Computability Theory and the Game Cops and

Robbers on Graphs

Alexa McLeod

Department of Mathematics
University of Connecticut

May 2022

Acknowledgements

I would like to thank my thesis advisor, Dr. Reed Solomon, for his patience and
guidance throughout my research process. Not only has he helped me learn more
about graph and computability theory, he has served as a great role model and advi-

SOr.

Introduction
Do you remember playing the game ”cops and robbers” as a child? Now, imagine
the game on graphs. Every player can only move one space for each of their turns.
We can see the game being played below. We will use a R to represent the robber

and a C' to represent the cop.

Start Positions:

) /Ul\c
1;4/ \U5 'Uﬁ/ \’U7
— T

R

Cop’s First Move:

/\
/\ /\
T O

R

Robbers’ First Move:

/\
/\ /\
i P O

Ug

Cop’s Second Move:

/\
N\
L

Us

Robbers’ Second Move:

R/Ul\C’
1;4/ \1;5 'Uﬁ/ \’U7
\ /

Ug

Cop’s Third Move:

/\
/\ /\
T

Ug

Robbers’ Third Move:

. / C\R
1;4/ \1;5 'Uﬁ/ \’U7
\ /

Ug

Cop’s Third Move:

/Ul\C/R
N\, N

— "~

Ug

We can see that the cop wins at this point because it is on the same point as the
robber. The robber could have better avoided the cop by moving to vs instead of
vz on his third move. In some graphs, the robber can always win if he plays with a
particular strategy. We call these graphs robber-win. Graphs that can always be won
by the cop if she plays correctly are called cop-win. We can also play with multiple
cops. The cop number is the minimum number of cops required to win on a graph
for any way the robber moves.

We can consider programs that determine the way a cop moves. These programs
can be thought of as a cop’s strategy. Rachel Stahl found a computable cop-win graph
such that no cop strategy is computable. In this paper, we will find a computable cop-
win graph such that no there is computable stategy to win for n-cops and infinitely

many cops.

Introducing Graphs
Definition: A graph G consists of

(1) A nonempty set of vertices, which we will denote V (G)

(2) A binary edge relation on V(G), denoted by E(G)

We will denote an edge from vertex z; to vertex x, by (z1,z3). One can see from

this notation then that E(G) C V(G) x V(G). A graph G is reflexive if for each

vertex € V(G), an edge from z to z exists or that (z,z) € E(G). A graph G is
undirected if E(G) is symmetric, meaning that if (z,y) € E(G) for z,y € V(G), then
(y,z) € E(G). In this case, we can say that (z,y) = (y,z). If a graph is directed,
meaning that (z,y) € E(G) does not imply (y,z) € E(G), there will be an arrow on
the edges showing their direction. For the purposes of this paper, we will be working

with only reflexive and undirected graphs.

Example: Let G; be the graph shown below. It consists consists of the vertex set
V(G:) = {a,b,c,d}. For ease of notation, we will list only the nonreflexive and one

from each pair of symmetric edges. Thus, the edge set is F(G,) = {(a,b), (a,c), (¢,d)}.

G1

The index of a vertex z in a graph G is the number of distinct edges (z,y) where
y € V(G) and z # y. For example, in the graph shown above, the index of vertex a
is 2. For z,y € V(G), we say z and y are neighbors if (z,y) € E(G).

For z1, z, € V(G), a walk from z; to z, is an ordered set of vertices (z1,z2,...,Zx)
such that any two consecutive vertices are adjacent. For z,z, € V(G), a path from
x; to x, is walk from z; to z, such that no vertex appears twice. We will denote
this as an (zy, z,)-path. We can notice that all paths are walks, but not all walks are

paths.

Example: In G, shown below, an example of a walk is (a, ¢, d, ¢, b) and an example

of a path is (a, b, c,d).

G2

The length of a path is the number of edges it uses. In G, the path (a,b, ¢, d) has
a length of 3. The distance between two points z,y € G is the length of the shortest

(z,y)-path. In G, the distance between any two distinct vertices is 1.

Definition: A subgraph H of G is a graph such that V(H) C V(G) and E(H) C
E(G). For example, G; is a subgraph of G,. An induced subgraph H of G is a
subgraph of G such that if u,v € V(H) and (u,v) € E(G), then (u,v) € H.

For v € V(G), we define G — {v} to be the induced subgraph of G with all points
in G except for v. In other words, v and all of its edges are taken out of G. For

example, G2 — {a} is shown below.

Gy — {a}

Types of Graphs

We will be working with both infinite and finite graphs. If a graph G is infinite,
the vertex set V(@) is of infinite size. A graph G is locally finite if the index of every
point is finite. We note that infinite graphs can be locally finite and that all finite
graphs are locally finite.

A straight line path of length n is a finite graph with n vertices such that n — 2
of the vertices have an index of 2 and the 2 end vertices have an index of 1. These

graphs are of the form shown below.

UV — Uy —VUg— --- —Up

A circle or cycle of length n is a finite graph with n vertices such that each vertex

is of index 2. By relabeling, these graphs can be depicted as follows.

U1

Definition: If for all z,y € V(G), (z,y) € E(G), we call G a complete graph. In

other words, for a complete graph G, E(G) = V(G) x V(G).
Corollary: If a graph G is locally finite and complete, then it must be a finite graph.

Proof. Suppose for the purpose of contradiction that G is infinite. Since G is complete,
z € V(G) must share an edge with all other points in G. Since G is infinite, this
would mean z shares an edge with infinitely many points. Thus, z does not have a
finite index, which contradicts G being locally finite. Therefore, G must be finite.

O

An infinite ray, shown below, is an infinite graph where exactly 1 point has an

index of 1 and all of the other points have an index of 2.

vV —Vg — Vg — «..

An infinite 2-way ray, shown below, consists of infinitely many points, all with an

index of 2.

¢+ — V] — Vg — Vg — -

Definition: A graph G is connected if for all z,y € V(G), there exists a path from
T to y. A cut vertex is a vertex v € v(G) such that G — {v} is not connected.
A tree is a connected graph G where no subgraph is a cycle. These can be infinite

or finite. A tree is shown below.

/

Uy

N

U7

Ug/vl \’Ug
\,

In the tree graph above, we can see that vy, vy, and vy are all cut vertices, but vy,

vs, Ug, and v7 are not cut vertices.

The Game of Cops of Robbers

The game of cops and robbers consists of n + 1 players for some positive integer n
where there are n cops and 1 robber. To start, we will learn about the rules of the

game when there is only 1 cop on a graph G.

Game Procedure:

(1) The cop picks a vertex in G to start
(2) The robber picks a vertex in G to start
(3) The players take turns moving from their current vertex to any neighbor of

the vertex.

Since G is assumed to be undirected and reflexive, the players can move along edges
in any direction and use their turn to remain at their current vertex.
A cop wins the game if she moves onto the same vertex as the robber. The robber

wins the game if the cop never moves onto the same vertex as him.

Example: We can show the game on graph G, shown below.

Now, we will represent the placement of the robber with R and that of the cop

with C.
Start positions:

R——1b

Cop’s first move:

Robber’s first move:

a—R

For the robber’s second move, he will stay at vertex b, so we are now onto the cop’s

move.

Cop’s second move:

From this point, the cop can win because the robber has nowhere to go and the
cop is at neighbor of the robber’s location.

For any graph G, either the cop can win if she plays carefully no matter what the
robber does or the robber can win if he plays carefully no matter what the cop does.
With this information, we classify a graph as either being cop-win or robber-win. A
graph that can be won by the cop no matter how the robber plays is classified as
cop-win. A graph that can be won by the robber no matter how the cop plays is

classified as robber-win.

Example: We can see that the 4-cycle graph below is robber win because the robber

can always move to stay 2 places further from the cop.

Start Position:

C b

d

R

Cop’s First Move:
C

a

R

Robber’s First Move:
a C

R

Cop’s Second Move:
b

a

R

C

Robber’s Second Move:
R b

C

We can see how this pattern can continue and how the robber can always move to

stay 2 edges away from the cop.

Similarly, for any integer n > 4, an n-cycle graph is robber win. We can also see
that if a graph is disconnected, it is automatically robber-win because the robber can
start the game at a node disconnected from the cop’s start position. Then, there is
no path between the cop and robber, so there is no possible way for the cop to win.
Since it is clear that all disconnected graphs are robber-win, we will only be focused
on studying connected graphs.

Although the cop can start from any position, designating a start position does not
change the nature of the game. Suppose that we designate a start position, vy. Since
we can assume the graph is connected, there must exists a (vy, v)-path for any other
vertex v in the graph. Thus, the cop can move to v in her first several moves. Thus,

the game is not changed by designating a start position for the cop.

Cops of Robbers With Multiple Cops

The game can also be played with more than 1 cop. Similar to the original game,
every player starts at a vertex and takes turns moving to neighboring vertices of their

original vertices.

Definition: For a finite graph G, the cop number of G is the least number of cops
required to make G cop-win.
Example: We can see that a 4- cycle graph has a cop number of 2.

Start Position:

U1

N

Ch

N

Then, we can see that the robber is cornered and Cop 1 can win on her next turn.
Similarly, any n-cycle graph for any integer n > 4 has a cop number of 2 because
the cops can close in on the robber from both sides. We can also see that the cops

can start from a fixed vertex because they can still use their moves to close in on the

robber.

Computers use a program and an input of information to either give an output or
to never stop running and not give any information. We can think of a computer as a
function U which has the input of a computer program e and an input z € N. Then,

the function will either give an output y € N or it will diverge, meaning that it will

Cop 1’s First Move:

C
/ 1\
R U2
\Ual — (9

Cop 2’s First Move:

C
/ 1\
R U2
Co— ’Us/

Computability Theory

run forever. This function is shown below.

Ule,z) —

Y

diverges if the function never halts

if the function halts

We can also write this function as ®.(z) where e represents the program code and z
represents the input. Each function ®, is called partial computable because it might
diverge on some inputs. A computable function ®, converges (i.e. gives an output)
on all inputs.

We can assume that ¢, works on finite sequences as well as numbers. We can
use the labels V(G) = {vy,vs,...,v,} to describe how players in the game of cops
and robbers move. For example, the sequence (3,5, 6,2,4,3) indicates that the cop
started on v3 while the robber started on vs. Then, the cop moved to v and the
robber moved to vy. For her third turn, the cop moved to vs. For his third turn, the
robber stayed at v,. For the game to be played in this manner, we can see that edges

(v3,v6), (vg,06), and (vq,vs) must all exist.

Computability Findings

Computability With Finitely Many Cops

A cop strategy on a graph G is a function f : N x N x N — N that tells the
cop how to move. We can let o represent the sequence of moves coded by a natural
number that tells us how the players have moved thus far. Then, we can say the
cop’s current position is at v; and the robber is at v;. Then, f(o,v;,v;) is the index
of where the cop should move to. If the output of f describes a legal move in the
game then it is a cop strategy. If f is a total computable function, then we say it is
a computable cop strategy.

We can also define a cop strategy for n-cops similarly. We can have a function

f : N*2 — N. Let o represent the history of moves of the players thus far,

1, ..., Cn be the locations of the cops and let r be the location of the robber. Then,
flo,er, ... en,m) = (é1,...,¢,) tells us that cop ¢ should move from ¢; to é; on this
turn. If the output of f describes legal moves in the game, then it is a n-cop strategy.

If f is a total computable function, then we say it is a computable n-cop strategy.

Theorem: There ezists a computable graph G that can be won with n computable
cops, such that no winning strategqy exists with n — 1 computable cops and 1 non-

computable cop can win.

Proof. To start, G will consist of a root node A and have infinitely many countable
sections for the graph. We can assume that the cops start on the A node. We will

defeat each computable function ®. as a computable n — 1 cop strategy.
A
:BU :I:l N I

We will expand G by building subgraphs off of each node z¢. These subgraphs will
be called the e-sections of graph and are disjoint. The e-section of the graph can only
be accessed through the ¢ node, so each z° is a cut vertex.

Each e-section of the graph should start with the following configuration. We can

let the robber start at the node af for some e-section of the graph.

e
ay

|
&37 c®
| /
¢

We will build the e-section of the graph by simulating how the partial computable
function ®,. controls the n — 1 cops when the robber starts at af. The function ®,
uses the positions of the robber and the cops to give an output telling where to move
the n — 1 cops. If ®, moves the n — 1 cops into a position from which they could win
in the next round, meaning that the cops are moved to a node which is a neighbor of
the node that robber is at, we will expand the e-section to give the robber an escape
route. This escape route will be built in such a way that n computable cops can win
and 1 non-computable cop can win.

Expanding the E-Section

For ease of notation, we will drop the superscript on all points in the “e-section”
of the graph throughout the construction of the graph. Consider @, acting on the
initial cop position A and the initial robber position at a;. We check if ®, moves a
cop to a neighbor of a;. Thus, we continue to watch ®, while keeping the robber at
a, until a cop is moved to either ay or c. If not, we take no action for ®,.. If so, we

add vertices az, y11, Y12, . . . Y1n With connections from as and ;7 shown below.

We add edges from each y;; in a symmetric way. For all i € {1,...,n}, yy; is
connected to a,, as, x., and ¢, but we will only show the connections to 1, for

simplification. If we have j # i, then yy; is not connected to ;.

After expanding GG, we return to computing ®. to simulate how it would move the
cops. At least one of the cops just moved to either ay or ¢ while the robber is at a;.
The robber will move to a;. Continue to compute the trajectory of the the cops. If
the cops do not move within one space of the robber, the robber should stay at a,.

If a cop does move within one space of the robber, to either ai, yi1,%12,. .., Yin,
then we will expand the graph by adding vertices as, yo1, Y22, . . - Y2,. Since @, only
controls n — 1 cops, we know that at least one y;; does not have a cop at it. We will
name this point z;. Since yi; is symmetric, we can assume without loss of generality
that y;; = 2. Then, the graph will be expanded with edges shown for g,,. For clarity,

we will only show the new edges.

a3 \

az Y21

a1 c / Y22
21 .

Qo
Y12

I Yon

Yin

Once again, we add edges so each yo; is symmetric. For all i € {1,...,n}, yo is
connected to ay, as, ¢, z;, and x.. We also have that if y;; = 2, y1; is connected to
az and if 7 # j, then y,; is not connected to as.

After expanding G, we continue computing @, to simulate the game. Recall that

®, moved at least one cop to either some y;; # 2; or a;. We move the robber to

a3 and continue to compute ®.. Then, the closest cop must be two spaces from the
robber because a3 is only connected to ay and z; # ¥y, if a cop is at yi;.

We leave the robber at a3 until a cop moves within one space of the robber. Suppose
that a cop does move within one space of the robber. This would mean that a cop
moved to either z;, as, or yy; for 2 = 1,2,...,n. There must be at least one y,; that
does not have a cop at it. We will call this point z,. Without loss of generality,
assume that yo; = z5. We will expand the graph by adding ys1,...,¥ys., and a4 as
follows. Once again, we will only show the new edges and the connections to ys1

represent all the connections to every ys;.

ay \

as Ya1
/ Y3

Z9 .

as
ay c yén
Yoz .
ag :
T
Yan
Yin
For all i € {1,...,n}, ys; is connected to as, a4, ¢, z2, and z. We also have that z;

is connected to a4, but no other node of the form y,; is connected to a,.
In general, for £ € N, ax,, is connected to ay, zp_1, and y; for all i = 1,2... n.
The robber stays at ay,. If ®, moves a cop to ax, zx_1, or yx;, the graph is expanded

by adding aj.s and yx1 ;. We set z; to be the a node of the form y;,; that does not

have a cop. We add edges from a;,; and z; to ar,o. We build an edge from each
Yk+1,i YO Qpy1, Apya, ¢, T, and z.

In the end, the e-section will either be finite or infinite. If the e-section is finite,
it will consist of z, ¢, ag, a1, aj;1, and y;1,... 9, for 1 < 1 < k. If the e-section is
infinite, it will consist of z, ¢, b, ag, a1, a;41, and y;1, ...y, for ¢ > 1.

This completes the description of the construction of the graph. Now, we will check
that G cannot be won with n — 1 computable, but can be won with n computable
cops or 1 non-computable cop. Moving forward, we will refer to the points a4, ..., a;
as the vertical segment of the e-section and the points ¢, and y;; for j € [1,7— 1] and
k € [1,n] as the horizontal section. Note that z is connected to every point in the

horizontal section.

Why Can’t n-1 Cops Following a Computable Strategy Win?
If n — 1 cops follow the strategy given by ®., they will be unable to win if the

robber starts at af and moves up the vertical segment whenever possible.

Why Can n Cops Following a Computable Strategy Win?

Suppose that n cops start at A. We can assume the robbers start in an e-section
because if the robber starts at A, he loses.

All cops move to the z. node. If the robber is in the horizontal section (c., or ¥i;),
then one of the cops can move directly there and win.

Now, assume that the robber is on the vertical segment, meaning that he is at a;
for i« > 1. Then, the cops can move to y(i_11,---¥Yi-1)»- Then, one of the cops is at

zi—1. We know a; is connected to a;_1, @it1, Zi—2, Yi-1)1s- - Yi-1)ns Yils - - - Yin- We

know that z;_; is also connected to a;y1, @;—1, 2i—2, Yi1, - - - Yin, S0 if the robber moves

to any spot that doesn’t already have a cop, the cop at z;_; can win.

Why Can One Non-Computable Cop Win?

The cop can start at A\. Suppose the robber is in the e-section of the graph. The
cop moves to z..

If the robber moves to one of the nodes in the horizontal section (c., or y;;), then
the cop can move directly there and win on her next turn.

If the robber is at some a;, the cop can move to z;—;. If the robber moves to a;;1,
@i—1, Zi—2, Yil, . - . Yin, the cop can move directly there and win, as previously stated.
The only other possible move is for the cop to go to y(—1),. Then, the cop can move
to z;_s. The robber can either go to z, z;_», a;_1, or a;. In any of those cases, the

cop can win on its next turn, so one non-computable cop can win.

Computability With Infinitely Many Cops

We can see that if a graph is countably infinite, infinitely many cops can always
win by just having a cop start at each vertex. The robber, then, is forced to share a
vertex with one of the cops, so the cops win. Thus, we will require all infinitely many
cops to start at a single vertex (which we will denote \).

Recall that in the finite version of the game with n-cops, a strategy was a function
® : N*™2 — N that computed how to move the cops as a function of previous player
moves and current player positions. However, we have to treat a strategy for infinitely
many cops differently because we cannot code the location of infinitely many cops

by a single number. A strategy in the infinite case is a function ® : N> — N . We

should let o represent the positions of the robber in previous rounds. Let r represent

the current position of the robber. Then, for each vertex v € V(G),

1 if there is a cop at v
®:(o,r,v) —

0 if there is no cop at v
Once again, ® is a computable strategy if it respects the rules of the game. That

is, if no neighbor of v contains a cop, then ® cannot put a cop at v in the next round.

Theorem: There exists a computable graph G that can be won by one non-computable
cop, such that no winning strateqy exists with infinitely many computable cops starting

at a designated node .

Proof. To start, G, will consist of a root node A and have infinitely many countable
sections for the graph. We can assume that the cops start on the A node. We will
defeat the computable cops by using ® to check if the neighboring nodes of the node
with the robber have a cop at them. We can note that G is the same as the graph
Rachel Stahl constructed in her cop-win graph that cannot be won with a strategy up
to relabeling. We will show that this graph also can deflect a strategy for infinitely

many cops.

Each e-section of the graph should start consist of the following configuration. We

can let the robber start at the node af for some e-section of the graph.

ay

|

af—— b

-

:Ee.
Expanding the E-Section

For ease of notation, we will drop the superscript on all points in the e-section of

the graph throughout the construction of the graph. We use ®, to check if a cop
moves to a neighbor of the robber’s starting location at a;. Thus, we continue to

check @, until a cop is moved to either ay or c. If not, we take no action. If so, we

add vertices b, and a, as with connections shown.

o~

|
1)

N

ﬂ|n by
| /
T

We connect a, to a; and connect b, to all other points which are currently on the
graph (z, ag, a1, ay, and by).

After expanding GG, the robber moves to a; and we return to computing @, to check
if a cop goes to a neighbor of the robber’s new position. At least one of the cops just
moved to either ag or b;. If the cops do not move within one space of the robber, the
robber should stay at as.

If a cop does move within one space of the robber, to either a; or by, then we
will expand the graph by adding vertices a3, and b3 with connections as follows. For

clarity, we will only show the new edges.

8

We connect as to az and connect bs to all other points which are currently on the
graph (z, ag, a1, ay, az, by and by).

After expanding GG, the robber moves to a3 and we return to computing @, to check
if a cop goes to a neighbor of the robber’s new position. At least one of the cops just
moved to either a; or b,. If the cops do not move within one space of the robber, the
robber should stay at a,.

If a cop does move within one space of the robber, to either a, or b3, then we
will expand the graph by adding vertices a4, and b; with connections as follows. For

clarity, we will only show the new edges.

ay
a‘a

\
Qo / by
ao b,
T

We connect a4 to az and connect b, to all other points which are currently on the
graph (z, ag, a1, as, az, ay by, by, and b3).

In general, for £ € N, a; is connected to ax_1, axi1, bk, brs1, brya,.... We also
know that by, is connected to z,ay, . ..ax,b; for j € [1,k — 1].

In the end, the e-section will be either finite or infinite. If the e-section is infinite
it will consist of z, ag, a;, and b; for ¢+ > 1. If the e-section is finite, it will consist of
x,a9,a;, and b; for 1 <i < k.

This completes the description of the construction of the graph. Now, we will check
that G cannot be won with infinitely many computable cops all starting at A, but
can be won with one non-computable cop.

Why Can’t Infinitely Many Computable Cops Win?

We can see that if the robber moves up the vertical segment whenever possible, the
cops will never be able to catch him as they are always at least two spaces away from
the robber.

Why Can One Non-Computable Cop Win?

The cop can start at A\. Suppose the robber is in the e-section of the graph and the
cop moves to ze.

If the robber moves to some b;, then the cop can move directly there and win on
her next turn.

Now suppose the robber is at a;, then either b;,; exists or there is no b;,; node.

If there is a b;; node, we the cop can move to ;. We know that a; is connected
to a;y1, @i—1, b, biy1, However, b, is also connected to all of the vertices, so the

cop can win on her next turn.

If there is no b;;; node, the cop can move to b;. Since, b;;; was not added, the
neighbors of a; are a;_; and b; for j € [1,7]. The node b; is connected to each of these

points, so the cop can win in her next turn.

References

(1) Bonato, Anthony and Nowakowski, Richard, The Game Cops and Robbers on
Graphs, American Mathematical Society, (2011)./
(2) Stahl, Rachel D., Computability Theoretic Results for the Game of Cops and

Robbers on Infinite Graphs, Archive for Math Logic 61 (2022), 373-397.

