
Math 5120: Complex analysis. Homework 8 Solutions
4.3.4.1 Suppose | f (z)| ≤ 1 on |z| ≤ 1 and f analytic. Fix z0 in the open unit disc and

let w0 = f (z0). Using a composition of fractional linear transformations and the
Schwarz lemma, it is proved in the book that

(1)
∣∣∣∣∣ f (z) − w0

1 − w̄0 f (z)

∣∣∣∣∣ ≤ ∣∣∣∣∣ z − z0

1 − z̄0z

∣∣∣∣∣ .
With a little rewriting we can extract f ′(z0):

(2)
| f ′(z0)|

1 − | f (z)|2
= lim

z→z0

∣∣∣∣∣ f (z) − w0

(z − z0)(1 − w̄0 f (z))

∣∣∣∣∣ ≤ lim
z→z0

∣∣∣∣∣ 1
1 − z̄0z

∣∣∣∣∣ = 1
1 − |z0|
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and z0 was an arbitrary point in the disc, so the estimate is valid for all |z0| < 1.
4.3.4.2 Suppose f is non-constant analytic and = f (z) ≥ 0 if =z ≥ 0. Composition with

a fractional linear map gives a map from the unit disc to itself to which we can
apply the Schwarz lemma. Specifically, for any z0 with =z0 > 0 we set w0 = f (z0)
and have =w0 > 0 by the maximum principle. For α in the upper half-plane let
gα(z) = z−α

z−ᾱ so g−1
z0

maps the unit disc to the upper half-plane with 0 7→ z0 and gw0

maps the upper half-plane to the unit disc with w0 7→ 0. Thus gw0 ◦ f ◦ g−1
z0

takes
the unit disc to itself and fixes 0, whence |gw0 ◦ f ◦ g−1

z0
(z)| ≤ |z| by the Schwarz

lemma, and so |gw0 ◦ f (z)| ≤ |gz0 (z)|. Substituting gives

(3)

∣∣∣∣∣∣ f (z) − f (z0)

f (z) + f (z0)

∣∣∣∣∣∣ ≤
∣∣∣∣∣ z − z0

z + z̄0

∣∣∣∣∣ .
As in the previous question, we can obtain a bound for | f ′(z0)| by dividing both

sides of the previous equation by |z − z0| and sending z → z0. Since z + z̄ = 2=z,
we obtain

(4)
| f ′(z0)|
= f (z0)

≤
1
=z0

valid at all points in the upper half-plane.
4.3.4.3 Let

F(z) =
( f (z) − w0)(1 − z̄0z)
(z − z0)(1 − w̄0 f (z))

.

Then F is analytic on the open unit disc except for a removable singularity at z0,
and (1) says |F(z)| ≤ 1. If equality holds in (2) then |F(z0)| = 1, so the maximum
principle implies F is constant of modulus 1, which we may write as eiθ, θ ∈
[0, 2π). Multiplying out gives that f (z) = h−1

w0
(eiθhz0 (w)) where hα = z−α

1−ᾱz .
Similarly, if we let

G(z) =
( f (z) − w0)(z + z̄0)
(z − z0)( f (z) + w̄0)

then we obtain a function analytic on =z > 0 except for the removable singularity
at z0, and |G(z)| ≤ 1 by (3). Equality in (4) implies G ≡ eiθ for some θ ∈ [0, 2π) by
the same maximum principle argument as before, and inverting the maps we have
f (w) = g−1

w0
(eiθgz0 (w)) with g as in the previous exercise.

In either of these two cases we see that f is a composition of fractional linear
maps, so is fractional linear.

4.4.7.3 Let γ be a closed curve. Its complement is open, so the connected components
of the complement are open, and there are thus at most countably many of them.
Label them {U j}

∞
j=0, and let U0 be the unique unbounded one; it is unique because
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compactness of γ implies the complement of some large disc is in C \ γ, and this
is a connected set so is contained in a single component.

For each j, let V j = C̄\U j and observe V j = ∪k, jU j∪γ∪{∞}. As these sets are
connected, each must lie in exactly one component of V j. However connectivity
of Uk implies connectivity of its closure, which intersects γ, so all Uk and γ must
lie in a single component of V j. Moreover if j , 0 then U0 ⊂ V j and ∞ is its
closure, so is in this same component of V j. We conclude that if j , 0 then V j has
only one component, so U j is simply connected by definition. Also V0 has at most
two components, one being {∞} and the other ∪ j ≥ 1U j ∪ γ. Taking r so |z| = r
does not intersect γ, we see that the disjoint open sets |z| > r and |z| < r separate
V0 into these two components, so V0 is doubly connected.

4.4.7.5 Let Ω be a region not intersecting a connected set E with ±1 ∈ E. If φ(z) is a
globally analytic function such that f (z) = 1−z2

(φ(z))2 maps E to a connected region
containing 0, then f has a well-defined logarithm and therefore well-defined roots
on on C \ f (E). Provided f (Ω) does not intersect f (E) we may define a single-
valued analytic function

√
1 − z2 on Ω by√
1 − z2 = φ(z)

√
1 − z2

(φ(z))2

and it is a legitimate branch of the square root because squaring both sides leads
to an equality.

It remains to find such a φ(z), but writing 1 − z2 = (1 − z)(1 + z) immediately
suggests φ(z) = (1+ z), as then f (z) = 1−z

1+z , which is a fractional linear transforma-
tion with 1 7→ ∞ and 1 7→ 0, from which f (E) is a connected set containing 0 and
∞. Our definition is then√

1 − z2 = (1 + z)

√
1 − z
1 + z

.

Now consider the integral∫
γ

dz
√

1 − z2
=

∫
γ

1

(1 + z)
√

1−z
1+z

dz

where γ is a closed curve in a component of C \ E. The integrand has no singu-
larities in this component, so if γ does not wind around any point of E then the
integral is zero. In particular if∞ ∈ E then γ cannot wind around E, so the integral
is zero in this case.

We therefore suppose that E is bounded and take r > 0 so large that E ⊂ {z :
|z| < r}. In this case the winding number n(γ, z) is a constant 2πiN on E and γ is
homologous in the unbounded component of C \ E to Nγr, where γr is the circle
of radius r around 1. The Cauchy theorem then implies∫

γ

dz
√

1 − z2
= N
∫
γr

1

(1 + z)
√

1−z
1+z

dz. = N
∫ 2π

0

ireiθ dθ

reiθ
√

2
reiθ − 1

= iN
∫ 2π

0

dθ√
2

reiθ − 1

It is tempting at this point to attempt to use the residue theorem, but that theorem
is valid only for isolated singularities, and our square root has singularities along
a connected set joining ±1. Instead we observe that we may take r → ∞ without
changing the value of the integral. We find that the integrand converges to 1/

√
−1,

which is one of ±i (we cannot determine which without knowing more about the
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set E; draw some pictures to see why). Therefore the possible values of the integral
are ±2πN, or any element of 2πZ.

4.5.2.1 Let f (z) = z7 −2z6 − z+1. Then | f (z)| ≤ 5 on |z| = 1, so Rouché’s theorem implies
6z3 + f (z) has the same number of roots as 6z3 in the unit disc, namely three.

4.5.2.2 We use Rouché’s theorem twice. For |z| = 2, |z4| = 16 > | − 6z + 3|, so z4 − 6z + 3
has 4 roots in |z| ≤ 2. For |z| = 1, |6z| = 6 > |z4 + 3|, so there is one root in |z| ≤ 1.
We conclude that there are 3 roots in 1 < |z| < 2.


