
Math 5120: Complex analysis. Homework 9 Solutions
4.5.3.1.a

f (z) =
1

z2 + 5z + 6
=

1
(z + 2)(z + 3)

which has
• a pole of order 1 at z = −2 with residue limz→−2(z + 2) f (z) = 1
• a pole of order 1 at z = −3 with residue limz→−3(z + 3) f (z) = −1

4.5.3.1.b

f (z) =
1

(z2 − 1)2 =
1

(z − 1)2(z + 1)2

which has
• a pole of order 2 at z = 1 with residue limz→1

d
dz (z − 1)2 f (z) = − 1

4
• a pole of order 2 at z = −1 with residue limz→−1

d
dz (z + 1)2 f (z) = 1

4
4.5.3.1.c f (z) = 1

sin z has poles at the zeros of sin z, so at the points πk, k ∈ Z. These zeros
are simple, because f ′(z) = cos z = ±1 at these points, and consequently the poles
are simple. The residue at πk may be computed by L’Hopital’s rule

lim
z→πk

z − πk
sin z

= lim
z→πk

1
cos z

= (−1)k

so that f (z) has simple poles with residue (−1)k at each πk, k ∈ Z.
4.5.3.1.d As cos z is entire, f (z) = cot z = cos z

sin z can only have poles at the zeros of sin z,
meaning the points z = πk, k ∈ Z. Since cos z , 0 at these points, there is a pole at
each such point, and since the zeros of sin z are simple the poles are also simple.
The residue at πk is

lim
z→πk

(z − πk) cos z
sin z

= cos(πk) lim
z→πk

1
cos z

= 1

so cot z has simple poles with residue 1 at each πk, k ∈ Z.
4.5.3.1.e f (z) = 1

sin2 z
has poles at each of the zeros z = πk, k ∈ Z of sin z. These zeros are

order 1, so the zeros of sin2 z are order 2. The residues may be computed using
L’Hopital

lim
z→πk

d
dz

( (z − πk)2

sin2 z

)
= lim

z→πk

2(z − πk) sin z − 2(z − πk)2 cos z

sin3 z

= 2 lim
z→πk

( z − πk
sin z

)
lim
z→πk

( sin z − (z − πk) cos z

sin2 z

)
= 2 lim

z→πk

(cos z − cos z + (z − πk) sin z
2 sin z

)
= lim

z→πk
(z − πk) = 0.

We determine that f (z) has poles of order 2 at each of the points πk, k ∈ Z and has
residue zero at each pole.

4.5.3.1.f f (z) = z−m(1 − z)−n, m, n ∈ N has a pole of order m at 0 and a pole of order n at 1.
We may compute the residue at 0 using

lim
z→0

1
(m − 1)!

dm−1

dzm−1 (1 − z)−n =
1

(m − 1)!
(n + m − 2)!

(n − 1)!
(1 − 0)−n−(m−1)

=

(
(n − 1) + (m − 1)

m − 1

)
=

(
(n − 1) + (m − 1)

n − 1

)
1
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The residue at 1 may be computed the same way

lim
z→1

1
(n − 1)!

dn−1

dzn−1 (z − 1)n f (z) =
1

(n − 1)!
lim
z→1

dn−1

dzn−1 (−1)nz−m

= (−1)n(−1)n−1 (m + n − 2)!
(n − 1)!(m − 1)!

(1)−m−(n−1)

= −

(
(n − 1) + (m − 1)

m − 1

)
= −

(
(n − 1) + (m − 1)

n − 1

)
so we conclude that f has a pole of order m at zero with residue

(
(n−1)+(m−1)

n−1

)
and

a pole of order n at 1 with residue −
(

(n−1)+(m−1)
n−1

)
. It is worth noting that this is

consistent with exercise 4.2.3.1(b).
4.5.3.3 There are a few things we will use repeatedly in computing these integrals. The

curve γR will be the semicircle |z| = R in the upper half-plane, with the usual
(increasing angle) orientation. For R, S ,T ∈ (0,∞) we also let Γ1 = {S + iy : 0 ≤
y ≤ T }, Γ2 = {x + iT : −R ≤ x ≤ S }, Γ3 = {−R + iy : 0 ≤ y ≤ T }, oriented such
that Γ1 + Γ2 + Γ3 and the interval [−R, S ] ⊂ R form a positively oriented closed
curve. We will frequently use that (A) if the integrand f (x) is bounded by |x|−2 as
|x| → ∞ then

∫ ∞
−∞
= limR→∞

∫ R
−R f (x), and (B) if the integrand f (z) is bounded by

|z|−2 as |z| → ∞ then limR→∞
∫
γR

f (z)dz = 0

4.5.3.3.a Note that sin2 x = sin2(−x) = sin2(π − x) = sin2(π + x) implies∫ π/2

0

dx

a + sin2 x
=

1
4

∫ 2π

0

dx

a + sin2 x

and this may be seen as an integral on the unit circle with respect to the angle
dx = dz/iz where sin z = (z − z−1)/2i. Thus∫ π/2

0

dx

a + sin2 x
=

1
4

∫
|z|=1

1

a +
(
(z − z−1)/2i

)2

dz
iz
.

We simplify
(
(z− z−1)/2i

)2
= −(2z)−2(z4 − 2z2 + 1) and find the integrand becomes

4iz
z4−(2+4a)z2+1 . At this point we can make our lives a little easier by making the
substitution w = z2. Notice that when z winds once around the unit circle, w winds
around twice. We therefore find∫ π/2

0

dx

a + sin2 x
=

1
2

∫
|w|=1

2i
w2 − (2 + 4a)w + 1

dw = i
∫
|w|=1

dw
w2 − (2 + 4a)w + 1

.

Now we would like to say that the poles of w2 − (2 + 4a)w + 1 are at w± =
1+2a±2

√
a2 + a by the quadratic formula, but this requires that we make sense of

the square root. Fortunately, |a| > 1 by hypothesis, so |1/a| < 1 and
√

1 + (1/a) is
well-defined. We may therefore define an analytic branch of

√
a2 + a by

√
a2 + a =

a
√

1 + (1/a), obtaining w± = 1 + 2a ± 2a
√

1 + (1/a). By construction, each of
w± is a branch of the inverse of the map w 7→ (w + w−1)2/4, evaluated at a. Since
w 7→ (w + w−1)2/4 takes the unit circle to the interval [−1, 1], and |a| > 1, we see
that |w±| , 1 (this is important for applying the residue theorem). It also follows
that only one of w± can lie inside the unit disc, and that which one does so is in-
dependent of a. Taking a ∈ (1,∞) we readily see |w−| < 1 and |w+| > 1, so this
must be true for all a. Thus the result of the integration can be computed from the
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residue at the simple pole w−, which has value 1/(w−−w+) = −1/(4a
√

1 + (1/a)).
Finally

∫ π/2

0

dx

a + sin2 x
=

2πi2

−(4a
√

1 + (1/a))
=

π

2a
√

1 + (1/a)
.

4.5.3.3.b Using that the integrand is even and (A), then the residue theorem, and then (B)

∫ ∞

0

x2 dx
x4 + 5x2 + 6

=
1
2

∫ ∞

−∞

z2 dz
z4 + 5z2 + 6

=
1
2

lim
R→∞

∫ R

−R

z2 dz
z4 + 5z2 + 6

= πi
∑

j

Resz j −
1
2

lim
R→∞

∫
γR

z2 dz
z4 + 5z2 + 6

= πi
∑

j

Resz j

z2

z4 + 5z2 + 6

where the sum is over residues in the upper half-plane. Now z4 + 5z2 + 6 =
(z2 + 2)(z2 + 3), so the integrand has simple poles at z = ±i

√
2 and z = ±i

√
3. The

residue at i
√

2 is −2/(2
√

2i)(1), and at i
√

3 is −3/(−1)(2
√

3i), so the result is

∫ ∞

0

x2 dx
x4 + 5x2 + 6

= πi
(−√2

2i
+

√
3

2i

)
= (
√

3 −
√

2)
π

2
.

4.5.3.3.c By (A), the residue theorem, and (B)

∫ ∞

−∞

x2 − x + 2
x4 + 10x2 + 9

dx

= lim
R→∞

∫ R

−R

z2 − z + 2
z4 + 10z2 + 9

dz

= 2πi
∑

j

Resz j − lim
R→∞

∫
γR

z2 − z + 2
z4 + 10z2 + 9

dz

= 2πi
∑

j

Resz j

z2 − z + 2
z4 + 10z2 + 9

where the sum is over residues in the upper half-plane. The zeros of z4+10z2+9 =
(z2 + 1)(z2 + 9) are at ±i and ±3i; each produces a simple pole in the integrand,
and there are no others. The residue at i is (−1 − i + 2)/(2i)(−1 + 9) and at 3i is
(−9 − 3i + 2)/(−9 + 1)(6i), so the result is

∫ ∞

−∞

x2 − x + 2
x4 + 10x2 + 9

dx = 2πi
(1 − i

16i
+

7 + 3i
48i

)
= (3 − 3i + 7 + 3i)

π

24
=

5π
12
.
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4.5.3.3.d Using that the integrand is even and (A), then the residue theorem, and then (B)∫ ∞

0

x2 dx
(x2 + a2)3 =

1
2

∫ ∞

−∞

z2 dz
(z2 + a2)3

=
1
2

lim
R→∞

∫ R

−R

z2 dz
(z2 + a2)3

= πi
∑

j

Resz j −
1
2

lim
R→∞

∫
γR

z2 dz
(z2 + a2)3

= πi
∑

j

Resz j

z2

(z2 + a2)3

where the sum is over residues in the upper half-plane. Factoring (z2 + a2)3 =

(z + ai)3(z − ai)3, a ∈ R, we see that there is a single pole of order 3 in the upper
half-plane, at i|a|. The residue there is

lim
z→|a|i

d2

dz2

z2

(z + |a|i)3 =
1

8|a|3i

so that the result is ∫ ∞

0

x2 dx
(x2 + a2)3 =

π

8|a|3

4.5.3.3.e Using that the integrand is even and (A), that cos z = <eiz, then the residue theo-
rem for R = S and T sufficiently large,∫ ∞

0

cos x dx
x2 + a2 =

1
2

∫ ∞

−∞

cos z dz
z2 + a2

=
1
2

lim
R→∞
<

∫ R

−R

eiz dz
z2 + a2

= πi
∑

j

Resz j

eiz

z2 + a2 −
1
2

lim
R,T→∞

<

(∫
Γ1

eiz dz
z2 + a2

∫
Γ2

eiz dz
z2 + a2 +

∫
Γ3

eiz dz
z2 + a2

)

where the sum is over residues in the upper half-plane. However the integrand is
bounded by a constant multiple of e−y/|z|2 for z = x + iy and |z| sufficiently large.
Writing f (z) for the integrand, and taking R = S and T large enough we find that∣∣∣∫
Γ1

f (z) dz
∣∣∣ ≤ R−2

∫ T
0 e−y dy ≤ R−2, and similarly for Γ3. Now on Γ2 we have that

(z2+a2)−1 is integrable (with integral bounded by constant C) if T is large enough,
and therefore

∣∣∣∫
Γ2

f (z) dz
∣∣∣ ≤ Ce−T . Sending R and T to∞ we find∫ ∞

0

cos x dx
x2 + a2 = <πi Res|a|i f (z) =

π

2|a|

where at the last step we computed that z2 + a2 = (z + ai)(z − ai), has one simple
pole in the upper half-plane, at i|a|, with residue limz→|a|i

cos z
z+|a|i =

cos a
2|a|i .

4.5.3.3.f We use that the integrand is even and x sin x/(x2 + a2) = =zeiz/(z2 + a2). Taking
R, S ,T large enough that the curve (−R, S )∪Γ1 ∪Γ2 ∪Γ3 encloses the simple pole
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at |a|i, where the residue is limz→|a|i
zeiz

z+|a|i =
|a|ie−|a|

2|a|i =
e−|a|

2 we obtain∫ ∞

0

x sin x
x2 + a2 dx =

1
2

lim
R,S→∞

=

∫ S

−R

zeiz

z2 + a2 dz

= =πi
e−|a|

2
− lim

R,S→∞
=

(∫
Γ1

zeiz

z2 + a2 dz +
∫
Γ2

zeiz

z2 + a2 dz +
∫
Γ3

zeiz

z2 + a2 dz
)

valid for all sufficiently large T . However, the integrand f (z) satisfies | f (z)| ≤
|z|e−y

|z|2−|a|2 for z = x+iy. The integral for Γ1 can be bounded by R
R2−|a|2

∫ T
0 e−ydy = R

R2−|a|2

and similarly that for Γ3 can be bounded by S
S 2−|a|2 . The integral for Γ2 can be

bounded by S e−T

S 2−|a|2 (R + S ). If we first send T → ∞ so the Γ2 integral goes to 0,
and then send R, S → ∞ we find that they make no contribution to the result, and
therefore ∫ ∞

0

x sin x
x2 + a2 dx = =πi

e−|a|

2
=
π

2e|a|

4.5.3.3.g We will do this for general β ∈ (−1, 1), as it will be useful later. Take δ > 0, ε > 0,
and R > 2. Let Γ± = {rei±δ, r ∈ (ε,R)} be rays at angle ±δ, and also take arcs
ΓR = {Reiθ : θ ∈ (δ, 2π − δ)} and Γε = {εeiθ : θ ∈ (δ, 2π − δ)}. Let zβ be a branch on
C \ [0,∞), so it is well-defined and analytic in a simply connected neighborhood
of the closed curve Γ+ + ΓR − Γ− − Γε . Provided δ and ε are sufficiently small, this
curve winds once around the simple poles of f (z) = zβ(1 + z2)−1, which are at ±i,
and where there are residues iβ/2i and (−i)β/ − 2i respectively.∫

Γ++ΓR−Γ−−Γε

zβ

z2 + 1
dz = 2πi(iβ − (−i)β)/2i = π(eiπβ/2 − ei3πβ/2).

Now on Γ+ we have zβ = rβeiδβ, while on Γ−, zβ = rβei(2π−δ)β. It follows that

lim δ→ 0
∫
Γ+−Γ−

zβ

z2 + 1
dz = (1 − ei2πβ)

∫ R

ε

xβ

x2 + 1
dx.

At the same time, we see that on Γε the integrand has the bound | f (z)| ≤ 2εβ, and
the length of the curve is less than 2πε, so the integral is bounded by 4πε1+β → 0
as ε → 0, provided β > −1. On ΓR we have | f (z)| ≤ Rβ/(R2 − 1), and the curve
has length less than 2πR, so the integral is bounded by 2πR1+β/(R2 − 1) → 0 as
R→ ∞ provided β < 1. We conclude that if β ∈ (−1, 1) then∫ ∞

0

xβ

x2 + 1
dx = lim

ε→0,R→∞,δ→0

1
1 − ei2πβ

∫
Γ++ΓR−Γ−−Γε

zβ

z2 + 1
dz

= π
eiπβ/2 − ei3πβ/2

1 − ei2πβ

= π
eiπβ(e−iπβ/2 − eiπβ/2)

eiπβ(e−iπβ − eiπβ)

= π
sin(πβ/2)

sin πβ
= π

sin(πβ/2)
2 sin(πβ/2) cos(πβ/2)

=
π

2
sec

(πβ
2

)
In the special case β = 1

3 , we have sin(π/6)/ sin(π/3) = 1/
√

3, so that∫ ∞

0

x1/3

x2 + 1
dx =

π
√

3
.
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4.5.3.3.h For this problem, let Γ+ = (ε,R) ⊂ R and Γ− = (−R,−ε) ⊂ R, Γε and ΓR be the
semicircles of radius ε and R (respectively) in the upper half-plane. Define log z to
be the branch of the logarithm on the complement of the negative imaginary axis.
Taking Γ++ΓR−Γ−−Γε arranged to form a curve winding once around the simple
pole of log z

(z2+1) at z = i, we find from the residue theorem that∫
Γ++ΓR+Γ−−Γε

log z
z2 + 1

dz = 2πi(log i)/2i =
iπ2

2
.

The computations showing that the contributions from Γε and ΓR vanish in the
limit are essentially the same as in exercise 4.5.3.3.g. All that is different is we use
the bound | log z| ≤ (log |z| + 2π). Since log z is log |z| on Γ+ and log |z| + πi on Γ−
we find∫

Γ++Γ−

log z
z2 + 1

dz =
∫ R

ε

log x
x2 + 1

dx+
∫ −ε

−R

log x + πi
x2 + 1

dx = 2
∫ R

ε

log x
x2 + 1

dx+
∫ R

ε

1
x2 + 1

dx.

Combining these facts we see

iπ2

2
= lim
ε→0,R→∞

∫
Γ++ΓR+Γ−−Γε

log z
z2 + 1

dz

= lim
ε→0,R→∞

∫
Γ++Γ−

log z
z2 + 1

dz

= 2
∫ ∞

0

log x
x2 + 1

dx +
∫ ∞

0

iπ
x2 + 1

dx

= 2
∫ ∞

0

log x
x2 + 1

dx +
iπ2

2

so that ∫ ∞

0

log x
x2 + 1

dx = 0.

4.5.3.3.i Let us first observe that f (x) = x(−1−α) log(1 + x2) is integrable on [0,∞) because
it is bounded by Cαx−1−(α/2) as x→ ∞ and α > 0, while as x ↓ 0 one has | log(1 +
x2)| ≤ 2x2 so | f (x)| ≤ x1−α and α < 2. It follows that we can write the integral as a
limit and can integrate by parts∫ ∞

0

log(1 + x2)
x1+α dx = lim

R→∞

∫ R

1
R

log(1 + x2)
x1+α dx = lim

R→∞

[
x−α

−α
log(1 + x2)

]R

1
R

+
1
α

lim
R→∞

∫ R

1
R

2x1−α

1 + x2 dx.

We observe that as R → ∞, R−α log(1 + R2) → 0, and also |Rα log(1 + R−2)| ≤
2R2−α → 0, so the boundary term from the integration makes no contribution in
the limit. The remaining term may be dealt with by the computation in 4.5.3.3.g.
Indeed, from that problem with β = (1 − α) ∈ (−1, 1), we have∫ ∞

0

log(1 + x2)
x1+α dx =

1
α

∫ ∞

0

2x1−α

1 + x2 dx =
π

α
sec

( (1 − α)π
2

)
=
π

α
csc

(απ
2

)
4.5.3.4 Parameterizing |z| = ρ by z = ρeiθ we have dz = izdθ and |dz| = ρdθ, so |dz| =

ρdz/iz. Also |z − a|2 = (z − a)(z̄ − ā) = (z − a)( ρ
2

z − ā). Hence we find∫
|z|=ρ

|dz|
|z − a|2

=

∫
|z|=ρ

ρ

iz(z − a)( ρ
2

z − ā)
dz =

∫
|z|=ρ

ρ

i(z − a)(ρ2 − āz)
dz
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which can be computed by the residue theorem. There are simple poles at a and
ρ2/ā. By hypothesis, |a| , ρ; if |a| < ρ then a is inside |z| = ρ and ρ2/ā is not, and
the reverse is true if |a| > ρ.

The residue at z = a is ρ
i(ρ2−|a|2) and that at ρ2/ā is −ρ

i(ρ2−|a|2) . We conclude from
the residue theorem that∫

|z|=ρ

|dz|
|z − a|2

=

 2πρ
ρ2−|a|2 if |a| < ρ
−2πρ
ρ2−|a|2 if |a| > ρ

=
2πρ∣∣∣ρ2 − |a|2

∣∣∣ .


