4.34.1

)]

2

4342

3)

“4)

4343

4473

Math 5120: Complex analysis. Homework 8 Solutions
Suppose |f(z)] < 1 on|z] < 1 and f analytic. Fix zy in the open unit disc and
let wo = f(zo). Using a composition of fractional linear transformations and the
Schwarz lemma, it is proved in the book that

J(2) —wo < ‘ 720
1 =wof(@)| =~ 11 -2zl
With a little rewriting we can extract f’(zp):
If"(zo)l f(2) = wo 1
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and zo was an arbitrary point in the disc, so the estimate is valid for all |zo| < 1.
Suppose f is non-constant analytic and J f(z) > 0 if Iz > 0. Composition with
a fractional linear map gives a map from the unit disc to itself to which we can
apply the Schwarz lemma. Specifically, for any zo with Jzo > 0 we set wy = f(z0)
and have Jwy > 0 by the maximum principle. For « in the upper half-plane let
8a(2) = =5 so gz‘o1 maps the unit disc to the upper half-plane with 0 — zo and g,,,
maps the upper half-plane to the unit disc with wy + 0. Thus g, o f o g;ol takes
the unit disc to itself and fixes 0, whence |g,, © f © gZ‘Ol (2)| < 7] by the Schwarz
lemma, and so |g,, © f(z)| < |g,,(z)|. Substituting gives

f(@) = f(z0)
@+ f(z)

As in the previous question, we can obtain a bound for |f’(zo)| by dividing both
sides of the previous equation by |z — zo| and sending z — z¢. Since z + Z = 23z,
we obtain
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Z—20
Z+ 20
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Gl _ 1
3f(z0) ~ Jzo
valid at all points in the upper half-plane.

Let _

Py - L@ w01 =22

(z = z0)(1 = wo f(2))
Then F is analytic on the open unit disc except for a removable singularity at z,
and (1) says |F(z)| < 1. If equality holds in (2) then |F(z9)| = 1, so the maximum
principle implies F is constant of modulus 1, which we may write as e, 8 €
[0, 27r). Multiplying out gives that f(z) = h;,}(e”h,,(w)) where h, = 5.
Similarly, if we let

_ (f(@) = wo)(z + Zp)

(z = 20)(f(2) + Wo)
then we obtain a function analytic on Jz > 0 except for the removable singularity
at 7g, and |G(z)| < 1 by (3). Equality in (4) implies G = e” for some 6 € [0, 27) by
the same maximum principle argument as before, and inverting the maps we have
fw) = g, (e”g.,(w)) with g as in the previous exercise.

In either of these two cases we see that f is a composition of fractional linear
maps, so is fractional linear.
Let y be a closed curve. Its complement is open, so the connected components
of the complement are open, and there are thus at most countably many of them.
Label them {U j};zo’ and let U, be the unique unbounded one; it is unique because
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compactness of y implies the complement of some large disc is in C \ 7y, and this
is a connected set so is contained in a single component.

For each j,let V; = C\ Ujand observe V; = U, ;U;UyU{oco}. As these sets are
connected, each must lie in exactly one component of V;. However connectivity
of Uy implies connectivity of its closure, which intersects vy, so all U and y must
lie in a single component of V;. Moreover if j # 0 then Uy C V; and oo is its
closure, so is in this same component of V;. We conclude that if j # 0 then V; has
only one component, so U; is simply connected by definition. Also Vj has at most
two components, one being {co} and the other Uj > 1U; U y. Taking r so |z| = r
does not intersect y, we see that the disjoint open sets |z| > r and |z| < r separate
Vo into these two components, so Vj is doubly connected.

Let Q be a region not intersecting a connected set E with =1 € E. If ¢(z) is a
globally analytic function such that f(z) = (;5(_73; maps E to a connected region
containing 0, then f has a well-defined logarithm and therefore well-defined roots
on on C\ f(E). Provided f(Q2) does not intersect f(E) we may define a single-

valued analytic function V1 — z2 on Q by

1-z22
V-2 = <
& =N Gy

and it is a legitimate branch of the square root because squaring both sides leads
to an equality.

It remains to find such a ¢(z), but writing 1 — z> = (1 — z)(1 + z) immediately
suggests ¢(z) = (1 +2), as then f(z) = {;’, which is a fractional linear transforma-
tion with 1 - oo and 1 — 0, from which f(FE) is a connected set containing 0 and
co. Our definition is then

VI—Z = (1422
1+z

Now consider the integral

1
dz
f V1 - 22 7(1+z)\/%

where v is a closed curve in a component of C \ E. The integrand has no singu-
larities in this component, so if y does not wind around any point of E then the
integral is zero. In particular if co € E then y cannot wind around E, so the integral
is zero in this case.

We therefore suppose that E is bounded and take » > 0 so large that E C {z
|z| < r}. In this case the winding number n(y, z) is a constant 27iN on E and vy is
homologous in the unbounded component of C \ E to Ny,, where v, is the circle
of radius r around 1. The Cauchy theorem then implies

2 i0 d@ 2
= o) o= =
-z 7 (1 + Z) };z re" re'? ret

It is tempting at this point to attempt to use the residue theorem, but that theorem
is valid only for isolated singularities, and our square root has singularities along
a connected set joining +1. Instead we observe that we may take r — oo without
changing the value of the integral. We find that the integrand converges to 1/ V-1,
which is one of +i (we cannot determine which without knowing more about the



set E; draw some pictures to see why). Therefore the possible values of the integral
are +27N, or any element of 27Z.
4.52.1 Let f(z) = 7/ —2z°—z+1. Then |f(z)| < 5 on|z] = 1, so Rouché’s theorem implies
62> + f(z) has the same number of roots as 6z° in the unit disc, namely three.
4.5.2.2 We use Rouché’s theorem twice. For |z| = 2, |z*| = 16 > | — 6z + 3|, s0 z* — 6z + 3
has 4 roots in |z] < 2. For |z] = 1, |6z] = 6 > |2* + 3|, so there is one root in |z] < 1.
We conclude that there are 3 roots in 1 < |z < 2.



