
Math 5120: Complex analysis. Homework 4 Solutions
3.3.1.1 The map z 7→ z̄ fixes 0,1 and ∞. Consider a fractional linear transformation z 7→

az+b
cz+d fixing these points. Fixing 0 implies b = 0, fixing ∞ implies c = 0, fixing 1
implies a/d = 1, so the map is the identity. Thus z 7→ z̄ is not a fractional linear
transformation.

3.3.3.1 A reflection z 7→ z∗ = g(z) is defined via (z∗, z1, z2, z3) = (z, z1, z2, z3). Let φ be
the fractional linear transformation so φ(z1) = 1, φ(z2) = 0 and φ(z3) = ∞, and let
f (z) = z̄. Then φ(z∗) = φ(z), so g = φ−1 ◦ f ◦ φ. Now we know from the book
that φ maps circles to circles (on the Riemann sphere), so it suffices to see that the
same is true of f . A circle not through∞ has the form |z − a| = r, so is mapped to
r = |z̄ − a| = |z − ā|, which is also a circle. A circle through ∞ is z = x + iy with
ax+by+ c = 0, a, b, c ∈ R, and is mapped to z = x+ iy with ax−by+ c = 0, which
is also a circle through∞.

3.3.3.5 It is easy to think of some fractional linear transformations that fix |z| = R as a set.
For example, any rotation around the origin (i.e. z 7→ az with |a| = 1), the map
z 7→ R2/z. In the case R = 1 we also know from prior homeworks that z 7→ z−a

1−āz

for |a| , 1 preserves |z| = 1, so z 7→ R (z/R)−a
1−ā(z/R) =

Rz−aR2

R−āz preserves |z| = R. The
more difficult question is whether we have found all of the maps or not. One way
to approach the problem is to take an arbitrary fractional linear transformation that
fixes |z| = R, compose it with some of the maps we know, and try to get the result
to fix 3 points, so that the composition is the identity.

Suppose that φ is a fractional linear transformation that fixes |z| = R as a set.
Let eiθ = φ(R)/R, so z 7→ e−iθφ(z) fixes the point z = R. Let a = e−iθφ(0)/R and
ψ(z) = Rz−aR2

R−āz . Then z 7→ ψ(e−iθφ(z)) fixes 0 and R, and also fixes |z| = R as a
set. Since the mapping of reflection in a circle depends only on the circle, this
map must preserve pairs of points that are symmetric under reflection in |z| = R.
Now {0,∞} has such reflective symmetry and ψ(e−iθφ(0)) = 0, so we conclude
ψ(e−iθφ(∞)) = ∞. Thus we have a fractional linear transformation fixing three
points, which we know is the identity, and so ψ(e−iθφ(z)) = z, from which φ(z) =
eiθψ−1(z). It is easy to compute that ψ−1(z) = Rz+aR2

R+āz . We have thus shown that

φ(z) = eiθ Rz + aR2

R + āz
.

3.3.3.7 If we had a fractional linear transformation taking |z| = 1 and |z − 1
4 | =

1
4 to

concentric circles, then by composing with a translation to move their common
center to 0 and a dilation we could assume that the fractional linear transformation
preserves the unit circle; note that neither operation affects the ratio of radii of
the image circles. By exercise 3.3.3.5 with R = 1, such a map is of the form
z 7→ eiθ z−a

1−āz = f (z), |a| , 1. The rotation preserves both the concentric property
and the ratio of radii, so we are free to choose it, for example by setting θ = 0.
Now observe that the initial and final configurations are mapped to themselves by
z 7→ z̄, so g(z) = f (z̄) = e−iθ z−ā

1−az also preserves |z| = 1 and takes |z − 1
4 | =

1
4 to a

circle with center at 0. If the image of |z− 1
4 | =

1
4 under f is |z| = r, it follows from

exercise 3.3.3.5 that

f ◦ g−1(z) =
z+ā
1+az − a

1 − ā z+ā
1+az

=
(1 − a2)z + (ā − a)
(1 − |a|2) + (a − ā)z

=
1 − a2

1 − |a|2
z + ā−a

1−a2

1 + a−ā
1−|a|2 z

1



2

is a fractional linear transformation fixing |z| = r, so is of the form z 7→ eiφ rz+r2b
r+b̄z .

We conclude that a ∈ R. Knowing this, we see that f preserves R, and therefore
that f (0) and f ( 1

2 ) are the points ±r. This gives us that simultaneously −a = ±r
and ( 1

2 − a)/(1 − a
2 ) = ∓r, which we reduce to r2 ± 4r + 1 = 0, or (finding only

solutions with r > 0), a = r = 2 ±
√

3. We have found necessary conditions for
f to map |z − 1

4 | =
1
4 to |z| = r, and it remains to see they are sufficient. But f

is a fractional linear transformation so maps circles to circles; by construction the
image of |z − 1

4 | =
1
4 passes through ±r, and since a ∈ R the image is mapped

to itself by z 7→ z̄, so it is |z| = r. We have therefore determined that the map is
one of z 7→ eiθ z−a

1−az for a = 2 ±
√

3 and the ratio of the smaller to larger radius is
2 −
√

3 : 1 = 1 : 2 +
√

3.
3.3.3.8 We are now asked to repeat this problem for |z| = 1 and x = 2. All of the same

arguments apply to say that the map is z 7→ eiθ z−a
1−az for a ∈ R. The points z = 2

and z = ∞ are invariant under z 7→ z̄, so go to ±r. Computing as in the previous
problem we find again r = 2 ±

√
3, but with a = 1

r = 2 ∓
√

3. Alternatively
we could notice that the map z 7→ 1

z takes the circle in 3.3.3.7 to the line in this
problem (to see this, note what happens to 0 and ∞ and that the symmetry under
z 7→ z̄ is preserved), so the whole problem is obtained from 3.3.3.7 by composition
with z 7→ 1

z .
3.4.2.2 The circles intersect at z = 1 and are parallel there, so any fractional linear trans-

formation mapping 1 to∞will give us the region between two circles that intersect
at ∞ with zero angle, meaning a strip between two parallel lines. There are many
fractional linear transformations taking 1 to∞, but it is convenient to take one that
maps one of the circles to the real axis; for example z 7→ i z+1

z−1 takes |z| = 1 to R
because it takes −1 to 0 and i to 1. The image of the other line must have the form
z = x + ic for a constant c; by computing 0 7→ −i we find c = −i. Now we can
multiply by −π and exponentiate to get the upper half plane. Our final map is

z 7→ exp
(
−πi

z + 1
z − 1

)
.

3.4.2.3 The arc |z| = 1, y ≥ 0 can be mapped to a segment on the real line by a fractional
linear transformation, and we know how to map the complement of a segment on
the complement of the unit disc (or rather we know how to map the complement of
the unit disc on the complement of the segment [−2, 2] using the map z 7→ z+ z−1).
For the first step we should take a point on |z| = 1 to ∞, and since it is convenient
to make the image segment symmetric around 0 we may as well take i to 0 and −i
to∞. After multiplying by 2 so our arc goes to [−2, 2], the map is z 7→ 2i z−i

z+i .
Now the trickier issue is how to invert z 7→ z+z−1. Formally using the quadratic

equation the inverse is z 7→ 1
2 (z ±

√
z2 − 4), but we have to make sense of the

square root. If z2 − 4 mapped the complement of [−2, 2] to the complement of a
ray connecting 0 and∞ we could use a version of the usual square root, but it does
not – the image in this case is the complement of the interval [−4, 0]. However,
we can do whatever algebraic manipulation we desire to the expression for the
formal inverse and still have a formal inverse. Knowing that we want the bit inside
the square root to omit a ray from 0 to ∞ (preferably the negative real axis) and
that right now what is in there omits [−4, 0], tends to suggest we should divide by
either z or z− 2 to move an endpoint to∞. A little playing with the formula yields
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a different formal expression for the inverse branches

f±(z) =
z
2
(
1 ±
√

1 − 4/z2)
in which 1 − 4/z2 is easily seen to omit the negative real axis (and the ray (2,∞)
on the positive real axis). We can therefore use the usual definition of

√
· taking

C \ (−∞, 0] to the right half plane. The result is that the branches f±(z) are each
well defined on the complement of [−2, 2].

Now note that the two branches of the inverse map either to the interior or the
exterior of the unit disc, and that we want the one which maps to the exterior. We
can verify that the desired one is z

2 (z +
√

1 − 4z−2) by observing that it has image
converging to∞ as z→ ∞.

Our final result is therefore that

z 7→
1
2

(
2i

z − i
z + i

)(
1 +
(
1 −

4(z + i)2

−4(z − i)2

)1/2)
=

1 + iz
z + i

(
1 +
(
1 +

(z + i)2

(z − i)2

)1/2)
where we readily determine that for z not on our arc, 1+ (z+i)2

(z−i)2 is not on the negative
real axis.

3.4.2.7 We wish to map the exterior of an ellipse on the interior of the unit disc with
preservation of symmetries, those being z 7→ z̄ and z 7→ −z. Recall that in studying
the map z 7→ z + z−1 = f (z) we saw that the circle z = reiθ, is mapped to z = x + iy
with x = (r + r−1) cos θ and y = (r − r−1) sin θ, which is an ellipse centered at
0 with semi-major axis along the real line and of length a = r + r−1 and semi-
minor axis along the imaginary axis and of length b = |r − r−1|; this is the ellipse
(x/a)2 + (y/b)2 = 1, a > b. The map also preserves the symmetries of the ellipse,
in that f (z̄) = f (z) and f (−z) = − f (z).

The map z 7→ f (z) is a double covering; if r > 1 then both |z| > r and |z| < 1/r
are mapped onto the the exterior of the ellipse. It is easy to see that when r > 1
we should have r = (a − b)/2 and thus 1/r = 2/(a − b). The inverse map has two
branches z 7→ z

2 (1 ±
√

1 − 4z−2) which were discussed in the previous problem.
Here we need the branch z 7→ z

2 (1 −
√

1 − 4z−2) which maps the exterior of the
ellipse to the interior of the disc of radius 2/(a − b). There are only a few more
difficulties. The first is that we need the ellipse to have a > b, so that a preliminary
rotation is needed if b > a. The second is that we need r = (a − b)/2 > 1 in
the above analysis. To ensure that this is the case it is convenient to perform a
preliminary dilation, for example one ensuring that r = 2. Then the inverse branch
of f will map to the disc |z| < 1/2, and an additional dilation will bring us to
|z| < 1. At this point it is simplest to split into cases.

Case 1: a > b. Then (x/a)2 + (y/b)2 = 1 has its longer axis along the real line.
We perform the dilation z 7→ 4z/(a − b), so that the length of the semi-major axis
becomes 4a/(a−b) and of the semi-minor axis becomes 4b/(a−b); the exterior of
this is the image of |z| < 1/2 under f (z), so applying z 7→ z

2 (1 −
√

1 − 4z−2) takes
it to |z| < 1/2 and dilating by a factor of 2 gives |z| < 1. The result is

z 7→ 2
4z

2(a − b)

(
1 −
(
1 −

4(a − b)2

16z2

)1/2)
=

4z
a − b

(
1 −
(
1 −

(a − b)2

4z2

)1/2)
Case 2: b > a. We can use the same argument as above, but must first rotate by

π/2 to get the semi-major axis along the real line, and must undo this at the end.
The maps are z 7→ iz 7→ 4iz/(b−a), then the inverse branch, then dilation by 2 and
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rotation by −i, resulting in

z 7→ −2i
4iz

2(b − a)

(
1 −
(
1 −

4(b − a)2

−16z2

)1/2)
=

4z
b − a

(
1 −
(
1 +

(a − b)2

4z2

)1/2)
Case3: b = a. Here we have just the circle |z| = a = b, so we can scale

by z 7→ z/a to the unit circle and invert to map the exterior to the interior. The
resulting map is

z 7→
a
z
.


