
Math 5120: Complex analysis. Homework 6 Solutions
4.2.3.1(a) By the Cauchy formula for derivatives,

∫
|z|=1 z−n f (z) dz = 2πi f (n−1)(z)/(n−1)! pro-

vided f is analytic in the unit disc. Applying this to f (z) = ez gives
∫
|z|=1 z−nez dz =

2πi/(n − 1)!.
4.2.3.1(b) If n and m are both non-negative then the integrand in

∫
|z|=2 zn(1 − z)m dz is a

polynomial, hence analytic, and so the integral is zero by the Cauchy formula.
If n is negative and m non-negative then our previous reasoning says the result
is 2πi f (|n|−1)(0)/(|n| − 1)! for f (z) = (1 − z)m, which is 0 if m < |n| − 1 and
2πi(−1)|n|−1

(
m
|n|−1

)
otherwise. Similarly, if n is non-negative and m negative then

we get 0 if n < |m| − 1 and 2πig(|m|−1)(1)/(|m| − 1)! = 2πi
(

n
|m|−1

)
otherwise (with

g(z) = zn). If both m and n are negative it is a little more work, basically be-
cause we do not have the Cauchy formula for general curves, so cannot reduce
to a circle around 0 and another around 1. However there is a still a relatively
quick argument of the same type as above. We may use partial fractions to write
zn(1 − z)m = P(z)zn + Q(z)(1 − z)m, where P has degree at most |n| − 1 and Q
has degree at most |m| − 1; note that P(z)(1 − z)−m + Q(z)z−n = 1. Integrating the
P(z)zn term gives 2πiP(|n|−1)(0)/(|n| − 1)!, which is just 2πi times the leading coef-
ficient p of P(z). Similarly integrating the Q(z)(1 − z)m term gives (−1)m2πi times
the leading coefficient q of Q. These leading terms give the power of z−m−n−1 in
P(z)(1− z)−m +Q(z)z−n to be (−1)m(p+ q), and this must be zero because m, n < 0
implies −m − n ≥ 2, so −m − n − 1 ≥ 1. We may summarize our results as

∫
|z|=2

zn(1 − z)m dz =


2πi(−1)−n−1

(
m
−n−1

)
if n < 0 and m ≥ −n − 1

2πi
(

n
−m−1

)
if m < 0 and n ≥ −m − 1

0 otherwise

4.2.3.1(c) We write |z − a|2 = (z − a)(z̄ − ā) = (z − a)
(
(ρ2/z) − ā

)
on |z| = ρ and use the fact

that on z = ρeiθ we have |dz| = ρdθ and dz = ireiθdθ = izdθ, so |dz| = ρdz/iz. Thus
the integral is∫

|z|=ρ
|z − a|−4 |dz| =

∫
|z|=ρ

1
(z − a)2

(ρ2

z
− ā
)−2 ρ

iz
dz =

ρ

i

∫
|z|=ρ

z
(z − a)2(ρ2 − āz)2 dz.

Now by assumption, |a| , ρ. The integrand has singularities at z = a and z = ρ2/ā,
which are reflection-symmetric in the circle |z| = ρ, so only one is inside the circle.
The Cauchy formula then says that the integral is 2πρ f ′(a) with f (z) = z/(ρ2− āz)2

if |a| < ρ, which evaluates to 2πρ(ρ2 + |a|2)/(ρ2 − |a|2)3. Similarly if |a| > ρ
it becomes 2πρg′(ρ2/ā) with g(z) = z/(ā)2(z − a)2, which is the negative of the
previous answer. Summarizing∫

|z|=ρ
|z − a|−4 |dz| =

 2πρ(ρ2+|a|2)
(ρ2−|a|2)3 if |a| < ρ

−
2πρ(ρ2+|a|2)

(ρ2−|a|2)3 if |a| > ρ.

4.2.3.2 We assume f is globally analytic and there is C so | f (z)| ≤ C|z|n for all sufficiently
large |z|. Let P(z) be the (n−1)th order Taylor polynomial of f (z) at 0, so f (z)−P(z)
has a zero of order n at 0 and therefore f (z) − P(z) = zng(z) for some globally
analytic g(z). Since P is an order n − 1 polynomial we have |P(z)|/|z|n ≤ 1 for all
sufficiently large |z|; using the hypothesis we get

|g(z)| ≤
| f (z)|
|z|n
+
|P(z)|
|z|n

≤ C + 1

1



2

for all sufficiently large |z|, whence continuity of g implies it is bounded and Liou-
ville’s theorem implies it is a constant a. Thus f (z) = azn + P(z) is a polynomial
of degree at most n.

4.2.3.5 Suppose f is analytic at z0. Let g(z) = f (z)− f (z0). If n ≥ 1 is an integer and r > 0
is sufficiently small (so f is analytic on |z| ≤ r), then by the Cauchy formula∣∣∣ f (n)(z0)
∣∣∣ = ∣∣∣g(n)(z0)

∣∣∣ = ∣∣∣∣∣∣ n!
2πi

∫
|z−z0 |=r

g(z)
(z − z0)n+1 dz

∣∣∣∣∣∣ ≤ n!
rn max
|z−z0 |=r

|g(z)| =
n!
rn max
|z−z0 |=r

| f (z)− f (z0)|.

Putting r = 1/n we see that n!nn
∣∣∣ f (n)(z0)

∣∣∣ ≤ max|z−z0 |=1/n | f (z) − f (z0)| → 0 as
n → ∞. This is strictly stronger than the statement that

∣∣∣ f (n)(z0)
∣∣∣ > n!nn cannot

occur for an unbounded sequence of n ∈ N.
4.3.2.1 The algebraic order of f at a is defined to be that h such that

lim
z→a
|z − a|α| f (z)| =

∞ α < h
0 α > h.

If f has order h and g has order k at z = a, then it is immediate that |z−a|α| f (z)g(z)| =
∞ for α < h + k and = 0 for α > h + k, so the order of f (z)g(z) is h + k. It is also
easy to see that the order of 1/g is −k; combining these results we see that the
order of f (z)/g(z) is h − k.

To see that the order of f + g cannot exceed max{h, k} it suffices to note that
|z − a|α| f (z) + g(z)| ≤ |z − a|α| f (z)| + |z − a|α|g(z)| → 0 as z → a, by the triangle
inequality.

4.3.2.3 The map ez takes any infinite horizontal strip of width 2π to C \ {0}, so it takes
any punctured neighborhood |z| > R of ∞ to C \ {0}. It follows that ez does not
have a limit in C̄ as z→ ∞, and therefore that the isolated singularity of ez at∞ is
essential. Similar arguments apply to cos z and sin z. All we need verify is that the
image of |z| > R cannot converge in C̄ as R → ∞, which is true for cos because it
maps all lines z = 2πk + iy onto [0,∞) ⊂ R and for sin because it maps the same
lines onto the imaginary axis.

4.3.2.5 Suppose f has an isolated singularity at a, so f is analytic on 0 < |z − a| <
δ. If either < f or = f is bounded on this punctured disc, then the image of the
punctured disc cannot be dense in C, so the Casorati-Weierstrass theorem implies
the singularity cannot be essential. The singularity is therefore removable or a
pole. However, if it is a pole then f (z) = (z − a)−kg(z) for some k ∈ N and g
analytic on |z − a| < δ with g(a) , 0. Then we can easily verify that both < f
and = f are unbounded on 0 < |z − a| < δ as follows. Take z = a + reiθ, so
f (z) = r−ke−ikθg(z). For r > 0 so small that |g(z) − g(a)| < |g(a)|/2 and θ chosen
so e−ikθg(a) is real we have < f (z) ≥ r−k |g(a)|/2. A similar argument works for
the imaginary part. It follows that the singularity cannot be a pole, so it must be
removable.

4.3.2.6 Let f have an isolated singularity at a, so f is analytic on 0 < |z− a| < δ. Consider
g(z) = e f (z), which also has an isolated singularity at a. Suppose the singularity of
g(z) is a pole. Then limz→a |g(z)| = ∞, and |g(z)| = e< f (z), so limz→a< f (z) = ∞.
In particular, f (z) is unbounded on 0 < |z − a| < δ, so the singularity of f is not
removable. Also, f (z) omits a left half-plane, so the Casorati-Weierstrass theorem
implies the singularity of f cannot be essential. Thus f has a pole at a. Reasoning
as in the previous question we see that for any sufficiently small r > 0, the image
of any 0 < |z − a| < r under f covers a set of the form |z| > R. However the
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exponential map takes any horizontal infinite strip of height 2π to C \ {0}. Since a
region of the form |z| > R contains such a horizontal strip we conclude that g maps
any 0 < |z − a| < r to all of C \ {0}, contradicting the assumption that g has a pole
at a. We conclude that if f (z) has an isolated singularity at a then e f (z) cannot have
a pole at a.


