
Lambda Calculus
University of Connecticut

Daniel Byrne

0.1 Introduction

Lambda calculus is a model of computation. It is an abstract system that can do all compu-
tation that a computer can do .Such models of computation are important to have because
programming languages must be tailored to actual usability and not mathematical rigor.
The best example of this is the print statement, which is a key part of programming lan-
guages. It is useless in the analysis of the program because it can only access the output
that was previously computed. It does no real extra computing. Moreover, it allows us to
explore the limitations of computation. The best example of the limitation of computation
is the halting problem. Is a computer able to determine if a program will halt before the
program is run? The answer to that is no, but to even approach an answer to this question
one must have a theoretical way of thinking about computation.

The most famous such model of computation is the Turing machine, which is a finite set
of rules and an infinite tape. This model of computation is hard to deal with in practice.
Nobody would ever program something through the paradigm of a Turing machine. How-
ever, lambda calculus is much easier to deal with. This is because it has baked into it the
idea of inputs and recursion, self-reference. This means that writing a λ-term to raise a num-
ber to some power is actually quite simple. Furthermore, the structure of λ-terms is much
more inductive, so one can apply inductive arguments to say things about all λ-terms. This
does not work with Turing machines because they do not have the same structure. Lastly,
the greater emphasis on recursion is a different viewpoint on computation, which allows for
different insights in general. Normally, we emphasize the sequential nature of computation.
It is an action followed by another action. However, recursion is a totally different way of
thinking. Such ideas have even been implemented into programming languages, which have
some strong benefits not seen in procedural or even object oriented languages.

In this piece, we will define the lambda calculus, and prove the most important property
of this model, the Church Rosser property. We will then prove its equivalence to regular
computation and hence Turing machines. Lastly, we will prove some statements about the
format and structure of λ-terms, which will allow us to introduce the idea of the Böhm tree,
which is a key tool used in the study of lambda calculus..

0.2 Basics of Lambda Calculus

0.2.1 Axioms

The language of lambda terms is defined by the following rules.

1. The alphabet of Lambda Calculus, over which words are defined, consists of the fol-
lowing symbols.

(a) Variables: v0, v1, ...

(b) Abstractor: λ

(c) Paranthesis: (,)

2. The set of λ terms, Λ can be combined inductively under the following rules.

1

(a) x ∈ Λ

(b) M ∈ Λ⇒ (λxM) ∈ Λ

(c) M,N ∈ Λ⇒ (MN) ∈ Λ

3. In the following, M and N will be used for arbitrary terms while x,y, and z... denote
arbitrary variables

4. According to this definition every lambda term should be surrounded by parentheses.
However, it is not customary to put parentheses around the whole lambda term just
subparts of it. These parentheses around the whole term do not change the meaning
of the term and are also redundant as we already know that it is a lambda term.

The first thing that we will define on this language will be the idea of syntactic equality.
This is a binary relation that only compares the strings of the terms and does not relate at
all to the meaning of the term.

This idea of syntactic equality is defined by the following axioms, and it will be denoted
by ≡.

1. M ≡ M (reflexivity)

2. M ≡ N =⇒ N ≡M (symmetry)

3. M ≡ N, N ≡ L =⇒ M ≡ L (Transitivity)

4. M ≡ N =⇒ MZ ≡ NZ

5. M ≡ N =⇒ ZM ≡ ZM

The first three ensure that this is an equivalence relation. The last two ensure that appending
some arbitrary term to two already syntactically equivalent terms in the same place does
not destroy syntactic equivalence.

We can also define equality in other ways by adding new axioms.
The two most important examples of these extra axioms are β-conversion and ξ-conversion.

Definition 1. β−conversion is defined by (λx.M)N = M [x := N] where M [x := N] de-
notes replacing every instance of the variable x in M with the term N.

Example 1. Let M ≡ (λx.x)y and N ≡ y. According to the axioms of syntactic equality,
these two terms are not equivalent. However, if we use the rule of β-reduction, we can
convert M into a form that is syntactically equivalent to N. (λx.x)y =β x[x := y] = y. Since
both are now just the variable y, they are syntactically equivalent.

This can cause some problems with the naming of different variables, which will be dealt
with in the next section.

Definition 2. ξ-conversion is defined by M = N =⇒ λx.M = λx.N .

2

We need this extra axiom because ≡ is defined only upon combinations of λ-terms and
appending some term with λx. is not the same as adding a term because λx. is not a valid
term alone.

From this situation, we do have a slight problem in that from equality we cannot figure
out what rules were applied to get there. For example, if we allow for both the ξ-converion
and β-conversion rules to be a part of our system, then we could not tell if two terms are
equivalent because of some sequence of both rules or just because of repeated application of
one rule. Moreover, we might just want to get terms that are the result of repeated or singular
application of β-conversion to prove things about the results of such actions. However, with
equality we cannot tell which term reduces to which or if either term reduces to each other
at all. Therefore, we cannot group together terms that are the result of β-converion on some
term.

To combat this problem we introduce the binary relations → and �.

Definition 3. → This is defined as one application of any of the deduction rules. It is
formally defined as

1. (λx.M)N →M [x := N]

2. M → N =⇒ ZM → ZN

3. M → N =⇒ MZ → NZ

4. M → N =⇒ λx.M → λx.N

� is the transitive and reflexive extension of →. Therefore, it is defined as

1. M → N =⇒ M � N

2. M �M

3. M � N,N � L =⇒ M � L

Such ideas can be extended to an arbitrary relation/deduction rule but that shall not be
done here.

Definition 4. 1. A term in a reduction is a redux if it is the term we apply the reduction
rule to. Hence, if M → N , then M is the redux of N.

2. A term is a contractum if it is the result of a single application of a reduction rule.
If M → N , then N is the contractum.

3. A term N is in normal form if N � M =⇒ N ≡ M . There is also the head
normal form which is defined as M being in the form λ−→x .y

−→
N

3

0.2.2 Syntactic Notions

Definition 5. A variable,x, is free in a λ−term M if x is not in the scope of a λx. Otherwise
x is bound.

Definition 6. FV(M) is the set of free variables in M and is defined as follows.

1. FV(x) = {x}

2. FV(λx.M)= FV(M) - {x}

3. FV(MN) = FV(M) ∪ FV(N)

Λ0 is the set of all lambda terms with no free variables.

It should be noted that all terms are treated as the same modulo a change in bound
variables but not with a change of free variables. For example, λx.x = λy.y, but x 6= y.
We want to consider bound variables as simply placeholders for future inputs according to
β-conversion. This is much the same as with normal functions. f(z) = z2 in an equivalent
function to f(x) = x2, but x and z are treated as distinct objects by themselves that are not
equal to each other.

Example 2. For M ≡ xλy.xy, we say that x appears free twice while y appears bounded
once.

Definition 7. A context, C[] is a term with holes in it. It can be filled by placing any
term in the hole. It is different from substitution in that variables in the term we place in
the context can be become bound after we place them in the context.

0.2.3 Substitution

We want to treat variables in the most naive way possible, but that can cause problems if
one does not institute rules on the naming of variables.

1. All bound variables are chosen to be distinct from all free variables. This means a free
variable can never be converted into a bound variable by a reduction. If we did not say
this, then (λx.λy.x)y = λy.y. However, those two terms are actually different because
(λx.λy.x)MN = M but (λy.y)MN = MN .

2. Terms that are α-congruent are treated the same where α-congruence , ≡α, is defined
as being congruent up to a change in the variables used to represent the bound variables
in a lambda term. One can also treat this as an extra axiom upon = given by λx.M =
λy.M [x := y] where y does not occur free or bound in M. All that we care about is
how the inputs are permuted for closed lambda terms. We only care what the function
does and not how it looks according to some arbitrary variable labeling system.

(a) λx.xy ≡α λz.zy 6≡α λy.yy.
(b) λx.x(λx.x) ≡α λx′, x′(λx.x) ≡α λx′.x′(λx′′.x′′).

4

β-reduction is defined through this idea of substitution, which is axiomatically defined
as follows.

Definition 8. Substitution, M [x := N] where M,N ∈ Λ is defined recursively as follows

x[x := N] ≡ N

y[x := N] ≡ y

if x 6≡ y. (We must state that x 6≡ y because we never say that one variable object cannot be
labeled two distinct ways. It would be ridiculous to label something like that, but we must
cover all of the bases.)

(λy.M1)[x := N] ≡ λy.M1[x := N]

M1M2[x := N] ≡M1[x := N]M2[x := N]

0.3 Important Lambda Calculus Terms

One great example of the power of lambda calculus is the encoding of the numerals and the
normal operations on them such as addition and multiplication in terms of lambda terms.

1. Number Encoding Below is a standard approach to the encoding of the natural
numerals in the lambda calculus called the Church numerals. However, it is not the
only possible encoding of the numerals.

(a) We encode some number n by λfx.fnx, so the encoding of 0 is λfx.x, the encoding
of 1 is λfx.fx, and the encoding of 5 is λfx.fffffx. Let pnq denote the church
numeral encoding of n. The encoding of the numbers are in normal form to ensure
no weird behavior which could be introduced by reductions.

(b) The successor function S+ is coded by the term λxyz.xz(yz). This means that
when we apply S+ to some number pnq, we can reduce down to pn+ 1q

Example 3. Let us say we are given the encoding for 3 that is λfx.fffx. To
get 4 we apply the successor function to 3.

λxyz.y(xyz)(λfx.fffx)

λyz.y(λfx.fffx)yz

λyz.y(λx.yyyx)z

λyz.yyyyz

Because of our conventions, λyz.yyyyz is equivalent to λfx.ffffx

(c) The predecessor function is encoded by the term P− = λx.x(λxy.y).

(d) Addition, A+, is defined by λxypq.xp(ypq)

5

Example 4. Let us say that we want to add 4 and 5 together. We then apply 4
and 5 to the A+

λxypq.xp(ypq)(λfx.ffffx)(λfx.fffffx)

λypq.(λfx.ffffx)p(ypq)(λfx.fffffx)

λpq.(λfx.ffffx)p((λfx.fffffx)pq)

λpq.(λx.ppppx)((λfx.fffffx)pq)

λpq.pppp(λfx.fffffx)pq

λpq.pppp(λx.pppppx)q

λpq.pppppppppq

The result is then the encoded value of 9 as desired.

(e) Multiplication, A∗, is defined by = λabx.a(b(x)).

It would be very good practice to convince yourself that both predecessor and multi-
plication also work.

2. Fixed point combinators. A fixed point combinator is a lambda term, M, such that
for all F, MF = F (MF). If we think of the MF term as a point and the F term as
a function, we get that F with MF as input returns MF, which is the original pint, so
MF is a fixed point of the function F. In order to prove a fixed point is a fixed point
we try to reduce the MF term to the F(MF) term instead of the other way around.

The reason for requiring making MF the fixed point and not just F is that we need to
use the combinator as an input to prevent weird behavior.

(a) Y-combinator,Y, also known as the paradoxical combinator. We can construct
this by first defining W ≡ λx.F (xx) and X ≡ WW . This gives us the following
reduction

X ≡ (λx.F (xx))W → F (WW) ≡ FX.

We can add an extra input to the X to fit it in the fixed-combinator formula. So,
Y ≡ λf.(λx.f(xx))λx.f(xx)). This leads to the path of

Y F = WW = F (WW) = F (Y F)

However, it is not the case the WW � Y F . Instead Y F � WW . That is what
makes it the paradoxical combinator.

(b) Turing Combinator, θ. This term is built up from A ≡ λxy.y(xxy) as θ ≡ AA.
Hence,

θF = AAF = λxy.y(xxy)AF � F (AAF)

exactly making it a fixed piont combinator. Moreover, the equality comes just
from reduction, making it theoretically simpler.

6

3. Truth and False

(a) Truth, T ≡ λxy.x. This lambda term chooses the first of any two inputs. There-
fore, it operates in the same way as an if statement would operate. When some
lambda term reduces down to this, it simply chooses the first of two inputs. This
is the same as with an if/else statement in a programming langauge.When the
condition is true the first branch gets executed. Otherwise, the second branch
gets executed. As one can see below the False combinator acts in the opposite
way reinforcing this idea.

This term is also known as K both for historical reasons and because it is so useful
that it becomes convenient to use it outside of the concept of truth/false.

(b) False, F ≡ λxy.y. F chooses the second of any two inputs. It operates just as an
if statement when the term in the if statement is false. Moreover, it is equivalent
to 0, in the above numeral system, which is also another programming practice.

(c) Random Useful Constructions/Terms. The following are very useful con-
structions

i. Identity Term I ≡ λx.x. This term simplifies down to its argument.

ii. Inductive Conjunction.[∗] We will define this pairing in three steps

[M] ≡M

[M,N] ≡ λz.zMN

[M0, . . . ,Mn+1] ≡ [M0, [M1, . . .Mn+1]]

For example, [M0,M1,M2] = [M0, [M1,M2] = [M0, λz.M1M2] = λz1.M0λz0.M1M2

0.4 Church Rosser Property

We will now show that each lambda term has at most one normal form. This means that
we do not have to care about where and when we applied β-reduction when reducing down
to normal forms.

Lemma 1 (Substitution Lemma). If x 6≡ y and x 6∈ FV (L) M [x := N][y := L] ≡ M [y :=
L][x := N [y := L]]

Proof. We do this by induction on the structure of M.

1. M is a variable

(a) If M ≡ x. then both sides equal N [y := L] since x 6≡ y

(b) If M ≡ y, then both sides equal L because x 6∈ FV (L) =⇒ L[x := · · ·] ≡ L

(c) If M ≡ z and z 6≡ x, y, then both sides equal z because x and y are not free so
cannot be replaced.

7

2. If M ≡ λz.M1, then we can assume that z 6≡ x, y and that z is not free in N,L
by the variable conventions. Applying the inductive hypothesis and the definition of
substitution gives us

(λz.M1)[x := N][y := L] ≡ λz.M1[x := N][y := L]

≡ λz.M1[y := L][x := N [y := L]]

≡ (λz.M1)[y := L][x := N [y := L]]

.

3. If M ≡M1M2, then one can apply the inductive hypothesis to both M1 and M2.

Attached to this definition of substitution is the idea of substitutivity

Definition 9. A reduction rule R is substiutive if ∀M,N,L ∈ Λ and all variables x one
has M →R N =⇒ M [x := L] = N [x := L]

Lemma 2. β-reduction is substitutive.

Proof. Let M →β N . Then M ≡ (λy.P)Q and N ≡ P [y := Q]. Therefore,

M [x := L] ≡ (λy.(P [x := L]))(Q[x := L])

N [x := L] ≡ P [y := Q][x := L]

N [x := L] ≡ P [y := Q[x := L]]

by the substitution lemma and our variable conventions.

To help us prove that each lambda term has one normal form under β-reduction, we will
first define some extra terms regarding reduction and then use induction by going through
each possible type of reduction that can be applied to a term.

Definition 10. 1. The Church Rosser property says that if two elements are equal,
then they reduce by β-reduction to the same term. Stated in quantitifies

M =β N =⇒ ∃Z[M �β Z ∧N �β Z]

. The Weak Church Rosser property is when → satiisfies the same property so
∀M

M

M’

→

N
→

L

�

�

8

To make things a little bit easier we will define a modification of �β.

Definition 11. The binary relation �1 is defined inductively as follows.

1. M �1 M

2. M �1 M
′ =⇒ λx.M �1 λx.M

′

3. M �1 M
′ and N �1 N

′ =⇒ MN �1 M
′N ′

4. M �1 M
′ and N �1 N

′ =⇒ (λx.M)N �1 M
′[x := N ′]

Proposition 1. If M �1 M
′ and N �1 N

′ =⇒ M [x := N]�1 M
′[x := N ′]

Proof. We will use induction on the definition of M �1 M
′.

1. M �1 is M �1 M . We need to show that M [x := N] �1 M [x := N ′], which we will
do by induction on the structure of M.

(a) If M = x, then need to show that N �1 N
′, which is true by our hypothesis.

(b) If M = y, then we need to show that y �1 y, which is trivially true.

(c) If M = PQ, then by the inductive hypothesis we have P [x := N]�1 P
′[x := N ′]

and Q[x := N] �1 Q
′[x := N ′]. We can concatenate the terms by the definition

of �1, which gives us P [x := N]Q[x := N] �1 P
′[x := N ′]Q′[x := N ′] which is

the same as M [x := N]�M ′[x := N ′].

(d) If M = λy.P , then by inductive hypothesis we have P [x := N] �1 P
′[x := N ′]

and then by the definition of �1 we have (λx.P)[x := N]�1 (λx.P ′)[x := N ′].

2. M �1 M
′ is λy.P �1 λy.P

′. This case directly follows from the second property of
�1.

3. M �1 M
′ is PQ �1 P

′Q′. We apply the inductive hypothesis to both P and Q to
get P [x := N] �1 P

′[x := N ′] and Q[x := N] �1 Q
′[x := N ′]. It follows that P [x :=

N]Q[x := N] �1 P
′[x := N ′]Q′[x := N ′]. Since M [x := N] ≡ P [x := N]Q[x := N]

and M ′[x := N ′] ≡ P ′[x := N ′]Q′[x := N ′], we have M [x := N]�1 M
′[x := N ′].

4. M �1 M
′ is (λy.P)Q�1 P [y := Q].

M [x := N] ≡ (λy.P [x := N])(Q[x := N])�1 P
′[x := N ′][y := Q′[x := N ′]]

≡ P ′[y := Q′][x := N ′]

≡M ′[x := N ′]

by an application of the induction hypothesis and the substitution lemma.

Proposition 2. 1. λx.M �1 N =⇒ N ≡ λx.M ′ with M �1 M
′.

9

2. MN �1 L =⇒ L ≡ M ′N ′ with M �1 M
′ and N �1 N

′ or M ≡ λx.P, L ≡ P ′[x :=
N ′] and P �1 P

′, N �1 N
′.

Proposition 3. �1 satisfies the diamond property(another name for the Church-Rosser
property)

Proof. We will show that for all M �1 M1 and M �1 M2, there is a term M3 such that
M1 �1 M3 and M2 �1 M3 by induction on the definition of �1.

1. If M ≡ M1, then we can take M3 to be M2 where P ′′′ is the common reduct that P ′

and P ′′ have by the induction hypothesis.

2. If M �1 M is λx.P �1 λx.P
′ ≡M1, then one can take M3 ≡ λx.P ′′′.

3. If M �1 M1 is PQ�1 P
′Q′, then there are two subscases

(a) If M2 ≡ P ′′Q′′ with P �1 P
′′, Q �1 Q

′′, we can apply the inductive hypothesis
on P and Q to get M3 ≡ P ′′′Q′′′.

(b) If P ≡ λx.P1, M2 ≡ P ′′[x := Q′′] with P �1 P
′′ and Q �1 Q

′′, one can take
M3 ≡ P ′′′[x := Q′′′].

4. If M �1 M1 is (λx.P)Q �1 P
′[x := Q′] with P �1 P

′ and Q �1 Q
′, then there are

two subcases.

(a) M2 ≡ (λx.P ′′)Q′′ with P �1 P
′′ and Q �1 Q

′′. Here we apply the inductive
hypothesis to get terms P ′′′ and Q′′′ such that P ′ �1 P

′′′, P ′′ �1 P
′′′ and Q′ �1

Q′′′ , Q′′ �1 Q
′′′. This allows to take M3 ≡ P ′′′[x := Q′′′].

(b) M2 ≡ P ′′[x := Q′′]. Here we use he same term, M3 ≡ P ′′′[x := Q′′′],which exists
again by the inductive hypothesis.

Lemma 3. � is the transitive closure of �1

Proof. The only difference between → and �1 is that �1 has two extra rules namely that
M �1 M and M �1 M

′ and N �1 N
′ =⇒ MN �1 M

′N ′. However, that is equivalent to
a combination of the first rule of� and the second and third rules of→. Moreover, M �1 M
is already a rule in �. Therefore, the only rule of � not in �1 is just the transitive rule.
Since �1 contains no extra rules besides those in �, � is the transitive closure of �1

Theorem 1. β-reduciton has the Church Rosser property.

Proof. This can be shown best through the following diagram.

10

M

N

�1

L

�1

M ′
�1

M ′′
�1

N ′
�1

�1

N ′’

�1

�1

L′
�1

�1

L′′

�1

�1

Theorem 2. M can have at most one β-nf or normal form.

Proof. This just comes from the fact that the only term that a normal form can reduce to
is itself, so M must reduce to this normal form by the Church Rosser property.

It should be noted though that the single reduction binary relation→ does not have the
Church Rosser property. Instead it has a weaker property named the weak Church Rosser
Property.

Definition 12. A reduction scheme is weakly Church Rosser if [M → N ∧M → L =⇒
∃P [N � P ∧L� P]]. The term can also be used for any binary relation, in which case it is
called the weak diamond property and is defined by [M → N ∧M → L =⇒ ∃P [N →∗=
P ∧ L→∗= P where we take →∗= as the transitive reflexive closure of the binary relation.

One might at first think that this is essentially the same as the Church Rosser property.
However, the two are not equivalent. Instead this is a much more local property. It is only
saying that after one reduction, there is a reduction path from the result of one reduction to
another. However, if there is some way that after inifnitely many reduction, you reach the
normal form, then Church Rosser is violated. This is because that infinite reduction path
breaks through the local property.

Lemma 4. 1. The relations R and its reflexive closure →= do not satisfy the Church
Rosser Property.

2. The relation → satisfies the weak diamond property.

Proof. For part 1, let R → R′ and let R and R′ not be in normal form. Let M ≡
(λx.xx)R. We have two possible β reductions, namely M → RR and M → (λx.xx)R′.
However, one cannot get either of those forms to the other in one reduction, so they
do satisfy the relation →.

For part 2, let M →M1 and M →M2. If we can construct and M3 such that M1 �M3

and M2 � M3, then we have shown that the weak diamond property is satisfied as
� is the transitive reflexive closure of → by construction. Let ∆i : M → Mi, i = 1,2
with ∆i = (λxi.Pi)Q be the β-reductions from M →Mi and let ∆′i ≡ Pi[xi = Qi. The
possible relative positions of ∆1 and ∆2 in M are the following

11

1.(a) ∆1 ∪∆2 = ∅
(b) ∆1 = ∆2

(c) ∆1 ⊂ ∆2

i. ∆1 ⊂ P2

ii. ∆1 ⊂ Q2

(d) ∆2 ⊂ ∆2

i. ∆2 ⊂ P1

ii. ∆2 ⊂ P1

Case (a). We have
M ≡ · · ·∆1 · · ·∆2 · · ·

M1 ≡ · · ·∆′1 · · ·∆2 · · ·

M2 ≡ · · ·∆1 · · ·∆′2 · · ·

Therefore, we can just take M3 ≡ · · ·∆′1 · · ·∆′2 · · ·
Case (b). M1 ≡M2, so we can just take M3 ≡M1

Case (c i). M ≡ · · · ((λx2 · · ·∆1 · · ·)Q2 where · · ·∆1 · · · ≡ P2

M1 ≡ · · · ((λx2 · · ·∆′1 · · ·)Q2)

M2 ≡ · · · (· · ·∆1 · · ·)[x2 := Q2]

Therefore, we can take

M3 ≡ · · · (· · ·∆′1 · · ·)[x2 := Q2] · · ·

Therefore, M1 →M3 by construction, and M2 →M3 by the substitutivity of β.
(Case c ii). M ≡ · · · ((λx2.P2)(· · ·∆1 · · ·)) · · · where · · ·∆1 · · · ≡ Q2

M1 ≡ · · · ((λx2.P2)(· · ·∆′1 · · ·)) · · ·

M2 ≡ · · · (P2[x2 := (· · ·∆1 · · ·)])

Hence, we can just take

M3 ≡ · · · (P2[x2 := (· · ·∆′1 · · ·)])

So, M1 → M2 and M2 � M3 because one can reduce ∆1 in M2 independent of the
other terms.

12

0.5 Computability Theory

The most important aspect of lambda calculus is that it can do any possible computation.
The requirements for a complete model of computation is that it is closed under total func-
tions.

Definition 13. 1. A numeric function is a mapping φ : Np → N.

2. Let φ be a numeric function with p arguments. φ is called λ-definable if for some
F ∈ Λ, ∀n1, . . . , np ∈ N Fpn1q, . . . pnpq = pφ(n1, . . . , np)q. Therefore, for all possible
inputs F applied to their encoding is equal to the encoding of the result of the function
with those inputs.

3. The class R of recursive functions is the least class of functions which contains all
initial functions and is closed under primitive recursion and minimilization, which we
will define below.

Definition 14. The initial functions are the numeric functions Up
i , S

+, and Z.

The projection function, U I
n, is defined by Up

i (n0, . . . , np) = ni for 0 < i < p. Therefore,
it selects the ith input of p inputs.

The successor function, S+, is defined by S+(n) = n+ 1. It simply adds 1 to the input.

The Zero function, Z is defined as Z(n) = 0, so for every value it returns 0.

The minimal value function, µm is defined as µm[P (n)] is the least value for which P(m)
holds. If P (m) is never true, then we leave it to be undefined. Ultimately, we construct it
so that it is not ’solvable’, which we will define later. This lack of solvability means that we
make it a meaningless term.

These form as the basic ingredients of computation that we will then combine together.
The following are the closure properties, so the ways that we can combine functions to create
new functions.

Definition 15. Let P be a class of numeric functions

1. P is closed under composition if for all φ defined by

φ(−→n) = χ(ψ1(−→n), . . . , ψm(−→n))

with χ, ψ1, . . . , ψm,∈P, one has φ ∈P.

2. P is closed under primitive recursion if for all φ defined by

φ(0,−→n) = χ(−→n)

φ(k + 1,−→n) = ψ(φ(k,−→n), k,−→n)

with χ, ψ ∈P, one has φ ∈P.

13

3. P is closed under minimilization if for all φ

φ(−→n) = µm[χ(−→n ,m) = 0]

with χ ∈P such that
∀−→n ∃m χ(n,m) = 0

one has φ ∈P.

Theorem 3. The total numeric terms that are definable by λ terms are exactly the recursive
functions.

Proof. We will show that the recursive functions are all λ-definable

Initial Functions

Let
Up
i ≡ λx0 · · · xn.xi
S+ ≡ λx.[F, x]

Z ≡ λx.p0q

Here F is the false constructor.

One should verify for themselves that these functions are lambda definitions of each of
the initial functions.

1.2. Closed under Composition
If we let χ, ψ1, . . . , ψm be λ-defined by G,H1, . . . Hm, then φ(−→n) = χ(ψ1(−→n), . . . ψm(−→n))
is λ-defined by

F ≡ λ−→x .G(H1
−→x) · · · (Hm

−→x)

3. Closed Under Primitive Recursion Let a function φ be defined by

φ(0,−→n) = χ(−→n)

φ(k + 1,−→n) = ψ(φ(k − 1,−→n), k − 1,−→n)

where χ and ψ are λ-defined by G and H respectively. We will show that we can
construct a lambda function that can compute the value for φ. We will simply construct
a function that each step tests if k=0. If it does, then we compute χ(−→n), and otherwise
we compute the ψ function with all of its inputs.
We first define a function that outputs true if the input is 0 and false if the input is
any other number.

Zero = λx.xT

This does not work the Church numerals, but does work with the numerals defined by

p0q ≡ I

pn+ 1q ≡ [F, pnq]

14

These are also the numerals that work with the definition of successor supplied above.
We then define a term F such that

Fx−→y = if Zero(x) then G−→y

else H(F (x−−→y)x−−→y)

. Here x− is just another way of saying the predecessor of x, so it would formally be
equal to Px We can expressly write this in lambda terms by

θλzx−→y .Zero(x)(G(x))H(z(Px)y)Pxy

One can also quite easily show that this term is equivalent to the primitive recursion
formula for all values of k by induction. Here θ is the previously defined Turing
combinator.

4. Closed Under Minimilization Let P represent a formula that is either equivalent
to T or F. We then define the function that runs until the number is reached in two
steps.

Hp ≡ θ(λhz.P (z)zhS+z)

µP ≡ Hpp0q

In order to get the formula in the exact form of minimilization, we set P to test if
the desired formula is 0 and add an extra input for the other inputs of the χ function,
which we assume is defined by G. Therefore, we get the following.

λ−→x .θ(λhz−→x .Zero(G−→x z))zhS+z−→x

One should now work through these formula and convince themselves that these are
equivalent to the original formulas found in the definition.

Since we have defined the primitive functions in terms of lambda formulas and showed it
is closed under composition, primitive recursion and minimilization, lambda terms have been
shown to be able to encode recursive function. Since the lambda calculus was defined in a
recursive way, every lambda term can be made to be equivalent to a recursive function.

This proof was to show that lambda calculus offers a model of calculation. This is one
of the main reasons lambda calculus has been studied.

0.6 Head Normal Forma and Solvability

Definition 16. 1. A closed lambda term, M ∈ Λ0, is solvable if there is some sequence
of lambda terms that one can append to the original lambda term, which then simplifies
done to the identity lambda term, I.

∃n∃N1 . . . Nn ∈ Λ MN1 . . . Nn = I

15

2. An arbitrary term M ∈ Λ is solvable if a closure λ−→x .M of M is solvable. This is
regardless of the choice of −→x .

3. M ∈ λ is unsolvable if it is not solvable.

Example 5. 1. K ≡ λxy.x is solvable because KII → I

2. S ≡ λxyz.xz(yz) is also solvable by SIII

3. Ω ≡ ((λx.xx)(λx.xx)) is not solvable. The parenthesis tell us that we must substitute
the second term into the first when reducing it giving us the same term back again.
Since this is a closed term, we must first apply reduce them before other terms. They
do not allow us to substitute anything into the second term.

The choice for I comes from the fact that we can make I into any other λ-term. IM �M .
It also makes sense that if we see this term as the identity term. This idea of solvability is the
core of what we will use to analyze terms. One of the core ideas of Lambda Calculus is to use
topology and continuity to study computation. Though we will not show it here, abstraction
and application is are continuous maps with respect to lambda terms. Abstraction is adding
a λx. to a term so M becomes λx.M . Application is just the concatenation of two lambda
terms so the application of M to N is MN .

Proposition 4. Let M ∈ Λ

1. M is solvable ⇐⇒ there exists a closed substitution instance M∗ and terms
−→
N ∈ λ0

such that M ∗
−→
N = I.

2. M is solvable ⇐⇒ λx.M is solvable.

Proof. 1. Let λx · · ·xn.M be the closure of M and that is solvable to show the forward
implication. Then for some terms N1, . . . , Nm

(∗) (λx1 · · ·xn.M)N1, . . . Nm = I

Since the left hand side (LHS) reduces down to I, all of the unbound variables must
disappear. Therefore, one can rewrite the Ni so they have no free variables or simply
replace all free variables with I terms, making all the variables in the Ni terms bound.
We can also add I terms to the sequence so that we can say that m > n. After
substitution each Ni into M we get

(∗∗) M [x1 := N1] · · · [xn := Nn]Nn+1 . . . Nm = I

We now show the reverse implication. If (**) holds, then for each variable we can add
an abstractor for it and replace the Ni with the xi giving us the form in (∗), which is
the form that we wanted originally.

16

2. Let x1 ≡ x.
M is solvable ⇐⇒ ∃

−→
N ,
−→
P ∈ Λ0M [x1 := N1] · · · [xn := Nn]

−→
P = I

⇐⇒ ∃
−→
N ,
−→
P ∈ Λ0(λx.M)N1[x2 := N2] · · · [xn := Nn]

−→
P = I

⇐⇒ ∃
−→
N ,
−→
P ∈ Λ0(λx.M)[x2 := N2] · · · [xn := Nn]N1

−→
P = I

⇐⇒ λx.M is solvable.

Corollary 1. If M is unsolvable, then so are MN and M [x := N] and λx.M for all N ∈ Λ.

Proof. The first scenario derives directly from the definition of solvable. The second scenario
derives from the fact that we have shown that M [x := N] is solvable if and only if (λx.M)N
is solvable. Moreover, (λx.M)N being solvable would violate the fact that M is solvable if a
closure of M is solvable as (λx.M) is a closure of M. The last situation comes from a direct
application of the second part of the last proposition.

We now define some syntactic categories of terms and prove things about their solvability.

Definition 17. 1. M is an application term if M is of the form NL.

2. M is an abstraction term if M is of the form λx.N .

Lemma 5. 1. Each M is either a variable, an application term or an abstraction term.

2. Each application term M is of the form M ≡ N1N2, . . . Nn with n ≥ 2.

3. Each abstraction term M is of the form M ≡ λx1 · · ·xn.N with n ≥ 1 and N not an
abstraction term.

This just comes form the definition of lambda terms. One option is a lambda term is
just a variable. If it is two variables, then it is officially of the form of an application term
because we made no restrictions upon what N and L had to be. If it cannot be divided into
two at all, then it must have begin with an abstractor and N cannot be an abstraction term
because we would fold the variable that N is an abstractor for into the first abstractor.

Proposition 5. Each M is of one of the following two forms.

1. λx1 · · · xn.xM1 · · ·Mm, n,m ≥ 0

2. λx1 · · · xn.(λx.M0)M1 · · ·Mm n ≥ 0,m ≥ 1

Proof. If M is a variable then it is of form 1 with n and m being 0. If M is an applicator
term, it could be either of the terms with n being 0. If M is an abstactor, then after the
abstractor must be another term that begins with an abstractor or a variable as that is all
that the lambda calculus allows for terms to be made of.

Definition 18. 1. M is a head normal form if M ≡ λx1 · · ·xn.xM1 · · ·Mm n,m ≥ 0.

17

2. M has a head normal form (abberviated hnf) if ∃N such that M = N and N is a head
normal form.

3. If M is of the form

M ≡ λx1 · · ·xn.(λx.M0)M1 · · ·Mm n≥0m≥1

then (λx.M0)M1 is the head redex of M.

The key example of a term without a head normal form is Ω ≡ ((λx.xx)(λx.xx)). The
only term that Ω can reduce to is itself. If we append any other term to it, those terms are
ignored because of the parenthesis. In the official parlance, we would say that any term that
we add on would not be in the scope of either abstractor. As one can see, being an hnf can
be verified by just looking at the symbols that the term consists of, whereas for solvability,
one has to consider the application of terms to get the new term to reduce down to I. We will
see that one can identify all terms without head normal forms as having the same meaning
in a consistent way, really highlighting the special nature of head normal forms.

We use this definition of head redex to remove the choice of possible reduction/substitu-
tion moves to make at any given step, allowing us to prove things more easily.

Definition 19. 1. Suppose ∆ is the head redex of M. We write M →h N if N results
from M by contracting ∆. The reduction →h is called a one step reduction. We
will denote the contraction of any redex as →∆, and we will denote the contraction of
a head redex as →h.

2. �h is the transitive reflexive closure of →h.

3. The head reduction of M is the uniquely determined sequence M0,M1, . . . such that
M ≡M0 →h M1 →h · · · . If Mn is a hnf then the head reduction of M terminates at
Mn. If there is no such Mn, then M has an infinite head reduction.

0.7 β Reduction

In this section, we will show that M has a normal form if and only if the head reduction
path of M terminates.

The first major idea here is the labeling of elements of lambda terms. This allows us to
restrict the number of reductions that we can do and to ensure the reductions are of the
right form. Moreover, there is a mapping from numbered terms to unnumbered terms by
just reducing the numbers.

Definition 20. 1. Λ′ is the set of words over the following alphabet

(a) v0, v1, . . . variables

(b) λ, λ1, λ2 . . . lambdas

(c) (,) paranthesis

2. We define terms on Λ′ inductively according to these rules

18

(a) x ∈ Λ′

(b) M ∈ Λ′ =⇒ (λx.M) ∈ Λ′

(c) M,N ∈ Λ′ =⇒ (MN) ∈ Λ′

(d) M,N ∈ Λ′ =⇒ ((λix.M)N) ∈ Λ′ ∀i ∈ N

3. We also define the operation | ∗ | for M ′ ∈ Λ′ as |M ′| ∈ Λ and |M ′| is the Λ
term with out any of the indices of M ′. So for example |(λ1x.xx)((λ2x.x)(λx.x))| ≡
(λx.x)((λx.x)(λx.x)) or I(II)

We will now define β−reduction on this new set of terms. This change to Λ′ adds some
new notation. We will denote reduction paths as σ : M ≡M ′

0 →∆′0 M ′
1 where each ∆′i denotes

the specific term being contracted in the reduction. The ′ will denote that we are doing this
based off of the rules in Λ′ and not just regular Λ. This also means that we can meaningfully
say |∆′0| as it just means the same reduction but without any regard to the indexing at all.
Therefore, if we have M ≡ (λ1x.xy)(λx2.xx)(λ3x.xy), we can have ∆′0 ≡ (λx1.xy)(λx2.xx)
which when contracted would give us M1 ≡ (λ2x.xx)y)(λ3x.xy). If we were instead to decide
to apply the | ∗ | to ∆′0 we would instead be reducing (λx.xy)(λx.xx) which would in turn
give us M1 ≡ ((λx.xx)y)(λ3x.xy)

Definition 21. 1. Substitution can be defined in essentially the same way on Λ′ because
we are only labeling the abstractors and not actual variables. Therefore we get

((λix.M)N)[z := L] ≡ (λi.M [z := L])(N [z := L])

2. β′−reduction here the ′ denotes that we are operating on Λ′ and not regular Λ terms.
We split reduction into two cases when we apply β′ reduction on an indexed term and
when we apply it on a non-indexed term.
The rule for index terms is called β0 and is defined by

(λix.M)N →M [x := N]

The rule for terms without an index is called β1

(λx.M)N →M [x := N]

3. We then define the binary relations→β′ and�β′ as we did for→β and�β previously.

Lemma 6. (Projecting) Let σ′ be a β′ reduction starting with M ′ ∈ Λ′ of the form σ′ : M ′ ≡
M ′

0 →
∆′0
β′ M

′
1 →

∆′1
β′ Then |σ′| : |M ′| ≡ |M ′

0| →|∆
′
0 |M1| →∆′1 is a β-reduction starting with

|M ′|.

Proof. This comes from the fact that β′-reduction acts in the same way as the β-reduction.

Lemma 7. (Lifting)
Let σ be a β-reduction starting with M ∈ Λ. Then for each M ′ ∈ Λ′ with |M ′| ≡ M

there is a β′-reduction σ′ starting with M ′ such that |σ′| = σ

19

Proof. Here we can just add indices to certain abstractors/terms to produce a reduction
path with the necessary qualities.

Definition 22. 1. Let M ∈ Λ. ∆ ∈M denotes that ∆ is a redex occurrence in M.

2. Let F be a set of redex occurrences. F ⊆M denotes that ∀∆ ∈ F ∆ ∈M

3. Let F ⊆M ∈ Λ. Then (M,F) ∈ Λ′ is the indexed term obtained from M by indexing
the redex occurrences of M that are in F by 0 .

Now we can define the idea of a residual which is at the core of the equivalence between
these types of terms.

Definition 23. Let M,N ∈ Λ and σ : M � N

1. Let F ⊆M . The set of residuals of F in N relative to σ is defined as follows.
Let M ≡ (M,F) and lift σ to σ′ : M ′ � N ′. Since the β′-reductions do not create
new indices N ′ only has 0 indices and so N ′ ≡ (N,F ′) for some F ′.

2. If ∆ ∈M , then the residual of ∆ in N relative to σ denoted by ∆//σ is the same. The
only difference in this situation is that there is only one term in the F

This allows us to mark terms and define them as unique objects throughout the process.
Previously, when looking at the initial λ term and the term in its normal form we could not
say that certain subterms were unaffected. The same term could have been removed and
then reconstructed in other ways. However, now we can say that this term with a given
index is the same term term as some other term.

We now officially state some minor properties of residuals.

Lemma 8. Let M,N ∈ Λ, σ : M � N and F = {∆1, . . . ,∆n}. Then F/σ = ∆1/σ ∪ · · · ∪
∆n/σ

This means that the set residuals of F is defined by whether each individual residual is
unaffected by β-reduction through the path.

Lemma 9. Let σ : M � N, τM � L and F ⊆M . Then F/(σ + τ) = (F/σ)/τ

This in turn means that it does not matter how we splice up the reduction paths. As
long as the sets of reductions are the same, we have the same properties. We want residuals
to in some way represent individual terms throughout the process of reduction, so this is an
important property. The same reductions will affect the residuals in the same way because
the same reductions will affect the same terms in the same way.

Example 6. Let ∆ ≡ (λa.a(Ix))(xb)

1. (λx.xx)a∆→ aa∆. The residual of ∆ relative to the reduction is unchanged because
the reduction does not affect the ∆ term in any way.

2. (λx.xx)∆ → ∆∆. Here, ∆ has two residuals the two instances of it in the reduced
term.

20

3. (λx.x)∆ → (λx.x)(xb(Ix). Here, ∆ has no residuals because there indices of ∆ are
completely gone. The indices are only stoed in the λx parts of the terms. However,
this reduction of ∆ removes that abstractor, so the residual no longer exists.

4. ∆ → (λx.ax)(xb). Here, the residual of ∆ is (λa.ax)(xb) because the abstractor that
identified it as a ∆ residual remains in the term.

To give some more context, the residual is no longer there because the thing we used to
mark the term is no longer there. The only thing that we have to mark term is indices on
abstractors in those terms. Howver, once those disapear there is no longer a syntactic part
of the term that marks it as part of the original term. We rely upon syntactic terms because
we need to automate each step to be able to generalize about it. If there was any context
one needed to define a residual, then one could not abstract beyond it.

If the reduction path of M is implied, one can just say the residuals of F .

Definition 24. Let M ∈ Λ and F ∈M .

1. A development of (M,F) is a reduction path σ : M ≡ M0 →∆0 M∆1
1 · · · such that

each redex ∆i ∈ Mi is a residual of a redex in F relative to the reduction path form
by the ∆i.

2. σ : M � N is a complete development of (M,F) if σ is a development of (M,F)
and F/σ = ∅. Therefore, the path is a complete development if it ends without any o
fthe original residuals.

3. A development of M is a development of (M,F) where M is the set of all redex
occurrences in M.

4. M �dev N if and only if N occurs in some development of M. Therefore, N is the result
of some series of reductions that form a reduction.

The key ideas

Lemma 10. σ is a development of (M,F) if and only if σ is lifted to σ′ starting with (M,F)
is a β0-reduction

0.7.1 Finiteness of β-reduction

The core idea of this proof is to keep track in some way of the number of variables in the
proof and show that they are always being reduced at each level. This ensures that the
reduction is itself finite.

Definition 25. Λ′∗ is the set of weighted Λ′-terms defined indcutvely as follows

1. xn ∈ Λ′∗ for every variable and every n ∈ N, n > 0

2. M ∈ Λ′∗ =⇒ (λx.M) ∈ Λ′∗

3. M,N ∈ Λ′∗ =⇒ (MN) ∈ Λ′∗

21

4. M,N ∈ Λ′∗ =⇒ ((λix.M)N) ∈ Λ′∗ where i ∈ N

We can also define such terms as a Λ′ term paired with another term that is a weighting
of each of the variables, I. We will denote such a pari by (M0, I) where M0 is the Λ′ term
and I is the weighting of the variables within M0.

The integers that we attach to the variables will be called weights. In this new alphabet,
each variable not directly attached to a abstractor will have a variable. Therefore, λx.xx is
a regular lambda term but it is not a Λ∗′ term. However, if we rewrite the term as λx.x1x1

or λx.x1x2 it would become a valid Λ∗′ term.

Definition 26. The notion of reduction β0 is extended to Λ′∗ by defining substiution in the
same way so

xn[x := N] ≡ N

. So we are essentially ignoring the weights when actually doing the substiution. We will
also define a version of β0 for this new language as β′0 and define it as

β∗0 : (λix.M)N →M [x := N] ∀M,N ∈ Λ′∗
We will also extend the definitions of →β∗0

and �β∗0
in the natural way.

The most important change here is that we are only dealing with indexed abstractors
when doing reductions, so if a term appears as as λx.x1x1 in the language, we will never
apply the β∗0 rule to it and substitute x for any term in the term.

Definition 27. Let M ∈ Λ′∗, for N ⊂M define

‖N‖′

=sum of the weights occurring n N

This number will always be above 0 because any subterm needs to contain at least 1
variable and each variable is bounded below by 0.

Definition 28. Let M ≡ (M0, I).
The weighting I is decreasing if for every β∗0-redex (λix.P)Q in M one has

‖x‖′ > ‖Q‖′ for all occurrences of x in P.

If a term has a decreasing weighting then the β∗0 reduction will decrease the sum of weighted
variables so ‖P [x := Q]‖′ < ‖(λix.P)Q‖

Example 7. 1. (λ2x.x
6x7)(λx.x2x3) has a decreasing weighting

2. (λ1x.x
4x7)(λx.x2x3) does not have a decreasing weighting

Lemma 11. Let M ∈ Λ′. There is a waiting I for M that is a decreasing weighting

Proof. There are many ways to do this but one of the simplest is to use powers of 2. One
can count the variables from right to left and then give them the index of 2 to the power
of the number on the index, starting with 0. For xxyyzzaa, one would have x32x16z8z4a2a1.
Since 2n = 1 +

∑n−1
i=0 2i the decreasing property holds.

22

We will now prove the core of our argument regarding finite development, namely that
β0 reduction allows for a way that continually reduces the sum of weights of a term. This
will be a very technical proof, but most lambda calculus proofs are very technical.

Lemma 12. Let M∗ ≡ (M, I) ∈ Λ
′∗ so M* is equivalent to M with I as a decreasing

weighting and let M∗ →β∗0
N∗ ≡ (N, I ′).

1. ‖M∗‖′ > ‖N∗‖′.

2. I ′ is a decreasing weighting.

Proof. Since we are only dealing with the β∗0 reduction, we can assume that the changed part
of the term is of the form ∆1 ≡ (λix1.P1)Q1. So, ∆1 ⊆M . Hence, ∆1 is the redex contracted
in M∗ →β∗0

N∗. We will now show that the new weighting has a reduced weighting sum and
the new weighting is still decreasing.

1. Since each x1 in P1 is replaced by Q1 in the reduction and since ‖x1‖′ > ‖Q1‖′ by the
fact that the weighting of M is a decreasing weighting, the sum of the weights in the
contractum is decreased. Moreover, if x1 6∈ P1 the sum also decreases. This comes from
the fact that ‖Q1‖′ > 0 and we are essentially removing Q1 from M entirely. Therefore,
the sum of weights has decreased in M.

2. We will now look at a β∗0 redex of N ∆0 ≡ (λjx0.P0)Q0. Since ∆0 is indexed, it is
the residual of a redex in M∗. This is because the reduction cannot create a new
abstractor and residuals are defined by abstractors. Let us define the redex in M∗ as
∆2 ≡ (λjx2.P2)Q2.

Of those cases in the table there are only two scenarios in which it is not trivial to
show that I ′ is still decreasing.

(a) The first of these cases is when ∆1 ⊂ Q2.

M∗ ≡ · · · (λjx2.P2) · · · ((λix1.P1)Q1) · · ·
2
· · ·

β0∗ ↓

N∗ ≡ · · · (λjx2.P2) · · ·P1[x := Q1] · · ·
0
· · ·

where
2
≡ Q2 and (λjx2.P2)

0
≡ (λjx0.P0)Q0. Since M∗ has

a decreasing weighting, one has

‖(λix1.P1)Q1‖′ > ‖P1[x1 := Q]‖′. (1)

and for all x2 ≡ x0 in P2 ≡ P0

‖x2‖′ > ‖Q2‖′ (2)

From (1) it follows that ‖Q2‖′ > ‖Q0‖′, and therefore by (2) we have ‖x0‖ > ‖Q0‖′,
which is the definition of a decreasing weighting, as all other weightings remain
unchanged and therefore decreasing.

23

(b) The second of these cases is when ∆2 ⊂ P1. This means that

M∗ ≡ · · · (λix1. · · · x1 · · · ((λjx2.P2)Q2 · · ·
1
)Q1 · · ·

β0∗ ↓

N∗ ≡ · · · · · ·Q1 · · · ((λjx2.P2[x1 := Q])(Q1[x1 := Q1]))

where
1
≡ P1 and (λix0.P0)Q0 ≡ (λjx2.P2[x1 := Q1])(Q2[x1 := Q]).

Since M∗ has decreasing weights,

‖x1‖′ > ‖Q1‖′ ∀x1 ∈ P1 (3)

and
‖x2‖′ > ‖Q2‖′ ∀x2 ∈ P2 (4)

By (3), we have ‖Q2‖′ ≥ ‖Q2[x1 := Q1]‖′. The two are equal when x1 6∈ FV (Q2).
Then we can apply (4) to get ‖x2‖′ > ‖Q2[x1 := Q1]‖′ for all x2 in P2[x1 := Q1].

Theorem 4 (FD:Finitude of Developments). Let M ∈ Λ. Then all developments of M are
finite.

Proof. We have already shown that β0 reduction paths are developments. Since weighted β0

reduction paths form a strictly decreasing chain, they must reach a minimum value at some
point. Therefore, we can map the development into a β0 reduction path, making it complete
in finite time.

This means that the developments give us a computable path to a normal form of lambda
terms. From this we shall show that having a hnf is equivalent to the head reduction path
of M terminating. We will now prove a slight extension of this concept.

Corollary 2. Let M ∈ Λ.

1. For F ⊆M , each development of (M,F) can be extended to a complete one.

2. The set {M |M �dev N} is finite.

Proof. 1. By the FD, there is a development of (M,F) of maximal length, so there must
be a complete one.

2. Each term only has finitely many one step reducts. Since at each stage there are only
finitely many moves to make and each development is finite, the whole graph of the
stages must be finite by Koenigs lemma.

Lemma 13. 1. β0 is weakly Church Rosser.

24

2. If M,M1,M2 ∈ Λ′ and σ : M →∆1
β0

M1, τ : M →∆2
β0

M2, then there are reductions
σ′ : M2 �β0 M3 and τ ′ : M1 �β0 M3 where σ′ and τ ′ are β0-reductions formed by
contracting the residuals of ∆1/τ and ∆2/σ one after the other from left to right.

3. The same holds for β′

Proof. All of this follows from our proof that → is weakly Church Rosser.

Corollary 3. 1. The notion of β0 reduction on Λ′ is Church Rosser.

2. Each M ′ ∈ Λ′ has a unique β0-nf.

Proof. 1. This is because the chain of reductions must be finite and it is weakly Church
Rosser. The local property extends to the entirety of all reduction paths.

2. Since it is Church Rosser, it must have unique normal forms.

Now, we will actually show that there is a natural extension to make on FD, which we
will call FD!

Theorem 5 (FD!). Let M ∈ Λ and F ⊆M .

1. All developments of M are finite.

2. All developments of (M,F) can be extended to a complete development of (M,F).

3. All complete developments of (M,F) end with the same term.

Proof. 1. By FD and part 2 of Corollary 2.

2. By FD and part 1 of Corollary 2 .

3. By Lemma 10 in Section 6 and the previous corollary.

Definition 29. 1. Let σ : M0 →∆0 M1 →∆1 M2 →∆2 · · · be a reduction. σ is a standard
reduction if ∀i∀j < i[∆i is not a residual of a redex to the left of ∆j]. Here P being
to the left of Q in some term M means that every part of P is written to the left of Q,
so leftness corresponds to the position of the terms relative to each other syntactically.
This is relative to the reduction from Mj to Mi.

2. We write M →s N if there is a standard reduction σ : M → N .

Let us say we were to reduce a subterm ∆0 in M. If we want the reduction path to be a
standard reduction path, we cannot apply the reduction rule to any subterm to the left of
∆0. Since head reduction always choose the leftmost substitution possible, it is standard.

Example 8. 1. λa.(λb.(λc.c)bb)d → λa.(λb.bb)d → λa.dd. This reduction path is not a
standard reduction because after we reduce the λc subterm we reduce the λb subterm
and the latter was to the left of the former term.

25

2. λz.λb.(λc.c)bb)d→ λa.(λc.c)dd→ λa.dd. This reduction path is a standard reduction
because we never reduced any lambda term that was to the left of a reduce lambda
term.

To ensure that the contraction being done is a standard reduction, one could label each
of the abstractors to the left of the abstractor being reduced. After that point, it would be
forbidden to reduce any of the lambda terms with a label. This is exactly what is meant by
the use of residuals in the definition of the term. It also becomes necessary because it would
otherwise be hard to identify which abstractors were to the left of the reduced term. As the
term was reduced, there would be no abstractor to define it as being to the left of anymore.
I would like to recall here that if a head redex exists it is simply the leftmost redex of the
form (λx.M)N .

Definition 30. 1. Let M ∈ ∆ and ∆ ∈ M . ∆ is internal in M if ∆ is not the head
redex of M.

2. We say that M �i N if there is a reduction σ : M ≡M0 →∆0 M1 →∆1 · · · →Mn ≡ N
such that each ∆i is internal in Mi for 0 ≤ i < n.

3. We say that M �1,i N if there is a reduction σ : M �i which is at the same time a
complete reduction of some (M,F).

Example 9. If we let M ≡ λx.(λz.zz)(I(Ix)), then Ix and I(Ix) are the internal redexes
and (λz.zz)(I(Ix)) is the head redex.

1. M →i λx.(λz.zz)(Ix) is an internal reduction.

2. M �1,i λx.(λz.zz)x. The F ≡ {Ix, I(Ix)}.

3. M →h λx.(I(Ix))(I(Ix)) is a head reduction.

4. M �h λx.x(I(Ix)). Here, the only reduction we would do would be internal reductions,
so it is in its head normal form.

5. M �1 λx.xx if F = {λx.(λz.zz)(I(Ix)), Ix, I(Ix)}.

Here are some basic results about these redexes.

Lemma 14. Let σ : M →∆ N where ∆ is an internal redex of M.

1. If N has a head redex, then so does M.

2. If ∆h is the head redex of M, then ∆h/σ consists of exactly one element which is the
head redex of N.

3. If ∆i is an internal redex of M, then all elements of ∆i/σ are internal redexes of N.

Proof. 1. If M has no head redex, then it must be in head normal form, but then N is
also in head normal form. However, since N has a head redex it cannot be in head
normal form.

26

2. Let us give the head redex ∆h of M an index, 0. If we then contract internal redexes,
this redex will not be canceled or duplicated. Therefore, the 0-redex remains the head
redex the entire time.

3. Throughout the entire process the head redex is not affected, so none of the internal
redexes can become head redexes. Therefore, ∆i/σ consists only of internal redexes.

Lemma 15. For M,M ′, N ∈ Λ,

M

M’

h

N

1

1,i

Proof. Let N be the complete reduct of (M,F). We can then develop (M,F) in the following
steps.

1. Contract the consecutively indexed redexes that are head redexes. By FD, this process
stops at some point. We shall call it M ′.

2. Complete the development by contracting the remaining indexed redexes. By FD!, this
leads again to N.

By definition M �h M
′ and M ′ �1 N . By 3 of the the previous lemma, M ′ �1,i M .

Lemma 16. For M,N,N ′ ∈ Λ

M

N ′

h

N
1

N ′

h

1

Proof. We will first show that the following diagram(which we will call 1) holds.

M

N ′

h

N
1,i

N’

h

1,i

27

Let M ′ be the complete reduct of (M,F) for some F such that all elements of it are internal
redexes. By 1 in Lemma 11, M has a head redex. Let us call that head redex ∆. By the
second part of that same lemma, ∆ has exactly one residual ∆′ in M ′ and M ′ →∆′

h N ′.
Therefore, M �1,i M

′ →h N ′ is a complete development of (M,F) ∪ {∆}. Let M1 be
obtained form M by contracting ∆. By FD!, M1 �1 N

′ by a complete development of all
residuals of F in M1. Hence by Lemma 11,; there exists N such that M1 �h N �1,i N

′.
This shows that 1 is true. The diagram of this reality is as follows.

M M ′
1,i

M1

∆

N

h

N ′
1,i

1,i

∆′

Since M →i M
′ →1,i M

′, the statement of the lemma follows by diagram 1 and a diagram
chase suggested in the following figure.

.

.

h

.

h

.

h

.i

.
1,i

h

.
1,i

h

.

h

1,i

Lemma 17. For M,N,M ′ ∈ Λ,

M

M ′

h

N”
i

This means that for all M,N ∈ Λ and reductions M � N , there is M ′ ∈ Λ and reductions
M �h M

′ and M ′ �i N that make the above diagram commute.

28

Proof. Since any reductions M � N are of the form

M �h M1 �i M2 �h M3 · · ·�i N,

we can divide this into both head and internal reductions because all terms are either a head
normal redex or they are not. Since an internal redex is any redex other than the head redex,
we can divide any sequence of reductions into two sets: those subsets that are just a series
of internal reductions and those subsets that are a series of head reductions.

We can do a chase as mentioned at the end of the last theorem to get

M

.

h

.i

.

.i

. .

.i

.

h

.

.i

.
h

N
i

Theorem 6. Standardization Theorem If M � N , then M �s N

Proof. We will prove this by induction on the lenght of N. By previous lemma we have
∃M �h Z �i N .

1. If N ≡ x, then we are done. This is because the last step must be a head reduction
as there would only be one redex left in the entire term. Since each head reduction is
also a standard reduction we are done.

2. If N ≡ λx1 · · ·xn.N0N1 · · ·Nmwith n+m > 0, then Z must be of the form

Z ≡ λx1 · · ·xn.Z0Z1 · · ·Zm with Zi � Ni 0 ≤ i ≤ m

By the induction hypothesis

∃σi σi : Zi �s Ni 0 ≤ i ≤ m

. If we let σ : M �h Z, then σ + σ0 + · · ·+ σm : M �s N.

Corollary 4. M has a hnf if and only if the head reduction path of M terminates.

Proof. =⇒ Let M = λ−→x .y
−→
M , so it is not that M is syntactically equivalent to λ−→x .y

−→
M ,

but that that is its head normal form. By Church Rosser though, ifλ−→x .y
−→
M reduces down

to Z, then it must also have a reduction path to Z. Since Z is the result of a reduction path

29

form a head normal form, it must be of the form Z ≡ λ−→x .y
−→
N with Mi � Ni. Therefore, by

the standardization theorem,

M �s λ
−→x .y
−→
N . (5)

Let this reduction be M ≡M0 →∆0 M1 →∆1 · · · → λ−→x .y
−→
N . If all the ∆i are head redexes,

then (5) is a terminating head reduction. Otherwise, let ∆i be the first internal redex. Then
Mi must be in hnf because otherwise its head redex would remain. Therefore, M �Mi is a
terminating head reduction.
⇐= If the head reduction path terminates, then the form equation must be in head normal
form or else one could continue the reduction sequence.

Now we have a connection between the existence of the head normal form and the head
reduction, so we can say a lot more about head reduction. Without this proof, the path could
be some sequence of clever reductions that are of all different forms, which would require
a much more complicated proof to say anything about it. There would be so many more
cases. Moreover, these intricate modifications and constructions around λ-calculus is at the
core of how one says things about it. This whole sequence of thought is a good example of
how technical this subject can be.

0.8 HNF Facts

Here we will develop some facts about head reduction that will be used later.

Lemma 18. If M →h M
′, then M [z := N]→h M

′[z := N].

Proof. By assumption, we have M ≡ λ−→x .(λy.N0)N1N2 · · ·Nm and M ′ ≡ λ−→x .N0[y :=
N1]N2 · · ·Nm. Therefore, M [z := N] ≡ λ−→x .(λy.N0[z := N])N1[z := N]N∗2 · · ·N∗m where
N∗i = Ni[z := N] and M ′[z := N] ≡ λ−→x .N0[y := N1][z := N]N∗2 · · ·N∗m. By the substitution
lemma and our variable conventions, M [z := N]→h M

′[z := N].

Proposition 6. 1. λx.M has a hnf if and only if M has a hnf.

2. If M [z := N] has a hnf, then M has a hnf.

3. If MN has a hnf, then M has a hnf.

Proof. 1. If λx.M � N then N ≡ λx.N ′ and M � N ′, as there is no way to reduce away
the outer variables without any terms to contract them with. The reverse argument
applies in the reverse implication.

2. Suppose that M has no hnf. Then by Corollary 2, the head reduction is infinite. By
the previous lemma, the reduction of M [z := N] would also be infinite. Using N in
the place of z could only add possible reductions and not remove them. Therefore, by
Corollary 2 again, M [z := N] has no hnf.

30

3. Let
M ≡M0 →h M1 �h · · · (6)

be the finite head reduction of M, which exists by Corollary 2.

(a) If M is not an abstraction term for any k, then it must be an application term.

MN ≡M0N →h M1N →h is the head reduction of MN. Since this reduction must
be finite, (6) must also be a finite reduction. This in turn gives us an abstraction
term.

(b) If for some Mk is an abstraction term for some k, then choose k minimial such
that Mk ≡ λx.M ′. The head reduction of MN begins by

MN ≡M0N →h · · · →h MkN ≡ (λx.M ′)N →h M
′[x := N]→h · · · .

Since MN has a hnf, M ′[x := N] has a hnf by Church Rosser property. By the
second part of this proposition, we know that M ′ must have a hnf as M [x := N]
does. By the first part of the proposition, this then means that λx.M ′ must have
a hnf. This then gives us a head normal form for M, namely the head normal
form of λx.M ′ as M has a reduction path to λx.M ′.

Now we have arrived at the correlation between solvability and head normal forms.

Theorem 7. M is solvable if and only if M has a hnf.

Proof. By part 2 of Proposition 4 in 0.5 and part 1 of Propsoition 6, we may assume that
M is closed.

=⇒ If M
−→
N = I then M

−→
N has a hnf. Hence by part 2 of proposition 6 M has a hnf.

⇐= If M = λx1 · · ·xn.xiM1 · · ·Mm, then M(KmI)∼n = KmIM∗
1 · · ·M∗

m = I. This is
because each of the K terms essentially serves to remove one subterm from the overall term
and the ∼ n allows us to use up all of the variables as we do the head normal reduction.
When we do the substitution, we get

M(KmI)∼n � KmIM∗
1 · · ·M∗

m → Km−1IM∗
2 · · ·M∗

n

where M∗
i represents the Mi with the different variables replaced by KmI.

We will now prove things about certain special cases.

Corollary 5. M is unsolvable if and only if for all substiution instances M∗ and all sequences−→
N , M∗−→N has no nf.

Proof. =⇒ If M∗−→N had a nf, then by the previous thoerem and the first part of Proposition

4 in Section 0.5, for some
−→
P we have (M∗−→N)∗

−→
P = I where (M∗−→N)∗ is a closed instances of

M∗−→N . Therefore, M∗∗−→N ∗
−→
P = I and M is solvable by proposition 4 part 1 in 0.5.

⇐= If M is solvable, then by Propsoition 4 in Section 0.5, M∗−→N = I for some
−→
N

31

Lemma 19. Let M ≡ λx1 · · ·xn.xM1 · · ·Mm. If M � N , then N ≡ λx1 · · · xn.xN1 · · ·Nm

for some
−→
N with M1 � N1.

Proof. The only possible redexes in M are the M1 . . .Mm. Therefore, if M � N , then
N ≡ λx1 · · ·xn.xN1 · · ·Nm with Mi � Ni.

Corollary 6. 1. Let M ∈ HNF where HNF is the set of terms in head normal form,
and M � N . Then N ∈ HNF .

2. If M has the hnfs N and N ′ such that

N ≡ λx1 · · ·xn.xN1 · · ·Nm

N ′ ≡ λx1 · · ·xn′ .x′N ′1 · · ·N ′m
then n = n′, x ≡ x, m = m′ and Ni = N ′i for 1 ≤ i ≤ m.

Proof. 1. Follows directly from the previous lemma.

2. By assumption, N = M = M ′. Therefore, by the Church Rosser property, there
exists Z such that N � Z and N ′ � Z. By the previous lemma, Z is of the form
λx1 · · · xn.xZ1 · · ·Zm where n = n′, x ≡ x′, m = m′ and Ni � Zi and N ′i � Zi for
1 ≤ i ≤ m.

Lemma 20. The set of set of normal forms NF can be defined in either of two ways.

1. (a) x ∈ NF .

(b) M1, . . . ,Mm ∈ NF =⇒ λx1 · · · xm.xM1 · · ·Mm ∈ NF where n,m ≥ 0.

2. (a) x ∈ NF .

(b) M1, . . . ,Mm ∈ NF =⇒ xM1 · · ·Mm ∈ NF with m ≥ 0.

(c) M ∈ NF =⇒ λx.M ∈ NF .

Proof. 1. Let X be the set determined by the inductive definition. X must be s subset
of the set of normal forms. So let us say that M is a hnf. By Proposition 5 in Section
0.5, M is of the form λx1 · · · xn.xM1 · · ·Mm. Moreover, the M1, . . . ,Mm are again in
nf. By induction on the length of M it follows that M ∈X .

2. Both inductive definitions define the same set, so the second definition must also define
all normal form terms.

Corollary 7. M has a nf ⇐⇒ λ−→x .M has a nf.

Proof. =⇒ Suppose M = λ−→z .y
−→
N . Then λ−→x .M = λ−→x y.y

−→
N which is a normal form.

⇐= Suppose λ−→x .M � λ−→z .y
−→
N . Then −→z = −→x ,−→x and M � λ−→w , yN

−→
N ∈ NF .

A term may have several different hnf’s, so we will now define a canonical choice for hnf.

32

Definition 31. If M has a hnf, then the least term of the terminating head reduction of M
is called the principal head normal form of M.

Example 10. The principal head normal form of M ≡ (λx.xx)Iy(Ia) is IIy(Ia) as shown by
the following head reduction. λx.xx)Iy(Ia)→ IIy(Ia). The read reduction (λx.xx)Iy(Ia)→
IIy(Ia)→ y(Ia) shows that y(Ia) is a different head normal form of M.

0.9 Böhm Trees

We will now define a structure called the Böhm tree, which is a way of assigning elements of
lambda terms to a tree structure. This emphasizes the relationships between elements of the
lambda term and also allows for many important theorems. However, it most importantly
allows one to place a topology upon lambda terms. The most important aspect of this
situation is that β-reduction is a continuous map. We will not prove that statement here
because it is quite involved. Regardless, that means that β-reduction behaves nicely with
open sets, which in turn allows us to do many things.

Definition 32. A tree is a set of sequences, Seq, such that

1. Seq = {〈n1, . . . , nk〉 ∈ Z|k ∈ N, n1, . . . , nk ∈ N}.

2. α ∈ A, β ≤ α =⇒ β ∈ A

3. α ∗ 〈< n+ 1〉 ∈ A =⇒ α ∗ 〈n〉 ∈ A

Upon trees we define an ordering ≤ where if α, β ∈ Seq and α ≤ β, then the length of α is
less than the length of β, and we can add elements to α to make it β. Therefore, α ≤ β if
and only if we can extend α to make it β

If α = 〈n1 . . . , nk〉 ∈ Seq, then lh(α) = k. Therefore, lh is just the length of the
sequence. To concatenate sequences we will use the symbol ∗. Therefore, if α = 〈n1, . . . , nk〉
and β = 〈m1, . . .ml〉, then α ∗ β = 〈n1, . . . , nk,m1, . . .ml〉.

Definition 33. Let Σ be a set of symbols. On the tree we will attach a map φ : X ↪→ Y
with domain Dom(φ) ⊆ X. For x ∈ X, φ(x) ↓ will mean that φ(x) is defined and φ(x) ↑
will mean that φ(x) is not defined. A given tree with a partial map ψ : X ↪→ Y where
X = Seq and Dom(ψ) = Tψ = {α ∈ Seqψ(α) ↓} and Y is the set of symbols in Σ is called a
Σ-labeled tree. The set of sequences will be called the naked tree and ψ(α) will be the
label at node α of the tree.

Example 11. If we let Σ = {a, b, c}, the following is a Σ−labeled tree.

c

a c a

bb

33

However, there is no unique way of labeling the tree as we could have also labeled it as

a

a a a

aa

The underlying tree in this case would be

•

• • •

••

We will use capital letters to denote specific partial maps., For a partial map A giving a
labeled tree, |A| is the underlying tree that A has as a domain.

Now we will define a way to write out the Böhm tree of a particular lambda term.

Definition 34. Let∑
= {⊥} ∪ {λx1 · · ·xn.y|n ∈ N, x1, . . . , xn, y variables}

The Böhm tree of a λ-term M (notation BT(M)) is the
∑

- labeled tree defined as follows.

1. If M is unsolvable, then

BT (M)(〈〉) = ⊥
BT (M)(α) ↑ ∀α 6= 〈〉

Therefore, the first element of the tree is the null element and the tree is undefined for
all other sequences other than the initial sequence 〈〉.

2. If M is solvable, then we define the Böhm tree using its principal hnf. It must have
one because all solvable terms have a principal hnf. Let the principal hnf of M be
λx1 · · ·xn.yM0 · · ·Mm−1. We will then define the tree as

BT (M)(〈〉) = λx1 · · ·xn.y

BT (M)(〈k〉) ∗ α) = BT (Mk) for all α and for all k < m

BT (M)(〈k〉) ∗ α) = ↑ ∀α, k ≥ m

This definition of the Böhm tree is good in that it gives all non-solvable terms the same
tree, which is a feature of many models of lambda calculus. (⊥ and ω can be considered
symbols representing all unsolvable terms.) Moreover, it defines the individual nodes on the
tree in terms of the smallest possible elements. Giving each input variable xi its own node
would only give long straight chains in the tree as each time we assigned a node to one
variable it would give us a new term with a set of input variables of size m− 1. Lastly, the
construction of the tree is purely mechanical as we can just do head reduction on any term
not in its principal head normal form.

34

Example 12. 1. For I ≡ λx.x, BT(I) is

λx.x

This is because there are no subterms in I.

2. For S ≡ λxyz.xz(yz), the BT(S) is

λxyz.x

z y

z

Here it is important to point out that here we treat terms made just out of variables
in a similar way as to regular terms. The root of the tree just becomes the first term,
which we already mandated to be a variable.

3. If we let M ≡ θ(λxyz.zzxzyy) where θ is the Turing fixed point combinator we get the
following tree

λyz.z

λyz.zz z y y

BT(M)z z y y

This recursive possibility is why the finitude of developments is so important. Oth-
erwise if we had the θM as the first element of the head reduction, it would not be
obvious how to compute the tree at all or if it was even possible. However, since we do
know that such paths are finite, we can say that it would equal something. It would
just be harder to figure out what thing would be.

There is also an interesting thing here in that it can be shown that there exist lambda
terms that generate all other lambda terms as subterms. Each lambda term is mapped to
an index in some way and then reductions of the term produce the new terms. This in turn
means that all of these Böhm trees are also merely subtrees of one master tree of infinite
size.

Proposition 7. If M=N then BT (M) = BT (N).

35

Proof. =⇒ Suppose M=N. We will use induction to show that their Böhm trees are identical
at each level and hence at all levels. We first let lh(α) = 0, here we at the first level of the
trees and α = 〈〉. If M is unsolvable then so is N, and BT (M)(〈〉) = ⊥ = BT (N)(〈〉). If
both M, N are solvable then they have hnfs of the following form.

M ≡ λx1 · · · xn.xM0 · · ·Mm−1

N ≡ λx1 · · ·xn.xN0 · · ·Nm−1

with Mk = Nk for all k < m. By definition, BT (M)(〈〉) = λx1 · · ·xn = BT (N)(〈〉) because
they have the same number of xi by their being equal.

If lh(α) > 0, then for some k, α′ one has α = 〈k〉 ∗ α′. If M and N are unsolvable,
then BT (M)(α) =↑ and BT (N)(α) ↑. If M and N are solvable, then they must have hnfs
satisfying the form of the previous case. Therefore, if k ≥ m, then

BT (M)(〈k〉 ∗ α′) =↑ and BT (N)(〈k〉 ∗ α′) =↑ .

If k < m, then

BT (M)(〈k〉 ∗ α′) = BT (Mk)(α
′) = BT (Nk)(α

′) = BT (N)(〈k〉 ∗ α′)

by the induction hypothesis.

The problem here is that we cannot actually be guranteed to compute this because we
only established the finitude of developments and not a bound upon them. Therefore, there
is no number of head reductions that we can guarantee will result in the head normal form
of the lambda term. Therefore, we cannot say that a term is unsolvable since we do not
if a few more reductions will give us a normal form. This is the class of objects that are
co-recursively enumerable. This means that we can enumerate all elements that are not in
this set with normal computation. However, we can never say if an element is an element of
the set. If one wants to know about such sets and their properties , Soare’s book on Turing
degrees is a good resource.

Because of this restriction, we will define a partially labeled tree instead of just a labeled
tree where each node in the tree was forced to have an element of the alphabet assigned to
it.

Definition 35. Let
∑

be a set of symbols.

1. A partially labeled
∑

-tree is a partial map φ : Seq 7→
∑
×N such that

(a) φ(σ) ↓ ∧ τ < σ =⇒ φ(τ) ↓, and

(b) φ(σ) = 〈a, n〉 =⇒ ∀k ≥ n φ(σ ∗ 〈k〉) ↑.

2. The underlying tree of a partial
∑

-labeled tree φ is

Tφ = {〈 〉} ∪ {σ ∈ Seq|σ = σ′ ∗ 〈k〉 ∧ φ(σ′) = 〈a, n〉 ∧ k < n}

.

36

3. Let σ ∈ Tφ. If φ(σ) = 〈a, n〉, then a is the label at node σ. If φ(σ) ↑, then the node σ
is not labeled.

The difference here might only seem syntactic in that we are differentiating between
labeling a node in the tree ⊥ and not labeling it at all. However, the important difference
is that for in the case of the regular labeled

∑
-tree we force the function to output a value

even when there is no stop condition. Hence, we assumed the use of an oracle when we
were constructing the tree. However, now we are just saying that if φ never stops, we don’t
label it anything. We can do this because we can really just wait until a certain number
of computations are complete and then let φ never terminate. Given this bound, the tree
becomes partially computable, which means that on some inputs the function does not stop
or return anything. Moreover, we are delaying the actual computation of the next stage to
the next stage, which ensures that we minimize the computation needed at each stage. Lastly,
we pair nodes of the tree with the number of children they have, which makes constructions
easier as we don’t have to look at the actual hnf-form of the element and instead only at the
node in the tree.

Proposition 8. Tφ is a tree

Proof. If σ ∈ Tφ and φ(σ) ↓, then by the definition of partially labeled trees, for all σ′ < σ
φ(σ′) ↓, and hence σ′ ∈ Tφ. If 〈〉 6= σ ∈ Tφ and φ(σ) ↑, then σ′ = σ ∗ 〈k〉 and φ(σ′) ↓.
Hence for all σ′′ ≤ σ′ σ′′ ∈ Tφ, so σ′′ ∈ Tφ for all σ′′ < σ. Moreover, σ ∗ 〈k + 1〉 ∈ Tφ then
σ ∗ 〈k〉 ∈ Tφ.

Just as with labeled trees, we will defined partially labeled trees by capital letters and
|A| will denote the underlying tree TA corresponding to A. We will write α ∈ A for α ∈ |A|.
Lastly we will say A(α) = ⊥ if A(α) ↑ and α ∈ A, and A(α) ↑↑ if A(α) ↑ and α 6∈ A.
This just means that we will differentiate between elements that are a part of the tree and
elements that are not part of the tree.

Example 13. Consider the following tree.

a

b c

a

On this tree A(〈0〉) ↓, A(〈1〉) ↑, A(〈2〉) ↓, A(〈2, 0〉) ↓, A(〈2, 1〉) ↑, and A(〈3〉) ↑↑.

Definition 36. Let
∑

1 be the set

{λx1 · · ·xn.y|n > 0, x1, . . . , xn, y variables}.

The effective Böhm Tree of M (denotedBT e(M)) is the partially
∑

1 labeled tree defined
as follows

37

1. If M is unsolvable, then for all σ

BT e(M)(σ) ↑

.

2. If M is solvable, and has the principal hnf λx1 · · ·xn.yM0 . . .Mm−1, then

BT e(M)(〈〉) = 〈λx1 · · ·xn.y,m〉

and for all σ
BT e(M)(〈k〉 ∗ σ) = BT e(Mk)(σ) if k < m

BT e(M)(〈k〉 ∗ σ =↑ if k > m

This tree is clearly a partially labeled
∑

-tree. Moreover, the underlying tree is the same
as in the labeled Σ-tree situation.The first difference between the effective Böhm tree and
the regular Böhm tree is that there is extra information at each node saying how many
children it has, which does not change the structure of the tree. Secondly, we do not label
the unsolvable terms in the effective Böhm tree, which also does not change the structure
either, so we still have the same underlying tree.

From this point on we will mean BT e(M) whenever we say BT (M).

Definition 37. 1. A Böhm-like tree is a partially
∑

1-labeled tree with
∑

1 as in the
previous definition. B is the set of all Böhm-like trees.

2. ΛB = {A ∈ B|∃M ∈ Λ (BT (M) = A)}

3. A ∈ B is ⊥-free if and only if ∀α ∈ A (A(α) ↓).

4. If A ∈ B, then d(A) = sup{lh(α)|α ∈ A}. A could be infinite though, such as in the
previous example with the Turing fixed point combinator.

Definition 38. 1. Let A ∈ B and α ∈ Seq. If α ∈ A, then the subtree of A at node
α (denoted Aα) is

Aα = λλ βA(α ∗ β)

where λλ just makes this a function. Therefore, the subtree is just all extensions of α
in the original tree A.

2. BTα(M) = (BT (M))α

3. Let M ∈ Λ and α ∈ BT (M). We define Mα ∈ Λ by induction on lh(α).

M〈〉 ≡M

M〈i〉∗α ≡ (Mi)α if λ−→x .yM0 · · ·Mm−1 is the principal hnf of M

.

38

0.9.1 Purpose of Böhm Trees

The idea of these Böhm trees may seem like a strange one, but it is really quite natural
because of the key role that trees play in logic overall. For example, trees play a very
important role in the construction of certain degrees of computability. In the context of
Lambda-calculus, it allows one to search through the subterms of a term in a clear way.
Without the concept of these trees, we had no way to index the subterms of a given lambda
term or even identify the whole class of meaningful subterms given that new subterms could
arise from substitution. Specifically, with Böhm trees one can implement the Böhm-out
technique which allows one to access the subtree of a given term. This then leads to the
separability theorem.

Definition 39. Let F = {M1, . . . ,Mp} be a set of λ-terms. If F ⊂ Λ0, then F is called
separable if

∀N1 · · ·Np ∈ Λ ∃F ∈ Λ FMi = Ni

The separability theorem states that as long as the λ-terms are distinct then the set is
separable.

A much more conceptual idea is that of the topology of the Böhm tree. With the Böhm
tree construction we have a way of actually ordering all of the λ-terms in a meaningful way.
This in turn means you can add a topology to them. The one most used is the Scott topology.

Definition 40. Let D be a set with a partial order v.

1. A subset X ⊆ D is directed if

∀x, y ∈ X ∃z ∈ X[x v z ∧ y v z]

2. D is a Complete Partial Order(cpo) if

(a) there exists a least element ⊥ ∈ D called the bottom, and

(b) for every directed X ⊆ D the supremum tX ∈ D exists.

3. Let (D,v) be a cpo. The Scott Topology on D is defined as

O ⊆ D is open if

(a) x ∈ O ∧ x v y =⇒ y ∈ O, and

(b) tX ∈ O, with X ⊆ D directed =⇒ X ∩O 6= 0.

This is quite an interesting result all on its own, but is rather limited given that this
space is only a T0 or Kolomogrov space. This means that it only satisifes the axiom that
given two points one can construct a set that does not include both points. Namely here one
would choose the ’greater’ point as the starting point of the space, which would not include
the smaller point. However, that is the only type of differentiating set that you can make.
You can not create two sets that each contain only one of the points, for example.

39

0.10 Other Topics in Lambda Calculus

What has been covered here are the essential aspects of Lambda calculus that cover two major
things, the types of proof and certain questions that one wants to deal with. However, since
its creation in the 1930s, Lambda Calculus has developed in many different directions.

0.10.1 Typed Lambda Calculus

The most important expansion to λ-calculus is the idea of types. These types allow one to
restrict things in a much nicer way than with the untyped version of λ-calculus. Theoretically,
with a typed version, one could remove the pathological example of Ω. Since it can be
shown that Ω is equivalent to any other unsolvable λ-term, it does not add anything, but
does prevent one from saying that all β-reduction paths are finite for example. Moreover, it
allows one to restrict what can be applied to what, which in turn makes the analysis much
easier. One does need to worry about the most general case when proving things about
terms. It also allows one to represent data types in the computation much more easily.

0.10.2 Functional Programming

Functional Programming is a programming paradigm directly inspired by λ-calculus. One of
the major benefits that people see with functional programming is that things are much more
mathematical than in object oriented or procedural based programming, the other two major
programming paradigms. Every single object is an atomic object which you then deal with.
With the other programming paradigms the objects are mutable, and you can be forced to
deal with the actual hardware of the computer and not just abstracted software. A great
example of this is all of the memory problems people have with C. Because C allows you to
access the hardware almost directly, you can have lots of problems where the memory is not
handled in a safe way. This can introduce many security problems and for most programs
does not offer any improvement. Computers have largely gotten fast enough that usability
and the maintainability of code can be a much bigger factor in the usefulness of a language
than the sheer speed of a language.

The ’purest’ programming language to play around with the ideas of functional program-
ming is LISP, which was first made in 1958 and is still in use today. This makes it one of
the oldest currently used programming languages. However, there are many others such as
Haskell and Scheme.

0.10.3 Reduction Techniques

A question that arises from the idea of β-reduction is which reduction method is best or
takes the least amount of steps to reduce the λ-term to head normal form. This is a topic
that has been covered to a certain extent in this overview, but it is much deeper. This is
where the labeling techniques previously used have the greatest relevance.

This topic can also extend into what type of reduction rules are useful. The given β-
reduction has been very useful and is able to do a lot of things, but that does not mean that
other reduction rules are useless. Here is also where we can get an expansion into not just

40

λ-calculi but to other calculi made to model different situations. The most famous of these is
the π-calculus, which is used to model more parallel situations. This is useful because it can
be shown that in some sense λ-calculus is inherently serial. Hence, it was useful for modeling
the ideas of previous computing paradigms, but that is less so the case to do because of the
massive amounts of parallelism in current computers. The general topics of this area is the
area of process calculi.

0.10.4 Models

This is the most mathematical of the different areas that branch off form lambda calculus.
Here, we explore different structures that have the applicative structure of regular lambda
calculus. Here what is stressed is the applicative structure of lambda calculus and not the
computational structure. There are many different known structures that map the behavior.

One especially important example is the combinatory logic of Curry. Here instead of
the variable being the key building block, we have the term itself being the building block.
Therefore, we have a few axiomatic terms and these combine in different ways to make new
terms. Therefore, there is no abstractor or sense of a free or bound variable at all here.
There is only the term. Specifically, for Curry’s version there are only three terms named
S,K, and I, from which one can do all computation. Along with the axioms of who these
three terms interact with each other and a few extra axioms one can essentially have an
equivalence with λ-calculus in terms of an isomorphic translation between the two.

0.11 Further Reading

The content of this has been directly adapted from Lambda Calculus: Its Syntax and Se-
mantic by Henk Barendregt, which is seen as the core text of this field of study. For untyped
lambda calculus, it includes all of the major topics. Another treatement is Lambda Calculus
and Combinatorics: An Introduction by J. Roger Hindley and Jonathon P. Seldin, which also
talks about typed lambda calculus. If one wants to focus more on typed lambda calculus in
general, then the sequel to Barendregts first book on the topics Lambda Calculus with Types
proves a definitive covering of that topic. Domains and Lambda-Calculi by Roberto M.
Amadio and Pierre-Luois Curien provides a category theoretic approach to the topic. If one
does wish to delve more into lambda calculus, learning category theory is quite important.
This is becuase the abstract structure can be expressed well in terms of category theory. The
main books for this are Categories for the Working Mathematician by Saunders MacLane.

41

Bibliography

[1] Barendregt, H. P. H. P. The lambda calculus : its syntax and semantics, rev.
ed.. ed. Studies in logic and the foundations of mathematics ; v. 103. North-Holland ;
Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co., Amsterdam ;
New York : New York, N.Y., 1984.

42

	Introduction
	Basics of Lambda Calculus
	Axioms
	Syntactic Notions
	Substitution

	Important Lambda Calculus Terms
	Church Rosser Property
	Computability Theory
	Head Normal Forma and Solvability
	 Reduction
	Finiteness of -reduction

	HNF Facts
	Böhm Trees
	Purpose of Böhm Trees

	Other Topics in Lambda Calculus
	Typed Lambda Calculus
	Functional Programming
	Reduction Techniques
	Models

	Further Reading

