Math 5120: Complex analysis. Homework 7 Solutions

4.3.3.1 Observe that f(0) = 0 and $f'(0) \neq 0$, so that f is injective on some neighborhood of 0. Also f(z) is not injective on |z| < 2, because f(0) = f(-1) = 0. It follows that $R = \sup\{r : f \text{ is injective on } |z| < r\}$ is positive and finite.

One easy way to find *R* is by direct computation. The roots of $f(z) - \zeta$ are $z = -\frac{1}{2} \pm \frac{\sqrt{1+4\zeta^2}}{2}$, so they are at opposite points of a diameter of a circle radius $s = \left|\frac{\sqrt{1+4\zeta^2}}{2}\right|$ around $-\frac{1}{2}$. One of these points has real part less than $-\frac{1}{2}$, so is distance at least $\frac{1}{2}$ from 0. We conclude that no open disc |z| < r with $r \le \frac{1}{2}$ contains two roots of $f(z) - \zeta$. Moreover if $r > \frac{1}{2}$ we may choose ζ to make *s* so small that $|z - \frac{1}{2}| < s$ is inside |z| < r, at which point there will be two roots of $f(z) - \zeta$ in |z| < r. This proves that $R = \frac{1}{2}$.

A more general approach is to first recognize that an analytic f cannot be injective on an open set containing a critical point. The reason is that if $f'(z_0) = 0$, then $f(z) - f(z_0)$ has a zero of some order $n \ge 2$ at z_0 . The argument principle then says that if w is sufficiently close to $f(z_0)$, the function f(z) - w must have n simple roots in a neighborhood of z_0 , so f cannot be injective. (See book, top of page 132.) For our problem, the critical point is at 2z + 1 = f'(z) = 0, so $z = -\frac{1}{2}$ and we discover $R \le \frac{1}{2}$.

Now if *f* is a polynomial, then we know that all critical points lie in the convex hull of the roots (see Theorem 1 on page 29 of the book). So if we have a polynomial *f* of degree *n* and a *w* so f(z) - w has *n* roots (counting multiplicity) in |z| < r, then *f* also has a critical point in |z| < r. In the situation we face, with n = 2, we discover that if there are 2 roots of $f(z) - \zeta$ in |z| < r then $r > \frac{1}{2}$. Thus $R \ge \frac{1}{2}$, and we conclude $R = \frac{1}{2}$.

It is interesting to think how, if at all, this idea could be generalized.

4.3.3.4 We are given f analytic at 0 and $f'(0) \neq 0$. Then f(z) - f(0) = zh(z) with h analytic at 0 and $h(0) = f'(0) \neq 0$. We may then take an open disc U around 0 which is so small that h is analytic on this disc and |h(z) - h(0)| < |h(0)| for $z \in U$. This condition on h implies $\log h(z)$ and hence $k(z) = h(z)^{1/n}$ are well-defined (single-valued) analytic functions on U, from which $f(z^n) = f(0) + z^n h(z^n) = f(0) + (zk(z^n))^{1/n}$ on U, so taking $g(z) = zk(z^n)$ completes the proof.