1, we check if RB(e, y) until we find (if ever) the least y ≥ yA + 1 such that

RB(e, y).

For each y ≥ yA + 1 such that ¬RB(e, y), we let

• d(i, j) = 0 for all i, j ∈ {yA + 1, . . . , y},

• d(i, j) = d(i, yA) for all i ∈ {0, . . . , yA} and j ∈ {yA + 1, . . . , y}.

Whenever we find (if ever) the least y ≥ yA + 1 such that RB(e, y), we call it yB

and let

• d(i, j) = d(i, yB) = r for all i < yB and j ≥ yB,

• d(i, j) = 0 for all i, j ≥ yB.

Then we stop the construction.

This ends the construction.

From the construction, we have that for all e ∈ N,

• e /∈ A =⇒ (Xe, d) ∼= (X̃, dX̃) =⇒ |Xe| = |X̃| = n− 1 < |X| =⇒ Xe 6∼= X,

• e ∈ A \B =⇒ Xe
∼= X̃ t {yA} =⇒ Xe

∼= X,

• e ∈ A∩B =⇒ Xe
∼= X̃t{yA, yB} =⇒ |Xe| = |X̃|+2 = n+1 > |X| =⇒ Xe 6∼= X.
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We conclude that for all e ∈ N,

e ∈ A \B ⇐⇒ (Xe, d) ∼= (X, dX).

It follows that C = A \ B is many-one reducible to {e :Me
∼= X}. Therefore,

{e :Me
∼= X} is d-Σ0

1-hard within PolSp.

To find the complexity of the embedding problem X ↪→Me when 1 < |X| <∞,

we use the following theorem as the main tool.

Theorem 3.2.4. Fix an effective list (Te)e∈N of all primitive recursive trees Te ⊆ N<N.

Let r > 0 be a computable real. Then there is a computable sequence (Xe)e∈N of Polish

metric spaces such that for every e ∈ N, the following conditions hold:

(1) Xe is the completion of the tree Te, where we add weights to Te and use the

shortest path metric d.

(2) d(λ, x) ≤ r for all x ∈ Xe.

(3) If Te has an infinite path, then there is an x̂ ∈ Xe such that d(λ, x̂) = r.

(4) If Te has no infinite paths, then there are no x, y ∈ Xe such that d(x, y) = r,

and so d(λ, x) < r for all x ∈ Xe.

Proof. First, we show the following.

Claim 1. There is a computable strictly increasing sequence (rn)n∈N of rationals

converging to r such that r0 = 0 and rn+1 > rn +
1
2
(r − rn) for all n ∈ N.

Since r > 0 is a computable real, there is a computable strictly increasing se-
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quence (qn)n∈N of rationals converging to r such that q0 = 0 and qn < r < qn + 2−n

for all n > 0.

We define a subsequence (rn)n∈N of (qn)n∈N by induction as follows.

Let r0 := q0 = 0.

Now let n ∈ N and assume that we have defined rn such that rn = qm for some

m ∈ N. Suppose that (∀N > m)(∀k ≥ 1)(qN ≤ qm + 1
2
(qk + 2−k − qm)). Then,

by taking limit k → ∞, we have that (∀N > m)(qN ≤ qm + 1
2
(r − qm)). Taking

N → ∞, we have r ≤ qm + 1
2
(r − qm), but qm + 1

2
(r − qm) < qm + (r − qm) = r, a

contradiction. So there must be the least pair (N, k) such that N > m, k ≥ 1 and

qN > qm + 1
2
(qk + 2−k − qm). Let rn+1 := qN .

Since k ≥ 1, we have qk + 2−k > r, and so

rn+1 = qN > qm +
1

2
(qk + 2−k − qm) > qm +

1

2
(r − qm) = rn +

1

2
(r − rn).

This ends the construction of (rn)n∈N.

From the construction, it is clear that (rn)n∈N is a subsequence of (qn)n∈N. So

(rn)n∈N is a strictly increasing sequence of rationals converging to r. It is also clear

that rn+1 > rn +
1
2
(r − rn) for all n ∈ N.

This ends the proof of Claim 1.

For each i ∈ N, let wi := ri+1 − ri > 0. Then
n∑
i=0

wi = rn+1 for all n ∈ N and
∞∑
i=0

wi = lim
n→∞

rn = r.

Note that (wn)n∈N is strictly decreasing. This is because for all n ∈ N, since
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rn+1 > rn +
1
2
(r − rn), we have 2rn+1 > 2rn + r − rn = rn + r, and so

wn+1 = rn+2 − rn+1 < r − rn+1 < rn+1 − rn = wn.

Fix an effective list (σi)i∈N of all finite strings in N<N with σ0 = λ. We construct

a computable sequence (Xe)e∈N of Polish metric spaces as follows.

For each e ∈ N, we put weight wn on each edge between level n and level n + 1

in the tree Te. Then we define a pseudometric d (depending on e) on N by

• if σi /∈ Te, let d(i, 0) := 0 and d(i, j) := d(0, j) for all j ∈ N, that is, we identify

every σi ∈ N<N \ Te with σ0 = λ,

• if σi, σj ∈ Te, let d(i, j) := the length of the shortest path in Te from σi to σj.

Let (Xe, d) be the completion of the resulting pseudometric space (N, d). There-

fore, Xe is the completion of the tree Te with the shortest path metric d, where we

put weight wn on each edge between level n and level n+ 1. Note that the height of

each weighted tree Te is at most
∞∑
i=0

wi = r.

Tree Te

rn+1 > rn +
1
2
(r − rn) wi := ri+1 − ri

n∑
i=0

wi = rn+1

∞∑
i=0

wi = lim
n→∞

rn = r

σ0 = λ

w0 w0
w0 w0

w1 w1w1 w1w1 w1w1 w1

r1

r2

dX(x, y) = r
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We can compute the distances d(i, j) in term of wk’s and rn’s as follows. For any

σi, σj ∈ Te, if τ is the longest common initial segment of σi and σj, i.e. the longest

string in Te such that τ ⊆ σi and τ ⊆ σj, then we have that

d(i, j) =

|σi|−1∑
k=|τ |

wk +

|σj |−1∑
k=|τ |

wk = (r|σi| − r|τ |) + (r|σj | − r|τ |) = r|σi| + r|σj | − 2r|τ |.

(If |τ | = |σi|, then
|σi|−1∑
k=|τ |

wk = 0.)

In particular, for any σi, σj ∈ Te, if σi ⊆ σj, then τ = σi, and so

d(i, j) =

|σj |−1∑
k=|σi|

wk = r|σj | − r|σi|.

Claim 2. d(λ, x) ≤ r for all x ∈ Xe.

Since σ0 = λ, λ is the rational point 0 in (N, d). Note that for all i ∈ N,

d(λ, i) =

|σi|−1∑
k=0

wk = r|σi| < r.

Thus, since (N, d) is dense in Xe, we have that d(λ, x) ≤ r for all x ∈ Xe.

This ends the proof of Claim 2.

Claim 3. For all e ∈ N, if Te has an infinite path, then there is an x̂ ∈ Xe such that

d(λ, x̂) = r.

Let e ∈ N and assume that Te has an infinite path, say g ∈ NN. Then for each
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n ∈ N, there is a unique in ∈ N such that σin = g ↾ n. So i0 = 0 and for all m,n ∈ N,

d(im, in) = |r|σim | − r|σin || = |r|g↾m| − r|g↾n|| = |rm − rn|.

Thus, since (rn)n∈N converges, (in)n∈N is a Cauchy sequence in (Xe, d). Hence, since

(Xe, d) is complete, (in)n∈N converges to a point x̂ ∈ Xe. Therefore,

d(λ, x̂) = lim
m→∞

d(i0, im) = lim
m→∞

|r0 − rm| = |r0 − r| = |0− r| = r.

This ends the proof of Claim 3.

Claim 4. For all e ∈ N, if Te has no infinite paths, then there are no x, y ∈ Xe such

that d(x, y) = r, and so d(λ, x) < r for all x ∈ Xe.

Let e ∈ N. Since d(λ, x) ≤ r for all x ∈ Xe, to prove Claim 4, we assume that

there are x, y ∈ Xe with d(x, y) = r, and then show that Te has an infinite path.

Since x, y ∈ Xe, there are Cauchy sequences (in)n∈N and (jn)n∈N in (N, d)

such that (in)n∈N converges to x in Xe and (jn)n∈N converges to y in Xe. Then

lim
n→∞

d(in, jn) = d(x, y) = r.

From the definition of d, we identify each σi ∈ N<N \ Te with σ0 = λ. So we can

assume without loss of generality that σin , σjn ∈ Te for all n ∈ N.

Note that r1 > r0 +
1
2
(r − r0) =

1
2
r, and so 2r1 > r. Hence we can fix a δ ∈ Q

such that 0 < δ < min{1
2
r, 2r1 − r}.
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Then there is an N ∈ N such that

(∀m,n ≥ N)(|d(in, jn)− r| < δ ∧ d(im, in) < δ ∧ d(jm, jn) < δ). (4.1)

Claim 4.1. For all i, j ∈ N, if σi, σj ∈ Te are incomparable, then |d(i, j)− r| > δ.

Let i, j ∈ N and assume σi, σj ∈ Te are incomparable. Then |σi| ≥ 1 and |σj| ≥ 1.

Let τ be the longest common initial segment of σi and σj.

Case τ = λ: Then |τ | = 0, and so

d(i, j) = r|σi| + r|σj | − 2r|τ | = r|σi| + r|σj | − 2r0 = r|σi| + r|σj | ≥ r1 + r1 = 2r1.

Hence d(i, j)− r ≥ 2r1 − r > δ, and so |d(i, j)− r| > δ.

Case τ 6= λ: Then |τ | ≥ 1, and so

d(i, j) = r|σi| + r|σj | − 2r|τ | < r + r − 2r|τ | ≤ r + r − 2r1,

Hence r − d(i, j) > 2r1 − r > δ, and so |d(i, j)− r| > δ.

This ends the proof of Claim 4.1.

Claim 4.2. For all n ≥ N ,

either (λ = σin ⊊ σjn ∧ in = 0 ∧ jn > 0) or (λ = σjn ⊊ σin ∧ jn = 0 ∧ in > 0).

Let n ≥ N . By (4.1), |d(in, jn) − r| < δ, and so, by Claim 4.1, σin and σjn are

comparable.
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Case σin ⊆ σjn : If σin 6= λ, then

d(in, jn) = r|σjn | − r|σin | < r − r|σin | ≤ r − r1 < r − 1

2
r < r − δ,

but |d(in, jn)− r| < δ, a contradiction. Hence σin = λ = σ0, and so in = 0.

If σjn = λ, then jn = 0 = in, and so

|d(in, jn)− r| = |0− r| = r >
1

2
r > δ,

but |d(in, jn) − r| < δ, a contradiction. Hence σjn 6= λ. Therefore, jn > 0 and

λ = σin ⊊ σjn .

Case σjn ⊆ σin : Similarly, we have that λ = σjn ⊊ σin , jn = 0, and in > 0.

This ends the proof of Claim 4.2.

By Claim 4.2, without loss of generality, we can assume that λ = σiN ⊊ σjN ,

iN = 0, and jN > 0.

If σin 6= λ for some n ≥ N , then

d(in, iN) = r|σin | − r|σiN | = r|σin | − r0 = r|σin | ≥ r1 >
1

2
r > δ,

which contradicts (4.1). So σin = λ for all n ≥ N . Thus, by Claim 4.2, we have that

for all n ≥ N , λ = σin ⊊ σjn , in = 0, and jn > 0. So for all n ≥ N , d(in, jn) =

d(0, jn) = r|σjn | < r. Thus, since lim
n→∞

r|σjn | = lim
n→∞

d(in, jn) = r and (rn)n∈N is a

strictly increasing sequence converging to r, we must have that lim
n→∞

|σjn| = ∞.

For each k ∈ N, since wk = rk+1 − rk > 0 and (jn)n∈N is a Cauchy sequence in



67

(N, d), we have that there is an Nk ∈ N such that d(jm, jn) < wk for all m,n ≥ Nk.

We can choose Nk so that N < N0 < N1 < . . . .

For each m,n ∈ N, let τm,n be the longest common initial segment of σjm and

σjn . Note that for all k ∈ N and m,n ≥ Nk, if σjm 6= σjn , then |σjm| > |τm,n| or

|σjn| > |τm,n|, so

wk > d(jm, jn) =

|σjm |−1∑
i=|τm,n|

wi +

|σjm |−1∑
i=|τm,n|

wi ≥ w|τm,n|,

and so, since (wi)i∈N is strictly decreasing, we have |τm,n| > k. Therefore,

(∀k ∈ N)(∀m,n ≥ Nk)(σjm 6= σjn =⇒ |τm,n| > k). (4.2)

Claim 4.3. There is a sequence (ρk)k∈N ⊆ Te such that

(i) (∀k ∈ N)(∀n ≥ Nk)(ρk ⊆ σjn),

(ii) |ρk| = k + 1,

(iii) (∀k > 0)(ρk−1 ⊊ ρk).

We prove Claim 4.3 by induction on k as follows.

Let k ∈ N and assume by induction that we have defined ρ0, . . . , ρk−1 ∈ Te that

satisfy (i),(ii) and (iii).

Recall that lim
n→∞

|σjn| = ∞. So there is an m > Nk such that |σjm | > |σjNk
|, and

so σjNk
6= σjm . Since m ≥ Nk and σjNk

6= σjm , by (4.2), we have |τNk,m| > k. Thus,

since τNk,m ⊆ σjNk
, we have |σjNk

| ≥ |τNk,m| > k.
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Hence we can define ρk := σjNk
↾ (k + 1) ∈ Te. Then ρk ⊆ σjNk

and |ρk| = k + 1.

We claim that ρk ⊆ σjn for all n ≥ Nk. Suppose for a contradiction that ρk 6⊆ σjn

for some n ≥ Nk. Then, since ρk ⊆ σjNk
, we have σjNk

6= σjn and τNk,n ⊊ ρk. So

|τNk,n| ≤ |ρk| − 1 = (k + 1)− 1 = k. But, since n ≥ Nk and σjNk
6= σjn , by (4.2), we

have |τNk,n| > k, a contradiction. Therefore, ρk ⊆ σjn for all n ≥ Nk.

Since ρk−1 satisfies (ii), |ρk−1| = k. Since ρk ⊆ σjNk
, ρk−1 ⊆ σjNk

and |ρk−1| =

k < k + 1 = |ρk|, we must have ρk−1 ⊊ ρk.

This ends the proof of Claim 4.3.

By Claim 4.3,
⋃
k∈N

ρk is an infinite path in Te. So we have proved Claim 4.

We conclude that the sequence (Xe)n∈N satisfies conditions (1)-(4), and this

completes the proof.

Theorem 3.2.5. For every computably presentable finite metric space X with

|X| > 1, the set {e ∈ N : X ↪→Me} is Σ1
1-complete.

Proof. Let (X, dX) be a computably presentable finite metric space X with |X| > 1.

By Proposition 3.1.6, {e : X ↪→Me} is Σ1
1.

To show that {e : X ↪→Me} is Σ1
1-hard, we consider three cases:

Case 1: |X| = 2.

Case 2: |X| > 2 and X satisfies the strict triangle inequality, that is,

for any distinct a, b, c ∈ X, dX(a, b) < dX(a, c) + dX(c, b).

Case 3: X does not satisfy the strict triangle inequality.
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Case 1: |X| = 2

Let X = {x, y}. Since X is computably presentable, r := dX(x, y) > 0 is a

computable real. Let (Xe)e∈N be the computable sequence of Polish metric spaces

obtained from Theorem 3.2.4. Then for all e ∈ N,

Te has an infinite path ⇐⇒ (∃a, b ∈ Xe)(d(a, b) = r)

⇐⇒ X ↪→ Xe.

Therefore, {e : X ↪→Me} is Σ1
1-hard.

This ends the proof for the case |X| = 2.

Case 2: |X| > 2 and X satisfies the strict triangle inequality

Let

δX := min{dX(a, b) : a 6= b ∈ X},

εX := min{dX(a, c) + dX(c, b)− dX(a, b) : a, b, c ∈ X are distinct}.

Since 1 < |X| < ∞, δX > 0. Since X satisfies the strict triangle inequality and X is

finite, εX > 0. So we can fix an l ∈ Q such that 0 < l < min{1
2
δX ,

1
2
εX}.

For any distinct a, b ∈ X, let Ia,b := dX(a, b) − 2l. We construct a computable

sequence (Xe)e∈N of Polish metric spaces as follows.

First, we shrink the metric space X by l to obtain a finite computable metric
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space (X̃, d) where X̃ = {x̃ : x ∈ X} and d is a metric defined by

d(ã, b̃) := Ia,b = dX(a, b)− 2l for all distinct a, b ∈ X.

(d(ã, b̃) := 0 if a = b.)

We need to check that d is a metric. Since l < 1
2
δX , we have that for all distinct

a, b ∈ X,

d(ã, b̃) = dX(a, b)− 2l ≥ δX − 2l > 0.

Since l < 1
2
εX , we have that for all distinct a, b, c ∈ X,

2l < εX ≤ dX(a, c) + dX(c, b)− dX(a, b), and so

d(ã, b̃) = dX(a, b)− 2l

< (dX(a, c) + dX(c, b)− 2l)− 2l

= (dX(a, c)− 2l) + (dX(c, b)− 2l)

= d(ã, c̃) + d(c̃, b̃).

It follows that d is a metric on X̃.

Note that d(ã, b̃) is a computable real uniformly in a, b because dX(a, b) is a

computable real uniformly in a, b.

For each a ∈ X, we attach the weighted tree Te,a constructed in the proof of

Theorem 3.2.4 to the point ã by using l as the maximum height of Te. Let (Xe, d) be

the completion of the resulting space with the shortest path metric d.

More formally, we construct (Xe, d) as follows.
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For each a ∈ X, let Te,a be the weighted tree constructed in the proof of Theo-

rem 3.2.4 by adding weights to Te, using the point ã as the root and using l as the

maximum height of Te,a.

We can think of the metric space (X̃, d) as the weighted graph where the set of

vertices is {ã : a ∈ X} and every distinct a, b ∈ X are connected by an edge of weight

d(ã, b̃). Note that d is the shortest path metric in X.

Let (Xe, d) be the completion of the weighted graph
⊔
a∈X

Te,a, equipped with the

shortest path metric d.

X = {a, b, c}

a b

c

d(ã, b̃) = Ia,b := dX(a, b)− 2l

ã b̃

c̃

Ia,b

Ib,cIa,c

l

l

l

Tree Te
l < min{1

2
δX ,

1
2
εX}

By the proof of Theorem 3.2.4, we have that for each a ∈ X, there is a computable

metric space (Ye,a, de,a) that satisfies the following conditions:

(1) (Ye,a, de,a) is the completion of the tree Te,a, equipped with the shortest path

metric de,a.

(2) de,a(ã, x) ≤ l for all x ∈ Ye,a.
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(3) If Te has an infinite path, then there is an â ∈ Ye,a such that de,a(ã, â) = l.

(4) If Te has no infinite paths, then there are no x, y ∈ Ye,a such that de,a(x, y) = l,

and for all x ∈ Ye,a, de,a(ã, x) < l.

Then for all x, y ∈ Xe, there are a, b ∈ X such that x ∈ Ye,a and y ∈ Ye,b, and

the distance between x and y is

d(x, y) =


de,a(x, y) if a = b

de,a(x, ã) + d(ã, b̃) + de,b(̃b, y) if a 6= b

Since the construction of Xe is effective uniformly in e, (Xe)e∈N is a computable

sequence of Polish metric spaces.

We claim that for all e ∈ N, Te has an infinite path ⇐⇒ X ↪→ Xe.

(=⇒) Assume that Te has an infinite path. By (3), for each a ∈ X, there is an

â ∈ Ye,a such that de,a(ã, â) = l. Then for all distinct a, b ∈ X,

d(â, b̂) = de,a(â, ã) + d(ã, b̃) + de,b(̃b, b̂)

= l + (dX(a, b)− 2l) + l

= dX(a, b).

Therefore, X ↪→ Xe via the isometric embedding f : a 7→ â.

(⇐=) Assume that Te has no infinite paths. Since X is finite, diam(X) =

max{dX(x, y) : x, y ∈ X} <∞.

We claim that for all x, y ∈ Xe, d(x, y) < diam(X).
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Let x, y ∈ Xe. Then there are a, b ∈ X such that x ∈ Ye,a and y ∈ Ye,b. Since Te

has no infinite paths, by (4), de,a(ã, x) < l and de,b(̃b, y) < l.

If a = b, then

d(x, y) = de,a(x, y) ≤ de,a(x, ã) + de,a(ã, y) < l + l < δX ≤ diam(X).

If a 6= b, then

d(x, y) = de,a(x, ã) + d(ã, b̃) + de,b(̃b, y) < l + d(ã, b̃) + l

= l + (dX(a, b)− 2l) + l = dX(a, b) ≤ diam(X).

Therefore, d(x, y) < diam(X) for all x, y ∈ Xe.

Since X is finite, there are a, b ∈ X such that dX(a, b) = diam(X). Thus, if

X ↪→ Xe via an isometric embedding f , then f(a), f(b) ∈ Xe and d(f(a), f(b)) =

dX(a, b) = diam(X), but d(x, y) < diam(X) for all x, y ∈ Xe, a contradiction.

Therefore, X 6↪→ Xe.

We conclude that for all e ∈ N, Te has an infinite path ⇐⇒ X ↪→ Xe. Therefore,

{e : X ↪→Me} is Σ1
1-hard.

This ends the proof for the case |X| > 2 and X satisfies the strict triangle

inequality.

Case 3: X does not satisfy the strict triangle inequality

SinceX does not satisfy the strict triangle inequality, there are distinct a, b, c ∈ X



74

such that

dX(a, b) = dX(a, c) + dX(c, b).

Let

δX := min{dX(x, y) : x 6= y ∈ X},

γX := min{dX(a, c)− dX(x, c) : dX(a, c) > dX(x, c) and x ∈ X \ {c}}.

Since 1 < |X| < ∞, δX > 0 and γX > 0. So we can fix an l ∈ Q such that

0 < l < min{1
3
δX , γX}.

We will construct a computable sequence (Xe)e∈N of Polish metric spaces such

that for all e ∈ N, Te has an infinite path ⇐⇒ X ↪→ Xe.

The idea of how to build (Xe, d) is as follows. First, we remove the point c

from X, and add two new points a0 and b0. Define d(a, a0) := dX(a, c) − l and

d(b, b0) := dX(b, c)− l. Then, at the points a0 and b0, we attach the weighted tree Te

constructed in the proof of Theorem 3.2.4 by using l as the maximum height of Te.

We can define a metric d on the resulting space such that d “looks like” the shortest

path metric. Let (Xe, d) be the completion of the resulting metric space.

ca a0 b0 b

l l
dX(a, c) dX(b, c)

dX(a, b) = dX(a, c) + dX(c, b)

Tree Te
l < min{1

3
δX , γX}
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More formally, we construct (Xe, d) as follows.

We use the same setting as in the proof of Theorem 3.2.4, where we use l as the

maximum height instead of r. So we have the following:

• (rn)n∈N ⊆ Q is a computable strictly increasing sequence converging to l such

that r0 = 0 and rn+1 > rn +
1
2
(r − rn) for all n ∈ N.

• For each i ∈ N, wi := ri+1 − ri > 0.

•
n∑
i=0

wi = rn+1 for all n ∈ N and
∞∑
i=0

wi = lim
n→∞

rn = l.

• We think of Te as the weighted tree where we put the weight wn on each edge

between level n and level n+1. Then we equip Te with the shortest path metric.

• The maximum height of Te is
∞∑
i=0

wi = l.

Let Te,a be the weighted tree Te with the point a0 as the root. We define Te,b in

the same way. (Te,a and Te,b are disjoint.)

By the proof of Theorem 3.2.4, we have that there is a computable metric space

(Ye,a, de,a) that satisfies the following conditions:

(1) (Ye,a, de,a) is the completion of the tree Te,a, equipped with the shortest path

metric de,a.

(2) de,a(a0, x) ≤ l for all x ∈ Ye,a.

(3) If Te has an infinite path, then there is an â ∈ Ye,a such that de,a(a0, â) = l.

(4) If Te has no infinite paths, then there are no x, y ∈ Ye,a such that de,a(x, y) = l,

and for all x ∈ Ye,a, de,a(a0, x) < l.

Similarly, there is a computable metric space (Ye,b, de,b) that satisfies (1)-(4).



76

To build (Xe, d), we construct a weighted graph Ge as follows.

Step 1: We start with the weighted graph X \ {c}, where for any distinct

x, y ∈ X \ {c}, we put an edge of weight dX(x, y) between x and y.

Step 2: We put two new points a0 and b0 into X \ {c}. Then put an edge of

weight dX(a, c)− l between a and a0, and put an edge of weight dX(b, c)− l between

b and b0.

Step 3: We attach the weighted trees Te,a and Te,b at a0 and b0, respectively.

Step 4: Let Ge be the resulting weighted graph. Then the set of vertices of Ge is

V (Ge) = (X \ {c}) t Te,a t Te,b.

Fix an index e0 ∈ N such that Te0 = N<N.

We define a weighted graph G̃ (does not depend on e) as follows.

Step 1: We start with the weighted graph Ge0 .

Step 2: For each f ∈ NN, we add a new point f̃ to Ge0 , and for each

x ∈ X \ {a, b, c}, we put an edge of weight dX(x, c) between x and f̃ .

Step 3: For each σ ∈ Te0,a \ {a0} and f ∈ NN, if σ is an initial segment of f , then

we put an edge of weight l − de0,a(a0, σ) = l − r|σ| between σ and f̃ . (Recall that

de0,a(a0, σ) is the length of the shortest path in Te0,a from a0 to σ.) We do the same

for Te0,b.
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Step 4: Let G̃ be the resulting weighted graph. Then the set of vertices of G̃ is

V (G̃) = (X \ {c}) t Te0,a t Te0,b t {f̃ : f ∈ NN} = V (Ge0) t {f̃ : f ∈ NN}.

Let d̃ be the shortest path metric on G̃. Let (X̃, d̃) be the completion of the

metric space (G̃, d̃). The idea is that for each f ∈ NN, we think of the point f̃ as the

limit of the sequence (f ↾ n)n∈N in X̃. If Te has an infinite path f , then there would

be a copy of f in the tree Te,a and another copy of f in the tree Te,b. We will show

later that these two copies will give the same limit point f̃ in Xe, and then f̃ will be

a copy of the point c ∈ X, and so X ↪→ Xe.

Since Te0 = N<N, it is clear that Ge is a subgraph of G̃ for every e ∈ N. Let d

be the restriction of d̃ to Ge, i.e. d := d̃|Ge×Ge . Thus, since d̃ is a metric on G̃ and

Ge ⊆ G̃, we have that d is a metric on Ge. Let (Xe, d) be the completion of the metric

space (Ge, d).

Note that the construction of (Xe, d) is effective uniformly in e. So (Xe)e∈N is a

computable sequence of Polish metric spaces.

Also note that (X̃, d̃) is universal for (Xe)e∈N in the sense that (Xe, d) ↪→ (X̃, d̃)

for all e ∈ N. So we can think of each Xe as a subset of X̃.

The metric d on Ge might not be the shortest path metric on Ge. However,

d “looks like” the shortest path metric in the sense that d is the restriction of the

shortest path metric d̃ on the extension G̃ of Ge.

For each σ ∈ N<N, we let σa denote the copy of the string σ in the tree Te0,a. For

each f ∈ NN, we have that f is an infinite path in Te0 , and we let fa denote the copy
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of the infinite path f in the tree Te0,a. That is, fa ↾ n = (f ↾ n)a for all n ∈ N. We

define σb and fb similarly.

For each σ, ρ ∈ N<N, let τσ,ρ denote the longest initial segment of σ and ρ.

We claim that for all e ∈ N, Te has an infinite path ⇐⇒ X ↪→ Xe.

(=⇒) Assume that Te has an infinite path, say f ∈ NN. For each n ∈ N, let

σn := f ↾ n. Then for all m,n ∈ N,

d((σm)a, (σn)a) = de,a((σm)a, (σn)a) = |r|σm| − r|σn|| = |r|f↾m| − r|f↾n|| = |rm − rn|.

Thus, since (rn)n∈N converges, ((σn)a)n∈N ⊆ Te,a is a Cauchy sequence in (Xe, d).

Hence, since (Xe, d) is complete, ((σn)a)n∈N converges to a point ca ∈ Xe. Similarly,

((σn)b)n∈N ⊆ Te,b is a Cauchy sequence in (Xe, d) converging to a point cb ∈ Xe.

Note that for all n ∈ N, since σn ⊆ f and l < δX , we have that the path

((σn)a, f̃ , (σn)b) is a shortest path in G̃ from (σn)a to (σn)b, and so

d((σn)a, (σn)b) = d̃((σn)a, (σn)b) = d̃((σn)a, f̃) + d̃(f̃ , (σn)b)

= (l − r|σn|) + (l − r|σn|) = 2(l − rn).

Hence

d(ca, cb) = lim
n→∞

d((σn)a, (σn)b) = lim
n→∞

2(l − rn) = 2(l − l) = 0.

So ca = cb. Therefore, the infinite paths fa in Te,a and fb in Te,b give the same limit

point at ca = cb.



79

Let ĉ := ca = cb. We will show that ĉ ∈ Xe is a copy of the point c ∈ X in the

sense that d(ĉ, x) = dX(c, x) for all x ∈ X \ {c}.

Note that

d̃(ĉ, f̃) = lim
n→∞

d̃((σn)a, f̃) = lim
n→∞

(l − rn) = l − l = 0.

So ĉ = f̃ in X̃.

Recall that for each x ∈ X \ {a, b, c}, there is an edge of weight dX(c, x) in G̃

between f̃ and x. So for all x ∈ X \ {a, b, c}, d(ĉ, x) = d̃(ĉ, x) = d̃(f̃ , x) = dX(c, x).

Note that for all n ∈ N,

d(a, (σn)a) = d̃(a, (σn)a) = d̃(a, a0) + d̃(a0, (σn)a) = (dX(a, c)− l) + rn.

So

d(a, ĉ) = d(a, ca) = lim
n→∞

d(a, (σn)a) = lim
n→∞

(dX(a, c)− l + rn) = dX(a, c).

Similarly, we have d(b, ĉ) = dX(b, c).

We conclude that d(ĉ, x) = dX(c, x) for all x ∈ X \ {c}. It is easy to see that for

all x, y ∈ X \ {c}, d(x, y) = d̃(x, y) = dX(x, y).

Therefore, X ↪→ Xe via the map ψ := IdX\{c} t {(c, ĉ)}, that is,

ψ(x) =


ĉ if x = c

x if x ∈ X \ {c}
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(⇐=) Assume that Te has no infinite paths. By (4), there are no x, y ∈ Ye,a such

that d̃(x, y) = l, and for all x ∈ Ye,a, d̃(a0, x) < l. The same is true for Ye,b. Let

L := dX(a, c),

EX := {(x, y) ∈ X : dX(x, y) = L},

EXe := {(x, y) ∈ Xe : d(x, y) = L}.

Note that if X ↪→ Xe via a map ψ, then

{(ψ(x), ψ(y)) : (x, y) ∈ EX} ⊆ EXe ,

|EX | = |{(ψ(x), ψ(y)) : (x, y) ∈ EX}| ≤ |EXe|.

Therefore, to show that X 6↪→ Xe, it is enough to show that |EXe| < |EX |.

From the construction of Xe, we have X \ {c} ⊆ Xe and c /∈ Xe. Thus,

since dX(a, c) = L and |EX | < ∞, we have that if d(x, y) 6= L for all

(x, y) ∈ (Xe ×Xe) \ (X ×X), then |EXe| < |EX |. So it is enough to show that

d(x, y) 6= L for all (x, y) ∈ (Xe ×Xe) \ (X ×X).

Note that for any σ, ρ ∈ N<N = Te0 ,

d̃(σa, ρa) = d̃(σa, (τσ,ρ)a) + d̃(τσ,ρ)a, ρa) = (r|σ| − r|τσ,ρ|) + (r|ρ| − r|τσ,ρ|)

≤ r|σ| + r|ρ| < l + l = 2l.

Thus, since Te0,a is dense in Ye0,a, we have that d̃(x, y) ≤ 2l for all x, y ∈ Ye0,a. The

same is true of Ye0,b.
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Recall that for each f ∈ N<N, the sequences ((f ↾ n)a)n∈N and ((f ↾ n)b)n∈N

converge in X̃ to the same limit point, say ĉf , in (X̃, d̃), and so ĉf ∈ Ye0,a∩Ye0,b. Also

recall that ĉf = f̃ .

Note that for all σ, ρ ∈ N<N, if σ, ρ are comparable, then there is an f ∈ NN such

that σ ⊆ f and ρ ⊆ f , and so

d̃(σa, ρb) = d̃(σa, ĉf ) + d̃(ĉf , ρb) = (l − r|σ|) + (l − r|ρ|)

≤ l + l = 2l.

Note that for all σ, ρ ∈ N<N, if σ, ρ are incomparable, then for any f ∈ NN such

that σ ⊆ f , we have τσ,ρ ⊆ σ ⊆ f , and so

d̃(σa, ρb) = d̃(σa, ĉf ) + d̃(ĉf , (τσ,ρ)b) + d̃((τσ,ρ)b, ρb)

= (l − r|σ|) + (l − r|τσ,ρ|) + (r|ρ| − r|τσ,ρ|)

< l + l + l = 3l.

Thus, since Te0,a ∪ Te0,b is dense in Ye0,a ∪ Ye0,b, we can conclude that

d̃(x, y) ≤ 3l for all x, y ∈ Ye0,a ∪ Ye0,b. (∗)

Now we will show that d(x, y) 6= L for all (x, y) ∈ (Xe ×Xe) \ (X ×X).

Let (x, y) ∈ (Xe×Xe)\ (X×X). Without loss of generality, assume y ∈ Xe \X.

Then y ∈ Ye,a or y ∈ Ye,b. Without loss of generality, assume y ∈ Ye,a. Then

d̃(a0, y) < l.
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Note that for any f ∈ NN, we have ĉf = f̃ and d̃(a0, ĉf ) = l. Since d̃(a0, y) < l,

we have y 6= ĉf for all f ∈ NN. If y ∈ Ye,a \ Te,a, then y is a limit point of Te,a, and so

we must have y = ĉf for some f ∈ NN, which is a contradiction. Therefore, y ∈ Te,a,

and so y = σa for some σ ∈ N<N.

Case 1. x = a: Then

d(x, y) = d̃(a, y) ≤ d̃(a, a0) + d̃(a0, y) = (dX(a, c)− l) + d̃(a0, y)

< (dX(a, c)− l) + l = L.

Case 2. x = b: Since y = σa, for any f ∈ NN such that σ ⊆ f , we have

d̃(f̃ , y) = l − r|σ| ≤ l, and so

d(x, y) = d̃(b, y) ≤ d̃(b, b0) + d̃(b0, f̃) + d̃(f̃ , y) ≤ d̃(b, b0) + l + l

= (dX(b, c)− l) + 2l = dX(b, c) + l.

We also have that

d(x, y) = d̃(b, y) ≥ d̃(a, b)− d̃(a, a0)− d̃(a0, y)

= dX(a, b)− (dX(a, c)− l)− d̃(a0, y)

> dX(a, b)− (dX(a, c)− l)− l

= dX(a, b)− dX(a, c)

= dX(b, c).

So dX(b, c) < d(x, y) ≤ dX(b, c) + l.
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If dX(a, c) ≤ dX(b, c), then d(x, y) > dX(b, c) ≥ dX(a, c) = L.

If dX(a, c) > dX(b, c), then l < γX ≤ dX(a, c)− dX(b, c), and so

d(x, y) ≤ dX(b, c) + l < dX(b, c) + γX

≤ dX(b, c) + (dX(a, c)− dX(b, c))

= dX(a, c) = L.

From both cases, we have d(x, y) 6= L.

Case 3. x ∈ Ye,a ∪ Ye,b: Then by (∗),

d(x, y) = d̃(x, y) ≤ 3l < 3 · 1
3
δX = δX ≤ dX(a, c) ≤ L.

Case 4. x ∈ X \ {a, b, c}: Then, since y ∈ Te,a ⊆ Ge, we have x, y ∈ Ge ⊆ G̃.

Case 4.1. dX(a, c) > dX(x, c): Then l < γX ≤ dX(a, c)− dX(x, c). Since y = σa,

for any f ∈ NN such that σ ⊆ f , we have d̃(f̃ , y) = l − r|σ| ≤ l, and so

d̃(x, y) ≤ d̃(x, f̃) + d̃(f̃ , y) ≤ d̃(x, f̃) + l = dX(x, c) + l

< dX(x, c) + γX ≤ dX(x, c) + (dX(a, c)− dX(x, c))

= dX(a, c) = L.

Case 4.2. dX(a, c) ≤ dX(x, c):

Note that for every z ∈ X \ {a, b, c}, all vertices in G̃ that are adjacent to z are

in {a, b} t (X \ {a, b, c, z})t {f̃ : f ∈ NN}. Recall that for all distinct u, v ∈ X \ {c},
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there is an edge of weight dX(u, v) in G̃ between u and v. For all f ∈ NN and

u ∈ X \ {a, b, c}, there is an edge of weight dX(u, c) in G̃ between u and f̃ .

Let p be a shortest path in G̃ from x to y. Then p must have the form

p = (x,w, v1, . . . , vk, y), where k ∈ N, x,w, v1, . . . , vk, y are all distinct, v1, . . . , vk ∈

Te,a t Te,b t {f̃ : f ∈ NN} and w ∈ {a, b} t {f̃ : f ∈ NN}. Therefore, we have

d̃(x, y) = the length of the shortest path p

= d̃(x,w) + d̃(w, y)

Case 4.2.1. w = f̃ for some f ∈ NN: Then y 6= ĉf = f̃ , and so

d̃(x, y) = d̃(x, f̃) + d̃(f̃ , y) = dX(x, c) + d̃(f̃ , y) > dX(x, c) ≥ dX(a, c) = L.

Case 4.2.2. w = a: Then, since x 6= a, 2l < δX ≤ dX(x, a), and so

d̃(x, y) = d̃(x, a) + d̃(a, y)

≥ d̃(x, a) + d̃(a, a0)− d̃(a0, y)

= dX(x, a) + (dX(a, c)− l)− d̃(a0, y)

> dX(x, a) + (dX(a, c)− l)− l

= dX(x, a) + dX(a, c)− 2l

> dX(x, a) + dX(a, c)− dX(x, a)

= dX(a, c) = L.
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Case 4.2.3. w = b: By Case 2, dX(b, c) < d(b, y) = d̃(b, y). So

d̃(x, y) = d̃(x, b) + d̃(b, y) > d̃(x, b) + dX(b, c)

= dX(x, b) + dX(b, c) ≥ dX(x, c) ≥ dX(a, c) = L.

From all cases, we conclude that d(x, y) 6= L for all (x, y) ∈ (Xe×Xe)\ (X×X).

It follows that |EXe| < |EX |, and so X 6↪→ Xe.

So for all e ∈ N, Te has an infinite path ⇐⇒ X ↪→ Xe. Therefore, {e : X ↪→Me}

is Σ1
1-hard.

This ends the proof for the case X does not satisfy the strict triangle inequality.

We conclude that {e : X ↪→Me} is Σ1
1-hard for every computably presentable

finite metric space X with |X| > 1. This completes the proof of Theorem 3.2.5.

We can use the construction for Case 2 in the proof of Theorem 3.2.5 for infinite

metric spaces X that satisfy all properties that are necessary for the proof in Case

2. Note that, by dovetailing, we can construct Ye,a for each a ∈ X uniformly in e, a,

and let Xe =
⊔
a∈X

Ye,a. This gives the following.

Corollary 3.2.6. Let (X, dX) be a computably presentable metric space with |X| > 1

(X can be infinite) that satisfies the following conditions:

(1) δX := inf{dX(a, b) : a 6= b ∈ X} > 0.

(2) εX := inf{dX(a, c) + dX(c, b)− dX(a, b) : a, b, c ∈ X are distinct} > 0.

(3) There are x, y ∈ X such that dX(x, y) = diam(X) <∞.
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Then the set {e ∈ N : X ↪→Me} is Σ1
1-complete.

Note that (1) implies that X is discrete, (2) implies that X satisfies the strict

triangle inequality, and (3) implies that X is bounded.

For example, let (X, dX) be any bounded computably presentable metric space

such that dX(a, b) is an odd number for all distinct a, b ∈ X. Then X satisfies

conditions (1)-(3), and so {e : X ↪→Me} is Σ1
1-complete.

3.3 Results on Infinite Metric Spaces

In this section, we find the complexity of the embedding problem X ↪→Me for some

infinite computably presentable metric spaces X.

Theorem 3.3.1. For every unbounded subset X of R (equipped with the Euclidean

metric), the set {e ∈ N : X ↪→Me} is Σ1
1-hard. If X is also a computably presentable

metric space, then the set {e ∈ N : X ↪→Me} is Σ1
1-complete. In particular, the set

{e ∈ N : R ↪→Me} is Σ1
1-complete

Proof. Let X be an unbounded subset of R, equipped with the Euclidean met-

ric. If X is also a computably presentable metric space, then by Proposition 3.1.6,

{e ∈ N : X ↪→Me} is Σ1
1. So we only need to show that {e ∈ N : X ↪→Me} is Σ1

1-hard.

It is enough to build a computable sequence (Xe)e∈N of Polish metric spaces such

that for all e ∈ N, Te has an infinite path ⇐⇒ X ↪→ Xe.

The idea to build (Xe, d) is as follows. We attach two copies of the tree Te

together at the root. Then for every σ ∈ Te \ {λ}, we put a copy of all rationals p
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in (|σ| − 1, |σ|] on the edge between σ and σ ↾ (|σ| − 1). Then we let (Xe, d) be the

completion of the resulting graph with the shortest path metric d.

For each σ ∈ N<N \ {λ} and s ∈ N, let

A+
σ,s := {p ∈ Q+ : |σ| − 1 < p ≤ |σ| and p =

a

b
where a, b ∈ N \ {0} and b ≤ s},

A−
σ,s := −A+

σ,s = {−p : p ∈ A+
σ,s}.

Note that for any infinite path f ∈ NN, we have
⋃
s∈N

⋃
n∈N\{0}

A+
f↾n,s = Q+ and⋃

s∈N

⋃
n∈N\{0}

A−
f↾n,s = Q−, and so

⋃
s∈N

⋃
n∈N\{0}

(A+
f↾n,s ∪ A

−
f↾n,s) = Q \ {0}.

Fix an effective list (σi)i∈N of all finite strings in N<N with σ0 = λ. To build Xe,

we build a computable sequence Ge,0 ⊆ Ge,1 ⊆ . . . of weighted (undirected) graphs

in stages, and let Ge =
⋃
s∈N

Ge,s, then let (Xe, d) be the completion of Ge with the

shortest path metric d. For each e, s ∈ N, we let Ve,s denote the set of all vertices in

Ge,s, and Ee,s denote the set of all weighted edges in Ge,s, where

Ee,s = {({u, v}, w) : u, v are connected by an edge of weight w in Ge,s}.

Fix a set {v0,λ}t{vp,σ : σ ∈ N<N \{λ}∧p ∈
⋃
s∈N

(A+
σ,s∪A−

σ,s)} of distinct vertices.

Construction of (Ge,s)s∈N

Stage 0: Let Ve,0 = {v0,λ} and Ee,0 = ∅.

Stage s+ 1: We have built Ge,s. Since Te is a computable tree, we can check

computably if σs ∈ Te. If σs /∈ Te, then let Ge,s+1 := Ge,s, and go to the next stage.
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If σs ∈ Te, then we let Ge,s+1 := (Ve,s+1, Ee,s+1) where

Ve,s+1 := Ve,s ∪ {vp,σ : λ 6= σ ⊆ σs ∧ p ∈ A+
σ,s ∪ A−

σ,s}, and

Ee,s+1 := Ee,s ∪ {({vp,σ, vq,τ}, |p− q|) : λ 6= σ, τ ⊆ σs ∧ p ∈ A+
σ,s ∪ A−

σ,s ∧ q ∈ A+
τ,s ∪ A−

τ,s}

∪{({v0,λ, vp,σ}, |p|) : λ 6= σ ⊆ σs ∧ p ∈ A+
σ,s ∪ A−

σ,s}.

This ends the construction.

We claim that for every e ∈ N, Te has an infinite path ⇐⇒ X ↪→ Xe.

(=⇒) Assume that Te has an infinite path, say f ∈ NN. Then we have⋃
s∈N

⋃
n∈N\{0}

(A+
f↾n,s ∪ A

−
f↾n,s) = Q \ {0}, and if λ 6= σ, τ ⊆ f , p ∈ A+

σ,s ∪ A−
σ,s and

q ∈ A+
τ,s ∪ A−

τ,s, then vp,σ, vq,τ ∈ Ge and d(vp,σ, vq,τ ) = |p − q| = dR(p, q). So

Q \ {0} ↪→ Ge. Thus, since Q \ {0} is dense in R, we have R ↪→ Xe. Therefore,

X ↪→ Xe.

(⇐=) Assume that Te has no infinite paths. To show that X 6↪→ Xe, suppose for a

contradiction that X ↪→ Xe via an isometric embedding g. Since X is an unbounded

subset of R, there is a strictly monotone sequence (xi)i∈N ⊆ X such that lim
i→∞

|xi| = ∞.

Then, since g : X → Xe is an isometric embedding, d(g(xi), g(xj)) = |xi − xj| for all

i, j ∈ N and lim
i→∞

d(g(x0), g(xi)) = lim
i→∞

|x0−xi| = ∞. So the sequence (g(xi))i∈N must

form a path of infinite length in Xe without tracing back. However, if we start from

a point in Ge, and try to walk along edges in Ge, without tracing back, as long as

possible, since Te has no infinite paths, we will eventually reach a dead end in finitely

many steps at some vertex vp,σ, where σ is a leaf of Te and p ∈ {|σ|,−|σ|}. So the
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length of the path we walked on is finite, a contradiction. Therefore, X 6↪→ Xe. In

particular, R 6↪→ Xe.

So we have proved the claim. Therefore, {e : X ↪→ Xe} is Σ1
1-hard.

Theorem 3.3.2. For every computable real r > 0, the set {e ∈ N : [0, r] ↪→Me} is

Σ1
1-complete, where [0, r] is equipped with the Euclidean metric.

Proof. Let r′ > 0 be a computable real. Let r := r′

2
> 0. Then r is a computable real

and [−r, r] ∼= [0, r′] via the isometry ψ : x 7→ x+ r.

Since r′ > 0 is a computable real, there is a computable strictly increasing

sequence (r′n)n∈N converging to r′. Then an effective list (qi)n∈N of all rationals qi such

that 0 ≤ qi ≤ r′n for some n ∈ N forms a computable presentation of [0, r′]. Therefore,

[0, r′] is computably presentable. Thus, by Proposition 3.1.6, {e : [0, r′] ↪→Me} is Σ1
1.

To show that {e : [0, r] ↪→Me} is Σ1
1-hard, it is enough to build a computable

sequence (Xe)e∈N of Polish metric spaces such that for all e ∈ N,

Te has an infinite path ⇐⇒ [−r, r] ↪→ Xe.

Our construction will be a combination of the constructions for Theorem 3.2.4,

and Theorem 3.3.1.

Since r > 0 is a computable real, there is a computable strictly increasing se-

quence (rn)n∈N ⊆ Q converging to r such that r0 = 0 and rn+1 > rn +
1
2
(r − rn) for

all n ∈ N. For each i ∈ N, let wi := ri+1 − ri > 0. Then wn+1 < wn and
n∑
i=0

wi = rn+1

for all n ∈ N, and
∞∑
i=0

wi = lim
n→∞

rn = r.
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The idea to build (Xe, d) is as follows. We attach two copies of the weighted

tree Te constructed in the proof of Theorem 3.2.4 by putting weight wn on each edge

between level n and level n+1 together at the root. So the height of the weighted tree

Te is at most
∞∑
i=0

wi = r. Then for every σ ∈ Te \ {λ}, we put a copy of all rationals

p in (r|σ|−1, r|σ|] on the edge between σ and σ ↾ (|σ| − 1). Then we let (Xe, d) be the

completion of the resulting weighted graph with the shortest path metric d.

For each σ ∈ N<N \ {λ} and s ∈ N, let

A+
σ,s := {p ∈ Q+ : r|σ|−1 < p ≤ r|σ| and p =

a

b
where a, b ∈ N \ {0} and b ≤ s}, and

A−
σ,s := −A+

σ,s = {−p : p ∈ A+
σ,s}.

Note that for any infinite path f ∈ NN, since lim
n→∞

rn = r, we have
⋃
s∈N

⋃
n∈N\{0}

A+
f↾n,s =

[0, r] ∩ Q+ and
⋃
s∈N

⋃
n∈N\{0}

A−
f↾n,s = [−r, 0] ∩ Q−, and so

⋃
s∈N

⋃
n∈N\{0}

(A+
f↾n,s ∪ A

−
f↾n,s) =

([−r, r] ∩Q) \ {0}.

Fix an effective list (σi)i∈N of all finite strings in N<N with σ0 = λ. To build Xe,

we build a computable sequence Ge,0 ⊆ Ge,1 ⊆ . . . of weighted (undirected) graphs

in stages, and let Ge =
⋃
s∈N

Ge,s, then let (Xe, d) be the completion of Ge with the

shortest path metric d. For each e, s ∈ N, we let Ve,s denote the set of all vertices in

Ge,s, and Ee,s denote the set of all weighted edges in Ge,s, where

Ee,s = {({u, v}, w) : u, v are connected by an edge of weight w in Ge,s}.

Fix a set {v0,λ}t{vp,σ : σ ∈ N<N \{λ}∧p ∈
⋃
s∈N

(A+
σ,s∪A−

σ,s)} of distinct vertices.

Construction of (Ge,s)s∈N
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Stage 0: Let Ve,0 = {v0,λ} and Ee,0 = ∅.

Stage s+ 1: We have built Ge,s. Since Te is a computable tree, we can check

computably if σs ∈ Te. If σs /∈ Te, then let Ge,s+1 := Ge,s, and go to the next stage.

If σs ∈ Te, then we let Ge,s+1 := (Ve,s+1, Ee,s+1) where

Ve,s+1 := Ve,s ∪ {vp,σ : λ 6= σ ⊆ σs ∧ p ∈ A+
σ,s ∪ A−

σ,s}, and

Ee,s+1 := Ee,s ∪ {({vp,σ, vq,τ}, |p− q|) : λ 6= σ, τ ⊆ σs ∧ p ∈ A+
σ,s ∪ A−

σ,s ∧ q ∈ A+
τ,s ∪ A−

τ,s}

∪{({v0,λ, vp,σ}, |p|) : λ 6= σ ⊆ σs ∧ p ∈ A+
σ,s ∪ A−

σ,s}.

This ends the construction.

We claim that for every e ∈ N,

Te has an infinite path ⇐⇒ [−r, r] ↪→ Xe.

(=⇒) Assume that Te has an infinite path, say f ∈ NN. Then we have⋃
s∈N

⋃
n∈N\{0}

(A+
f↾n,s ∪ A

−
f↾n,s) = ([−r, r] ∩Q) \ {0}, and if λ 6= σ, τ ⊆ f , p ∈ A+

σ,s ∪ A−
σ,s

and q ∈ A+
τ,s ∪ A−

τ,s, then vp,σ, vq,τ ∈ Ge and d(vp,σ, vq,τ ) = |p − q| = dR(p, q). So

((−r, r) ∩Q) \ {0} ↪→ Ge. Thus, since ((−r, r) ∩Q) \ {0} is dense in [−r, r], we have

[−r, r] ↪→ Xe.

(⇐=) Assume that Te has no infinite paths. To show that [−r, r] 6↪→ Xe, suppose

for a contradiction that [−r, r] ↪→ Xe via an isometric embedding g.

From the construction, we have that the set of all vertices in the graph Ge is

Ve = {v0,λ} ∪
⋃
s∈N

{vp,σ : λ 6= σ ⊆ σs ∧ p ∈ A+
σ,s ∪ A−

σ,s}.
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Let

V +
e := {v0,λ} ∪

⋃
s∈N

{vp,σ : λ 6= σ ⊆ σs ∧ p ∈ A+
σ,s},

V −
e := {v0,λ} ∪

⋃
s∈N

{vp,σ : λ 6= σ ⊆ σs ∧ p ∈ A−
σ,s}.

Let G+
e be the subgraph of Ge induced from V +

e , and let X+
e be the completion of

G+
e with the shortest path metric d. We define G−

e and X−
e in the same way.

By the proof of Theorem 3.2.4, we have that for all x ∈ X+
e , d(v0,λ, x) < r. The

same holds for X−
e . Thus, since g(r), g(−r) ∈ X = X+

e ∪X−
e , we have

d(g(−r), g(r)) ≤ d(g(−r), v0,λ) + d(v0,λ, g(r)) < r + r = 2r.

But since g : [−r, r] ↪→ Xe is an isometric embedding, we must have

d(g(−r), g(r)) = dR(−r, r) = 2r,

which is a contradiction. Therefore, [−r, r] 6↪→ Xe.

So we have proved the claim. Therefore, {e : [0, r′] ↪→ Xe} is Σ1
1-hard, and so it

is Σ1
1-complete.

Corollary 3.2.6, Theorem 3.3.1 and Theorem 3.3.2 give some examples of infinite

computable metric spaces X such that the embedding problem X ↪→ Me is Σ1
1-

complete. In Chapter 6, we will see that the embedding problems for the Cantor

space 2N and the Baire space NN are also Σ1
1-complete. We strongly believe that

the same holds for all infinite computable metric spaces. Since we used different
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techniques for each X depending on the structure of X (e.g. X has a straight line

structure, X has a tree-like structure, etc), it would be surprising if one can give a

single proof or technique that covers all infinite computable metric spaces.

Conjecture. For every infinite computably presentable metric space X, the set

{e ∈ N : X ↪→Me} is Σ1
1-complete.



Chapter 4

Topological Properties

Given a topological property, one can investigate how hard it is to determine whether

a computable metric space Me has that property. For example, Melnikov and Nies

[13] showed that the index set of compact computable metric spaces is Π0
3-complete.

In this chapter, we compute the complexity of the index set of perfect computable

metric spaces and the index set of discrete computable metric spaces.

Theorem 4.0.1. The set {e ∈ N : Me is perfect} is Π0
2-complete within PolSp, and

so it is Π0
2-complete.

Proof. Recall that a topological space is perfect if and only if it has no isolated points.

Since (N, de) is dense in Me, a point x is an isolated point of Me if and only if x is an

isolated point of (N, de). So we have

Me is perfect ⇐⇒ (N, de) has no isolated points

94
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⇐⇒ (∀x ∈ N)(∀r ∈ Q+)(∃y ∈ N)(y ∈ B(x, r) \ {x})

⇐⇒ (∀x ∈ N)(∀r ∈ Q+)(∃y ∈ N)(d(x, y) < r ∧ d(x, y) > 0),

where B(x, r) denotes the open ball around x of radius r. Thus, since “d(x, y) < r”

and “d(x, y) > 0” are Σ0
1 statements, we have that {e : Me is perfect} is Π0

2 within

PolSp.

To show that {e : Me is perfect} is Π0
2-hard within PolSp, it is enough to con-

struct a computable sequence (Xe)e∈N of Polish metric spaces such that for all e ∈ N,

e ∈ Tot⇐⇒ Xe is perfect.

Let (qi)i∈N be an effective list of all elements in Q ∩ [0, 1] with q0 = 0. The idea

to build (Xe)e∈N is that, whenever we see that ϕe(i) ↓ for all i ≤ n, we will put a copy

of the rational qn+1 into Xe.

For each e ∈ N, we effectively construct a Polish metric space (Xe, d) uniformly

in e as follows.

Stage 0: Let s0 = 0 and d(s0, s0) = 0.

Stage n+ 1: For each s > sn, starting from s = sn+1, we check if ϕe,s(n) ↓ until

we find (if ever) the least s > sn such that ϕe,s(n) ↓.

For each s such that ϕe,s(n) ↑, we let

• d(s, j) = 0 for all j ∈ {sn, . . . , s}.

• d(s, j) = |qn − qi| for all j ∈ {si, . . . , si+1 − 1} and i ∈ {0, . . . , n− 1}.
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Whenever we find (if ever) the least s > sn such that ϕe,s(n) ↓, we let

• sn+1 = min{s′ > sn : ϕe,s′(n) ↓} = s.

• d(sn+1, sn+1) = 0.

• d(sn+1, j) = |qn+1 − qi| for all j ∈ {si, . . . , si+1 − 1} and i ∈ {0, . . . , n}.

Then we go to stage n+ 2.

This ends the construction.

Let (Xe, d) be the completion of the resulting pseudometric space (N, d). The

key point is that, at stage n + 1, whenever we find (if ever) an s > sn such that

ϕe,s(n) ↓, we put a new element sn+1, which is a copy of the rational qn+1, into Xe,

and then we go to the next stage.

If ϕe is total, then we will put a copy of the rational qn into Xe for all n ∈ N,

and so Xe
∼= [0, 1] because (qn)n∈N is dense in [0, 1]. Since [0, 1] is perfect, Xe is also

perfect.

If ϕe is not total, say n is the least such that ϕe(n) ↑, then we will put a copy

of q0, . . . , qn into Xe, and then we will be at stage n + 1 forever. It follows that

Xe
∼= {q0, . . . , qn}. So every point in Xe is an isolated point. In particular, Xe is not

perfect.

We conclude that e ∈ Tot ⇐⇒ Xe is perfect. Thus, since Tot is Π0
2-complete,

{e :Me is perfect} is Π0
2-hard within PolSp, and so it is Π0

2-complete within PolSp.

Theorem 4.0.2. The set {e ∈ N :Me is discrete} is Π1
1-complete.
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Proof. Recall that a topological space is discrete if and only if every point is an

isolated point. Note that for every x ∈Me, x has a Cauchy name fx : N → N in Me.

On the other hand, we can think of each Cauchy name f : N → N in Me as a point

xf in Me, where xf is the limit of the sequence (f(k))k∈N in Me. So we have

Me is discrete ⇐⇒ (∀x ∈Me)(x is an isolated point)

⇐⇒ (∀f : N → N)(f is a Cauchy name in Me → xf is an isolated point).

Note that f is a Cauchy name in Me ⇐⇒ (∀k, l ∈ N)(de(f(k), f(k + l)) ≤ 2−k), and

since (N, de) is dense in Me, we have

xf is an isolated point ⇐⇒ (∃r ∈ Q+)(B(xf , r) \ {xf} = ∅)

⇐⇒ (∃r ∈ Q+)(∀y ∈Me)(y = xf ∨ de(xf , y) ≥ r)

⇐⇒ (∃r ∈ Q+)(∀y ∈ N)(y = xf ∨ de(xf , y) ≥ r)

⇐⇒ (∃r ∈ Q+)(∀y ∈ N)(de(y, xf ) = 0 ∨ de(xf , y) ≥ r)

So “f is a Cauchy name in Me” is a Π0
1 statement and “xf is an isolated point” is a

Σ0
2 statement. Therefore, we can conclude that {e :Me is discrete} is Π1

1.

It remains to show that {e :Me is discrete} is Π1
1-hard. Fix any computable real

r > 0. We use the same construction as in the proof of Theorem 3.2.4.

Since r > 0 is a computable real, there is a computable strictly increasing se-

quence (rn)n∈N ⊆ Q converging to r such that r0 = 0 and rn+1 > rn+
1
2
(r− rn) for all

n ∈ N. For each i ∈ N, let wi := ri+1 − ri > 0. Then wn+1 < wn and
n∑
i=0

wi = rn+1 for

all n ∈ N and
∞∑
i=0

wi = lim
n→∞

rn = r. So the height of each tree Te is at most
∞∑
i=0

wi = r.



98

Fix an effective list (σi)i∈N of all finite strings in N<N with σ0 = λ. For each

e ∈ N, we put weight wn on each edge between level n and level n+ 1 in the tree Te.

Then we define a pseudometric d (depending on e) on N by

• if σi /∈ Te, let d(i, 0) := 0 and d(i, j) := d(0, j) for all j ∈ N,

• if σi, σj ∈ Te, let d(i, j) := the length of the shortest path in Te from σi to σj.

Let (Xe, d) be the completion of the pseudometric space (N, d). Therefore, Xe is the

completion of the tree Te with the shortest path metric d, where we put weight wn

on each edge between level n and level n+ 1.

By the proof of Theorem 3.2.4, (Xe)e∈N is a computable sequence of Polish metric

spaces such that for every e ∈ N, the following conditions hold:

(1) d(λ, x) ≤ r for all x ∈ Xe.

(2) If Te has an infinite path, then there is an x̂ ∈ Xe such that d(λ, x̂) = r.

(3) If Te has no infinite paths, then there are no x, y ∈ Xe such that d(x, y) = r,

and for all x ∈ Xe, d(λ, x) < r.

We will show that for every e ∈ N, Te has an infinite path ⇐⇒ Xe is not discrete.

(=⇒) Assume that Te has an infinite path, say g ∈ NN. Then for each n ∈ N,

there is a unique in ∈ N such that σin = g ↾ n. So i0 = 0 and for all m,n ∈ N,

d(im, in) = the length of the shortest path in Te between σim and σin

= |r|σim | − r|σin || = |r|g↾m| − r|g↾n|| = |rm − rn|.

Thus, since (rn)n∈N converges, (in)n∈N is a Cauchy sequence in (Xe, d). Hence, since
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(Xe, d) is complete, (in)n∈N converges to a point i ∈ Xe. So for all n ∈ N,

d(i, in) = lim
m→∞

d(im, in) = lim
m→∞

|rm − rn| = |r − rn| = r − rn > 0.

Hence in 6= i for all n ∈ N, and so i is not an isolated point of Xe. Therefore, Xe is

not discrete.

(⇐=) Assume that Xe is not discrete. Then there is an x ∈ Xe such that x is

not an isolated point of Xe. So there is a sequence in Xe converging to x. Thus, since

(N, d) is dense in Xe, there is a Cauchy sequence (in)n∈N in (N, d) such that (in)n∈N

converges to x in Xe. Without loss of generality, we can assume that σin ∈ Te for all

n ∈ N.

Claim 1. lim
n→∞

|σin| = ∞.

Suppose for a contradiction that there is an M ∈ N such that for every k ∈ N,

there is an nk ≥ k such that |σink
| < M . We can choose nk so that n0 < n1 < n2 < . . . .

So (ink
)k∈N is a subsequence of (in)n∈N and |σink

| < M for all k ∈ N. Thus, since

(in)n∈N converges to x in Xe, (ink
)k∈N also converges to x in Xe. We will use the

following claims.

Claim 1.1. For every i ∈ (N, d), i is an isolated point of Xe.

Let i ∈ (N, d). Without loss of generality, assume σi ∈ Te. Let n := |σi|. Then

for every j ∈ (N, d) with d(i, j) > 0, we have σi 6= σj, and so it follows from the

definition of d that d(i, j) ≥ wn. So (∀j ∈ (N, d))(d(i, j) > 0 =⇒ d(i, j) ≥ wn).

Thus, since (N, d) is dense in Xe, we have (∀y ∈ Xe)(d(i, y) > 0 =⇒ d(i, y) ≥ wn).

Therefore, i is an isolated point of Xe.



100

Claim 1.2. (∀N ∈ N)(∃k, l ≥ N)(d(ink
, inl

) 6= 0).

Suppose for a contradiction that there is an N ∈ N such that for all k, l ≥ N ,

d(ink
, inl

) = 0. So d(ink
, inN

) = 0 for all k ≥ N . Thus, since (ink
)k∈N converges to x in

Xe, we have d(x, inN
) = 0, and so x = inN

(in Xe). Since x = inN
∈ (N, d), by Claim

1.1, x is an isolated point of Xe, but x is not an isolated point of Xe, a contradiction.

Claim 1.3. (∀N ∈ N)(∃k, l ≥ N)(d(ink
, inl

) ≥ wM).

Let N ∈ N. By Claim 1.2, there are k, l ∈ N such that d(ink
, inl

) 6= 0. Then

σink
6= σinl

. Let τk,l be the longest common initial segment of σink
and σinl

, i.e.

the longest string such that τk,l ⊆ σink
, σinl

. Then τk,l ⊊ σink
or τk,l ⊊ σinl

. Hence

|τk,l| ≤ |σink
| − 1 or |τk,l| ≤ |σinl

| − 1. Also, since |τk,l| ≤ |σink
| < M , w|τk,l| > wM . So

d(ink
, inl

) =

|σink
|−1∑

i=|τk,l|

wi +

|σinl
|−1∑

i=|τk,l|

wi ≥ w|τk,l| > wM .

Claim 1.3 implies that (ink
)k∈N is not Cauchy, but (ink

)k∈N converges to x in Xe,

a contradiction. Therefore, lim
n→∞

|σin| = ∞, and we have proved Claim 1.

Recall that (in)n∈N converges to x in Xe. By Claim 1,

d(0, x) = lim
n→∞

d(0, in) = lim
n→∞

|r0 − r|σin || = lim
n→∞

|r0 − rn| = lim
n→∞

rn = r.

Hence 0, x are points in Xe with d(0, x) = r, and so, by condition (3), Te must have

an infinite path.

Therefore, we can conclude that for every e ∈ N, Te has an infinite path ⇐⇒Xe is
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not discrete. Thus, since {e : Te has an infinite path} is Σ1
1-hard, {e :Me is discrete}

is Π1
1-hard.



Chapter 5

The Urysohn Space

5.1 Fraïssé Limits

Urysohn spaces are closely related to Fraïssé limits. We will see later that they can

be built from the Fraïssé limits of some classes of metric spaces. In this section, we

give some background and classical results on Fraïssé limits, which can be found in

[7].

Definition 5.1.1. Let L be a language and D be an L-structure. The age of D is

the class of all finitely generated structures that can be embedded in D. A class K

of finitely generated structures is called an age of D if the structures in K are, up to

isomorphism, exactly the finitely generated substructures of D. A class is called an

age if it is the age of some structure.

Definition 5.1.2. Let K be a class of finitely generated structures.
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• K has the hereditary property (HP) if, whenever A ∈ K and B is a finitely

generated substructure of A, we have that B is isomorphic to a structure in K.

• K has the joint embedding property (JEP) if, for every A,B ∈ K, there is a

C ∈ K such that both A and B can be embedded into C.

• K has the amalgamation property (AP) if, whenever A,B, C ∈ K, and e : A ↪→ B

and f : A ↪→ C are embeddings, we have that there exist a D ∈ K and embed-

dings g : B ↪→ D and h : C ↪→ D such that g ◦ e = h ◦ f .

B

A D

C

ge

f h

Theorem 5.1.3 (Fraïssé, see [7]). A class of finitely generated structures K is an age

if and only if K satisfies HP and JEP.

Definition 5.1.4. An L-structure D is homogeneous if every isomorphism between

finitely generated substructures of D extends to an automorphism of D.

Definition 5.1.5. Let K be a class of finitely generated structures. A structure D is

the Fraïssé limit of K if D is countable, homogeneous and has age K.

Theorem 5.1.6 (Fraïssé, see [7]). The Fraïssé limit of a class of finitely generated

structures is unique up to isomorphism.

Theorem 5.1.7 (Fraïssé, see [7]). A class K of finitely generated structures has a

Fraïssé limit if and only if K satisfies HP, JEP and AP.
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Definition 5.1.8. We say that a countable structure D of age K is universal (for K)

if every countable structure of age ⊆ K is embeddable in D.

Theorem 5.1.9 (Fraïssé, see [7]). If D is the Fraïssé limit of a class K of finitely

generated structures, then D is universal for K.

The following gives us a way to construct Fraïssé limits.

Theorem 5.1.10 (see [7]). Let K be a class of finitely generated structures that

satisfies HP, JEP and AP. Let (Di)i∈N be a chain of structures in K with the property

that for every A,B ∈ K and i ∈ N, if f : A ↪→ B and e : A ↪→ Di are embeddings, then

there exist a j > i and an embedding h : B ↪→ Dj which extends f . Then D :=
⋃
i∈N

Di

is the Fraïssé limit of K.
Di

A Dj

B

⊆e

f h

5.2 Fraïssé Limits for Metric Spaces

Consider a language L := {Rq : q ∈ Q+
0 } where Q+

0 := Q+ ∪ {0} and Rq’s are

binary relation symbols. We can think of a rational-valued metric space (X, d) as an

L-structure where, for every x, y ∈ X and q ∈ Q+
0 ,

Rq(x, y) is true in (X, d) ⇐⇒ d(x, y) = q.
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Since L has no function symbols, the finitely generated L-structures are exactly the fi-

nite L-structures. The embeddings from X into Y are exactly the distance-preserving

maps from X into Y . The isomorphisms between metric spaces are exactly the isome-

tries. We will simply write f : X ↪→ Y to denote that f is an (isometric) embedding

from X into Y .

Henceforth, we let K be the class of all finite rational metric spaces, and for

each r ∈ R+ ∪ {∞}, we let K<r be the class of all finite rational metric spaces with

diameter less than r, and let K≤r be the class of all finite rational metric spaces with

diameter less than or equal to r. Note that K<∞ = K≤∞ = K.

Proposition 5.2.1. For all r ∈ R+∪{∞}, K<r and K≤r satisfies HP, JEP and AP,

and so they have Fraïssé limits.

Proof. Let r ∈ R+ ∪ {∞}. First, we show that K<r satisfies HP. Let A ∈ K<r and

B ⊆ A. Then diam(B) ≤ diam(A) < r, and so B ∈ K<r. Therefore, K<r satisfies

HP.

Next, we show that K<r satisfies AP. Assume that A,B, C ∈ K<r, and e : A ↪→ B

and f : A ↪→ C are embeddings.

We write A = {a0, . . . , ak}, B \ e(A) = {b0, . . . , bn−1}, and C \ f(A) =

{c0, . . . , cm−1} where k, n,m ∈ N. Let dA, dB and dC be the metrics associated with

A,B and C, respectively

Define a metric space D = (D, dD) by

D := {a0, . . . , ak} t {b̃0, . . . , b̃n−1} t {c̃0, . . . , c̃m−1},
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and dD is the metric on D defined by

• dD(ai, aj) = dA(ai, aj), dD (̃bi, b̃j) = dB(bi, bj), dD(c̃i, c̃j) = dC(ci, cj),

• dD(ai, b̃j) = dB(e(ai), bj), dD(ai, c̃j) = dC(f(ai), cj),

• dD (̃bi, c̃j) = max{|dB(bi, e(al))− dC(f(al), cj)| : l ≤ k}.

It is straightforward to check that dD is a metric, and it is clear that diam(D) =

max{diam(B), diam(C)} < r. So D ∈ K<r.

Define g : B → D and h : C → D by

g : e(ai) 7→ ai, bi 7→ b̃i,

h : f(ai) 7→ ai, ci 7→ c̃i.

It is easy to see that g and h are embeddings and g ◦ e = h ◦ f . Therefore, K<r

satisfies AP.

Finally, we show that K<r satisfies JEP. Let B, C ∈ K<r. Let A = {0} be the

one-point metric space. Then A ∈ K<r, A ↪→ B and A ↪→ C. Thus, since K<r satisfies

AP, there is a D ∈ K<r such that B ↪→ D and C ↪→ D. Therefore, K<r satisfies JEP.

Since K<r satisfies HP, JEP and AP, by Theorem 5.1.7, it has a Fraïssé limit.

We can use the same argument for K≤r.

Definition 5.2.2.

• The rational Urysohn space, denoted by UQ, is the Fraïssé limit of K.

• The Urysohn space, denoted by U, is the completion of UQ.
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• For each r ∈ R+, the bounded rational Urysohn space of diameter r, denoted

by UQ,≤r, is the Fraïssé limit of K≤r.

• For each r ∈ R+, the bounded Urysohn space of diameter r, denoted by U≤r, is

the completion of UQ,≤r.

Similarly, for each r ∈ R+, we can define UQ,<r and U<r from K<r. However, it

can be shown that U<r
∼= U≤r.

Recall that K<∞ = K≤∞ = K. Our arguments for U,U<r and U≤r would be the

same in most cases. So, for convenience, we will let U<∞ = U≤∞ = U.

It follows from Definition 5.1.5 and Theorem 5.1.9 that for every r ∈ R+ ∪ {∞},

U≤r is the unique (up to isometry) Polish metric space with diameter ≤ r that has

the following properties:

(1) U≤r is universal for separable metric spaces with diameter ≤ r, that is, every

separable metric space X with diam(X) ≤ r can be embedded into U≤r.

(2) U≤r is homogeneous, that is, every isometry between two finite subsets of U≤r

extends to a self-isometry of U≤r.

Note that diam(U≤r) = diam(U<r) = r for all r ∈ R+ ∪ {∞}.

Note that if (X, d) is a finite rational metric space, say X = {x0, . . . , xn}, then

(X, d) is a finitely generated structure (because X is finite), and it can be represented

by the natural number that codes the finite set

{〈i, j, q〉 : i, j ∈ {0, . . . , n}, q ∈ Q+
0 , d(xi, xj) = q}.
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This implies that (X, d) is computably presentable. Also note that for any n ∈ N,

we can effectively determine if n represents a finite rational metric space. So K is a

computable set of finite metric spaces. In particular, we can effectively enumerate all

finite rational metric spaces (up to isometry), that is, K is c.e.

Now suppose r ∈ R+ is left-c.e. Then there is an index j ∈ N such that

(ϕj(n))n∈N ⊆ Q+ is an increasing sequence converging to r. It is easy to see that

K<φj(n) is computable uniformly in n. Therefore, K<r =
⋃
n∈N

K<φj(n) is c.e.

Definition 5.2.3. A computable chain of finite metric spaces is a chain

D0
δ0
↪→ D1

δ1
↪→ . . .

of computable presentations of finite metric spaces, where both the presentations Di

and the embeddings δi : Di ↪→ Di+1 are computable uniformly in i.

The following theorem, which is a special case of Lemma 2.9 in [2], allows us to

construct a computable metric space from a computable chain of finite computable

metric spaces. We will use this theorem together with Theorem 5.1.10 to build a

computable presentation of the Urysohn space and the bounded Urysohn spaces.

Theorem 5.2.4. Let D0
δ0
↪→ D1

δ1
↪→ . . . be a computable chain of finite metric spaces.

Then there exist a computable presentation C of the completion of the union
⋃
i∈N

Di

of the chain over these embeddings, and embeddings θi : Di ↪→ C that are computable

uniformly in i.

Theorem 5.2.4 also applies when the chain D0
δ0
↪→ D1

δ1
↪→ . . . stabilizes, that is,

there is a j ∈ N such that Di
∼= Dj for all i ≥ j. In this case, we have D =

j⋃
i=0

Di,
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which is finite, and so the completion of D is just D itself. To build a computable

presentation of D, we define a computable function ϕ that induces the finite metric

space D. We ensure that ϕ is total by adding rational points that are distance 0 from

some fixed point in D. For example, if D = ({0, . . . , n}, dD), then we can identify all

rational points i > n with the rational point 0 by defining for all k ∈ N,

• ϕ(i, j, k) = dD(i, j) for all i, j ≤ n,

• ϕ(i, j, k) = ϕ(j, i, k) = dD(0, j) for all i > n and j ≤ n,

• ϕ(i, j, k) = 0 for all i, j > n.

5.3 Katětov Maps and Extension Properties

Definition 5.3.1. Let (X, d) be a metric space. A map f : X → R is a Katětov map

on X if

(∀x, y ∈ X)(|f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y)).

Let E(X) denote the set of all Katětov maps on X, and EQ(X) denote the set of all

rational-valued Katětov maps on X.

For each r ∈ R+ ∪ {∞}, we write |f | < r to mean that |f(x)| < r for all x ∈ X.

For each r ∈ R+ ∪ {∞}, we let E<r(X) := {f ∈ E(X) : |f | < r} and EQ,<r(X) :=

{f ∈ EQ(X) : |f | < r}. We define E≤r(X) and EQ,≤r(X) similarly. Note that, if

f ∈ E(X), then |f(x)| <∞ for all x ∈ X. So we have E<∞(X) = E≤∞(X) = E(X).

Observe that if f ∈ E(A), then for all x ∈ X, 0 = d(x, x) ≤ f(x) + f(x), and so

f(x) ≥ 0. Therefore, Katětov maps are non-negative functions.
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The Katětov maps on (X, d) correspond to the one-point metric extensions of

X in the sense that, f is a Katětov map on X if and only if, setting d(x, z) = f(x)

defines a metric extension to X ∪ {z} of the metric d on X.

Definition 5.3.2. Let (X, d) be a metric space.

• X has the extension property if

(∀ finite A ⊆ X)(∀f ∈ E(A))(∃z ∈ X)(∀a ∈ A)(d(z, a) = f(a)).

• X has the approximate extension property if

(∀ finite A ⊆ X)(∀f ∈ E(A))(∀ε > 0)(∃z ∈ X)(∀a ∈ A)(|d(z, a)− f(a)| ≤ ε).

• For a dense subset D ⊆ X, we say X has the rational approximate extension

property with respect to D if

(∀ finite A ⊆ D)(∀f ∈ EQ(A))(∀ε ∈ Q+)(∃z ∈ D)(∀a ∈ A)(|d(z, a)−f(a)| ≤ ε).

• X has the dense approximate extension property if X has the rational approxi-

mate extension property with respect to some dense subset D.

Similarly, for each r ∈ R+ ∪ {∞}, we define the above properties for E≤r and E<r by

replacing E(A) with E≤r(A) and E<r(A), respectively.

Remark 5.3.3.

(1) If X has the extension property, then X has the approximate extension property.
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(2) If X has the approximate extension property, then for every dense subset D ⊆ X,

X has the rational approximate extension property with respect to D.

The same is true for the properties for E≤r and E<r.

Theorem 5.3.4 (see, e.g. Melleray [10], Urysohn [19]). If X is a complete metric

space and has the approximate extension property, then X has the extension property.

By the same argument as the proof of Theorem 5.3.4 (Theorem 3.4 in [10]), we

have the following.

Theorem 5.3.5. Let r ∈ R+ ∪ {∞} and X be a complete metric space with

diam(X) ≤ r. If X has the approximate extension property for E<r, then X has

the extension property for E<r.

Proof. Let r ∈ R+ ∪ {∞}. Assume that X is a complete metric space with

diam(X) ≤ r and X has the approximate extension property for E<r. We want

to show that X has the extension property for E<r.

The case when r = ∞ is Theorem 3.4 in [10]. Now assume r ∈ R+. Let A ⊆ X

be finite and f ∈ E<r(A). We write A = {a1, . . . , an}.

Fix a δ such that 0 < δ < r−max{f(a) : a ∈ A}. By the same argument as the

proof of Theorem 3.4 in [10], we can construct a Cauchy sequence (zk)k∈N in X such

that for all k ∈ N and i ∈ {1, . . . , n},

• |d(zk, ai)− f(ai)| ≤ 2−kδ,

• d(zk, zk+1) ≤ 21−kδ.

It follows that X has the extension property for E<r.
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It turns out that the approximate extension property gives a characterization of

the Urysohn space U.

Theorem 5.3.6 (see, e.g. [10], Urysohn [19]). A Polish metric space has the approx-

imate extension property if and only if it is isometric to the Urysohn space U.

By the same argument as the proof of Theorem 5.3.6, we have the same result

for bounded Urysohn spaces.

Corollary 5.3.7. Let r ∈ R+∪{∞} and X be a Polish metric space with diam(X) ≤

r. Then X has the approximate extension property for E≤r if and only if X ∼= U≤r.

The same is true for E<r.

The following theorem says that if a metric space X has a dense subset D, then

we can approximate any finite set A ⊆ X and any Katětov map f ∈ E<r(A) with a

finite set Ã ⊆ D and a Katětov map f̃Q,<r(Ã) with any degree of accuracy.

Theorem 5.3.8. Let r ∈ R+ ∪ {∞}. If (X, d) is a metric space with diam(X) ≤ r

and D is a dense subset of X, then for all finite sets A ⊆ X, f ∈ E<r(A) and ε > 0,

there exist an Ã = {ã : a ∈ A} ⊆ D and an f̃ ∈ EQ,<r(Ã) such that for all a ∈ A,

d(ã, a) < ε and |f̃(ã)− f(a)| < ε.

Proof. Assume (X, d) is a metric space with diam(X) ≤ r and D is a dense subset

of X. Let A ⊆ X be finite, f ∈ E<r(A), and ε > 0.

The case when A = ∅ is trivial. Now assume that A 6= ∅. Then f(A) 6= ∅.

Write f(A) = {f(x1) < f(x2) < · · · < f(xm)} where x1, . . . , xm ∈ A and m ≥ 1.

Then for each x ∈ A, there is a unique k ∈ {1, . . . ,m} such that f(x) = f(xk). Since
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f ∈ E<r(A), f(xm) < r. So there exists an ε′ > 0 such that ε′ < min{ε, r − f(xm)}.

If r = ∞, then for all a ∈ R, we let r − a = r + a = ∞. Thus, in this case, if r = ∞,

then r − f(xm) = ∞, and so ε′ < min{ε,∞} = ε.

First, we consider the case when m = 1. Then f(A) = {f(x1)}, and so for every

x ∈ A, f(x) = f(x1). Since D is dense in X, for each x ∈ A, there exists an x̃ ∈ D

such that d(x̃, x) < ε′

2
. Let Ã := {x̃ : x ∈ A} ⊆ D. Since A is finite, Ã is finite.

Define a function f̃ : Ã→ Q by

f̃(x̃) = q for all x ∈ A,

where q ∈ Q is such that f(x1) + ε′

2
< q < f(x1) + ε′. (Note that f̃ is well-defined

because it is a constant function.) Then for all x ∈ A,

f(x) +
ε′

2
= f(x1) +

ε′

2
< q = f̃(x̃) < f(x1) + ε′ = f(x) + ε′,

So for all x, y ∈ A,

d(x̃, ỹ) ≤ d(x̃, x) + d(x, y) + d(y, ỹ) (by the triangle inequality)

<
ε′

2
+ d(x, y) +

ε′

2

≤ ε′

2
+ f(x) + f(y) +

ε′

2
(∵ f ∈ E<r(A))

=

(
f(x1) +

ε′

2

)
+

(
f(x1) +

ε′

2

)
< q + q

= f̃(x̃) + f̃(ỹ).
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Hence for all x, y ∈ A, |f̃(x̃)− f̃(ỹ)| = |q − q| = 0 ≤ d(x̃, ỹ) ≤ f̃(x̃) + f̃(ỹ). So f̃ is a

Katětov map on Ã, and so f̃ ∈ EQ(Ã). We also have that for all x ∈ A,

f̃(x̃) < f(x) + ε′ = f(x1) + ε′ < f(x1) + (r − f(xm)) = r.

Therefore, f̃ ∈ EQ,<r(Ã).

Note that for all x ∈ A, 0 < ε′

2
< f̃(x̃)− f(x) < ε′ < ε, and so |f̃(x̃)− f(x)| < ε.

Recall that for all x ∈ A, d(x̃, x) < ε′

2
< ε′ < ε. Therefore, Ã ⊆ D and f̃ ∈ EQ,<r(Ã)

have the desired properties.

Now, we consider the case when m > 1. Let

δ := min

(
{f(xk+1)− f(xk) : 1 ≤ k ≤ m− 1} ∪ {ε

′

4
}
)
> 0,

δ′ := min{d(x, y) : x, y ∈ A, x 6= y},

γ := min{ δ

2m
, δ′}.

Since m > 1, we have x1, x2 ∈ A with x1 6= x2, so δ′ > 0, and so γ > 0. Since D is

dense in X, for each x ∈ A, there exists an x̃ ∈ D such that d(x̃, x) < γ
2
.

Let Ã := {x̃ : x ∈ A} ⊆ D. Since A is finite, Ã is finite. Note that for all

x, y ∈ A, if x 6= y, then by the triangle inequality,

d(x̃, y) ≥ d(x, y)− d(x, x̃) > d(x, y)− γ

2
≥ δ′ − γ

2
≥ γ − γ

2
=
γ

2
> d(ỹ, y),

and so x̃ 6= ỹ.
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Now we can define a function f̃ : Ã→ Q by

f̃(x̃) = rk,

where k ∈ {1, . . . ,m} is the unique number such that f(x) = f(xk), and rk ∈ Q is

such that

f(xk) +
3δ

2k+1
< rk < f(xk) +

4δ

2k+1
.

First note that for all x ∈ A with f(x) = f(xk), we have f̃(x̃) = rk = f̃(x̃k),

f(xk) +
3δ

2k+1
< f̃(x̃k) < f(xk) +

4δ

2k+1
,

and so, since k ≥ 1,

0 <
3δ

2k+1
< f̃(x̃)− f(x) <

4δ

2k+1
≤ δ ≤ ε′

4
. (1)

Note that for all k ∈ {1, . . . ,m− 1},

4δ

2k+1
− 3δ

2k+2
<

4δ

2k+1
≤ δ ≤ f(xk+1)− f(xk),

and so

f̃(x̃k) < f(xk) +
4δ

2k+1
< f(xk+1) +

3δ

2k+2
< f̃(x̃k+1).

Hence for all k, l ∈ {1, . . . ,m},

k > l =⇒ f̃(x̃k) > f̃(x̃l). (2)
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Claim 1. γ < (f̃(x̃) + f̃(ỹ))− (f(x) + f(y)) for all x, y ∈ A.

Let x, y ∈ A, say f(x) = f(xk) and f(y) = f(xl) where k, l ∈ {1, . . . ,m}. Then

(f̃(x̃) + f̃(ỹ))− (f(x) + f(y)) = (f̃(x̃k) + f̃(x̃l))− (f(xk) + f(xl))

= (f̃(x̃k)− f(xk)) + (f̃(x̃l)− f(xl))

>
3δ

2k+1
+

3δ

2l+1
(by (1))

≥ 3δ

2m+1
+

3δ

2m+1
(∵ k, l ≤ m)

>
δ

2m

≥ γ.

Claim 2. γ < |f(x)− f(y)| − |f̃(x̃)− f̃(ỹ)| for all x, y ∈ A with f(x) 6= f(y).

Let x, y ∈ A be such that f(x) 6= f(y), say f(x) = f(xk) and f(y) = f(xl) where

k, l ∈ {1, . . . ,m}. Since f(x) 6= f(y), k 6= l. Without loss of generality, assume k > l.

Then l + 1 ≤ k ≤ m, f(xk) > f(xl), and by (2), f̃(x̃k) > f̃(x̃l). So we have

|f(x)− f(y)| − |f̃(x̃)− f̃(ỹ)| = |f(xk)− f(xl)| − |f̃(x̃k)− f̃(x̃l)|

= (f(xk)− f(xl))− (f̃(x̃k)− f̃(x̃l))

= (f̃(x̃l)− f(xl))− (f̃(x̃k)− f(xk))

>
3δ

2l+1
− 4δ

2k+1
(by (1))

≥ 3δ

2l+1
− 4δ

2l+2
(∵ k ≥ l + 1)

=
δ

2l+1

≥ δ

2m
(∵ l + 1 ≤ m)
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≥ γ.

Now we claim that f̃ ∈ EQ(Ã). Since f̃ : Ã→ Q from the definition, it remains to

show that f̃ is a Katětov map on Ã. Let x, y ∈ A, say f(x) = f(xk) and f(y) = f(xl)

where k, l ∈ {1, . . . ,m}. Then

d(x̃, ỹ) ≤ d(x̃, x) + d(x, y) + d(y, ỹ) (by the triangle inequality)

<
γ

2
+ d(x, y) +

γ

2

≤ f(x) + f(y) + γ (∵ f ∈ E(A))

< f̃(x̃) + f̃(ỹ). (by Claim 1)

If f(x) = f(y), then k = l, so f̃(x̃) = f̃(x̃k) = f̃(x̃l) = f̃(ỹ), and so

|f̃(x̃)− f̃(ỹ)| = 0 ≤ d(x̃, ỹ).

If f(x) 6= f(y), then

d(x̃, ỹ) ≥ d(x, y)− d(x, x̃)− d(ỹ, y) (by the triangle inequality)

> d(x, y)− γ

2
− γ

2

≥ |f(x)− f(y)| − γ (∵ f ∈ E(A))

> |f̃(x̃)− f̃(ỹ)|. (by Claim 2)

Hence for all x, y ∈ A, |f̃(x̃)− f̃(ỹ)| ≤ d(x̃, ỹ) ≤ f̃(x̃) + f̃(ỹ). That is, f̃ is a Katětov

map on Ã, and so f̃ ∈ EQ(Ã).
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From (1), we have that for all x ∈ A,

0 ≤ f(x) < f̃(x̃) < f(x) +
ε′

4
< f(x) + ε′ ≤ f(xm) + ε′ < f(xm) + (r − f(xm)) = r.

Therefore, f̃ ∈ EQ,<r(Ã).

From (1), we also have that for all x ∈ A, |f̃(x̃)− f(x)| < ε′

4
< ε′ < ε. Also note

that for all x ∈ A, d(x̃, x) < γ
2
< δ < ε′ < ε. Therefore, Ã ⊆ D and f̃ ∈ EQ,<r(Ã)

have the desired properties.

We conclude that there exist an Ã = {ã : a ∈ A} ⊆ D and an f̃ ∈ EQ,<r(Ã) such

that for all a ∈ A,

d(ã, a) < ε and |f̃(ã)− f(a)| < ε.

Theorem 5.3.9. Let r ∈ R+∪{∞} and X be a Polish metric space with diam(X) ≤ r.

If X has the dense approximate extension property for E<r, then X has the approxi-

mate extension property for E<r.

Proof. Assume that (X, d) has the dense approximate extension property for E<r(A).

Then there exists a dense subset D ⊆ X such that

(∀ finite Ã ⊆ D)(∀f̃ ∈ EQ,<r(Ã))(∀ε′ ∈ Q+)(∃z ∈ D)(∀ã ∈ A)(|d(z, ã)− f̃(ã)| ≤ ε′).

To show that X has the approximate extension property for E<r, let A ⊆ X be finite,

f ∈ E<r(A) and ε > 0. We want to show that (∃z ∈ X)(∀a ∈ A)(|d(z, a)−f(a)| ≤ ε).

By Theorem 5.3.8, there exist an Ã = {ã : a ∈ A} ⊆ D and an f̃ ∈ EQ,<r(Ã)
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such that for all a ∈ A,

d(ã, a) <
ε

4
and |f̃(ã)− f(a)| < ε

4
.

Since Ã ⊆ D is finite, f̃ ∈ EQ,<r(Ã) and X has the rational approximate extension

property for E<r with respect to D, we have that there exists a z ∈ D such that for

all a ∈ A,

|d(z, ã)− f̃(ã)| < ε

2
.

Hence for all a ∈ A, |d(z, a)− d(z, ã)| ≤ d(ã, a) < ε
4
, and so

|d(z, a)− f(a)| ≤ |d(z, a)− d(z, ã)|+ |d(z, ã)− f̃(ã)|+ |f̃(ã)− f(a)|

<
ε

4
+
ε

2
+
ε

4

= ε.

We conclude that

(∀ finite A ⊆ X)(∀f ∈ E<r(A))(∀ε > 0)(∃z ∈ X)(∀a ∈ A)(|d(z, a)− f(a)| ≤ ε),

that is, X has the approximate extension property for E<r.

By Theorem 5.3.9 and Remark 5.3.3, we have the following corollary.

Corollary 5.3.10. Let r ∈ R+ ∪ {∞} and X be a Polish metric space with

diam(X) ≤ r. If X has the dense approximate extension property for E<r, then

for every dense subset D ⊆ X, X has the rational approximate extension property for

E<r with respect to D.
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Theorem 5.3.11. Let r ∈ R+ ∪ {∞} and X be a Polish metric space with

diam(X) ≤ r. If X has the approximate extension property for E<r, then X has

the approximate extension property for E≤r.

Proof. The case when r = ∞ is trivial. Assume that r ∈ R+ and (X, d) has the

approximate extension property for E<r. By Theorem 5.3.5, X has the extension

property for E<r. We want to show that X has the approximate extension property

for E≤r, that is,

(∀ finite A ⊆ X)(∀f ∈ E≤r(A))(∀ε > 0)(∃z ∈ X)(∀a ∈ A)(|d(z, a)− f(a)| ≤ ε),

Let A ⊆ X be finite, f ∈ E≤r(A) and ε > 0. The case A = ∅ is trivial. Assume

A 6= ∅.

First, we consider the case when |A| = 1, say A = {a}. Since f ∈ E≤r(A),

0 ≤ f(a) ≤ r. If f(a) < r, then f ∈ E<r(A), and so, since X has the approximate

extension property for E<r, we are done.

Assume f(a) = r. Then r ∈ R+. Let δ := min{ r
2
, ε
2
} > 0. Define f̃ : A → R

by f̃(a) = r − δ. Then f̃ ∈ E<r(A) and |f̃(a) − f(a)| = δ ≤ ε
2
. Thus, since X

has the approximate extension property for E<r, there exists a z ∈ X such that

|d(z, a)− f̃(a)| ≤ ε
2
. Therefore,

|d(z, a)− f(a)| ≤ |d(z, a)− f̃(a)|+ |f̃(a)− f(a)| ≤ ε

2
+
ε

2
= ε.

It remains to consider the case when |A| ≥ 2. We write A = {a0, . . . , an} where
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n ≥ 1. Let rA := diam(A). Since |A| ≥ 2, rA > 0. Since A ⊆ X, rA ≤ diam(X) ≤ r.

Fix a δ such that 0 < δ < min{2ε
3r
, 1}. Since 0 < δ < 1 and rA > 0, we have

0 < δrA < rA ≤ r.

Our plan is to shrink the set A a little bit to get a set Ã = {ã0, . . . , ãn} ⊆ X

such that diam(Ã) < r, and then apply the extension property for E<r of X to Ã.

By induction, we construct points ã0, . . . , ãn ∈ X such that for every i, j ≤ n,

(1) d(ãi, ãj) = (1− δ)d(ai, aj),

(2) d(ai, ãj) =
1
2
δrA + (1− δ)d(ai, aj) = d(ai, ãi) + d(ãi, ãj), in particular,

d(ai, ãi) =
1
2
δrA.

First, we define f0 : A→ R by

f0(ai) =
1

2
δrA + (1− δ)d(ai, a0).

Then for all i, j ≤ n,

f0(ai) ≤
1

2
δr + (1− δ)r < r,

|f0(ai)− f0(aj)| = (1− δ)|d(ai, a0)− d(aj, a0)| ≤ (1− δ)d(ai, aj) ≤ d(ai, aj),

f0(ai) + f0(aj) = δrA + (1− δ)(d(ai, a0) + d(aj, a0))

≥ δrA + (1− δ)d(ai, aj)

≥ δd(ai, aj) + (1− δ)d(ai, aj)

= d(ai, aj).

Therefore, f0 ∈ E<r(A), and so, since X has the extension property for E<r, there
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exists an ã0 ∈ X such that for all x ∈ A, d(ã0, x) = f0(x). So for all i ≤ n,

d(ai, ã0) = d(ã0, ai) = f0(ai) =
1

2
δrA + (1− δ)d(ai, a0).

Note that d(ã0, ã0) = 0 = (1− δ)d(a0, a0). Therefore, ã0 satisfies (1) and (2).

Now let k < n and assume by induction that we have constructed points

ã0, . . . , ãk ∈ X that satisfy (1) and (2). Define fk+1 : A ∪ {ã0, . . . , ãk} → R by

• fk+1(ãi) = (1− δ)d(ai, ak+1),

• fk+1(ai) =
1
2
δrA + (1− δ)d(ai, ak+1).

Then for all i ≤ n and j ≤ k,

0 ≤ fk+1(ai) ≤
1

2
δr + (1− δ)r < r,

0 ≤ fk+1(ãj) ≤ (1− δ)r < r.

We claim that fk+1 ∈ E<r(A ∪ {ã0, . . . , ãk}).

Let Ak := A ∪ {ã0, . . . , ãk}. Then the Katětov maps on Ak correspond to the

one-point metric extensions of Ak, where we add a new (imaginary) point, say ãk+1.

Define a function dk : Ak ∪ {ãk+1} → R by

• dk(ãi, ãj) = (1− δ)d(ai, aj) for all i, j ≤ k + 1,

• dk(ai, ãj) =
1
2
δrA + (1− δ)d(ai, aj) for all i ≤ n and j ≤ k + 1,

• dk(ai, aj) = d(ai, aj) for all i, j ≤ n,

• dk(x, x) = 0 for all x ∈ Ak ∪ {ãk+1},
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• dk(x, y) = dk(y, x) for all x, y ∈ Ak ∪ {ãk+1}.

Then dk(x, ãk+1) = fk+1(x) for all x ∈ Ak. Since ã0, . . . , ãk satisfy (1) and (2),

dk|Ak×Ak
= d|Ak×Ak

is a metric on Ak. So fk+1 is a Katětov map on Ak if and only if

dk is a metric on Ak ∪ {ãk+1}. We check that dk satisfies the triangle inequality as

follows.

dk(ai, al) + dk(al, aj) = d(ai, al) + d(al, aj)

≥ d(ai, aj)

= dk(ai, aj),

dk(ai, ãl) + dk(ãl, aj) = (
1

2
δrA + (1− δ)d(ai, al)) + (

1

2
δrA + (1− δ)d(al, aj))

= δrA + (1− δ)(d(ai, al) + d(al, aj))

≥ δd(ai, aj) + (1− δ)d(ai, aj)

= d(ai, aj)

= dk(ai, aj),

dk(ai, al) + dk(al, ãj) = d(ai, al) + (
1

2
δrA + (1− δ)d(al, aj))

≥ (1− δ)d(ai, al) +
1

2
δrA + (1− δ)d(al, aj)

≥ 1

2
δrA + (1− δ)d(ai, aj)

= dk(ai, ãj),

dk(ai, ãl) + d(ãl, ãj) = (
1

2
δrA + (1− δ)d(ai, al)) + (1− δ)d(al, aj)

≥ 1

2
δrA + (1− δ)d(ai, aj)

= dk(ai, ãj),

dk(ãi, al) + dk(al, ãj) = (
1

2
δrA + (1− δ)d(ai, al)) + (

1

2
δrA + (1− δ)d(al, aj))
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≥ δrA + (1− δ)d(ai, aj)

≥ (1− δ)d(ai, aj)

= dk(ãi, ãj),

dk(ãi, ãl) + dk(ãl, ãj) = (1− δ)d(ai, al) + (1− δ)d(al, aj)

≥ (1− δ)d(ai, aj)

= dk(ãi, ãj).

We conclude that dk is a metric on Ak ∪ {ãk+1}, and so fk+1 is a Katětov map

on Ak. Therefore, fk+1 ∈ E<r(Ak), and so, since X has the extension property for

E<r, there exists an ãk+1 ∈ X such that for all x ∈ Ak, d(ãk+1, x) = fk+1(x).

So for all i ≤ n,

d(ai, ãk+1) = d(ãk+1, ai) = fk+1(ai) =
1

2
δrA + (1− δ)d(ai, ak+1),

d(ãi, ãk+1) = d(ãk+1, ãi) = fk+1(ãi) = (1− δ)d(ai, ak+1).

Therefore, since ã0, . . . , ãk satisfy (1) and (2), we have that ã0, . . . , ãk+1 satisfy (1)

and (2).

This ends the construction of ã0, . . . , ãn.

Let Ã := {ã0, . . . , ãn} ⊆ X. Define f̃ : Ã→ R by

f̃(ãi) = (1− δ)f(ai).
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Since f ∈ E≤r(A), we have that for all i, j ≤ n,

f̃(ãi) = (1− δ)f(ai) ≤ (1− δ)r < r,

|f̃(ãi)− f̃(ãj)| = (1− δ)|f(ai)− f(aj)| ≤ (1− δ)d(ai, aj) = d(ãi, ãj),

f̃(ãi) + f̃(ãj) = (1− δ)(f(ai) + f(aj)) ≥ (1− δ)d(ai, aj) = d(ãi, ãj).

Therefore, f̃ ∈ E<r(Ã), and so, since X has the extension property for E<r, there

exists a z ∈ X such that for all i ≤ n, d(z, ãi) = f̃(ãi). So for all i ≤ n,

|d(z, ai)− f̃(ãi)| = |d(z, ai)− d(z, ãi)| ≤ d(ai, ãi) =
1

2
δrA ≤ 1

2
δr,

|f̃(ãi)− f(ai)| = |(1− δ)f(ai)− f(ai)| = δf(ai) ≤ δr,

|d(z, ai)− f(ai)| ≤ |d(z, ai)− f̃(ãi)|+ |f̃(ãi)− f(ai)|

≤ 1

2
δr + δr =

3

2
δr <

3

2

(
2ε

3r

)
r = ε.

We conclude that

(∀ finite A ⊆ X)(∀f ∈ E≤r(A))(∀ε > 0)(∃z ∈ X)(∀a ∈ A)(|d(z, a)− f(a)| ≤ ε),

that is, X has the approximate extension property for E≤r.

Now we can conclude the relationship among the extension properties in the

following theorem.

Theorem 5.3.12. Let r ∈ R+ ∪ {∞} and X be a Polish metric space with

diam(X) ≤ r. The following are equivalent:
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(1) X has the dense approximate extension property for E<r.

(2) X has the approximate extension property for E<r.

(3) X has the approximate extension property for E≤r.

(4) X ∼= U≤r.

Proof. It is clear that (3) =⇒ (2) =⇒ (1). By Theorem 5.3.9, we have (1) =⇒ (2).

By Theorem 5.3.11, we have (2) =⇒ (3). By Corollary 5.3.7, we have (3) ⇐⇒ (4).

By applying Corollary 5.3.7 and Theorem 5.3.12 to X := U<r, we have the

following.

Corollary 5.3.13. For all r ∈ R+ ∪ {∞}, U<r
∼= U≤r.

5.4 Computable Presentations of U and U≤r

Theorem 5.4.1. If r = ∞ or r ∈ R+ is left-c.e., then U≤r is computably presentable.

Proof. Assume r = ∞ or r ∈ R+ is left-c.e. Then K<r is c.e., that is, we can effectively

list all finite metric spaces in K<r, say K<r = {Ai : i ∈ N}.

Recall that U≤r ∼= U<r and U<r is the completion of UQ,<r where UQ,<r is the

Fraïssé limit of K<r.

To construct a computable presentation of U≤r, we build a computable chain

D0
δ0
↪→ D1

δ1
↪→ . . . of finite metric spaces that satisfies the property in Theorem 5.1.10

for K<r. Then, by Theorem 5.2.4, there is a computable presentation C of the com-

pletion of the union D :=
⋃
s∈N

Ds. By Theorem 5.1.10, D is the Fraïssé limit of K<r,
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and so D ∼= UQ,<r. Hence their completions are isometric, that is, C ∼= U<r
∼= U≤r.

Therefore, C is a computable presentation of U≤r, and so U≤r is computably pre-

sentable.

It remains to build a computable chain D0
δ0
↪→ D1

δ1
↪→ . . . of finite metric spaces

that satisfies the property in Theorem 5.1.10 for K<r.

We will use a similar argument as the proof of Theorem 3.9 in [2]. For i < j, we

let δi,j denote the embedding δj−1 ◦ · · · ◦ δi : Di ↪→ Dj.

For D to be the Fraïssé limit of K<r, it is enough to satisfy the following require-

ments:

R⟨i,r,k,α,β⟩ : If α : Ai ↪→ Dr and β : Ai ↪→ Ak, then there exist an s ≥ r and

an embedding γs : Ak ↪→ Ds+1 such that δr,s+1 ◦ α = γs ◦ β.

Dr

Ai Ds+1

Ak

δr,s+1α

β γs

Construction of D0
δ0
↪→ D1

δ1
↪→ . . .

Stage 0: Let D0 := {0} be the one-point metric space.

Stage s+ 1 = 〈i, r, k, α, β〉+ 1 where i, r, k, α, β ∈ N: We have constructed Dt for

all t ≤ s and δt for all t < s. Without loss of generality, assume r ≤ s. We check if
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α : Ai ↪→ Dr and β : Ai ↪→ Ak. (We decode α and β as functions on a finite subset

of N.)

If so, then we apply AP (amalgamation property) of K<r to δr,s ◦ α : Ai ↪→ Ds

and β : Ai ↪→ Ak to get Ds+1 ∈ K<r, δs : Ds ↪→ Ds+1 and γs : Ak ↪→ Ds+1 such that

δs ◦ δr,s ◦ α = β ◦ γs. Then go to the next stage.

Ds

Dr Ds+1

Ai

Ak

δsδr,s

α

β

γs

If not, then let Ds+1 := Ds and δs := IdDs : Ds ↪→ Ds+1, and go to the next

stage.

This ends the construction.

Note that the construction is effective. So D0
δ0
↪→ D1

δ1
↪→ . . . is a computable

chain of finite metric spaces. It is clear from the construction that the chain (Ds)s∈N

satisfies the requirements R⟨i,r,k,α,β⟩.

It follows that there is a computable presentation C of the completion of the

union D :=
⋃
s∈N

Ds and D is the Fraïssé limit of K<r Therefore, C ∼= U<r
∼= U≤r, and

so U≤r is computably presentable.

We will use the construction of Fraïssé limits in the proof of Theorem 5.4.1 again
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to prove some results about U≤r. Thus, for convenience, we will call the construction

in the proof of Theorem 5.4.1 the “Fraïssé limit construction”, and we will call the

requirements R⟨i,r,k,α,β⟩ the “Fraïssé limit requirements”.

We can relativize the notions for computable metric spaces in an obvious way.

For example, we let dAe denote the pseudometric induced by the partial A-computable

function ϕAe . The Polish metric space induced by ϕAe is an A-computable metric space,

denoted by MA
e . A Polish metric space X is A-computably presentable if it has an

A-computable presentation, that is, X ∼= MA
e for some e ∈ N.

Theorem 5.4.2. Let A ⊆ N. If X is an A-computably presentable metric space, then

diam(X) = ∞ or diam(X) is a left-A-c.e. real.

Proof. Assume X is an A-computably presentable metric space. Then X ∼= MA
e for

some e ∈ N. Since ϕAe induces the Polish metric space MA
e , ϕAe is total. Assume

diam(X) < ∞. Let r := diam(X). Then diam(MA
e ) = diam(X) = r ∈ R+

0 . Define

an A-computable function f : N → Q inductively by

• f(0) = ϕAe (i0, j0, k0)− 2−k0 where 0 = 〈i0, j0, k0〉,

• f(n+ 1) =


ϕAe (i, j, k)− 2−k if n+ 1 = 〈i, j, k〉 and f(n) < ϕAe (i, j, k)− 2−k

f(n) otherwise

It is clear that f is an increasing function.

We will show that lim
n→∞

f(n) = r.

Claim 1. f(n) ≤ r for all n ∈ N.
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Note that for all i, j, k ∈ N,

ϕAe (i, j, k)− 2−k ≤ dAe (i, j) ≤ diam(MA
e ) = r.

So, by induction on n, f(n) ≤ r for all n ∈ N.

Claim 2. (∀ε > 0)(∃n ∈ N)(f(n) > r − ε).

Let ε > 0. Let k ∈ N be such that 2−k < ε
3
. Since r − 2−k < r = diam(Me) =

sup{dAe (i, j) : i, j ∈ N}, there exist i, j ∈ N such that r − 2−k < dAe (i, j). So

ϕAe (i, j, k)− 2−k ≥ (dAe (i, j)− 2−k)− 2−k > r − 2−k − 2−k − 2−k = r − 3 · 2−k > r − ε.

Let n := 〈i, j, k〉. If f(n) = ϕAe (i, j, k) − 2−k, then f(n) > r − ε. Otherwise,

we must have n > 0 and f(n) = f(n − 1) where f(n − 1) ≥ ϕAe (i, j, k) − 2−k, so

f(n) ≥ ϕAe (i, j, k)− 2−k > r − ε. In both cases, we have f(n) > r − ε.

Since f is increasing, by Claim 1 and Claim 2, we have lim
n→∞

f(n) = sup
n∈N

f(n) = r.

Therefore, since (f(n))n∈N is an A-computable increasing sequence of rationals con-

verging to r = diam(X), we have that diam(X) is a left-A-c.e. real.

By Theorem 5.4.2 and the relativized version of Theorem 5.4.1, we have the

following.

Theorem 5.4.3. Let r ∈ R+ and A ⊆ N. Then U≤r is A-computably presentable if

and only if r is a left-A-c.e. real.

We have proved that if r = ∞ or r ∈ R+ is left-c.e., then the bounded Urysohn
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space U≤r has a computable presentation. It turns out that U≤r has a unique com-

putable presentation (up to isometry).

Theorem 5.4.4 (Melnikov [12]). The Urysohn space U is computably categorical.

The proof of Theorem 5.4.4 (see Theorem 7.3 in [12]) also works for the bounded

Urysohn spaces. So we have the following corollary.

Corollary 5.4.5. For every left-c.e. real r ∈ R+, U≤r is computably categorical.

5.5 Index Set Results on U and U≤r

Proposition 5.5.1. If r = ∞ or r ∈ R+ is left-c.e., then the set

{e ∈ N :Me has the rational approximate extension property for E<r w.r.t. (N, de)}

is Π0
2.

Proof. Assume r = ∞ or r ∈ R+ is left-c.e. Then there is a computable increasing

sequence (rn)n∈N of rationals such that lim
n→∞

rn = r. For the case when r = ∞, we

can choose rn = n for all n ∈ N.

Let e ∈ PolSp. Then Me is a computable Polish metric space with a dense subset

D := (N, de)

Note that

Me has the rational approximate extension property for E<r w.r.t. (N, de)

⇐⇒ (∀ finite A ⊆ D)(∀ε ∈ Q+)(∀f ∈ EQ,<r(A))(∃z ∈ D)(∀a ∈ A)(|de(z, a)− f(a)| < ε)
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⇐⇒ (∀ finite A ⊆ D)(∀ε ∈ Q+)(∀f ∈ Q<N)

[f /∈ EQ,<r(A) ∨ (∃z ∈ D)(∀a ∈ A)(|de(z, a)− f(a)| < ε)].

Now note that

f ∈ EQ(A) ⇐⇒ f : A→ Q ∧ (∀x, y ∈ A)(|f(x)− f(y)| ≤ de(x, y) ≤ f(x) + f(y)).

Thus, since A is finite, “f ∈ EQ(A)” is a Π0
1 statement.

Since A is finite and (rn)n∈N is a computable increasing sequence of rationals

such that lim
n→∞

rn = r, we have

|f | < r ⇐⇒ (∀a ∈ A)(|f(a)| < r)

⇐⇒ (∀a ∈ A)(∃n ∈ N)(|f(a)| < rn)

⇐⇒ (∃m ∈ N)(∀a ∈ A)(|f(a)| < rm),

and so “|f | < r” is a Σ0
1 statement.

Hence we have

f ∈ EQ,<r(A) ⇐⇒ f ∈ EQ(A) ∧ |f | < r

⇐⇒ (∀k ∈ N)R(e, A, f, k) ∧ (∃m ∈ N)Q(A, f,m),

where R and Q are computable relations.
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Since A is finite and “|de(z, a)− f(a)| < ε” is a Σ0
1 statement, we have

(∀a ∈ A)(|de(z, a)− f(a)| < ε) ⇐⇒ (∃l ∈ N)P (e, A, ε, f, z, l),

where P is a computable relation.

From all of the above, we have

Me has the rational approximate extension property for E<r w.r.t. (N, de)

⇐⇒ (∀ finite A ⊆ D)(∀ε ∈ Q+)(∀f ∈ Q<N)

[f /∈ EQ,<r(A) ∨ (∃z ∈ D)(∀a ∈ A)(|de(z, a)− f(a)| < ε)]

⇐⇒ (∀ finite A ⊆ D)(∀ε ∈ Q+)(∀f ∈ Q<N)

[(∃k ∈ N)¬R(e, A, f, k) ∨ (∀m ∈ N)¬Q(A, f,m)

∨ (∃z ∈ D)(∃l ∈ N)P (e, A, ε, f, z, l)]

⇐⇒ (∀ finite A ⊆ D)(∀ε ∈ Q+)(∀f ∈ Q<N)(∀m ∈ N)(∃k ∈ N)(∃z ∈ D)(∃l ∈ N)

[¬R(e, A, f, k) ∨ ¬Q(A, f,m) ∨ P (e, A, ε, f, z, l)].

Therefore, the set

{e ∈ N :Me has the rational approximate extension property for E<r w.r.t. (N, de)}

is Π0
2.

The following theorem is our main tool to find the complexity of several index

sets involving the spaces U≤r.

Theorem 5.5.2. Assume r = ∞ or r ∈ R+ is left-c.e. Let (rn)n∈N be a computable
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strictly increasing sequence of rationals such that lim
n→∞

rn = r. Let A be a Σ0
2 set and

B be a Π0
2 set. Then there exist computable functions f, g : N → N and a uniformly

c.e. sequence (Ke)e∈N of classes of finite metric spaces such that for all e ∈ N, the

following conditions hold:

(1) f(e) ∈ PolSp, and so Mf(e) is a computable Polish metric space.

(2) e ∈ A =⇒ Kg(e) = K<rn for some n ∈ N,

(3) e /∈ A =⇒ Kg(e) = K<r,

(4) e ∈ B =⇒ (N, df(e)) is the Fraïssé limit of Kg(e).

(5) e /∈ B =⇒Mf(e) is finite =⇒Mf(e) 6∼= U≤r′ for all r′ ∈ R+ ∪ {∞}.

(6) e ∈ A ∩B =⇒Mf(e)
∼= U≤rn for some n ∈ N.

(7) e ∈ B \ A =⇒Mf(e)
∼= U≤r.

Proof. Recall that Fin := {e : dom(ϕe) is finite} is Σ0
2-complete and Tot :=

{e : dom(ϕe) = N} is Π0
2-complete.

Thus, since A is Σ0
2 and B is Π0

2, there are computable functions g and h such

that for all e ∈ N,

e ∈ A⇐⇒ g(e) ∈ Fin,

e ∈ B ⇐⇒ h(e) ∈ Tot.

Recall that K is the class of all finite rational metric spaces and K is c.e. So we
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can effectively list all finite metric spaces in K as

K = {Ai : i ∈ N}.

For each e, s ∈ N, let ne,s := |dom(ϕe,s)|. Then ne,0 ≤ ne,1 ≤ . . . and we can

compute ne,s uniformly in e, s. Let

ne := lim
s→∞

ne,s = |dom(ϕe)| =


|dom(ϕe)| ∈ N if dom(ϕe) is finite

∞ if dom(ϕe) is infinite

Without loss of generality, assume that rn > 0 for all n ∈ N. Then for all e ∈ N,

rne = lim
s→∞

rne,s ,

where r∞ = lim
n→∞

rn = r.

For each e ∈ N, let

Ke := K<rne
=

⋃
s∈N

K<rne,s

= {Ai : (∃s ∈ N)(diam(Ai) < rne,s), i ∈ N} ⊆ K.

Then, since (rn)n∈N is a computable sequence of rationals and ne,s are computable

uniformly in e, s, we have that (Ke)e∈N is a uniformly c.e. sequence of nonempty

classes of finite metric spaces. So we can effectively enumerate all metric spaces in
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Ke uniformly in e as

Ke = {Ae,i : i ∈ N}.

So for all e ∈ N, since lim
n→∞

rn = r, we have

e ∈ A =⇒ g(e) ∈ Fin =⇒ ng(e) = |dom(ϕg(e))| ∈ N

=⇒ Kg(e) = K<rng(e)
and rng(e)

< r,

e /∈ A =⇒ g(e) /∈ Fin =⇒ ng(e) = |dom(ϕg(e))| = ∞ =⇒ rng(e)
= r∞ = r

=⇒ Kg(e) = K<rng(e)
= K<r.

Hence conditions (2) and (3) are satisfied. Therefore, for all e ∈ N, Kg(e) satisfies HP,

JEP and AP, and so Kg(e) has a Fraïssé limit.

For each e ∈ N, we construct a computable Polish metric space Xe uniformly in

e as follows.

Construction of (Xe)e∈N

To construct a computable Polish space Xe, we build a computable chain

D0
δ0
↪→ D1

δ1
↪→ . . . of finite metric spaces such that for all e ∈ N,

e ∈ B =⇒ (Ds)s∈N satisfies the Fraïssé limit requirements for Kg(e) = K<rng(e)
,

e /∈ B =⇒ the chain (Ds)s∈N is eventually stable.

Then we let D :=
⋃
s∈N

Ds, and let Xe be the completion of D.

For i < j, we let δi,j denote the embedding δj−1 ◦ · · · ◦ δi : Di ↪→ Dj.
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For the union D =
⋃
s∈N

Ds to be the Fraïssé limit of Kg(e), it is enough to satisfy

the following Fraïssé limit requirements:

R⟨i,r,k,α,β⟩ : If α : Ag(e),i ↪→ Dr and β : Ag(e),i ↪→ Ag(e),k, then there exist an s ≥ r

and an embedding γs : Ag(e),k ↪→ Ds+1 such that δr,s+1 ◦ α = γs ◦ β.

Dr

Ag(e),i Ds+1

Ag(e),k

δr,s+1α

β γs

Construction of D0
δ0
↪→ D1

δ1
↪→ . . .

Stage 0: Let D0 := {0} be the one-point metric space.

Stage s+ 1 = 〈i, r, k, α, β〉+ 1 where i, r, k, α, β ∈ N: We have constructed Dt for

all t ≤ s and δt for all t < s. Without loss of generality, assume r ≤ s. We have 2

steps.

Step 1: For each t ∈ N, starting from t = 0, we check if ϕh(e),t(s) ↓. Whenever

we find (if ever) the least t0 such that ϕh(e),t0(s) ↓, we go to Step 2.

Step 2: We do the Fraïssé limit construction for Ag(e),i ∈ Kg(e). That is, we check

if α : Ag(e),i ↪→ Dr and β : Ag(e),i ↪→ Ag(e),k.

If so, then we apply AP (amalgamation property) of Kg(e) to δr,s◦α : Ag(e),i ↪→ Ds

and β : Ag(e),i ↪→ Ag(e),k to get Ds+1 ∈ Kg(e), δs : Ds ↪→ Ds+1 and γs : Ag(e),k ↪→ Ds+1

such that δs ◦ δr,s ◦ α = γs ◦ β. Then go to the next stage.
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Ds

Dr Ds+1

Ag(e),i

Ag(e),k

δsδr,s

α

β

γs

If not, then let Ds+1 := Ds and δs := IdDs : Ds ↪→ Ds+1, and go to the next

stage.

This ends the construction.

Note that the construction is effective uniformly in e. So D0
δ0
↪→ D1

δ1
↪→ . . .

is a computable chain of finite metric spaces. Then, by Theorem 5.2.4, there is

a computable presentation Xe, computable uniformly in e, of the completion of the

union D :=
⋃
s∈N

Ds. By the s-m-n Theorem, there is a computable function f : N → N

such that f(e) ∈ PolSp and Xe
∼= Mf(e) for all e ∈ N.

Next, we consider the following cases.

Case e ∈ B: Then h(e) ∈ Tot, and so ϕh(e) is total. Hence, at every stage s +

1, we will always find the least t0 such that ϕh(e),t0(s) ↓ in Step 1, and then we

will go to Step 2 and do the Fraïssé limit construction. So it is clear from the

construction that the chain (Ds)s∈N satisfies the Fraïssé limit requirements R⟨i,r,k,α,β⟩.

Thus, by Theorem 5.1.10, D :=
⋃
s∈N

Ds is the Fraïssé limit of Kg(e) = K<rng(e)
, and

so D ∼= UQ,<rng(e)
. Note that (N, df(e)) ∼= D, and so (N, df(e)) is the Fraïssé limit of
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Kg(e). Thus, the completion Xe of D is isometric to the completion of UQ,<rng(e)
, that

is, Xe
∼= U<rng(e)

∼= U≤rng(e)
.

Case e /∈ B: Then h(e) /∈ Tot, and so there is the least s0 such that ϕh(e)(s0) ↑.

So we will do the construction until stage s0 + 1, and we will never find a least t0

such that ϕh(e),t0(s0) ↓ in Step 1. Hence we will never go to Step 2. It follows that

the resulting chain is

D0 ↪→ D1 ↪→ · · · ↪→ Ds0 .

(We never defined Ds for all s > s0.) So we have D = Ds0 , which is a finite metric

space. Hence Xe = D is a finite metric space. Therefore, for all r′ ∈ R+ ∪ {∞}, Xe

is not universal for K≤r′ , and so Xe 6∼= U≤r.

Case e ∈ A ∩B: Since e ∈ A, we have ng(e) = |dom(ϕg(e))| ∈ N, Kg(e) = K<rng(e)

and rng(e)
< r. Since e ∈ B, we have Xe

∼= U≤rng(e)
.

Case e ∈ B \ A: Since e /∈ A, we have ng(e) = |dom(ϕg(e))| = ∞, rng(e)
= r and

Kg(e) = K<rng(e)
= K<r. Thus, since e ∈ B, we have Xe

∼= U≤rng(e)
= U≤r.

From all of the above, we conclude that conditions (1)-(7) are satisfied.

Theorem 5.5.3. If r = ∞ or r ∈ R+ is left-c.e., then the set {e ∈ N :Me
∼= U≤r} is

Π0
2-complete within PolSp, and so it is Π0

2-complete.

Proof. Assume r = ∞ or r ∈ R+ is left-c.e. Then there is a computable strictly

increasing sequence (rn)n∈N of rationals such that lim
n→∞

rn = r. For the case when

r = ∞, we can choose rn = n for all n ∈ N.

By Theorem 5.3.12 and Remark 5.3.3, we have that for all e ∈ PolSp, Me
∼= U≤r
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if and only if diam(Me) ≤ r and Me has the rational approximate extension property

for E<r w.r.t. the dense set (N, de).

Since (rn)n∈N is a computable increasing sequence of rationals such that

lim
n→∞

rn = r, we have

diam(Me) ≤ r ⇐⇒ (∀i, j ∈ N)(de(i, j) ≤ r)

⇐⇒ (∀i, j ∈ N)(∀ε ∈ Q+)(∃n ∈ N)(de(i, j)− ε < ϕe(n)).

Hence “diam(Me) ≤ r” is a Π0
2 statement. Therefore, by Proposition 5.5.1,

{e :Me
∼= U≤r} is Π0

2.

To show that {e :Me
∼= U≤r} is Π0

2-hard within PolSp, we apply Theorem 5.5.2

to A := ∅ and B := Tot. So we have that there is a computable sequence (Xe)e∈N of

Polish metric spaces such that for all e ∈ N,

e ∈ Tot =⇒ e ∈ B \ A =⇒ Xe
∼= U≤r,

e /∈ Tot =⇒ e /∈ B =⇒ Xe is finite =⇒ Xe 6∼= U≤r.

Therefore, {e :Me
∼= U≤r} is Π0

2-hard within PolSp.

Theorem 5.5.4. The set

{e ∈ N : (∃r ∈ R+ ∪ {∞})(Me
∼= U≤r)} = {e ∈ N :Me

∼= U≤diam(Me)}

is Π0
2-complete within PolSp, and so it is Π0

2-complete.
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Proof. It is clear that

{e : (∃r ∈ R+ ∪ {∞})(Me
∼= U≤r)} = {e :Me

∼= U≤diam(Me)}.

By Theorem 5.3.12 and Remark 5.3.3, we have that for all e ∈ PolSp,

Me
∼= U≤diam(Me) if and only if Me has the rational approximate extension property

for E<diam(Me) w.r.t. the dense set (N, de).

For each q ∈ Q+, let

Iq := {e :Me has the rational approximate extension property for E<q w.r.t. (N, de)}.

We can use a similar argument as in the proof of Proposition 5.5.1. (We will have

“|f | < q” is a ∆0
1 statement, and so “f ∈ EQ,<q(A)” is a Π0

1 statement.) It follows

that Iq is Π0
2 uniformly in q ∈ Q+, that is, there is a computable relation R(n,m, q, e)

such that for all q ∈ Q+,

e ∈ Iq ⇐⇒ ∀n∃mR(n,m, q, e).

Then for all e ∈ PolSp,

Me
∼= U≤diam(Me) ⇐⇒ (∀q ∈ Q+)(q < diam(Me) =⇒ e ∈ Iq)

⇐⇒ (∀q ∈ Q+)((∀i, j ∈ N)(de(i, j) ≤ q) ∨ e ∈ Iq).

Therefore, {e : (∃r ∈ R+ ∪ {∞})(Me
∼= U≤r)} is Π0

2 within PolSp.

To show that {e : (∃r ∈ R+ ∪ {∞})(Me
∼= U≤r)} is Π0

2-hard within PolSp, we
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apply Theorem 5.5.2 to A := ∅, B := Tot, r := ∞ and rn := n for all n ∈ N. So we

have that there is a computable sequence (Xe)e∈N of Polish metric spaces such that

for all e ∈ N,

e ∈ Tot =⇒ e ∈ B \ A =⇒ Xe
∼= U≤r = U≤∞,

e /∈ Tot =⇒ e /∈ B =⇒ Xe is finite =⇒ Xe 6∼= U≤r′ for all r′ ∈ R+ ∪ {∞}.

Therefore, {e : (∃r ∈ R+ ∪ {∞})(Me
∼= U≤r)} is Π0

2-hard within PolSp.

Theorem 5.5.5. The set

{e ∈ N : (∃r ∈ R+)(Me
∼= U≤r)} = {e ∈ N :Me

∼= U≤diam(Me) and Me is bounded}

is d-Σ0
2-complete within PolSp, and so it is d-Σ0

2-complete.

Proof. It is clear that

{e : (∃r ∈ R+)(Me
∼= U≤r)} = {e :Me

∼= U≤diam(Me) and Me is bounded},

and so, by Theorem 5.5.4 and Theorem 2.0.9, it is d-Σ0
2 within PolSp.

To show that {e : (∃r ∈ R+)(Me
∼= U≤r)} is d-Σ0

2-hard within PolSp, we let C

be a d-Σ0
2 set, say C = A ∩B where A is Σ0

2 and B is Π0
2.

Then we apply Theorem 5.5.2 to A, B, r := ∞ and rn := n for all n ∈ N. So we

have that there is a computable sequence (Xe)e∈N of Polish metric spaces such that
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for all e ∈ N,

e ∈ C = A ∩B =⇒ (∃n ∈ N)(Xe
∼= U≤rn) =⇒ (∃n ∈ N)(Xe

∼= U≤n),

e /∈ B =⇒ Xe is finite =⇒ Xe 6∼= U≤r′ for all r′ ∈ R+ ∪ {∞},

e ∈ B \ A =⇒ Xe
∼= U≤∞ = U =⇒ Xe 6∼= U≤r′ for all r′ ∈ R+.

Therefore, {e : (∃r ∈ R+)(Me
∼= U≤r)} is d-Σ0

2-hard within PolSp.



Chapter 6

Cantor Space and Baire Space

6.1 Cantor Space

We consider the Cantor space 2N equipped with the metric

d(X,Y ) = 2−min{n∈N:X(n)̸=Y (n)} for all X,Y ∈ 2N,

where d(X,Y ) = 0 if X = Y .

The Cantor space is a Polish metric space, and the infinite binary strings that

are eventually 0 (i.e. the strings σ⌢0N where σ ∈ 2<N) form a computable presenta-

tion. In this section, we find the complexity of the embedding problem 2N ↪→ Me

homeomorphically and the embedding problem 2N ↪→Me isometrically.

Theorem 6.1.1. The set {e ∈ N : 2N ↪→Me homeomorphically} is Σ1
1.

144
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Proof. To show that {e : 2N ↪→ Me homeomorphically} is Σ1
1, we will construct a

computable sequence (Se)e∈N of trees such that for all e ∈ PolSp,

Se has an infinite path ⇐⇒ 2N ↪→Me homeomorphically.

Since (Se)e∈N is a computable sequence of trees, {e : Se has an infinite path} is Σ1
1,

and so {e : 2N ↪→Me homeomorphically} is Σ1
1.

Recall that for each e ∈ PolSp, (Me, de) is a computable metric space where

(N, de) is a countable dense subset consisting of all rational points. For each p ∈ N

and r ∈ Q+, we let B(p, r) denote the rational open ball in Me around p of radius r,

that is,

B(p, r) := {x ∈Me : de(x, p) < r}.

Then the closure B(p, r) = {x ∈Me : de(x, p) ≤ r} is a rational closed ball. It follows

from the triangle inequality that

• de(q, p) < r − s =⇒ B(q, s) ⊆ B(p, r),

• de(p, q) > s+ r =⇒ B(p, r) ∩B(q, s) = ∅.

For any pair (B(p, r), B(q, s)) of rational open balls, we consider the following condi-

tions:

(1) de(q, p) < r − s. (This implies B(q, s) ⊆ B(p, r).)

(2) de(p, q) > s+ r. (This implies B(p, r) ∩B(q, s) = ∅.)

Since conditions (1) and (2) are Σ0
1 statements, 0′ can determine whether a pair of

rational open balls satisfies (1) and (2).
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By using a fixed computable coding function, we can code each finite sequence

(B1, . . . , Bn) of rational open balls by a natural number. Let 〈B1, . . . , Bn〉 denote the

code of the sequence (B1, . . . , Bn).

We say that a family of nonempty open balls (Bσ)σ∈2<N\{λ} in Me is a Cantor

scheme if it satisfies the following conditions:

• If τ and σ are incompatible, then Bτ ∩Bσ = ∅.

• If τ ⊊ σ, then Bσ ⊆ Bτ .

• diam(Bσ) ≤ 2−|σ|.

• The center of the ball Bσ, denoted by xσ, is a rational point of Me.

If Me has such a Cantor scheme, then by the same argument as the standard

proof of the fact that every Polish space contains an homeomorphic copy of 2N (see,

e.g. [8]), 2N can be embedded homeomorphically into Me via the map ψ : 2N → Me

defined by

ψ(X) = lim
n→∞

xX↾n for all X ∈ 2N.

Construction of Se

For each e ∈ N, we define a computable tree Se uniformly in e as follows.

Let λ ∈ Se and for each σ ∈ N<N with |σ| = n+1, we let σ be in Se if and only if

there exist rational open balls B0, B1, B00, B01, B10, B11, . . . , B11...1︸︷︷︸
(n+1)-copies

in Me, where the

indices are finite binary strings ordered by the lexicographic order on 2<N, such that

the following conditions hold:
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• σ = (〈B0, B1〉, 〈B00, B01, B10, B11〉, . . . , 〈B00...0︸︷︷︸
(n+1)-copies

, B00...01, . . . , B11...1︸︷︷︸
(n+1)-copies

〉)

• diam(Bδ) ≤ 2−|δ| for all δ ∈ 2<N \ {λ} with |δ| ≤ n+ 1.

• (Bδ, Bδ0) and (Bδ, Bδ1) satisfy (1) for all δ ∈ 2<N with 1 ≤ |δ| ≤ n.

• (Bδ0, Bδ1) satisfies (2) for all δ ∈ 2<N with |δ| ≤ n.

This ends the construction of Se.

It is clear from the definition of Se that Se is a computable tree uniformly in e.

Note that

Se has an infinite path ⇐⇒ (∃X ∈ NN)(∀n ∈ N)(X ↾ n ∈ Se).

Therefore, since Se is computable uniformly in e, {e : Se has an infinite path} is Σ1
1.

It remains to show that for all e ∈ PolSp, Se has an infinite path ⇐⇒ 2N ↪→Me

homeomorphically. Let e ∈ PolSp.

(=⇒) Assume that Se has an infinite path, say X ∈ NN. For each n ∈ N+,

we can decode each finite string X ↾ n to get a finite collection of rational open

balls {Bα : α ∈ 2<N \ {λ}, |α| ≤ n}. So the infinite path X gives an infinite family

(Bα)α∈2<N\{λ} of rational open balls in Me. By the construction of Se, it is easy to see

that (Bα)α∈2<N\{λ} is a Cantor scheme. Therefore, 2N ↪→Me homeomorphically.

(⇐=) Assume that 2N ↪→Me homeomorphically via an injective continuous map

f : (2N, d) ↪→ (Me, de). We construct a Cantor scheme (Bα)α∈2<N\{λ} that satisfies the

following condition:
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(∗) For all δ ∈ 2<N, (Bδ0, Bδ1) satisfies (2), and if |σ| > 0, then (Bδ, Bδ0) and

(Bδ, Bδ1) satisfy (1).

Construction of (Bα)α∈2<N\{λ}

Stage 0: Do nothing.

Stage 1: Choose any X0, X1 ∈ 2N with X0 6= X1. Since f is injective, f(X0) 6=

f(X1). Choose an ε1 ∈ Q+ such that

ε1 < min{2−2,
1

4
de(f(X0), f(X1))}.

Since (N, de) is dense in Me, there exist rational points p0, p1 ∈ N such that

de(f(Xi), pi) < ε1 for all i ∈ {0, 1}.

Choose an r1 ∈ Q+ such that

ε1 < r1 < min{2−2,
1

2
de(f(X0), f(X1))− ε1}.

Let B0 := B(p0, r1) and B1 := B(p1, r1).

Note that for all i ∈ {0, 1}, de(f(Xi), pi) < ε1 < r1 < 2−2 and diam(Bi) ≤ 2r1 <

2−1. Also note that (B0, B1) satisfies (2) because

de(p0, p1) ≥ de(f(X0), f(X1))− de(f(X0), p0)− de(f(X1), p1)

> de(f(X0), f(X1))− ε1 − ε1

> 2r1.
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Stage n+ 1 where n > 0:

We have defined εn, rn and Xδ, pδ for all δ ∈ 2<N with |δ| = n. We assume by

induction that

de(f(Xδ), pδ) < εn < rn < 2−(n+1) for all δ ∈ 2<N with |δ| = n.

For each δ ∈ 2<N with |δ| = n, since f is continuous at Xδ, we can choose

Xδ0, Xδ1 ∈ 2N such that

• Xδ0 6= Xδ1,

• de(f(Xδi), f(Xδ)) <
1
2
(rn − εn) for all i ∈ {0, 1}.

Note that

de(f(Xδ0), f(Xδ1)) ≤ de(f(Xδ0), f(Xδ))+de(f(Xδ), f(Xδ1)) < rn−εn < rn < 2−(n+1).

Choose an εn+1 ∈ Q+ such that

εn+1 < min
δ∈2n

{1
4
de(f(Xδ0), f(Xδ1))}.

Note that

εn+1 <
1

4
de(f(Xδ0), f(Xδ1)) <

1

4
(rn − εn) <

1

2
(rn − εn),

and for all i ∈ {0, 1},

εn+1 <
1

4
(rn − εn) =

1

2
[(rn − εn)−

1

2
(rn − εn)] <

1

2
[(rn − εn)− de(f(Xδi), f(Xδ))].
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Since (N, de) is dense in Me, for each δ ∈ 2n, there exist rational points pδ0, pδ1 ∈ N

such that

de(f(xδi), pδi) < εn+1 for all i ∈ {0, 1}.

Note that εn+1 <
1
2
(rn − εn) <

1
2
rn < 2−(n+2). For each δ ∈ 2n, since εn+1 <

1
4
de(f(Xδ0), f(Xδ1)), we have εn+1 <

1
2
de(f(Xδ0), f(Xδ1)) − εn+1. Also, since εn+1 <

1
2
[(rn− εn)− de(f(Xδi), f(Xδ))], we have εn+1 < rn− [de(f(Xδi), f(Xδ)) + εn+ εn+1].

We conclude that

εn+1 < min
δ∈2n
i∈{0,1}

{2−(n+2), rn−[de(f(Xδi), f(Xδ))+εn+εn+1],
1

2
de(f(Xδ0), f(Xδ1))−εn+1}.

Choose an rn+1 ∈ Q+ such that

εn+1 < rn+1 < min
δ∈2n
i∈{0,1}

{2−(n+2), rn−[de(f(Xδi), f(Xδ))+εn+εn+1],
1

2
de(f(Xδ0), f(Xδ1))−εn+1}.

For each δ ∈ 2n and i ∈ {0, 1}, let Bδi := B(pδi, rn+1).

Note that for all δ ∈ 2n and i ∈ {0, 1}, de(f(Xδi), pδi) < εn+1 < rn+1 < 2−(n+2)

and diam(Bδi) ≤ 2rn+1 < 2−(n+1). Also note that (Bδ, Bδi) satisfies (1) because

de(pδi, pδ) ≤ de(pδi, f(Xδi)) + de(f(Xδi), f(Xδ)) + de(f(Xδ), pδ)

< εn+1 + de(f(Xδi), f(Xδ)) + εn

< rn − rn+1. (∵ rn+1 < rn − [de(f(Xδi), f(Xδ)) + εn + εn+1])
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Also, (Bδ0, Bδ1) satisfies (2) because

de(pδ0, pδ1) ≥ de(f(Xδ0), f(Xδ1))− de(f(Xδ0), pδ0)− de(f(Xδ1), pδ1)

> de(f(Xδ0), f(Xδ1))− εn+1 − εn+1

> 2rn+1. (∵ rn+1 <
1

2
de(f(Xδ0), f(Xδ1))− εn+1)

This ends the construction of (Bα)α∈2<N\{λ}.

It is clear from the construction that (Bα)α∈2<N\{λ} is a Cantor scheme in Me that

satisfies (∗). Recall that each infinite path X ∈ [Se] gives a Cantor scheme in Me.

Moreover, [Se] gives all possible Cantor schemes that satisfies (∗). So Se must have

an infinite path corresponding to (Bα)α∈2<N\{λ}. More specifically, for every n ∈ N,

the finite string σn of length n+ 1 defined by

σn := (〈B0, B1〉, 〈B00, B01, B10, B11〉, . . . , 〈B00...0︸︷︷︸
(n+1)-copies

, B00...01, . . . , B11...1︸︷︷︸
(n+1)-copies

〉)

must be in the tree Se, and so
⋃
n∈N

σn ∈ NN is an infinite path in Se.

We conclude that for all e ∈ PolSp, Se has an infinite path ⇐⇒ 2N ↪→ Me

homeomorphically. It follows that {e : 2N ↪→Me homeomorphically} is Σ1
1.

Theorem 6.1.2. The set {e ∈ N : 2N ↪→Me homeomorphically} is Σ1
1-hard.

Proof. Recall that (Te)e∈N is a fixed effective enumeration of all primitive recursive

trees Te ⊆ N<N. To show that {e : 2N ↪→Me homeomorphically} is Σ1
1-hard, it is

enough to build a computable sequence (Xe)e∈N of Polish metric spaces such that for

all e ∈ N, Te has an infinite path ⇐⇒ 2N ↪→ Xe homeomorphically.
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For each σ, τ ∈ 2<N with |σ| = |τ |, we let σ ⊕ τ denote the string in 2<N defined

by

(σ ⊕ τ)(n) =


σ(k) if n = 2k

τ(k) if n = 2k + 1

For each e ∈ N, let

Se := {σ ⊕ τ : τ ∈ Te and σ ∈ 2<N with |σ| = |τ |},

S̃e := {ρ⌢0N : ρ ∈ Se} ⊆ 2N.

Define a metric d̃ on S̃e by

d̃(X,Y ) = 2−
1
2
min{n∈N:X(n) ̸=Y (n)} for all X,Y ∈ S̃e,

where d̃(X,Y ) = 0 if X = Y . Let Xe be the completion of (S̃e, d̃).

The idea is that each τ ∈ Te will correspond to an isometric copy of the full

binary tree 2<N up to level |τ | in Se. So if Te has an infinite path, then Se will contain

an isometric copy of the full binary tree 2<N, and so 2N ↪→ Xe isometrically.

Since (Te)e∈N is a computable sequence of trees, (Se)e∈N is also a computable

sequence of trees. It follows that (Xe)e∈N is a computable sequence of Polish metric

spaces.

We claim that Te has an infinite path ⇐⇒ 2N ↪→ Xe homeomorphically.

(=⇒) Assume Te has an infinite path, say f ∈ NN. Let A := {σ⌢0N : σ ∈ 2<N}
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and define a map ψ : A→ S̃e by

ψ(σ⌢0N) = (σ ⊕ (f ↾ |σ|))⌢0N for all σ ∈ 2<N.

Then for all σ ∈ 2<N and n ∈ N,

(ψ(σ⌢0N))(n) =


σ(k) if n = 2k and k < |σ|

f(k) if n = 2k + 1 and k < |σ|

0 otherwise

It follows that for all X,Y ∈ A with X 6= Y , we have

min{n : (ψ(X))(n) 6= (ψ(Y ))(n)} = 2min{n : X(n) 6= Y (n)}, and so

d(X,Y ) = 2−min{n:X(n)̸=Y (n)} = 2−
1
2
min{n∈N:(ψ(X))(n)̸=(ψ(Y ))(n)} = d̃(ψ(X), ψ(Y )).

So ψ : (A, d) → (S̃e, d̃) is a distance-preserving map. Thus, since A is dense in (2N, d),

ψ can be extended to an isometric embedding ψ : (2N, d) → (Xe, d̃). Therefore,

2N ↪→ Xe isometrically. In particular, 2N ↪→ Xe homeomorphically.

(⇐=) Assume that Te has no infinite paths. By the definition of Se, Se also

has no infinite paths. It follows that (S̃e, d̃) is countable and it has no limit points.

So the completion Xe is just S̃e, which is countable. Since 2N is uncountable, 2N

does not embed into Xe homeomorphically. In particular, 2N does not embed into Xe

isometrically.

We conclude that for all e ∈ N, Te has an infinite path ⇐⇒ 2N ↪→ Me homeo-

morphically. Therefore, {e : 2N ↪→Me homeomorphically} is Σ1
1-hard.
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By Theorem 6.1.1, Theorem 6.1.2 and the well-known fact that a Polish metric

space is uncountable if and only if it contains a homeomorphic copy of the Canter

space 2N (see, e.g. [8]), we have the following theorem.

Theorem 6.1.3. The set

{e ∈ N : 2N ↪→Me homeomorphically} = {e ∈ N :Me is uncountable}

is Σ1
1-complete.

Theorem 6.1.4. The set {e ∈ N : 2N ↪→Me isometrically} is Σ1
1-complete.

Proof. By Proposition 3.1.6, {e : 2N ↪→ Me isometrically} is Σ1
1. The proof of Theo-

rem 6.1.2 also shows that {e : 2N ↪→Me isometrically} is Σ1
1-hard.

6.2 Baire Space

We consider the Baire space NN equipped with the metric

d(X,Y ) = 2−min{n∈N:X(n)̸=Y (n)} for all X,Y ∈ NN,

where d(X,Y ) = 0 if X = Y .

The Baire space is a Polish metric space, and the infinite strings that are even-

tually 0 (i.e. the strings σ⌢0N where σ ∈ N<N) form a computable presentation.

First, we consider the embedding problem NN ↪→ Me homeomorphically. It

is clear that 2N ↪→ NN isometrically and homeomorphically. It is also known that
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NN ↪→ 2N homeomorphically. For example, we can define a function f : NN → 2N by

f : (xn)n∈N 7→ 1x001x101x20 . . . ,

where 1xn is the finite string of length xn consisting only 1s. Then it is not hard to

show that f : NN → 2N is a homeomorphic embedding. In fact, the range of f is

{(yn)n∈N ∈ 2N : yn = 0 for infinitely many n},

which is dense in 2N. Therefore, we have that

{e : NN ↪→Me homeomorphically} = {e : 2N ↪→Me homeomorphically},

which is Σ1
1-complete by Theorem 6.1.3.

Also note that the proof of Theorem 6.1.2 for 2N also works for NN by using

Se := {σ ⊕ τ : τ ∈ Te and σ ∈ N<N with |σ| = |τ |}.

Therefore, we have the following.

Theorem 6.2.1.

• The set {e ∈ N : NN ↪→Me homeomorphically} is Σ1
1-complete.

• The set {e ∈ N : NN ↪→Me isometrically} is Σ1
1-complete.

It was shown in [12] that the Cantor space 2N is computably categorical as a
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metric space. We show that the same is true for the Baire space. We start with

proving the following lemmas.

Lemma 6.2.2. For all n, l ∈ N, if β0, . . . , βn ∈ NN and βi ↾ l = βj ↾ l for all

i, j ∈ {0, . . . , n}, then the set

{ρ ∈ NN : (∀i ≤ n)(d(βi, ρ) = 2−l)}

is an infinite open set of NN.

Proof. Assume n, l ∈ N, β0, . . . , βn ∈ NN, and βi ↾ l = βj ↾ l for all i, j ∈ {0, . . . , n}.

Let V := {ρ ∈ NN : (∀i ≤ n)(d(βi, ρ) = 2−l)}. Note that for each i ≤ n,

Jβi ↾ lK = {ρ ∈ NN : d(βi, ρ) ≤ 2−l}.

By the definition of the metric d, if d(βi, ρ) > 2−(l+1), then d(βi, ρ) ≥ 2−l. It follows

that

V =
⋂
i≤n

(Jβi ↾ lK ∩ (NN \ Jβi ↾ l + 1K)).
Thus, since the basic open sets of NN are clopen, V is open.

Let M := max{βi(l) : i ≤ n} + 1 and σ := (β0 ↾ l)⌢M . Then βi(l) 6= M for all

i ≤ n. Thus, since βi ↾ l = β0 ↾ l for all i ≤ n, we have that JσK ⊆ V . So V is infinite

since JσK is infinite.

Lemma 6.2.3. For all α, β, γ ∈ NN, if d(α, β) < d(α, γ), then d(β, γ) = d(α, γ).

Proof. Let α, β, γ ∈ NN be such that d(α, β) < d(α, γ). If α = β, then d(β, γ) =
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d(α, γ) and we are done. Assume α 6= β. Then d(α, β) = 2−l for some l ∈ N. Since

d(α, β) < d(α, γ), d(α, γ) = 2−m for some m < l. By the definition of d, we have that

α ↾ l = β ↾ l, α(l) 6= β(l), α ↾ m = γ ↾ m, and α(m) 6= γ(m). Since α ↾ l = β ↾ l

and m < l, we have β ↾ m = α ↾ m = γ ↾ m and β(m) = α(m) 6= γ(m). Therefore,

d(β, γ) = 2−m = d(α, γ).

It was proved by Melnikov [12] that the Cantor space 2N is computably categor-

ical. We show that the same is true for the Baire space NN.

Theorem 6.2.4. The Baire space NN is computably categorical.

Proof. Let (αi)i∈N and (βi)i∈N be computable presentations of NN. Without loss of

generality, we can assume that (αi)i∈N and (βi)i∈N have no repetitions. We will build

a computable bijection f : N → N such that

d(αi, αj) = d(βf(i), βf(j)) for all i, j ∈ N.

Then the map ψ : NN → NN defined by

ψ( lim
i→∞

αg(i)) = lim
i→∞

βf(g(i)) for all Cauchy names (αg(i))i∈N in (αi)i∈N

is a computable isometry w.r.t. (αi)i∈N and (βi)i∈N. So NN is computably categorical

as a metric space.

Construction of f

We use a back-and-forth construction to build a computable sequence (fs)s∈N of
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isometries, that is,

d(αi, αj) = d(βfs(i), βfs(j)) for all i, j ∈ dom(fs),

then we let f :=
⋃
s fs.

Stage 0: Let f0 := {(0, 0)}.

Stage s+ 1 = 2n+ 1: We make sure that n ∈ dom(fs+1). If n ∈ dom(fs), then

let fs+1 := fs. If n /∈ dom(fs), then we do the following.

Let l be the largest number such that (∃i ∈ dom(fs))(d(αi, αn) = 2−l), and let

I := {i ∈ dom(fs) : d(αi, αn) = 2−l} 6= ∅.

Find the least k ∈ N such that

k /∈ range(fs) and d(βfs(i), βk) = 2−l for all i ∈ I.

(We will show below that such a number k exists.) Let fs+1 := fs ∪ {(n, k)}.

Stage s+ 1 = 2n+ 2: We make sure that n ∈ dom(f−1
s+1) = range(fs+1). If

n ∈ dom(f−1
s ), then let fs+1 := fs. If n /∈ dom(f−1

s ), then we do the following.

Let l be the largest number such that (∃i ∈ dom(f−1
s ))(d(βi, βn) = 2−l), and let

I := {i ∈ dom(f−1
s ) : d(βi, βn) = 2−l} 6= ∅.
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Find the least k ∈ N such that

k /∈ range(f−1
s ) and d(αf−1

s (i), αk) = 2−l for all i ∈ I.

Let fs+1 := fs ∪ {(k, n)}.

This ends the construction.

We will show by induction that for every s ∈ N, fs is an isometry and we can

find such a number k in the construction at stage s if s > 0.

Clearly, f0 = {(0, 0)} is an isometry. Now let s ∈ N. By the induction hypothesis,

fs is an isometry and we can such a number k in the construction at stage s if s > 0.

We consider the construction at stage s+ 1 as follows.

Case s+ 1 = 2n+ 1: We only need to consider when n /∈ dom(fs). Note that for

every i ∈ I, d(αi, αn) = 2−l, and so αi ↾ l = αn ↾ l. So for all i, j ∈ I, αi ↾ l = αj ↾ l,

and so d(αi, αj) ≤ 2−l. Thus, since I ⊆ dom(fs) and fs is an isometry, we have that

for all i, j ∈ I, d(βfs(i), βfs(j)) = d(αi, αj) ≤ 2−l, and so βfs(i) ↾ l = βfs(j) ↾ l. Also

note that I is finite because dom(fs) is finite. Thus, by Lemma 6.2.2, the set

V := {ρ ∈ NN : (∀i ∈ I)(d(βfs(i), ρ) = 2−l)}

is an infinite open set. So, since (βi)i∈N is dense in NN, {βi}i∈N ∩V is infinite. Hence,

since range(fs) is finite, there must be the least k ∈ N such that

k /∈ range(fs) and βk ∈ V, and so d(βfs(i), βk) = 2−l for all i ∈ I.
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Then we will define fs+1 := fs ∪ {(n, k)}.

Next, we show that fs+1 is an isometry. By the choice of k, we have that for all

i ∈ I, d(βfs+1(i), βfs+1(n)) = d(βfs(i), βk) = 2−l = d(αi, αn). Thus, since dom(fs+1) =

dom(fs) t {n} and fs is an isometry, it remains to show that for all j ∈ dom(fs) \ I,

d(βfs+1(j), βfs+1(n)) = d(αj, αn).

Let j ∈ dom(fs) \ I.. Then d(αj, αn) 6= 2−l. Since n /∈ dom(fs), j 6= n, and

so, since (αi)i∈N has no repetitions, αj 6= αn. By the maximality of l, we must have

d(αj, αn) = 2−m for some m < l. Since I 6= ∅, we can fix an i ∈ I. Then d(αn, αi) =

2−l < 2−m = d(αn, αj). Thus, by Lemma 6.2.3, d(αi, αj) = d(αn, αj) = 2−m. Since

i, j ∈ dom(fs) and fs is an isometry, we have

d(βfs+1(i), βfs+1(j)) = d(βfs(i), βfs(j)) = d(αi, αj) = 2−m.

Also, since i ∈ I, we have

d(βfs+1(i), βfs+1(n)) = 2−l < 2−m = d(βfs+1(i), βfs+1(j)).

Thus, by Lemma 6.2.3,

d(βfs+1(n), βfs+1(j)) = d(βfs+1(i), βfs+1(j)) = 2−m = d(αn, αj).

We have shown that for all j ∈ dom(fs) \ I, d(βfs+1(j), βfs+1(n)) = d(αj, αn).

Therefore, fs+1 is an isometry.

Case s+ 1 = 2n+ 2: We only need to consider when n /∈ dom(f−1
s ). By a similar
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argument as Case s+ 1 = 2n+ 1, there is the least k ∈ N such that

k /∈ range(f−1
s ) and d(αf−1

s (i), αk) = 2−l for all i ∈ I.

Since fs is an isometry, so is f−1
s . Then we can use a similar argument as Case

s+ 1 = 2n+ 1 to show that fs+1 is an isometry.

We conclude that f : N → N is a computable bijection such that

d(αi, αj) = d(βf(i), βf(j)) for all i, j ∈ N.

It follows that (αi)i∈N and (βi)i∈N are computably isometric. Therefore, NN is com-

putably categorical as a metric space.



Chapter 7

Spaces of Continuous Functions

For a compact metric spaceX, we consider the Polish metric space C(X) of continuous

real-valued functions on X, equipped with the pointwise supremum metric:

d(f, g) := sup
x∈X

|f(x)− g(x)|.

It is well-known that for any compact metric space X, the space C(X) is a Banach

space.

Recall that a Banach space is a complete normed vector space. We can write a

Banach space B as the tuple (B, d, 0,+, (r·)r∈Q), where B is the underlying set, d is

the metric induced by the norm, 0 denotes the additive identity (or zero), + denotes

the vector addition, and for each r ∈ Q, r· denotes the scalar multiplication by r.

The signature of Banach spaces consists of d, 0,+, (r·)r∈Q.
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7.1 The Space C[0, 1]

In this section, we provide several relevant results on Banach spaces and on C[0, 1]

due to Melnikov (see [11] and [12]). We will refer to these results when we consider

the space C(2N) in the next section.

Fact 7.1.1 (Melnikov [12]). Let B = (B, d, 0,+, (r·)r∈Q) be a Banach space. Suppose

(pi)i∈N is a computable presentation of (B, d) w.r.t. which + and (r·)r∈Q are uni-

formly computable, and (qi)i∈N is a computable presentation of (B, d) w.r.t. which 0

is computable. If (qi)i∈N is computably isometric to (pi)i∈N, then + and (r·)r∈Q are

uniformly computable w.r.t. (qi)i∈N.

Fact 7.1.2 (Melnikov [11]). In a computably separable Banach space, the operation

+ and d(·, ·) effectively determine the operations (r·)r∈Q, − and the zero element 0.

Definition 7.1.3 (Melnikov [11]). Two computable presentations A and B of a sepa-

rable metric space (M,d) are said to be limit equivalent if there is a total computable

function g : A×N → B of two arguments such that f(x) := lim
s→∞

g(x, s) is a surjective

isometry from A onto B, where the limit is taken with respect to the standard metric

on N (i.e. the sequence (g(x, s))s∈N is eventually stable on every x).

Definition 7.1.4 (Melnikov [11]). A computable presentation A of a separable metric

space (M,d) is rational-valued if d(x, y) ∈ Q for every x, y ∈ A, and the distance

function d is represented by a computable function of two arguments mapping each

pair of rational points (x, y) to the corresponding rational number d(x, y).

Theorem 7.1.5 (Melnikov [11]). Suppose A and B are two rational-valued com-

putable presentations on a separable metric space (M,d) which are not computably
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isometric. If A and B are limit equivalent, then (M,d) has infinitely many computable

presentations which are pairwise not computably isometric.

Theorem 7.1.6 (Melnikov [11]). There exist infinitely many computable presenta-

tions of (C[0, 1], d) which are pairwise not computably isometric. In particular, the

space C[0, 1] is not computably categorical as a metric space.

Theorem 7.1.7 (Melnikov [11]). The space C[0, 1] is not computably categorical as

a Banach space.

7.2 The Space C(2N)

Consider the Polish metric space C(2N) equipped with the pointwise supremum met-

ric:

d(f, g) := sup
X∈2N

|f(X)− g(X)|.

Since 2N is compact, C(2N) is a Banach space.

In this section, we modify Melnikov’s idea for proving that the space C[0, 1] is

computably categorical as a metric space and as a Banach space to prove the same

results for C(2N).

For each σ ∈ 2<N, JσK := {X ∈ 2N : σ ⊆ X} is the basic clopen set of 2N w.r.t.

σ. We define χσ : 2N → R by

χσ(X) = χJσK(X) =


1 if σ ⊆ X

0 if σ 6⊆ X
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Let D be the linear span of {χσ}σ∈2<N over Q, that is,

D :=

{
n∑
i=0

qiχσi : n ∈ N, σi ∈ 2<N, qi ∈ Q

}
.

We will call the elements of D the rational simple functions.

Note that each rational simple function can be written in the form
n∑
i=0

qiχσi where⊔n
i=0JσiK = 2N and qi ∈ Q.

Proposition 7.2.1. D is a countable dense subset of C(2N).

Proof. It is clear that D is countable. It is easy to see that D satisfies the following

conditions:

(1) f + g ∈ D for all f, g ∈ D.

(2) f · g ∈ D for all f, g ∈ D.

(3) qf ∈ D for all q ∈ Q and f ∈ D.

(4) D contains the constant function 1.

(5) D separates points, i.e. for every X,Y ∈ 2N with X 6= Y , there is an f ∈ D

such that f(X) 6= f(Y ).

Therefore, by the Stone-Weierstrass Theorem (see, e.g. [18]), D is dense in C(2N).

Let L := (li)i∈N be an effective list of all rational simple functions, without

repetition.

Proposition 7.2.2. L is a computable presentation of C(2N). Moreover, L is effec-

tively closed under + and ×. That is, there are computable functions f and g such
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that for every i, j ∈ N, we have

li + lj = lf(i,j) and li × lj = lg(i,j).

It follows that the operations + and × are computable w.r.t. L.

Proof. To show that L is a computable presentation of C(2N), we need to show that

d(li, lj) := sup
X∈2N

|li(X)− lj(X)| is a computable real uniformly in i and j.

Let i, j ∈ N. Then we can effectively find n,m ∈ N, qk, rl ∈ Q and σk, τl ∈ 2<N

such that

li =
n∑
k=0

qkχσk and lj =
m∑
l=0

rlχτl .

It is clear that

(∀σ ∈ 2<N)(∀X,Y ∈ 2N)(X ↾ |σ| = Y ↾ |σ| =⇒ χσ(X) = χσ(Y )).

Let N := max{|σk|, |τl| : k ∈ {0, . . . , n}, l ∈ {0, . . . ,m}}. Then

(∀X,Y ∈ 2N)(X ↾ N = Y ↾ N =⇒ (li(X) = li(Y ) ∧ lj(X) = lj(Y ))).

It follows that

d(li, lj) = max
σ∈2N

|li(σ⌢0N)− lj(σ
⌢0N)|.

Thus, since 2N = {σ ∈ 2<N : |σ| = N} is a finite set of strings, we can compute d(li, lj).

Note that d(li, lj) can be computed in this way uniformly in i and j. Therefore, L is

a computable presentation of C(2N).

Next, we show that L is effectively closed under + and ×. Let i, j ∈ N. Then
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we can effectively write li and lj as linear combinations of χσ as before. So we

can effectively write li and lj as linear combinations of χσ where σ ∈ 2N . Since

JσK∩ JτK = ∅ for every distinct σ, τ ∈ 2N , li and lj are constant on JσK for all σ ∈ 2N .

So we can compute the value of li + lj on JσK for each σ ∈ 2N , and write li + lj as

a linear combination of χσ where σ ∈ 2N . Hence we can effectively find a number

ni,j such that li + lj = lni,j
, and then let f(i, j) = ni,j. So f is computable and

li+ lj = lf(i,j) for all i, j ∈ N. Therefore, L is effectively closed under +. By the same

argument, L is also effectively closed under ×.

Note that 1 is a computable point w.r.t. L since it is a rational point of L. By

Proposition 7.2.2 and Fact 7.1.2, we have the following corollary.

Corollary 7.2.3. The constant functions 0 and 1, and the operations +,×, (r·)r∈Q

are uniformly computable w.r.t. L

Theorem 7.2.4. There exists a rational-valued computable presentation A = (fi)i∈N

of (C(2N), d) such that A is limit equivalent to L, the constant zero function 0 is

computable w.r.t. A, and the operation (1
2
·) : f 7→ 1

2
f is not computable w.r.t. A.

Proof. We use the idea of the proof of Theorem 7.1.6 (see Theorem 3.10 in [12]).

Fix an effective list (Ψe)e∈N of all Turing functionals of one argument. We build

a computable presentation A = (fi)i∈N of (C(2N), d) by constructing a computable

double sequence (fi,s)i,s∈N of rational simple functions in stages and let fi := lims fi,s.

At the end of stage s, we will have a finite collection f0,s, . . . , fn(s),s of rational simple

functions, where n(s) is a nondecreasing function in s.

We need the following properties:
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• fi := lims fi,s exists for every i.

• (fi)i∈N is dense in (C(2N), d).

• d(fi, fj) is computable uniformly in i, j.

• The zero function 0 is a computable point w.r.t (fi)i∈N.

• The operation (1
2
·) : f 7→ 1

2
f is not computable w.r.t. (fi)i∈N.

• A is limit equivalent to L.

To satisfy the above properties, we will construct (fi,s)i,s∈N that satisfies the

following conditions:

(1) For every i, there is an si such that fi,t = fi,si for every t ≥ si.

(2) For every j, there is a unique kj such that fkj = lj.

(3) For every s ∈ N and i, j ≤ n(s), d(fi,s, fj,s) = d(fi,s+1, fj,s+1).

(4) For every s, f0,s = 0.

(5) For every e, Ψe does not represent (1
2
·) in (fi)i∈N.

After the construction, we can define a map using condition (1) to show that A

is limit equivalent to L.

To ensure that the operation (1
2
·) is not computable w.r.t. (fi)i∈N, we diagonalize

against Ψe potentially witnessing the computability of (1
2
·) as follows. We choose a

basic open set Ue ⊆ 2N and a rational point fp. Whenever the value of Ψe on fp

becomes close to 1
2
fp on Ue in our current approximation (if ever), we change the

approximation so that Ψe on fp is far enough from 1
2
fp in the new approximation,
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and we will never change the approximation on Ue again. This will make Ψe on fp

too far from 1
2
fp, and so Ψe does not represent (1

2
·) in (fi)i∈N.

To satisfy condition (2), we will satisfy the Pj-requirements:

Pj : There is a unique kj such that fkj = lj.

To satisfy the Pj-requirements, we use the following Pj-strategies.

The Pj-strategy

At stage s + 1 = 2〈k, j〉 where k, j ∈ N: If lj is not among f0,s, . . . , fn(s),s, then

let fn(s)+1,v := lj for every v ≤ s+ 1.

This ends the Pj-strategy.

Note that the Pj-strategies guarantee that for every j ∈ N,

lj ∈ {fi,s : i ≤ n(s)} for infinitely many s ∈ N.

After the construction, we verify that, in fact, lj ∈ {fi,s : i ≤ n(s)} for cofinitely

many stages.

To make sure that (1
2
·) is not computable w.r.t. (fi)i∈N, we diagonalize against

Ψe so that Ψe does not represent (1
2
·) in (fi)i∈N for every e ∈ N. If Ψe represents (1

2
·)

in (fi)i∈N, then for every p ∈ N, since the constant sequence (fp, fp, . . . ) is a Cauchy

name of fp in (fi)i∈N, Ψ(fp,fp,... )
e enumerates a Cauchy name of 1

2
fp in (fi)i∈N.

Fix an effective list (Φe)e∈N of all partial computable functions of two arguments.
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By the s-m-n Theorem, there is a computable function α : N → N such that

Ψ(fp,fp,... )
e (n) = Φα(e)(p, n) for all e, p, n ∈ N.

So it is enough to make sure that for every e ∈ N, Φe does not represent (1
2
·) in

(fi)i∈N, i.e. there exists a p ∈ N such that (fΦe(p,n))n∈N is not a Cauchy name for 1
2
fp.

If Φe represents (1
2
·) in (fi)i∈N, then for every p ∈ N, (fΦe(p,n))n∈N is a Cauchy

name for 1
2
fp, and so

d(fΦe(p,n),
1

2
fp) ≤ 2−n for all n ∈ N.

Therefore, to ensure that Φe does not represent (1
2
·) in (fi)i∈N for every e ∈ N, it is

enough to satisfy the Ne-requirements:

Ne : (∃p)(∃n)(∀h)[Φe(p, n) ↓= h =⇒ d(fh,
1
2
fp) > 2−n].

Fix an effective list (Ue)e∈N of disjoint basic open sets of 2N, say Ue = JτeK where

τe ∈ 2<N. For example, we can let Ue := J1e0K for all e ∈ N. The strategy for each

Ne-requirement will act on its own basic open set Ue. This is to avoid any conflict

with our attempt to satisfy the Pj-requirements and to preserve distances.

For each e ∈ N, we let δe := 2−e−3 and we define a constant function ce ∈ C(2N)

by ce(X) = 2e+1 for all X ∈ 2N. The function ce will become our witness to satisfy

the Ne-requirement.

The Ne-strategy

(a) At stage t+ 1 = 2〈0, e〉+ 1 where e ∈ N:
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If the constant function ce is not already among f0,t, . . . , fn(t),t, then let fn(t)+1,v = ce

for every v ≤ t+ 1.

So, in any case, there exists a p ≤ n(t) + 1 such that fp,t+1 = ce = 2e+1.

We fix such p.

(b) At stage s+ 1 = 2〈k, e〉+ 1 where k > 0 and e ∈ N:

We consider the computation for Φe,s(p, e+ 3):

If Φe,s(p, e+ 3) ↑, then do nothing and go to the next stage.

If Φe,s(p, e+ 3) ↓= h, then we have the following cases:

Case 1. fh,s has not been defined so far (i.e. h > n(s)):

Do nothing and go to the next stage.

(The Pj-strategies will ensure that lim
s→∞

n(s) = ∞. So we will wait until the first stage

s′ + 1 > s+ 1 where h ≤ n(s′).)

Case 2. sup
X∈Ue

|fh,s(X)− 1
2
fp,s(X)| > 2−e−3 = δe:

Do nothing and stop the strategy.

(Note that we can compute sup
X∈Ue

|fh,s(X)− 1
2
fp,s(X)|) because fh,s and fp,s are rational

simple functions and Ue = JτeK.)
Case 3. sup

X∈Ue

|fh,s(X)− 1
2
fp,s(X)| ≤ 2−e−3 = δe:

We effectively find a basic open set V = JρeK ⊆ Ue, a point Y ∈ V , and a sequence

(f0,s+1, . . . , fn(s),s+1) of rational simple functions such that

• f0,s+1 = f0,s = 0 and fi,s+1 = fi,s on 2N \ V for all i ≤ n(s),

• for all i ≤ n(s), if fi,s ≤V 2e, then fi,s+1 = fi,s,

• d(fi,s+1, fj,s+1) = d(fi,s, fj,s) for all i, j ≤ n(s),
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• fp,s+1(Y ) = 2e.

(Here, f ≤V g means f(x) ≤ g(x) for all x ∈ V . Similarly for <V , >V ,=V , and ≥V .)

Stop the strategy.

The procedure for finding such V, Y and fi,s+1 is as follows. Since fi,s’s are

rational simple functions, we can effectively find a basic open set V = JρeK ⊆ Ue such

that fi,s is constant on V for all i ≤ n(s). This implies that for all i, j ≤ n(s), we

have fi,s <V fj,s or fi,s >V fj,s or fi,s =V fj,s. We let Y := ρ⌢e 0
N ∈ V .

Recall that we fixed p ≤ n(t) + 1 such that fp,t+1 = ce = 2e+1. Since the

value of fp,t+1 on Ue can be changed only by the Ne-strategy, and the Ne-strategy

never changes the approximations before this stage s+1, we must have that fp,s =Ue

fp,t+1 =Ue ce = 2e+1. In particular, fp,s(Y ) = 2e+1.

Let V0 := Jρ⌢e 0K and V1 := Jρ⌢e 1K. Then V = V0 t V1 and Y ∈ V0.

For each i ≤ n(s), define a rational simple function fi,s+1 as follows.

If fi,s ≤V 2e, then let fi,s+1 := fi,s.

If fi,s >V 2e, then let

fi,s+1(X) =


2e if X ∈ V0

fi,s(X) otherwise

This ends the Ne-strategy.

We need to show that V, Y and fi,s+1 satisfy the desired properties. It is clear

from the construction that f0,s = 0 <V 2e. So, by the procedure, we have f0,s+1 =
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f0,s = 0. It is clear from the procedure that fi,s+1 = fi,s on 2N \ V for all i ≤ n(s).

It is also clear that for all i ≤ n(s), if fi,s ≤V 2e, then fi,s+1 = fi,s, Recall that

fp,s =Ue 2
e+1. So fp,s =V 2e+1 >V 2e. Thus, by the procedure, we have fp,s+1 =V0 2

e,

in particular, fp,s+1(Y ) = 2e.

It remains to show that d(fi,s+1, fj,s+1) = d(fi,s, fj,s) for all i, j ≤ n(s). Let

i, j ≤ n(s). Let M := sup
X∈V

|fi,s(X) − fj,s(X)|. Since fi,s and fj,s are constant on V ,

we have that

sup
X∈V0

|fi,s(X)− fj,s(X)| =M = sup
X∈V1

|fi,s(X)− fj,s(X)|.

Note that fi,s+1 = fi,s and fj,s+1 = fj,s on 2N \ V0. So

sup
X∈2N\V0

|fi,s+1(X)− fj,s+1(X)| = sup
X∈2N\V0

|fi,s(X)− fj,s(X)| ≥M.

Hence d(fi,s, fj,s) = sup
X∈2N\V0

|fi,s(X) − fj,s(X)|. Now it is enough to show that

sup
X∈V0

|fi,s+1(X)− fj,s+1(X)| ≤M .

Case 1. fi,s >V 2e and fj,s >V 2e: Then fi,s+1 =V0 fj,s+1 =V0 2e, and so

sup
X∈V0

|fi,s+1(X)− fj,s+1(X)| = 0 ≤M .

Case 2. fi,s >V 2e and fj,s ≤V 2e: Then fi,s+1 =V0 2e <V0 fi,s and fj,s+1 = fj,s

Thus, for all X ∈ V0, we have fi,s+1(X)− fj,s+1(X) = 2e − fj,s ≥ 0, and so

|fi,s+1(X)− fj,s+1(X)| = 2e − fj,s(X) < fi,s(X)− fj,s(X) ≤M.

Hence sup
X∈V0

|fi,s+1(X)− fj,s+1(X)| ≤M .
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Case 3. fi,s ≤V 2e and fj,s >V 2e: Similar to Case 2.

From all cases, we have that sup
X∈V0

|fi,s+1(X)− fj,s+1(X)| ≤M . Therefore,

d(fi,s+1, fj,s+1) = sup
X∈2N\V0

|fi,s+1(X)−fj,s+1(X)| = sup
X∈2N\V0

|fi,s(X)−fj,s(X)| = d(fi,s, fj,s).

Construction

At stage 0: Let f0,0 := 0.

At even stage s+ 1 = 2〈k, j〉 > 0 where k, j ∈ N: Use the Pj-strategy.

At odd stage s+ 1 = 2〈k, e〉+ 1 where k, e ∈ N: Use the Ne-strategy.

At the end of stage s + 1: For each i ≤ n(s), if fi,s+1 has not been defined by

any strategies, then we let fi,s+1 := fi,s.

This ends the construction.

Verification

Our construction is effective because at each stage we have a finite collection of

rational simple functions and all questions we ask about these collections are effec-

tively decidable. Therefore, (fi,s)i,s∈N is a computable double sequence.

It is clear from the construction that

f0,s = f0,0 = 0 and d(fi,s, fj,s) = d(fi,s+1, fj,s+1) for all s ∈ N and i, j ≤ n(s).

That is, conditions (3) and (4) are satisfied. So f0 = lim
s→∞

f0,s = 0 and d(fi, fj) =

d(fi,s, fj,s) for all s ∈ N and i, j ≤ n(s). This implies that 0 is a computable point
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w.r.t. (fi)i∈N and d(fi, fj) is computable uniformly in i, j. Note that, since fi,s’s

are rational simple functions, we have d(fi, fj) ∈ Q for all i, j ∈ N, and so A is

rational-valued.

We remark that only the Ne-strategies can change an approximations (fi,s)s∈N

of (fi)i∈N in Case 3, and the change from Ne occurs within its own basic open set Ue,

which is disjoint from other basic open sets Uj where j 6= e. Also, each Ne-strategy

can change an approximations at most once.

Next, we show that condition (1) is satisfied. Let i ∈ N and let t be the first

stage at which fi gets its approximation, namely fi,t. Fix a C ∈ N large enough so

that ‖fi,t‖ = d(fi,t, 0) < 2C . By conditions (3) and (4), we have that for all i ∈ N and

s ≥ t,

‖fi,s‖ = d(fi,s, 0) = d(fi,s, f0,s) = d(fi,t, f0,t) = d(fi,t, 0) = ‖fi,t‖.

At each stage s + 1, the Ne-strategies can change an approximation of fi only if we

are in Case 3 in the Ne-strategies where fi,s >V 2e, in particular, ‖fi,s‖ > 2e. So

only an Ne-strategy where e < C can possibly change an approximation after stage

t. Since each Ne-strategy acts at most once, there is a stage s0 large enough so that

N0, . . . , NC−1 never act after stage s0. So the approximation of fi will eventually reach

its final value at or before stage s0, and so condition (1) is satisfied. In particular,

fi = lims fi,s exists for every i.

Next, we show that the Pj-requirements are satisfied. Let j ∈ N. Fix a C ∈ N

large enough so that ‖lj‖ < 2C . By the same argument as before, there is a stage

s0 after which N0, · · · , NC−1 no longer act, and so every approximation fi,s with

‖fi,s‖ < 2C and s > s0 will become stable. Thus, since the Pj-strategy guarantees
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that lj ∈ {fi,s : i ≤ n(s)} for infinitely many s ∈ N, there must be some s > s0 and

k ≤ n(s) such that lj = fk,s = fk. The uniqueness of k follows from the Pj-strategy

and the observation that for every s ∈ N and i, j ≤ n(s), fi,s+1 = fj,s+1 ⇐⇒ fi,s = fj,s.

Hence the Pj-requirements are met, and so condition (2) is satisfied. Therefore, since

(lj)j∈N is dense in (C(2N), d), so is (fi)i∈N.

Finally, to show that (1
2
·) is not computable w.r.t (fi)i∈N, it is enough to show

that (fi)i∈N satisfies the Ne-requirements:

Ne : (∃p)(∃n)(∀h)[Φe(p, n) ↓= h =⇒ d(fh,
1
2
fp) > 2−n].

Let e ∈ N. Choose n := e+3. So δe := 2−e−3 = 2−n. From (a) in the Ne-strategy,

there exists a p ≤ n(t) + 1 such that fp,t+1 = 2e+1, where t+ 1 = 2〈0, e〉+ 1.

Assume that Φe(p, n) ↓= h. Then Φe,s(p, n) ↓= h for some s ∈ N. So we will

eventually do Case 2 or Case 3 in the Ne-strategy at some stage s large enough.

If the Ne-strategy stops in Case 2, then sup
X∈Ue

|fh,s+1(X) − 1
2
fp,s+1(X)| > δe,

fh =Ue fh,s+1, and fp =Ue fp,s+1. So

d(fh,
1

2
fp) ≥ sup

X∈Ue

|fh(X)− 1

2
fp(X)| = sup

X∈Ue

|fh,s+1(X)− 1

2
fp,s+1(X)| > δe = 2−n.

If the Ne-strategy stops in Case 3, then sup
X∈Ue

|fh,s(X)− 1
2
fp,s(X)| ≤ δe, and there

exist a basic open set V ⊆ Ue and a point Y ∈ V such that fp,s+1(Y ) = 2e. Since

the approximation on Ue will never be changed again after the Ne-strategy acts, we

have that fp(Y ) = fp,s+1(Y ) = 2e and fh(Y ) = fh,s+1(Y ) = min{2e, fh,s(Y )}. Since
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sup
X∈Ue

|fh,s(X)− 1
2
fp,s(X)| ≤ δe, fp,s(Y ) = 2e+1 and Y ∈ V ⊆ Ue, we have

fh,s(Y ) ≥ 1

2
fp,s(Y )− δe = 2e − δe.

So fh(Y ) = fh,s+1(Y ) = min{2e, fh,s(Y )} ≥ 2e − δe. Hence

fh(Y )− 1

2
fp(Y ) = fh(Y )− 1

2
· 2e

≥ 2e − δe − 2e−1

= 2e−1 − δe

> δe. (∵ δe = 2−e−3 <
1

2
· 2e−1)

So d(fh, 12fp) > δe = 2−n. Therefore, the Ne-requirements are satisfied, and so (1
2
·) is

not computable w.r.t. (fi)i∈N.

Finally, we show that A := (fi)i∈N is limit equivalent to L = (lj)j∈N. Define

g : N × N → N by g(x, s) = the unique number such that fx,s = lg(x,s). Then g is

(total) computable. We think of g as a function g : A× N → L.

From condition (1), we have that for each x ∈ N, for all s ≥ sx, fx = fx,s = fx,sx ,

and so g(x, s) = g(x, sx). Hence lim
s→∞

g(x, s) = g(x, sx).

Define f : A → L by f(x) = lim
s→∞

g(x, s) = g(x, sx), i.e. f : fx 7→ lg(x,sx).

We claim that f : A → L is an isometry. To show that f is distance-preserving,

let x, y ∈ N. Then lg(x,sx) = fx,sx = fx and lg(y,sy) = fy,sy = fy. So d(fx, fy) =

d(lg(x,sx), lg(y,sy)) = d(lf(x), lf(y)). Therefore, f is distance-preserving. Thus, since

(lj)j∈N and (fi)i∈N have no repetitions, f is also injective.
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It remains to show that f is surjective. Let j ∈ N. By condition (2), there

is a unique kj ∈ N such that fkj = lj. Then lg(kj ,skj ) = fkj ,skj = fkj = lj. So

f(kj) = g(kj, skj) = j. Therefore, f is surjective.

We conclude that f : A → L is an isometry, and so A is limit equivalent to

L.

Theorem 7.2.5. There exist infinitely many computable presentations of (C(2N), d)

which are pairwise not computably isometric. In particular, the space C(2N) is not

computably categorical as a metric space.

Proof. By Fact 7.1.1 and Theorem 7.2.4, there exist two limit equivalent rational-

valued computable presentations on (C(2N), d) which are not computably isometric.

The theorem then follows from Theorem 7.1.5.

By Fact 7.1.2, we also have the following corollary.

Corollary 7.2.6. There is a computable presentation of (C(2N), d) in which + is not

computable.

Next, we show that C(2N) is not computably categorical as a Banach space.

Recall that the signature of Banach spaces consists of d, 0,+, (r·)r∈Q. By Fact 7.1.2,

we can assume that the signature of Banach spaces only contains +.

We will build a computable presentation A of (C(2N), d,+) that is not com-

putably isometric to the standard presentation L in the signature of Banach spaces.

Suppose that L is computably isometric to A via a computable Banach space isomor-

phism T : C(2N) → C(2N) w.r.t. L and A. By the Banach-Stone Theorem (see, e.g.
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[3], Theorem 2.1.1 on page 25), T must have the form

Tf(x) = h(x)f(ϕ(x)) for all x ∈ 2N and f ∈ C(2N),

where ϕ is a homeomorphism from 2N onto itself and h is a (real-valued) continuous

unimodular function on 2N (i.e. h ∈ C(2N) and |h(x)| = 1 for all x ∈ 2N). Since

the constant function 1 is a computable point w.r.t. L and T : C(2N) → C(2N) is a

computable map w.r.t. L and A, T (1) = h is a computable point w.r.t. A.

Let | · | denote the absolute value function | · | : f 7→ |f | from C(2N) into C(2N).

Then, since h is unimodular, |h| = 1. So, if the operation | · | is computable w.r.t. A,

then the constant function 1 is also computable w.r.t. A. Therefore, if we can build

A so that the operation | · | is computable w.r.t. A, but the constant function 1 is

not computable w.r.t. A, then we will have that A is not computably isometric to L,

and so C(2N) is not computably categorical as a Banach space.

Theorem 7.2.7. There is a computable presentation A = (fi)i∈N of (C(2N), d,+)

such that the operation | · | is computable w.r.t. A, but the constant function 1 is not

computable w.r.t. A.

Proof. We use the idea of the proof of Theorem 7.1.7 (see Theorem 4.2 in [12]).

Fix an effective list (Φe)e∈N of all partial computable functions of one argument.

We build a computable presentation A = (fi)i∈N of (C(2N), d) by constructing a

computable double sequence (fi,s)i,s∈N of rational simple functions in stages and then

let fi := lims fi,s. At the end of stage s, we will have a finite collection f0,s, . . . , fn(s),s

of rational simple functions, where n(s) is a nondecreasing function in s.
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We need the following properties:

• fi := lims fi,s exists for every i.

• (fi)i∈N is dense in (C(2N), d).

• d(fi, fj) is computable uniformly in i, j.

• + and | · | are computable w.r.t. (fi)i∈N.

• The constant function 1 is not a computable point w.r.t (fi)i∈N.

To satisfy the above properties, we will construct (fi,s)i,s∈N that satisfies the

following conditions:

(1) For every i, lims fi,s exists.

(2) For every j and e, there is some k such that d(fk, lj) ≤ 2−e.

(3) For every s ∈ N and i, j ≤ n(s), d(fi,s, fj,s) = d(fi,s+1, fj,s+1).

(4) For every s ∈ N and i, j, k ≤ n(s), fi,s + fj,s = fk,s ⇒ fi,s+1 + fj,s+1 = fk,s+1.

(5) For every s ∈ N and i, k ≤ n(s), |fi,s| = fk,s ⇒ |fi,s+1| = fk,s+1.

(6) For every e, Φe is not a Cauchy name of the constant function 1 in (fi)i∈N.

To ensure that condition (2) is satisfied and the operations + and | · | are com-

putable, we will implement at odd stages a strategy similar to the Pj-strategy in the

proof of Theorem 7.2.4.

Recall that a point in a computable metric space is computable if it has a com-

putable Cauchy name. To make sure that the constant function 1 is not computable
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w.r.t. (fi)i∈N, we diagonalize against Φe so that Φe is not a Cauchy name of 1 in

(fi)i∈N for every e ∈ N. That is, we want to satisfy condition (6).

If Φe is a Cauchy name of 1, then Φe is total and d(fΦe(n), 1) ≤ 2−n for all n ∈ N.

Therefore, to ensure that 1 is not a computable point w.r.t. (fi)i∈N, it is enough to

satisfy the Ne-requirements:

Ne : (∃n)(∀h)[Φe(n) ↓= h =⇒ d(fh, 1) > 2−n].

Fix an effective list (Ue)e∈N of disjoint basic open sets of 2N, say Ue = JτeK where

τe ∈ 2<N. For each e ∈ N, let δe := 2−e−2.

The Ne-strategy

Wait until a stage s+1 = 2〈k, e〉+2 where k, e ∈ N such that Φe,s(e+2) converges

to a natural number h ≤ n(s). Then we have the following cases:

Case 1. sup
X∈Ue

|fh,s(X)− 1| > 2−e−2 = δe:

Do nothing and stop the strategy.

Case 2. sup
X∈Ue

|fh,s(X)− 1| ≤ 2−e−2 = δe:

Then for all X ∈ Ue, |fh,s(X)| ≥ 1−|fh,s(X)−1| ≥ 1−δe > 0. Since fi,s’s are rational

simple functions, we can effectively find a basic open set V = JρeK ⊆ Ue such that fi,s

is constant on V for all i ≤ n(s). Let V0 := Jρ⌢e 0K, V1 := Jρ⌢e 1K and Y := ρ⌢e 0
N ∈ V0.

Then V = V0 t V1 and Y ∈ V0. For each i ≤ n(s), define a rational simple function

fi,s+1 by

fi,s+1(X) =


(1− 2−e−1)fi,s(X) = (1− 2−e−1)fi,s(Y ) if X ∈ V0

fi,s(X) if X ∈ 2N \ V0
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Stop the strategy.

This ends the Ne-strategy.

From the Ne-strategy, it is clear that for all i ≤ n(s), fi,s+1 = fi,s on 2N \ V0,

fh,s+1(Y ) = (1−2−e−1)fh,s(Y ), and d(fi,s, fi,s+1) = 2−e−1|fi,s(Y )| ≤ 2−e−1‖fi,s‖. Note

that for all i ≤ n(s), |fi,s+1(X)| = (1 − 2−e−1)|fi,s(X)| ≤ |fi,s(X)| for all X ∈ V0,

and so ‖fi,s+1‖ ≤ ‖fi,s‖. It is also clear from the definition of fi,s+1 that for every

i, j, k ≤ n(s),

• fi,s + fj,s = fk,s ⇒ fi,s+1 + fj,s+1 = fk,s+1,

• |fi,s| = fk,s ⇒ |fi,s+1| = fk,s+1.

We claim that d(fi,s+1, fj,s+1) = d(fi,s, fj,s) for all i, j ≤ n(s). Let i, j ≤ n(s).

Let M := sup
X∈V

|fi,s(X)− fj,s(X)|. Since fi,s and fj,s are constant on V , we have that

sup
X∈V0

|fi,s(X)− fj,s(X)| =M = sup
X∈V1

|fi,s(X)− fj,s(X)|.

So d(fi,s, fj,s) = sup
X∈2N\V0

|fi,s(X) − fj,s(X)|. Recall that, on 2N \ V0, fi,s+1 = fi,s and

fj,s+1 = fj,s. Hence

sup
X∈2N\V0

|fi,s+1(X)− fj,s+1(X)| = sup
X∈2N\V0

|fi,s(X)− fj,s(X)| ≥M.

Note that for every X ∈ V0,

|fi,s+1(X)− fj,s+1(X)| = |(1− 2−e−1)fi,s(X)− (1− 2−e−1)fj,s(X)|

= (1− 2−e−1)|fi,s(X)− fj,s(X)|

≤ |fi,s(X)− fj,s(X)|
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≤M.

So sup
X∈V0

|fi,s+1(X)− fj,s+1(X)| ≤M . Therefore,

d(fi,s+1, fj,s+1) = sup
X∈2N\V0

|fi,s+1(X)−fj,s+1(X)| = sup
X∈2N\V0

|fi,s(X)−fj,s(X)| = d(fi,s, fj,s).

We conclude that the operations d(·, ·), +, and | · | are preserved under the action

of the Ne-strategies.

Construction

At stage 0: Let f0,0 := 0.

At odd stage s+ 1 = 2〈p, q, r, e〉+ 1 where p, q, r, e ∈ N and r = 〈r0, r1〉:

We let

j =


p if q ≡ 0(mod 3)

a number such that lj = fr0,s + fr1,s if q ≡ 1(mod 3)

a number such that lj = |fr,s| if q ≡ 2(mod 3)

If lj is not among (fi,s)i≤n(s), we let fn(s)+1,v := lj for all v ≤ s+ 1.

At even stage s+ 1 = 2〈k, e〉+ 2 where k, e ∈ N: Use the Ne-strategy.

At the end of stage s + 1: For each i ≤ n(s), if fi,s+1 has not been defined, we

let fi,s+1 := fi,s.

This ends the construction.

Verification

Our construction is effective because at each stage we have a finite collection
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of rational simple functions, and all questions we ask about these collections are

effectively decidable. Therefore, (fi,s)i,s∈N is a computable double sequence.

We remark that only the Ne-strategies can change an approximation (fi,s)s∈N of

(fi)i∈N in Case 2, and the change from Ne occurs within its own basic open set Ue,

which is disjoint from other basic open sets Uj where j 6= e. Also, each Ne-strategy

can change an approximations at most once, and if an Ne-strategy acts at some stage

s, then d(fi,s, fi,s+1) ≤ 2−e−1‖fi,s‖ and ‖fi,s+1‖ ≤ ‖fi,s‖ for all i ≤ n(s).

Next, we show that conditions (1) and (2) are satisfied. By the above remark,

we have that for every e, there is a stage se such that the strategies N0, . . . , Ne−1

never act at or after stage se. For each i ∈ N, let ti be the first stage at which fi

gets its approximation, namely fi,ti , and let Mi := ‖fi,ti‖. It follows that for every

i, e, s ∈ N, if s ≥ se and i ≤ n(s), then for every u, v ≥ max{s, ti}, d(fi,u, fi,v) ≤

2−e‖fi,v‖ ≤ 2−eMi. This implies that for every i ∈ N, (fi,s)s∈N is a Cauchy sequence,

and so lim
s→∞

fi,s exists, that is, condition (1) is satisfied. To show that condition (2) is

satisfied, let j, e ∈ N and let e′ ∈ N be large enough so that 2−e
′‖lj‖ < 2−e. Consider

a stage of the form s′+1 = 2〈j, 3q, r,m〉+1 ≥ se′ where q, r,m ∈ N. The construction

at this stage ensures that lj = fk,s′+1 for some k ≤ n(s′ + 1). Since s′ + 1 ≥ se′ , we

have that d(fk,s, fk,s′+1) ≤ 2−e
′‖fk,s′+1‖ = 2−e

′‖lj‖ for every s ≥ s′ + 1. So

d(fk, lj) = d( lim
s→∞

fk,s, fk,s′+1) ≤ 2−e
′‖lj‖ < 2−e.

Therefore, condition (2) is satisfied. Then condition (2) and the density of (lj)j∈N in

C(2N) implies that (fi)i∈N is dense in C(2N).

Since the operations d(·, ·) is preserved under the action of the Ne-strategies, we
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have

d(fi,s, fj,s) = d(fi,s+1, fj,s+1) for all s ∈ N and i, j ≤ n(s).

That is, condition (3) is satisfied. Hence d(fi, fj) = d(fi,s, fj,s) for all s ∈ N and

i, j ≤ n(s), and so d(fi, fj) is computable uniformly in i, j.

Since the operations + and |·| are preserved under the action of the Ne-strategies,

we have that conditions (4) and (5) are satisfied. To see why this is true, let i, j ∈ N

and let s be large enough so that fi,s and fj,s are both defined (i.e. i, j ≤ n(s)), and

let p be such that fi,s + fj,s = lp. Then the construction at odd stages ensures that

fi+fj must receive a definition at or before stage s′ := 2〈p, 3s+1, 〈i, j〉, e〉+1 > s+1

where e ∈ N. That is, at the end of stage s′, we will have fi,s′ + fj,s′ = fk,s′ for

some k ≤ n(s′), and so, by condition (4), we have that fi + fj = fk. Therefore, +

is computable w.r.t. (fi)i∈N. Similarly, condition (5) implies that | · | is computable

w.r.t. (fi)i∈N.

It remains to show that (fi)i∈N satisfies the Ne-requirements:

Ne : (∃n)(∀h)[Φe(n) ↓= h =⇒ d(fh, 1) > 2−n].

Let e ∈ N and choose n := e + 2. Then δe = 2−e−2 = 2−n. Assume that

Φe(n) ↓= h. Then Φe,s(n) ↓= h for some s ∈ N. So we will eventually do Case 1 or

Case 2 in the Ne-strategy at some stage s large enough.

If the Ne-strategy stops in Case 1, then sup
X∈Ue

|fh,s+1(X) − 1| > δe and

fh =Ue fh,s+1. So

d(fh, 1) ≥ sup
X∈Ue

|fh(X)− 1| = sup
X∈Ue

|fh,s+1(X)− 1| > δe = 2−n.
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If the Ne-strategy stops in Case 2, then sup
X∈Ue

|fh,s(X)− 1| ≤ δe and there exist a

basic open set V ⊆ Ue and a point Y ∈ V such that fh,s+1(Y ) = (1− 2−e−1)fh,s(Y ).

Since the approximation on Ue will never be changed again after the Ne-strategy

acts, we have that fh(Y ) = fh,s+1(Y ) = (1 − 2−e−1)fh,s(Y ). Since Y ∈ V ⊆ Ue and

sup
X∈Ue

|fh,s(X)− 1| ≤ δe, we have fh,s(Y ) ≤ 1 + δe. Thus, since 1− 2−e−1 > 0, we have

fh(Y ) = fh,s+1(Y ) = (1− 2−e−1)fh,s(Y )

≤ (1− 2−e−1)(1 + δe)

= (1− 2−e−1)(1 + 2−e−2)

= 1− 2−e−2 − 2−e−1 · 2−e−2

< 1− 2−e−2.

So d(fh, 1) ≥ |fh(Y )−1| > 2−e−2 = 2−n. Therefore, the Ne-requirements are satisfied,

and so the constant function 1 is not computable w.r.t. (fi)i∈N.

This completes the proof of Theorem 7.2.7.

By the discussion before Theorem 7.2.7, we have the following theorem.

Theorem 7.2.8. The space (C(2N), d,+) is not computably categorical. Equivalently,

C(2N) is not computably categorical as a Banach space.
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