Math 5120: Complex analysis. Homework 9 Solutions

4.5.3.1.a

$$f(z) = \frac{1}{z^2 + 5z + 6} = \frac{1}{(z+2)(z+3)}$$

which has

- a pole of order 1 at z = -2 with residue $\lim_{z \to -2} (z+2)f(z) = 1$
- a pole of order 1 at z = -3 with residue $\lim_{z \to -3} (z+3)f(z) = -1$

4.5.3.1.b

$$f(z) = \frac{1}{(z^2 - 1)^2} = \frac{1}{(z - 1)^2(z + 1)^2}$$

which has

- a pole of order 2 at z = 1 with residue $\lim_{z \to 1} \frac{d}{dz}(z-1)^2 f(z) = -\frac{1}{4}$
- a pole of order 2 at z = -1 with residue $\lim_{z \to -1} \frac{d}{dz} (z+1)^2 f(z) = \frac{1}{4}$
- 4.5.3.1.c $f(z) = \frac{1}{\sin z}$ has poles at the zeros of $\sin z$, so at the points $\pi k, k \in \mathbb{Z}$. These zeros are simple, because $f'(z) = \cos z = \pm 1$ at these points, and consequently the poles are simple. The residue at πk may be computed by L'Hopital's rule

$$\lim_{z \to \pi k} \frac{z - \pi k}{\sin z} = \lim_{z \to \pi k} \frac{1}{\cos z} = (-1)^k$$

so that f(z) has simple poles with residue $(-1)^k$ at each $\pi k, k \in \mathbb{Z}$. 4.5.3.1.d As $\cos z$ is entire, $f(z) = \cot z = \frac{\cos z}{\sin z}$ can only have poles at the zeros of $\sin z$, meaning the points $z = \pi k, k \in \mathbb{Z}$. Since $\cos z \neq 0$ at these points, there is a pole at each such point, and since the zeros of $\sin z$ are simple the poles are also simple. The residue at πk is

$$\lim_{z \to \pi k} \frac{(z - \pi k) \cos z}{\sin z} = \cos(\pi k) \lim_{z \to \pi k} \frac{1}{\cos z} = 1$$

so cot *z* has simple poles with residue 1 at each $\pi k, k \in \mathbb{Z}$. 4.5.3.1.e $f(z) = \frac{1}{\sin^2 z}$ has poles at each of the zeros $z = \pi k, k \in \mathbb{Z}$ of sin *z*. These zeros are order 1, so the zeros of $\sin^2 z$ are order 2. The residues may be computed using L'Hopital

$$\lim_{z \to \pi k} \frac{d}{dz} \left(\frac{(z - \pi k)^2}{\sin^2 z} \right) = \lim_{z \to \pi k} \frac{2(z - \pi k) \sin z - 2(z - \pi k)^2 \cos z}{\sin^3 z}$$
$$= 2 \lim_{z \to \pi k} \left(\frac{z - \pi k}{\sin z} \right) \lim_{z \to \pi k} \left(\frac{\sin z - (z - \pi k) \cos z}{\sin^2 z} \right)$$
$$= 2 \lim_{z \to \pi k} \left(\frac{\cos z - \cos z + (z - \pi k) \sin z}{2 \sin z} \right)$$
$$= \lim_{z \to \pi k} (z - \pi k) = 0.$$

We determine that f(z) has poles of order 2 at each of the points $\pi k, k \in \mathbb{Z}$ and has residue zero at each pole.

4.5.3.1.f $f(z) = z^{-m}(1-z)^{-n}$, $m, n \in \mathbb{N}$ has a pole of order m at 0 and a pole of order n at 1. We may compute the residue at 0 using

$$\lim_{z \to 0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} (1-z)^{-n} = \frac{1}{(m-1)!} \frac{(n+m-2)!}{(n-1)!} (1-0)^{-n-(m-1)}$$
$$= \binom{(n-1)+(m-1)}{m-1} = \binom{(n-1)+(m-1)!}{n-1}$$

The residue at 1 may be computed the same way

$$\lim_{z \to 1} \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} (z-1)^n f(z) = \frac{1}{(n-1)!} \lim_{z \to 1} \frac{d^{n-1}}{dz^{n-1}} (-1)^n z^{-m}$$
$$= (-1)^n (-1)^{n-1} \frac{(m+n-2)!}{(n-1)!(m-1)!} (1)^{-m-(n-1)}$$
$$= -\binom{(n-1)+(m-1)}{m-1} = -\binom{(n-1)+(m-1)}{n-1}$$

so we conclude that f has a pole of order m at zero with residue $\binom{(n-1)+(m-1)}{n-1}$ and a pole of order n at 1 with residue $-\binom{(n-1)+(m-1)}{n-1}$. It is worth noting that this is consistent with exercise 4.2.3.1(b).

4.5.3.3 There are a few things we will use repeatedly in computing these integrals. The curve γ_R will be the semicircle |z| = R in the upper half-plane, with the usual (increasing angle) orientation. For $R, S, T \in (0, \infty)$ we also let $\Gamma_1 = \{S + iy : 0 \le y \le T\}$, $\Gamma_2 = \{x + iT : -R \le x \le S\}$, $\Gamma_3 = \{-R + iy : 0 \le y \le T\}$, oriented such that $\Gamma_1 + \Gamma_2 + \Gamma_3$ and the interval $[-R, S] \subset \mathbb{R}$ form a positively oriented closed curve. We will frequently use that (A) if the integrand f(x) is bounded by $|x|^{-2}$ as $|x| \to \infty$ then $\int_{-\infty}^{\infty} = \lim_{R \to \infty} \int_{-R}^{R} f(x)$, and (B) if the integrand f(z) is bounded by $|z|^{-2}$ as $|z| \to \infty$ then $\lim_{R \to \infty} \int_{\gamma_R}^{R} f(z) dz = 0$

4.5.3.3.a Note that $\sin^2 x = \sin^2(-x) = \sin^2(\pi - x) = \sin^2(\pi + x)$ implies

$$\int_0^{\pi/2} \frac{dx}{a + \sin^2 x} = \frac{1}{4} \int_0^{2\pi} \frac{dx}{a + \sin^2 x}$$

and this may be seen as an integral on the unit circle with respect to the angle dx = dz/iz where $\sin z = (z - z^{-1})/2i$. Thus

$$\int_0^{\pi/2} \frac{dx}{a + \sin^2 x} = \frac{1}{4} \int_{|z|=1} \frac{1}{a + ((z - z^{-1})/2i)^2} \frac{dz}{iz}.$$

We simplify $((z-z^{-1})/2i)^2 = -(2z)^{-2}(z^4 - 2z^2 + 1)$ and find the integrand becomes $\frac{4iz}{z^4-(2+4a)z^2+1}$. At this point we can make our lives a little easier by making the substitution $w = z^2$. Notice that when z winds once around the unit circle, w winds around twice. We therefore find

$$\int_0^{\pi/2} \frac{dx}{a + \sin^2 x} = \frac{1}{2} \int_{|w|=1} \frac{2i}{w^2 - (2 + 4a)w + 1} \, dw = i \int_{|w|=1} \frac{dw}{w^2 - (2 + 4a)w + 1}.$$

Now we would like to say that the poles of $w^2 - (2 + 4a)w + 1$ are at $w_{\pm} = 1 + 2a \pm 2\sqrt{a^2 + a}$ by the quadratic formula, but this requires that we make sense of the square root. Fortunately, |a| > 1 by hypothesis, so |1/a| < 1 and $\sqrt{1 + (1/a)}$ is well-defined. We may therefore define an analytic branch of $\sqrt{a^2 + a}$ by $\sqrt{a^2 + a} = a\sqrt{1 + (1/a)}$, obtaining $w_{\pm} = 1 + 2a \pm 2a\sqrt{1 + (1/a)}$. By construction, each of w_{\pm} is a branch of the inverse of the map $w \mapsto (w + w^{-1})^2/4$, evaluated at *a*. Since $w \mapsto (w + w^{-1})^2/4$ takes the unit circle to the interval [-1, 1], and |a| > 1, we see that $|w_{\pm}| \neq 1$ (this is important for applying the residue theorem). It also follows that only one of w_{\pm} can lie inside the unit disc, and that which one does so is independent of *a*. Taking $a \in (1, \infty)$ we readily see $|w_{-}| < 1$ and $|w_{+}| > 1$, so this must be true for all *a*. Thus the result of the integration can be computed from the

residue at the simple pole w_- , which has value $1/(w_- - w_+) = -1/(4a\sqrt{1 + (1/a)})$. Finally

$$\int_0^{\pi/2} \frac{dx}{a + \sin^2 x} = \frac{2\pi i^2}{-(4a\sqrt{1 + (1/a)})} = \frac{\pi}{2a\sqrt{1 + (1/a)}}$$

4.5.3.3.b Using that the integrand is even and (A), then the residue theorem, and then (B)

$$\int_{0}^{\infty} \frac{x^{2} dx}{x^{4} + 5x^{2} + 6} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{z^{2} dz}{z^{4} + 5z^{2} + 6}$$
$$= \frac{1}{2} \lim_{R \to \infty} \int_{-R}^{R} \frac{z^{2} dz}{z^{4} + 5z^{2} + 6}$$
$$= \pi i \sum_{j} \operatorname{Res}_{z_{j}} - \frac{1}{2} \lim_{R \to \infty} \int_{\gamma_{R}} \frac{z^{2} dz}{z^{4} + 5z^{2} + 6}$$
$$= \pi i \sum_{j} \operatorname{Res}_{z_{j}} \frac{z^{2}}{z^{4} + 5z^{2} + 6}$$

where the sum is over residues in the upper half-plane. Now $z^4 + 5z^2 + 6 = (z^2 + 2)(z^2 + 3)$, so the integrand has simple poles at $z = \pm i \sqrt{2}$ and $z = \pm i \sqrt{3}$. The residue at $i \sqrt{2}$ is $-2/(2\sqrt{2}i)(1)$, and at $i \sqrt{3}$ is $-3/(-1)(2\sqrt{3}i)$, so the result is

$$\int_0^\infty \frac{x^2 \, dx}{x^4 + 5x^2 + 6} = \pi i \Big(\frac{-\sqrt{2}}{2i} + \frac{\sqrt{3}}{2i} \Big) = (\sqrt{3} - \sqrt{2}) \frac{\pi}{2}.$$

4.5.3.3.c By (A), the residue theorem, and (B)

$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx$$

= $\lim_{R \to \infty} \int_{-R}^{R} \frac{z^2 - z + 2}{z^4 + 10z^2 + 9} dz$
= $2\pi i \sum_{j} \operatorname{Res}_{z_j} - \lim_{R \to \infty} \int_{\gamma_R} \frac{z^2 - z + 2}{z^4 + 10z^2 + 9} dz$
= $2\pi i \sum_{j} \operatorname{Res}_{z_j} \frac{z^2 - z + 2}{z^4 + 10z^2 + 9}$

where the sum is over residues in the upper half-plane. The zeros of $z^4 + 10z^2 + 9 = (z^2 + 1)(z^2 + 9)$ are at $\pm i$ and $\pm 3i$; each produces a simple pole in the integrand, and there are no others. The residue at *i* is (-1 - i + 2)/(2i)(-1 + 9) and at 3i is (-9 - 3i + 2)/(-9 + 1)(6i), so the result is

$$\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} \, dx = 2\pi i \Big(\frac{1 - i}{16i} + \frac{7 + 3i}{48i} \Big) = (3 - 3i + 7 + 3i) \frac{\pi}{24} = \frac{5\pi}{12}$$

4.5.3.3.d Using that the integrand is even and (A), then the residue theorem, and then (B)

$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + a^{2})^{3}} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{z^{2} dz}{(z^{2} + a^{2})^{3}}$$
$$= \frac{1}{2} \lim_{R \to \infty} \int_{-R}^{R} \frac{z^{2} dz}{(z^{2} + a^{2})^{3}}$$
$$= \pi i \sum_{j} \operatorname{Res}_{z_{j}} -\frac{1}{2} \lim_{R \to \infty} \int_{\gamma_{R}} \frac{z^{2} dz}{(z^{2} + a^{2})^{3}}$$
$$= \pi i \sum_{j} \operatorname{Res}_{z_{j}} \frac{z^{2}}{(z^{2} + a^{2})^{3}}$$

where the sum is over residues in the upper half-plane. Factoring $(z^2 + a^2)^3 =$ $(z + ai)^3(z - ai)^3$, $a \in \mathbb{R}$, we see that there is a single pole of order 3 in the upper half-plane, at i|a|. The residue there is

$$\lim_{z \to |a|i} \frac{d^2}{dz^2} \frac{z^2}{(z+|a|i)^3} = \frac{1}{8|a|^3i}$$

so that the result is

$$\int_0^\infty \frac{x^2 \, dx}{(x^2 + a^2)^3} = \frac{\pi}{8|a|^3}$$

4.5.3.3.e Using that the integrand is even and (A), that $\cos z = \Re e^{iz}$, then the residue theorem for R = S and T sufficiently large,

$$\int_{0}^{\infty} \frac{\cos x \, dx}{x^2 + a^2} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos z \, dz}{z^2 + a^2}$$

= $\frac{1}{2} \lim_{R \to \infty} \Re \int_{-R}^{R} \frac{e^{iz} \, dz}{z^2 + a^2}$
= $\pi i \sum_{j} \operatorname{Res}_{z_j} \frac{e^{iz}}{z^2 + a^2} - \frac{1}{2} \lim_{R,T \to \infty} \Re \left(\int_{\Gamma_1} \frac{e^{iz} \, dz}{z^2 + a^2} \int_{\Gamma_2} \frac{e^{iz} \, dz}{z^2 + a^2} + \int_{\Gamma_3} \frac{e^{iz} \, dz}{z^2 + a^2} \right)$

where the sum is over residues in the upper half-plane. However the integrand is bounded by a constant multiple of $e^{-y}/|z|^2$ for z = x + iy and |z| sufficiently large. Writing f(z) for the integrand, and taking R = S and T large enough we find that $\left|\int_{\Gamma_1} f(z) dz\right| \le R^{-2} \int_0^T e^{-y} dy \le R^{-2}$, and similarly for Γ_3 . Now on Γ_2 we have that $(z^2 + a^2)^{-1}$ is integrable (with integral bounded by constant *C*) if *T* is large enough, and therefore $\left|\int_{\Gamma_2} f(z) dz\right| \le Ce^{-T}$. Sending *R* and *T* to ∞ we find

$$\int_0^\infty \frac{\cos x \, dx}{x^2 + a^2} = \Re \pi i \operatorname{Res}_{|a|i} f(z) = \frac{\pi}{2|a|}$$

where at the last step we computed that $z^2 + a^2 = (z + ai)(z - ai)$, has one simple pole in the upper half-plane, at i|a|, with residue $\lim_{z \to |a|} \frac{\cos z}{z+|a|i} = \frac{\cos a}{2|a|i}$. 4.5.3.3.f We use that the integrand is even and $x \sin x/(x^2 + a^2) = \Im z e^{iz}/(z^2 + a^2)$. Taking

R, *S*, *T* large enough that the curve $(-R, S) \cup \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ encloses the simple pole

at |a|i, where the residue is $\lim_{z \to |a|i} \frac{ze^{iz}}{z+|a|i} = \frac{|a|ie^{-|a|}}{2|a|i} = \frac{e^{-|a|}}{2}$ we obtain

$$\int_{0}^{\infty} \frac{x \sin x}{x^{2} + a^{2}} dx = \frac{1}{2} \lim_{R,S \to \infty} \Im \int_{-R}^{S} \frac{ze^{iz}}{z^{2} + a^{2}} dz$$
$$= \Im \pi i \frac{e^{-|a|}}{2} - \lim_{R,S \to \infty} \Im \left(\int_{\Gamma_{1}} \frac{ze^{iz}}{z^{2} + a^{2}} dz + \int_{\Gamma_{2}} \frac{ze^{iz}}{z^{2} + a^{2}} dz + \int_{\Gamma_{3}} \frac{ze^{iz}}{z^{2} + a^{2}} dz \right)$$

valid for all sufficiently large *T*. However, the integrand f(z) satisfies $|f(z)| \le \frac{|z|e^{-y}}{|z|^2-|a|^2}$ for z = x+iy. The integral for Γ_1 can be bounded by $\frac{R}{R^2-|a|^2} \int_0^T e^{-y} dy = \frac{R}{R^2-|a|^2}$ and similarly that for Γ_3 can be bounded by $\frac{S}{S^2-|a|^2}$. The integral for Γ_2 can be bounded by $\frac{Se^{-T}}{S^2-|a|^2}(R+S)$. If we first send $T \to \infty$ so the Γ_2 integral goes to 0, and then send $R, S \to \infty$ we find that they make no contribution to the result, and therefore

$$\int_0^\infty \frac{x \sin x}{x^2 + a^2} \, dx = \Im \pi i \frac{e^{-|a|}}{2} = \frac{\pi}{2e^{|a|}}$$

4.5.3.3.g We will do this for general $\beta \in (-1, 1)$, as it will be useful later. Take $\delta > 0$, $\epsilon > 0$, and R > 2. Let $\Gamma_{\pm} = \{re^{i\pm\delta}, r \in (\epsilon, R)\}$ be rays at angle $\pm\delta$, and also take arcs $\Gamma_R = \{Re^{i\theta} : \theta \in (\delta, 2\pi - \delta)\}$ and $\Gamma_{\epsilon} = \{\epsilon e^{i\theta} : \theta \in (\delta, 2\pi - \delta)\}$. Let z^{β} be a branch on $\mathbb{C} \setminus [0, \infty)$, so it is well-defined and analytic in a simply connected neighborhood of the closed curve $\Gamma_+ + \Gamma_R - \Gamma_- - \Gamma_{\epsilon}$. Provided δ and ϵ are sufficiently small, this curve winds once around the simple poles of $f(z) = z^{\beta}(1 + z^2)^{-1}$, which are at $\pm i$, and where there are residues $i^{\beta}/2i$ and $(-i)^{\beta}/ - 2i$ respectively.

$$\int_{\Gamma_{+}+\Gamma_{R}-\Gamma_{-}-\Gamma_{\epsilon}} \frac{z^{\beta}}{z^{2}+1} \, dz = 2\pi i (i^{\beta}-(-i)^{\beta})/2i = \pi (e^{i\pi\beta/2}-e^{i3\pi\beta/2}).$$

Now on Γ_+ we have $z^{\beta} = r^{\beta} e^{i\delta\beta}$, while on Γ_- , $z^{\beta} = r^{\beta} e^{i(2\pi-\delta)\beta}$. It follows that

$$\lim \delta \to 0 \int_{\Gamma_{+} - \Gamma_{-}} \frac{z^{\beta}}{z^{2} + 1} \, dz = (1 - e^{i2\pi\beta}) \int_{\epsilon}^{R} \frac{x^{\beta}}{x^{2} + 1} \, dx.$$

At the same time, we see that on Γ_{ϵ} the integrand has the bound $|f(z)| \le 2\epsilon^{\beta}$, and the length of the curve is less than $2\pi\epsilon$, so the integral is bounded by $4\pi\epsilon^{1+\beta} \to 0$ as $\epsilon \to 0$, provided $\beta > -1$. On Γ_R we have $|f(z)| \le R^{\beta}/(R^2 - 1)$, and the curve has length less than $2\pi R$, so the integral is bounded by $2\pi R^{1+\beta}/(R^2 - 1) \to 0$ as $R \to \infty$ provided $\beta < 1$. We conclude that if $\beta \in (-1, 1)$ then

$$\begin{split} \int_0^\infty \frac{x^\beta}{x^2 + 1} \, dx &= \lim_{\epsilon \to 0, R \to \infty, \delta \to 0} \frac{1}{1 - e^{i2\pi\beta}} \int_{\Gamma_+ + \Gamma_R - \Gamma_- - \Gamma_\epsilon} \frac{z^\beta}{z^2 + 1} \, dz \\ &= \pi \frac{e^{i\pi\beta/2} - e^{i3\pi\beta/2}}{1 - e^{i2\pi\beta}} \\ &= \pi \frac{e^{i\pi\beta}(e^{-i\pi\beta/2} - e^{i\pi\beta/2})}{e^{i\pi\beta}(e^{-i\pi\beta} - e^{i\pi\beta})} \\ &= \pi \frac{\sin(\pi\beta/2)}{\sin\pi\beta} = \pi \frac{\sin(\pi\beta/2)}{2\sin(\pi\beta/2)\cos(\pi\beta/2)} = \frac{\pi}{2} \sec\left(\frac{\pi\beta}{2}\right) \end{split}$$

In the special case $\beta = \frac{1}{3}$, we have $\sin(\pi/6) / \sin(\pi/3) = 1/\sqrt{3}$, so that

$$\int_0^\infty \frac{x^{1/3}}{x^2 + 1} \, dx = \frac{\pi}{\sqrt{3}}.$$

4.5.3.3.h For this problem, let $\Gamma_+ = (\epsilon, R) \subset \mathbb{R}$ and $\Gamma_- = (-R, -\epsilon) \subset \mathbb{R}$, Γ_ϵ and Γ_R be the semicircles of radius ϵ and R (respectively) in the upper half-plane. Define log z to be the branch of the logarithm on the complement of the negative imaginary axis. Taking $\Gamma_+ + \Gamma_R - \Gamma_- - \Gamma_\epsilon$ arranged to form a curve winding once around the simple pole of $\frac{\log z}{(z^2+1)}$ at z = i, we find from the residue theorem that

$$\int_{\Gamma_++\Gamma_R+\Gamma_--\Gamma_\epsilon} \frac{\log z}{z^2+1} \, dz = 2\pi i (\log i)/2i = \frac{i\pi^2}{2}.$$

The computations showing that the contributions from Γ_{ϵ} and Γ_{R} vanish in the limit are essentially the same as in exercise 4.5.3.3.g. All that is different is we use the bound $|\log z| \le (\log |z| + 2\pi)$. Since $\log z$ is $\log |z|$ on Γ_{+} and $\log |z| + \pi i$ on Γ_{-} we find

$$\int_{\Gamma_{+}+\Gamma_{-}} \frac{\log z}{z^{2}+1} \, dz = \int_{\epsilon}^{R} \frac{\log x}{x^{2}+1} \, dx + \int_{-R}^{-\epsilon} \frac{\log x + \pi i}{x^{2}+1} \, dx = 2 \int_{\epsilon}^{R} \frac{\log x}{x^{2}+1} \, dx + \int_{\epsilon}^{R} \frac{1}{x^{2}+1} \, dx.$$

Combining these facts we see

$$\frac{i\pi^2}{2} = \lim_{\epsilon \to 0, R \to \infty} \int_{\Gamma_+ + \Gamma_R + \Gamma_- - \Gamma_\epsilon} \frac{\log z}{z^2 + 1} dz$$
$$= \lim_{\epsilon \to 0, R \to \infty} \int_{\Gamma_+ + \Gamma_-} \frac{\log z}{z^2 + 1} dz$$
$$= 2 \int_0^\infty \frac{\log x}{x^2 + 1} dx + \int_0^\infty \frac{i\pi}{x^2 + 1} dx$$
$$= 2 \int_0^\infty \frac{\log x}{x^2 + 1} dx + \frac{i\pi^2}{2}$$

so that

$$\int_0^\infty \frac{\log x}{x^2 + 1} \, dx = 0.$$

4.5.3.3.i Let us first observe that $f(x) = x^{(-1-\alpha)} \log(1 + x^2)$ is integrable on $[0, \infty)$ because it is bounded by $C_{\alpha} x^{-1-(\alpha/2)}$ as $x \to \infty$ and $\alpha > 0$, while as $x \downarrow 0$ one has $|\log(1 + x^2)| \le 2x^2$ so $|f(x)| \le x^{1-\alpha}$ and $\alpha < 2$. It follows that we can write the integral as a limit and can integrate by parts

$$\int_0^\infty \frac{\log(1+x^2)}{x^{1+\alpha}} \, dx = \lim_{R \to \infty} \int_{\frac{1}{R}}^R \frac{\log(1+x^2)}{x^{1+\alpha}} \, dx = \lim_{R \to \infty} \left[\frac{x^{-\alpha}}{-\alpha} \log(1+x^2) \right]_{\frac{1}{R}}^R + \frac{1}{\alpha} \lim_{R \to \infty} \int_{\frac{1}{R}}^R \frac{2x^{1-\alpha}}{1+x^2} \, dx.$$

We observe that as $R \to \infty$, $R^{-\alpha} \log(1 + R^2) \to 0$, and also $|R^{\alpha} \log(1 + R^{-2})| \le 2R^{2-\alpha} \to 0$, so the boundary term from the integration makes no contribution in the limit. The remaining term may be dealt with by the computation in 4.5.3.3.g. Indeed, from that problem with $\beta = (1 - \alpha) \in (-1, 1)$, we have

$$\int_{0}^{\infty} \frac{\log(1+x^{2})}{x^{1+\alpha}} \, dx = \frac{1}{\alpha} \int_{0}^{\infty} \frac{2x^{1-\alpha}}{1+x^{2}} \, dx = \frac{\pi}{\alpha} \sec\left(\frac{(1-\alpha)\pi}{2}\right) = \frac{\pi}{\alpha} \csc\left(\frac{\alpha\pi}{2}\right)$$

4.5.3.4 Parameterizing $|z| = \rho$ by $z = \rho e^{i\theta}$ we have $dz = izd\theta$ and $|dz| = \rho d\theta$, so $|dz| = \rho dz/iz$. Also $|z - a|^2 = (z - a)(\overline{z} - \overline{a}) = (z - a)(\frac{\rho^2}{z} - \overline{a})$. Hence we find

$$\int_{|z|=\rho} \frac{|dz|}{|z-a|^2} = \int_{|z|=\rho} \frac{\rho}{iz(z-a)(\frac{\rho^2}{z}-\bar{a})} \, dz = \int_{|z|=\rho} \frac{\rho}{i(z-a)(\rho^2-\bar{a}z)} \, dz$$

which can be computed by the residue theorem. There are simple poles at *a* and ρ^2/\bar{a} . By hypothesis, $|a| \neq \rho$; if $|a| < \rho$ then *a* is inside $|z| = \rho$ and ρ^2/\bar{a} is not, and the reverse is true if $|a| > \rho$. The residue at z = a is $\frac{\rho}{i(\rho^2 - |a|^2)}$ and that at ρ^2/\bar{a} is $\frac{-\rho}{i(\rho^2 - |a|^2)}$. We conclude from the residue theorem that

$$\int_{|z|=\rho} \frac{|dz|}{|z-a|^2} = \begin{cases} \frac{2\pi\rho}{\rho^2 - |a|^2} \text{ if } |a| < \rho \\ \frac{-2\pi\rho}{\rho^2 - |a|^2} \text{ if } |a| > \rho \end{cases} = \frac{2\pi\rho}{\left|\rho^2 - |a|^2\right|}.$$