Math 5120: Complex analysis. Homework 9 Solutions
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which has
e apole of order 1 at z = —2 with residue lim,_, »(z + 2)f(z) = 1
e apole of order 1 at z = —3 with residue lim,_,_3(z + 3)f(z) = -1
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which has
e apole of order 2 at z = 1 with residue lim,_,; diz(z - l)zf(z) = —%
e apole of order 2 at z = —1 with residue lim,_,_, d%(z +1D2f(z) = %

453.1.c f(2) = Filz has poles at the zeros of sin z, so at the points 7k, k € Z. These zeros
are simple, because f’(z) = cosz = %1 at these points, and consequently the poles
are simple. The residue at 7k may be computed by L’ Hopital’s rule

fim 227K i = 1y
z—rk SINZ z—nmk COS Z

so that f(z) has simple poles with residue (~1)* at each nk, k € Z.

4.5.3.1.d As cosz is entire, f(z) = cotz = ii’;z can only have poles at the zeros of sinz,
meaning the points z = ik, k € Z. Since cos z # 0 at these points, there is a pole at
each such point, and since the zeros of sin z are simple the poles are also simple.
The residue at 7k is

. (z—mk)cosz . 1
lim ——————— =cos(nk) lim —— =1
7ok Sinz z—mk COS Z

so cot z has simple poles with residue 1 at each nk, k € Z.
453.1e f(2) = ﬁ has poles at each of the zeros z = 7k, k € Z of sinz. These zeros are

order 1, so the zeros of sin® z are order 2. The residues may be computed using

L’Hopital
d ((z - 7rk)2) . 2(z—-nk)sinz — 2(z — mk)? cos z
m —|————| = lim
7ok dz Sil‘lz z ok sin3 Z
. (z—mk\ . (sing—(z—mk)cosz
=2 l1m( - ) llm( 5 )
z—rk\ SINZ /z—onk sin” z
. (cosz—cosz+ (z—mk)sinz
=2 hm( - )
z—nk 2 sin Z

= lim (z - 7k) = 0.
7ok

We determine that f(z) has poles of order 2 at each of the points 7k, k € Z and has
residue zero at each pole.
453.1.f f(z) =z7™(1 —z)™", m,n € N has a pole of order m at 0 and a pole of order n at 1.
We may compute the residue at 0 using
) am! o 1 (n+m-2)!
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The residue at 1 may be computed the same way

n—1 n—1

. n _ 1 : n_—m
I = D g1 ¢~ V@ = Gy i e (B
1y gyt D e
=CUED (n—l)!(m—l)!(l)
(=D +m-1)) [(m-1)+m-1)
T m-—1 T n—1

so we conclude that f has a pole of order m at zero with residue ( and

(n—12l+(lm—1))
a pole of order n at 1 with residue —((”_l;f(f_l)). It is worth noting that this is
consistent with exercise 4.2.3.1(b).

4.5.3.3 There are a few things we will use repeatedly in computing these integrals. The
curve yg will be the semicircle |z = R in the upper half-plane, with the usual
(increasing angle) orientation. For R, S, 7T € (0,0) we alsoletI'} = {S +iy: 0 <
y<TLTh={x+iT : -R<x< S}, I3 ={-R+1iy:0<y< T}, oriented such
that I'; + I'; + I'; and the interval [-R,S] c R form a positively oriented closed
curve. We will frequently use that (A) if the integrand f(x) is bounded by |x|~? as

x| = oo then [~ = limg_eu [", f(x), and (B) if the integrand f(z) is bounded by
2172 as |z] — oo then limg_c fw fdz=0

4.5.3.3.a Note that sin® x = sin?(=x) = sin’(7 — x) = sin*(7 + x) implies

fﬂﬂ dx 1f2” dx
o a+sin’x 4Jo a+sin®x

and this may be seen as an integral on the unit circle with respect to the angle
dx = dz/iz where sinz = (z — z7)/2i. Thus

[ ——
0 a+sin®x 4 Jgeia+ (-zN/2i) iz

We simplify ((z—z7")/ 2i)2 = —(22)72(z* - 2z + 1) and find the integrand becomes
Mﬁ‘%. At this point we can make our lives a little easier by making the
substitution w = z2. Notice that when z winds once around the unit circle, w winds

around twice. We therefore find

f"/z dx 1 f 2i do e i f dw
_— = = w =1 .
o a+sin’x 2 et W - Q2 +4aw + 1 wi=t W2 — Q2 +4a)w + 1

Now we would like to say that the poles of w?> — (2 + 4a)w + 1 are at w, =
1+2a+2 Va? + a by the quadratic formula, but this requires that we make sense of
the square root. Fortunately, |a| > 1 by hypothesis, so |1/a| < 1 and V1 + (1/a) is
well-defined. We may therefore define an analytic branch of Va2 + aby Va? +a =
a1+ (1/a), obtaining w, = 1 + 2a + 2a1+ (I/a). By construction, each of
w, is a branch of the inverse of the map w +— (w + w™!)?/4, evaluated at a. Since
w = (w + w1?/4 takes the unit circle to the interval [-1, 1], and |a| > 1, we see
that |w.| # 1 (this is important for applying the residue theorem). It also follows
that only one of w. can lie inside the unit disc, and that which one does so is in-
dependent of a. Taking a € (1, ) we readily see [w_| < 1 and |[w,| > 1, so this
must be true for all a. Thus the result of the integration can be computed from the
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residue at the simple pole w_, which has value 1/(w_—-w,) = —1/(4a V1 + (1/a)).
Finally

f ™2 dx B 2mi? B bis
o a+sin’x  —(@aVT+AJa) 2aVT+(/a)
4.5.3.3.b Using that the integrand is even and (A), then the residue theorem, and then (B)

®  x’dx I e 2 dz
0 X*+5x24+6 2 ). +52+6
R

[ 2dz
2 R _RZ4+5Z2+6

2 dz
_mZReszl 2hm’f 715746

= ﬂlZRCSZI m

where the sum is over residues in the upper half-plane. Now z* + 572 + 6 =
(22 + 2)(z2 + 3), so the integrand has simple poles at z = +i V2 and z = +i V3. The
residue at i V2 is —2/(2 ¥2i)(1), and at i V3 is —=3/(=1)(2 V3i), so the result is

00

x2dx ,—\/E V3 T
o x4+5x2+6_m( 2i +7)_(\/__\/§)§'

4.5.3.3.c By (A), the residue theorem, and (B)

00

xX2—x+2
———dx
oo X+ 10x2+9

i R 2—z+2 d
= l1im —_—
Row | 2+ 102 49
Z2—z+2
=2 R 2 1 _—
ﬂlz €S lIIl Z +10Z +9

Z—z+2
=i S Res, 2t
’”Zj: 4 A 102+49

where the sum is over residues in the upper half-plane. The zeros of z*+10z>+9 =
(2% + 1)(z% + 9) are at +i and +3i; each produces a simple pole in the integrand,
and there are no others. The residue at i is (-1 — i + 2)/(2i)(=1 + 9) and at 3i is
(=9 = 3i+2)/(-9 + 1)(6i), so the result is

00

7+ 3i
48i

S5n
=3-3i+7 3—=—.
) ( i+7+30) 2

32—x+2

1=
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4.5.3.3.d Using that the integrand is even and (A), then the residue theorem, and then (B)

©  x2dx 1 2 dz
fo‘ 2+a2p 2 ). @+a)?
= L tim fR _fdz
2 R>e ) g (12 +a?)?

2d

. z

=mZResz lim S>3
7 J R—0 (Z +Cl)

. 2
= Res. .
§j4 2 (22 +a?)

where the sum is over residues in the upper half-plane. Factoring (z* + @)’ =
(z + ai)’(z — ai)?, a € R, we see that there is a single pole of order 3 in the upper
half-plane, at i|a|. The residue there is
. d? 7 1
lim — — = -
—lali dz? (z + lali)®  8lafPi

f‘x’ x2dx S
o (2+a?)?  8laP

so that the result is

4.5.3.3.e Using that the integrand is even and (A), that cos z = Re”, then the residue theo-

r

rem for R = S and T sufficiently large,

cosxdx 1 f"" coszdz

2+a? 2 ). P+a
1 ) R eiZdZ
=—11m‘?\ ﬁ
2 R0 RZZ+a

) eiz zz dZ zz dZ eiz dZ
=i E Res;, 5—— — 5 lim 5 5+ >
- ‘7 +a 2RT—>oo r 2 +a r22 +a r, 2-+a
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where the sum is over residues in the upper half-plane. However the integrand is
bounded by a constant multiple of e™/|z|* for z = x + iy and || sufficiently large.
Writing f(z) for the integrand, and taking R = S and T large enough we find that

Ur, fydz| < R? fOT e dy < R7?, and similarly for I's. Now on I'; we have that
(z>+a*)7! is integrable (with integral bounded by constant C) if T is large enough,
and therefore | L f@ dz| < Ce™T. Sending R and T to oo we find

00 d
f cosxax _ RraiResy; f(z) =
0

s
X2 +a? 2|al
where at the last step we computed that z> + a> = (z + ai)(z — ai), has one simple

pole in the upper half-plane, at ila, with residue lim,_,4; % = Cz‘tlf‘

4.5.3.3.f We use that the integrand is even and x sin x/ (% + a?) = Ize? /(2 + d?). Taking

R, S, T large enough that the curve (—R, S)UT'; UT, UT'3 encloses the simple pole



_ lalie lal _ e —lal

at |ali, where the residue is lim,_,,; = +|a|l air = 3o we obtain
* xsinx 1 5z
S5 dx=7 lim N 5 ——dz
0o X*+a RS —co rRZ+a

—lal iz iz iz
.€ . ze ze ze
= Jni — lim 9 fﬁdZ+f > 2d +fﬁdz
2 RS —>c0 r, - +a r, 2 t+a r; 2-+a

valid for all sufficiently large 7. However, the integrand f(z) satisfies |f(z)] <
lzle™
|z —lal?

and similarly that for I's can be bounded by

forz = x+iy. The integral for I'; can be bounded by 7" fOT eVdy = gt
525‘ 7 The integral for I'; can be
bounded by ‘ |2 (R+S). If we first send T — oo so the I'; integral goes to 0O,
and then send R S — oo we find that they make no contribution to the result, and
therefore

2+ar 2 2l

4.5.3.3.g We will do this for general g8 € (-1, 1), as it will be useful later. Take 6 > 0, € > 0,
and R > 2. Let T, = {re™,r € (& R)} be rays at angle +6, and also take arcs
IT'r ={Re : 0 € (6,2n —8)} and I, = {ee”? : 6 € (6,21 — 6)}. Let 28 be a branch on
C\ [0, ), so it is well-defined and analytic in a simply connected neighborhood
of the closed curve I'y + I'r —I'_ — .. Provided ¢ and e are sufficiently small, this
curve winds once around the simple poles of f(z) = Z(1 + z2)~!, which are at +i,
and where there are residues #/2i and (—i)®/ — 2i respectively.

f zZB dz = 27i(® = (i) /2i = n(™? — B37P12),
I, 4TI, 2=+ 1

Now on I, we have 28 = P’ while on T_, 22 = rPe'@™98 Tt follows that

lim6—>0f Zﬁ =
r,-I. Z +1

At the same time, we see that on I, the integrand has the bound |f(z)| < 2€°, and
the length of the curve is less than 27e, so the integral is bounded by 4re!*# — 0
as € — 0, provided 8 > —1. On I' we have [f(2)| < RP/(R* - 1), and the curve
has length less than 27R, so the integral is bounded by 27R'*#/(R?> — 1) — 0 as
R — oo provided 8 < 1. We conclude that if 8 € (-1, 1) then

< B 1 #
f ——dx=_lim —— f —dz
0o x2+1 e—0.R—00,6-0 1 — €2 Jp \p 22 +1

oTBI2 _ pi37B)2

B (emBI2 _ pinBI2)
eiﬂ'ﬁ(e—inﬁ _ eiﬂﬁ)

s1n(7r,8 / 2) sin(nB3/2) T 7B
siniB " 2sin(nB/2)cosmB/2) | 2 SeC(T)

In the special case 8 = % we have sin(rr/6)/ sin(/3) = 1/ V3, so that

o xl/3 T
dx = —.
fo‘ x2+1 o V3

=7




4.5.3.3.h For this problem, let 'y, = (¢,R) Cc Rand I'_ = (-R,—€) C R, I'c and I'; be the

semicircles of radius € and R (respectively) in the upper half-plane. Define log z to
be the branch of the logarithm on the complement of the negative imaginary axis.
Taking ' + 'y —I'_ —T'¢ arranged to form a curve winding once around the simple

pole of 122

@D at z = i, we find from the residue theorem that

2

logz im
dz = 2ni(logi)/2i = —.
fr++rk+r—rf 2+1 2

The computations showing that the contributions from I'c and I'y vanish in the
limit are essentially the same as in exercise 4.5.3.3.g. All that is different is we use
the bound [log z] < (log|z| + 27). Since logz is log|z] on T'; and log|z| + mi on T'-
we find

1 R ] ~€ log x + i R R
f 0£2 dz=f OfX dx+f dezzf o X dx+f — dx.
rar 22+ 1 e X2+1 R X241 e X2+1 e X2+1

Combining these facts we see

i . logz
— = lim 5 £ dz
e>0R—>e Jr yrpsr 1, 27+ 1
. logz
= lim £ dz

e>0,R—c0 Jr i 22+ 1

* log x 7 4
=2 dx+ | ==—a
jo‘ 2+1 jo‘ 2+1

* log x in?
=2 dx+ —
fo 2+177 2

=
f 2L jx=o.
0 x* + 1

so that

4.5.3.3.i Let us first observe that f(x) = xX"!1" log(1 + x?) is integrable on [0, co) because

* Jog(1 + x° ®log(l + 22 -
f og( ”)dx:umf dezgim[x_logama
0 1 —o0 | —

it is bounded by C,x~'7(@/? as x — co and & > 0, while as x | 0 one has |log(1 +
x%)| < 2x% so |f(x)] < x'~® and @ < 2. It follows that we can write the integral as a
limit and can integrate by parts

(03
im

xl+a R—oco xl+a

We observe that as R — oo, R™log(1 + R*) — 0, and also |R* log(1 + R™?)| <
2R*>~® — 0, so the boundary term from the integration makes no contribution in
the limit. The remaining term may be dealt with by the computation in 4.5.3.3.g.
Indeed, from that problem with 8 = (1 — @) € (-1, 1), we have

* log(1 + x?) 1 [ 2x!-@ by l-ayny =« arn
J, e [ T fed TS = fel )

4.5.3.4 Parameterizing |z| = p by z = pe® we have dz = izdf and |dz| = pd6, so |dz| =

pdz/iz. Also |z - a = (z— &)z — &) = (z— a)(> - a). Hence we find

f i =f édzzf S R—
e 2= aP Jimp iz(z - a)(& ~ @) i=p 12 = @)(p? - az)

R _
R xlar

+—1
| @ Ro0 J1 1+ x2
7 I3

dx.



which can be computed by the residue theorem. There are simple poles at a and
p?/a. By hypothesis, |a| # p; if |a| < p then a is inside |z| = p and p?/a is not, and
the reverse is true if |a| > p.

The residue at z = a is m and that at p?/a is l(p,__# We conclude from
the residue theorem that

f d] _{ﬁiflakp 2mp
|

_ 7! _ .
i o= al |\ Fiflal>p o2 — el



