Math 5120: Complex analysis. Homework 6 Solutions

4.2.3.1(a) By the Cauchy formula for derivatives, flzl=l 77" f(z)dz = 2mif"V(z)/(n—1)! pro-
vided f is analytic in the unit disc. Applying this to f(z) = ° gives flz -1 7"t dz =
2ri/(n— 1)!.

4.2.3.1(b) If n and m are both non-negative then the integrand in f\z\:z "1 —z"dzis a
polynomial, hence analytic, and so the integral is zero by the Cauchy formula.
If n is negative and m non-negative then our previous reasoning says the result
is 27i f"=D(0)/(In] — 1)! for f(z) = (1 = z)", which is 0 if m < |a| — 1 and

2ﬂi(—1)'”“'(ln’|’il) otherwise. Similarly, if 7 is non-negative and m negative then

we get 0 if n < |m| — 1 and 27ig"=D(1)/(jm| - 1)! = 27ri(|m’|7_l) otherwise (with
g(z) = 7"). If both m and n are negative it is a little more work, basically be-
cause we do not have the Cauchy formula for general curves, so cannot reduce
to a circle around O and another around 1. However there is a still a relatively
quick argument of the same type as above. We may use partial fractions to write
7M1 - 2™ = P()7" + Q@)1 — )™, where P has degree at most |[n| — 1 and Q
has degree at most |m| — 1; note that P(z)(1 —z)™" + Q(2)z™" = 1. Integrating the
P(z)7" term gives 2riP"=D(0)/(|n| - 1)!, which is just 27 times the leading coef-
ficient p of P(z). Similarly integrating the Q(z)(1 — z)™ term gives (—1)"27xi times
the leading coefficient g of Q. These leading terms give the power of z"*~! in
P(2)(1 =20+ Q(2)z7" to be (—=1)"(p + q), and this must be zero because m,n < 0
implies —m —n > 2,s0 -m —n — 1 > 1. We may summarize our results as

2mi(-1" (") ifn<Oandm>-n-1

f 2'(1-2)"dz = {2mi(_" ) ifm<Oandn>-m—1
=2 .
0 otherwise

4.2.3.1(c) We write |z — a|*> = (z— a)(Z — a) = (z — a)((p*/z) — @) on |z| = p and use the fact
that on z = pe’ we have |dz| = pd6 and dz = ire®d0 = izd#, so |dz| = pdz/iz. Thus
the integral is

. 1 p* \2p P z
|z—a|4|dz|=f ” _a .—dz=—.f i a4
L—p k= (2= @) ( z ) iz i J=p (2= @)*(p* — az)?

Now by assumption, |a| # p. The integrand has singularities at z = a and z = p?/a,
which are reflection-symmetric in the circle |z| = p, so only one is inside the circle.
The Cauchy formula then says that the integral is 2p " (a) with f(z) = z/(p* —az)?
if l[a| < p, which evaluates to 27p(p*> + |a|*)/(p> — |a|*)®. Similarly if |a| > p
it becomes 2mpg’ (p*/a) with g(z) = z/(a)*(z — a)?, which is the negative of the
previous answer. Summarizing

2mp(p* +lal?) .

o a e = | e iflal<p
2np(p*Hal) -

lzl=p ~ o if |a| > p.

4.2.3.2 We assume f is globally analytic and there is C so |f(z)| < C|z|" for all sufficiently
large |z|. Let P(z) be the (n—1)™ order Taylor polynomial of £(z) at 0, so f(z)—P(2)
has a zero of order n at 0 and therefore f(z) — P(z) = z"g(z) for some globally
analytic g(z). Since P is an order n — 1 polynomial we have |P(2)|/|z|" < 1 for all
sufficiently large |z|; using the hypothesis we get
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for all sufficiently large |z|, whence continuity of g implies it is bounded and Liou-
ville’s theorem implies it is a constant a. Thus f(z) = az" + P(z) is a polynomial
of degree at most n.

4.2.3.5 Suppose f is analytic at z9. Let g(z) = f(2) — f(z0). If n > 1 is an integer and r > 0
is sufficiently small (so f is analytic on |z| < r), then by the Cauchy formula

n! f g(Z)
o ———dz
2710 Jypyper (2 = 200"

Putting r = 1/n we see that n!n"|f(”)(z())| < MaXy_g=1/2 11 (@) — f(z0)l — 0 as

|F*@o)| = |8 (20)| =

| !
< max lg@)| = s max |f(@)—f(zo)l.

" Jz—zol=r " lz—z0

n — oo. This is strictly stronger than the statement that | f(")(zo)| > n!n" cannot
occur for an unbounded sequence of n € N.
4.3.2.1 The algebraic order of f at a is defined to be that / such that

. o 00 a<h
lim |z - al’|f(2) = {0 o
If f has order i and g has order k at z = a, then it is immediate that |z—a|®|f(z)g(2)| =
oo for @ < h + k and = O for @ > h + k, so the order of f(2)g(z) is h + k. It is also
easy to see that the order of 1/g is —k; combining these results we see that the
order of f(2)/g(z)is h — k.
To see that the order of f + g cannot exceed max{A, k} it suffices to note that

Iz = al®lf(2) + g2 < |z = al”lf ()| + |z — al*Ig(2)] — 0 as z — a, by the triangle
inequality.

4.3.2.3 The map €° takes any infinite horizontal strip of width 27 to C \ {0}, so it takes
any punctured neighborhood |z] > R of co to C \ {0}. It follows that ¢* does not
have a limit in C as z — oo, and therefore that the isolated singularity of ¢? at oo is
essential. Similar arguments apply to cos z and sin z. All we need verify is that the
image of |z > R cannot converge in C as R — oo, which is true for cos because it
maps all lines z = 27k + iy onto [0, c0) C R and for sin because it maps the same
lines onto the imaginary axis.

4.3.2.5 Suppose f has an isolated singularity at a, so f is analytic on 0 < [z — a| <
6. If either Rf or Jf is bounded on this punctured disc, then the image of the
punctured disc cannot be dense in C, so the Casorati-Weierstrass theorem implies
the singularity cannot be essential. The singularity is therefore removable or a
pole. However, if it is a pole then f(z) = (z — a)*g(z) for some k € N and g
analytic on |z — a| < 6 with g(a) # 0. Then we can easily verify that both R f
and Jf are unbounded on 0 < |z — a| < & as follows. Take z = a + re®, so
f(z) = r*e™g(z). For r > 0 so small that |g(z) — g(a)| < |g(a)|/2 and 6 chosen
so e"*9g(a) is real we have Rf(z) > r*|g(a)|/2. A similar argument works for
the imaginary part. It follows that the singularity cannot be a pole, so it must be
removable.

4.3.2.6 Let f have an isolated singularity at a, so f is analytic on 0 < |z —a| < 6. Consider
2(z) = ¢/@, which also has an isolated singularity at a. Suppose the singularity of
g(2) is a pole. Then lim,_, |g(z)| = oo, and |g(z)] = ¥/, s0 lim,_,, Rf(z) = co.
In particular, f(z) is unbounded on 0 < |z — a| < J, so the singularity of f is not
removable. Also, f(z) omits a left half-plane, so the Casorati-Weierstrass theorem
implies the singularity of f cannot be essential. Thus f has a pole at a. Reasoning
as in the previous question we see that for any sufficiently small r > 0, the image
of any 0 < |z — a| < r under f covers a set of the form |z] > R. However the



exponential map takes any horizontal infinite strip of height 27 to C \ {0}. Since a
region of the form |z|] > R contains such a horizontal strip we conclude that g maps
any 0 < |z — a| < r to all of C\ {0}, contradicting the assumption that g has a pole
at a. We conclude that if £(z) has an isolated singularity at a then ¢/ cannot have
apole at a.



