
Math 5120: Complex analysis. Homework 2 Solutions
2.1.2.4 Suppose f = u+ iv is analytic and | f | is constant, so | f |2 = u2+ v2 = c. Analyticity

gives existence of the partial derivatives ux, uy, vx, vy and validity of the Cauchy-
Riemann equations. Differentiating | f |2 = c gives uux + vvx = uuy + vvy = 0;
Cauchy-Riemann lets us rewrite these as(

u v
v −u

) (
ux

vx

)
=

(
0
0

)
.

Since the determinant is | f |2 = c, we discover that either c = 0, whence f = 0
everywhere, or the matrix is invertible and ux = vx = 0, from which also uy = vy =

0 by Cauchy-Riemann and thus u and v, and hence f , are constant.
2.1.2.5 Each of the following statements is equivalent.

f (z) is analytic at z = z0.

lim
z→0

f (z + z0) − f (z0)
z

exists.

lim
z→0

f (z + z0) − f (z0)
z̄

exists.

lim
w→0

f (w̄ + w̄0) − f (w̄0)
w

exists. (Set w = z̄, w0 = z̄0)

f (w̄) is analytic at w = w0.

2.1.4.1(a) Let R(z) = z4(z3 − 1)−1. It has poles at ∞, 1, e2πi/3, e2πi/3. Set τ = 2πi/3. We need
to expand at each pole, for which purpose (using the notation in the book) perform
each of the following expansions. We include only the relevant terms, noting the
presence of those with lower order using an ellipsis.

R(z) = z +
z

z3 − 1
so G(z) = z

R(1 + z−1) =
(1 + z−1)4

(1 + z−1)3 − 1
=

(z + 1)4

z(z + 1)3 − z4 =
z4 + · · ·

3z3 + · · ·
=

z
3
+ · · ·

G1

( 1
z − 1

)
=

1
3(z − 1)

R(eτ + z−1) =
(eτ + z−1)4

(eτ + z−1)3 − 1
=

(eτz + 1)4

z(eτz + 1)3 − z4 =
e4τz4 + · · ·

3e2τz3 + · · ·
=

e2τz
3
+ · · ·

Geτ
( 1
z − eτ

)
=

e2τ

3(z − eτ)

R(e2τ + z−1) =
(e2τ + z−1)4

(e2τ + z−1)3 − 1
=

(e2τz + 1)4

z(e2τz + 1)3 − z4 =
e8τz4 + · · ·

3e4τz3 + · · ·
=

e4τz
3
+ · · · =

eτz
3
+ · · ·

Ge2τ

( 1
z − e2τ

)
=

eτ

3(z − e2τ)

Thus

R(z) = z +
1

3(z − 1)
+

e4πi/3

3(z − e2πi/3)
+

e2πi/3

3(z − e4πi/3)
.
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2.1.4.1(b) In a similar but more tedious calculation, R(z) = z−1(z + 1)−2(z + 2)−3 has poles at
0, −1 and −2. We perform the following expansions, including only the relevant
terms.

R(z−1) =
1

z−1(z−1 + 1)2(z−1 + 2)3 =
z6

(1 + z)2(1 + 2z)3 =
z6

8z5 + · · ·
=

z
8
+ · · ·

G0

(1
z

)
=

1
8z

R(−1 + z−1) =
1

(−1 + z−1)z−2(z−1 + 1)3 =
z6

(z − 1)(1 + z)3 =
z6

−z4 − 2z3 + · · ·
= −z2 + 2z + · · ·

G−1

( 1
(z + 1)

)
=
−1

(z + 1)2 +
2

(z + 1)

R(−2 + z−1) =
1

(−2 + z−1)(−1 + z−1)2z−3 =
z6

(−2z + 1)(−z + 1)2

=
z6

−2z3 + 5z2 − 4z + · · ·
=
−z3

2
−

5z2

4
−

17z
8
+ · · ·

G−2

( 1
(z + 2)

)
=

−1
2(z + 2)3 −

5
4(z + 2)2 −

17
8(z + 2)

Thus

R(z) =
1
8z
+
−1

(z + 1)2 +
2

(z + 1)
−

1
2(z + 2)3 −

5
4(z + 2)2 −

17
8(z + 2)

.

2.1.4.4 Suppose R(z) is a rational function with |R(z)| = 1 on |z| = 1. Then

S (z) =
1

R
( 1

z̄
)

is also a rational function, and since w = 1
w̄ whenever |W | = 1 we see that R(z) =

S (z) on |z| = 1. But then R(z) = S (z), because their difference is a rational function
with zeros at every point of the unit circle. Now observe that if R(z) has a root at
a of order α then S (z) has a pole at z = (ā)−1 with the same order, so R(z) = S (z)
has a pole of this order at this location. This argument is reversible; if R(z) has
a pole at b of order β then S (z) has a zero at z = (b̄)−1 with the same order, so
R(z) = S (z) has a zero of this order at this location. Thus the poles and zeros of
R are bijectively paired by the map z 7→ (z̄)−1. (Note that this implies there are
neither poles nor zeros at points of |z| = 1, because for these points z = (z̄)−1 and
there cannot simultaneously be a zero and a pole at a single point.) An equivalent
formulation is that R(z) is necessarily a product of factors of the form z−a

1−āz with
|a| , 1. Since we proved in Exercise 1.1.4.3 that such factors have modulus 1
on the unit circle, this condition is also sufficient. Grouping the factors and using
negative powers α j when a zero is outside the unit disc we see that the general
form of the rational function we seek is

R(z) = czk
m∏

j=1

( z − a j

1 − ā jz

)α j

with k and α j in Z and |a j| < 1 for all j.
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2.1.4.6 Suppose R(z) = cP(z)/Q(z) is a rational function, where P and Q are monic poly-
nomials without common zeros. Let m = deg(P) and n = deg(Q). It will be
convenient at first to assume neither P nor Q is constant. We have

R′(z) = c
P′(z)Q(z) − P(z)Q′(z)

Q2(z)
.

It is an easy observation that deg(P′) = m−1 and deg(Q′) = n−1, thus deg(P′Q) =
deg(PQ′) ≤ m + n − 1. Observe that the lead term in P′Q has coefficient n while
that in PQ′ has coefficient m. If we assume m , n then these terms cannot cancel,
so deg(P′Q − PQ′) ≤ m + n − 1 with equality at least when m , n. To find the
degree of R′(z) we must then cancel common factors. Any root of Q with order α
is a root of P′Q with the same order, so to be a root of P′Q − PQ′ it must divide
P or Q′. By assumption P and Q have no common roots, so it must be a root of
Q′. An easy computation shows that Q and Q′ have common roots if and only if
Q has multiple roots, and that the order of the root in Q′ is α−1. We conclude that
Q′/Q is of the form S/T , where T is the (monic) product of the distinct factors of
Q and has order k ≤ n, and deg S = k − 1. It is then apparent that

R′(z) = c
P′(z)T (z) − P(z)S (z)

Q(z)T (z)
with deg(P′T − PS ) ≤ m + k − 1 (with equality if m , n), deg(QT ) = n + k, and
the numerator and denominator having no common roots. It follows that

deg(R′) ≤ max{m+k−1, n+k} = max{m−1, n}+k ≤ max{m−1, n}+n ≤ deg R+n ≤ 2 deg(R)

and that equality holds at the first inequality if m , n, at the second if k = n (i.e.
all poles of R are distinct), at the third and fourth if deg R = n ≥ m. Thus we have
deg(R′) ≤ 2 deg(R) and conditions under which equality holds.

We may also get lower bounds. If m , n then we have equality in the first
inequality above, so deg(R′) = max{m + k − 1, n + k} ≥ max m, n + 1 ≥ deg(R)
because we assumed Q non-constant and thus k ≥ 1. If m = n then deg(P′T −
PS ) ≤ m + k − 1 < n + k = deg(QT ), so deg(R′) = n + k ≥ deg(R) + 1. (Note this
also implies that deg(R′) = 2 deg(R) when m = n = k

What remains are the special cases where either P or Q is constant. If Q is
constant and P is not then R is a polynomial, so deg(R′) = deg(R) − 1. If P is
constant and Q is not then the above reasoning implies R′ = S/QT , so deg(R′) =
deg(QT ) = k + n > n = deg(R). If both are constant then deg(R′) = −∞.

We may summarize our results as follows. If R(z) is a non-constant rational
function, then deg(R) − 1 ≤ deg(R) ≤ 2 deg(R), with equality on the left iff R is a
polynomial and equality on the right at least when the poles of R are distinct and
there is no pole at infinity.

2.2.3.3 Suppose
∑
|a j| converges. A re-ordering of the sum is given by a bijection η : N→

N, where the new sum is
∑

j aη( j). Both sums converge absolutely; set S =
∑

j a j

and T =
∑

j aη( j). Given ε > 0 let N be so large that for any K ≥ N, each of∑
j>K |a j| ≤ ε,

∣∣∣S − ∑
j≤K a j

∣∣∣ ≤ ε and
∣∣∣T − ∑

j≤K aη( j)
∣∣∣ ≤ ε. Let M be so large that{

η( j) : j ≤ M
}
⊃ { j ≤ N} (Note that then M ≥ N.)

|S − T | ≤
∣∣∣∣∑
j≤M

a j −
∑
j≤M

aη( j)

∣∣∣∣ + 2ε ≤
∑
j>N

|a j| + 2ε ≤ 3ε

where middle inequality used that the sum is over those j in
(
{ j ≤ M} \ {η( j) : j ≤

M}
)
∪

(
{η( j) : j ≤ M} \ { j ≤ M}

)
, which does not include any j ≤ N.
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2.2.3.4 For fixed z with |z| ≥ 1 we have |nzn| = n|z|n → ∞, while if |z| < 1 we have
n|z|n = exp(log n + n log |z|)→ 0 because log |z| < 0 and (n log |z|)/ log n→ −∞ as
n → ∞ (using, for example, L’Hopital’s rule). Hence {nzn} converges pointwise
on |z| < 1. A slight improvement is that on |z| ≤ r < 1 we have n|z|n ≤ nrn → 0, so
that the convergence is uniform on this disc. Any compact set that lies in |z| < 1 is
in such a disc, so we have {nzn} converges uniformly to the zero function on any
compact subset of the open unit disc. Moreover, this is the largest collection of
sets on which the convergence is uniform. To see this, suppose S is a set on which
{nzn} converges uniformly, from which we see S is in the unit disc and n|z|n → 0.
If S is not a compact subset of the disc then it contains points zk such that |zk | → 1.
If n is so large that n|z|n < 1/2 on S then the fact that n|zk |

n → n as k → ∞ provides
a contradiction.

2.2.3.6 There are a number of ways of doing this, the most usual being to use summation
by parts. I will show a method that is messier, but perhaps easier to visualize. Let
U =

∑
j u j, V =

∑
j v j; suppose WLOG that

∑
j u j is the absolutely convergent

series and set W =
∑

j |u j|. It is helpful to arrange the terms in a doubly-infinite
list.

(u jvk) j,k =


u1v1 u1v2 u1v3 . . .
u2v1 u2v2 u2v3 . . .
u3v1 u3v2 u3v3 . . .
...

...
...


We see immediately that

∑n−1
j=1 u jvn− j is the sum along the nth upward diagonal,

so
∑m

n=1
∑n−1

j=1 u jvn− j is the sum over the upper left triangle j + k ≤ m in the list.
We can also see that UV may be approximated by the sum over a square j ≤ p,
k ≤ p, because for fixed ε > 0 we can take N so p ≥ N implies

∣∣∣U −∑
j≤p u j

∣∣∣ ≤ ε,∣∣∣V −∑
k≤p vk

∣∣∣ ≤ ε, and so∣∣∣∣∣UV−
(∑

j≤p

u j

)(∑
k≤p

vk

)∣∣∣∣∣ = ∣∣∣∣∣UV−V
∑
j≤p

u j+V
∑
j≤p

u j−
(∑

j≤p

u j

)(∑
k≤p

vk

)∣∣∣∣∣ ≤ |V |ε+∣∣∣∣∣∑
j≤p

u j

∣∣∣∣∣ε ≤ ε(|V |+∑
j≤p

|u j|

)
≤ ε

(
|V |+W

)
.

Thus the difference between UV and the sum we are considering is controlled by
a small term plus the sum over a region inside an upper left triangle and outside a
square, i.e. j + k ≤ m but also j ≥ p, k ≥ p.∣∣∣∣∣UV−

m∑
n=1

n−1∑
j=1

u jvn− j

∣∣∣∣∣ ≤ ε(|V |+W
)
+

∣∣∣∣∣ m∑
n=1

n−1∑
j=1

u jvn− j−
(∑

j≤p

u j

)(∑
k≤p

vk

)∣∣∣∣∣ ≤ ε(|V |+W
)
+

∣∣∣∣∣ ∑
{ j≥p,k≥p, j+k≤m}

u jvk

∣∣∣∣∣.
We split this sum into two pieces, one with k ≥ p and one with k ≤ p. We want a
bound independent of m, and you should think that m � p. Since it is a finite sum
it can be rearranged any way we like; we will sum first along the rows and then
down the columns. For the piece with k ≥ p the sum along the jth row is bounded
as follows: ∣∣∣∣∣u j

m− j∑
k=p+1

vk

∣∣∣∣∣ ≤ |u j|ε

provided p is so large that
∣∣∣∑q

p+1 vk

∣∣∣ ≤ ε for all q ≥ p; this can be achieved by (if
necessary) increasing N, because

∑
vk is convergent. Summing over all relevant
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rows we have a contribution bounded as follows:∣∣∣∣∣m−p∑
j=1

u j

m− j∑
k=p+1

vk

∣∣∣∣∣ ≤ ε m−p∑
j=1

|u j| ≤ ε

∞∑
j=1

|u j| = Wε.

Now for the piece with k < p we reason as follows. Since
∑

k vk converges,
∑

k≤r vk

is a convergent sequence in r, so has absolute value bounded by a constant X. Now
the sum across each row in the second piece is of size∣∣∣∣∣u j

min{p−1,m− j}∑
1

vk

∣∣∣∣∣ ≤ X|u j|

and summing over the rows we have∣∣∣∣∣ m∑
j=p+1

u j

min{p−1,m− j}∑
1

vk

∣∣∣∣∣ ≤ X
m∑

j=p+1

|u j| ≤ X
∞∑

j=p+1

|u j| ≤ Xε

provided p is large enough that
∑

j≥p+1 |u j| ≤ ε; again this can be achieved by
increasing N. Combining our estimates we now have∣∣∣∣∣UV −

m∑
n=1

n−1∑
j=1

u jvn− j

∣∣∣∣∣ ≤ ε(|V | + 2W + X
)

and the result follows.
By the way, if you are wondering how this is connected to the material in this

chapter, the following may be of interest. Consider the functions U(z) =
∑

j u jz j

and V(z) =
∑

j v jz j. These converge at z = 1, so have radius of convergence at
least 1; moreover Abel’s limit theorem says that U(r) → U(1) and V(r) → V(1)
as r → 1, where r ∈ (0, 1). On the disc |z| < 1 they are absolutely convergent, and
their product U(z)V(z) has a power series expansion

∑
j cnzn. We can compute by

the Leibniz rule

cn =
1
n!

dn

dzn

(
U(z)V(z)

)∣∣∣∣
z=0
=

1
n!

n∑
j=0

n!
j!(n − j)!

d jU(z)
dz j

∣∣∣∣
z=0

dn− jV(z)
dzn− j =

n−1∑
j=1

u jvn− j.

If we now knew that
∑

n cn =
∑

n
∑n−1

j=1 u jvn− j was convergent, then Abel’s limit
theorem would imply

∑
n cn = limr→1 U(r)V(r) = limr→1 U(r) limr→1 V(r) =

U(1)V(1), which is the theorem we seek. This suggests that there is a proof essen-
tially by the proof of Abel’s limit theorem, which is the standard summation by
parts proof.

2.2.4.2

2z + 3
z + 1

=
2(z − 1) + 5
(z − 1) + 2

= 2 +
1
2

1
1 + (z − 1)/2

= 2 +
1
2

∞∑
j=0

(−1) j

2 j (z − 1) j if |z − 1| < 2.

The radius of convergence is 2.
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2.2.4.4 The following statements are equivalent.

∑
n

anzn has radius of convergence R

lim sup |an|
1/n = R−1

lim sup |an|
1/2n = R−1/2 and lim sup |an|

2/n = R−2∑
n

anz2n has radius of convergence
√

R, and∑
n

a2
nzn has radius of convergence R2

2.2.4.8 The series
∑∞

0 zn(1 + z)−n converges if and only if |z(1 + z)−1| < 1, which is if and
only if |z| < |1 + z|, if and only if<(z) > 1

2 .
2.3.2.2

cos iz =
e−z + ez

2
= cosh z

sin iz =
e−z − ez

2i
= i sinh z

We can get addition formulae for cosh and sinh by computing

cosh a cosh b =
ea + e−a

2
eb + e−b

4
=

ea+b + e−(a+b) + ea−b + eb−a

4

sinh a sinh b =
ea − e−a

2
eb − e−b

4
=

ea+b + e−(a+b) − ea−b − eb−a

4

cosh a sinh b =
ea + e−a

2
eb − e−b

4
=

ea+b − e−(a+b) − ea−b + eb−a

4

elementary algebra implies

cosh(a + b) = cosh a cosh b + sinh a sinh b cosh 2a = cosh2 a − sinh2 a

sinh(a + b) = sinh a cosh b + cosh a sinh b sinh 2a = 2 sinh a cosh a

and substitution of the above expressions for cos and sin retrieves the usual trigono-
metric addition formulae, which could alternatively be used to obtain the above.

2.3.2.3

cos(x + iy) = cos x cos iy − sin x sin iy = cos x cosh y − i sin x sinh y

sin(x + iy) = sin x cos iy + cos x sin iy = sin x cosh y + i cos x sinh y
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2.3.4.4

ez = 2 when z = log 2 + 2kπi, k ∈ Z

ez = −1 when z = (1 + 2k)πi, k ∈ Z

ez = i when z =
(1
2
+ 2k

)
πi, k ∈ Z

ez =
−i
2

when z = − log 2 +
(3
2
+ 2k

)
πi, k ∈ Z

ez = −1 − i when z =
1
2

log 2 +
(5
4
+ 2k

)
πi, k ∈ Z

ez = 1 + 2i when z =
1
2

log 5 +
(
arctan 2 + 2k

)
πi, k ∈ Z and arctan in (0, π/2).

2.3.4.5 Let z = x + iy, so ez = ex cos y + iex sin y. Then the real and imaginary parts of
exp(ez) are obtained from

exp(ez) = exp(ex cos y + iex sin y) = exp(ex cos y) cos(ex sin y) + i exp(ex cos y) sin(ex sin y)

2.3.4.6

2i = exp(i log 2) = cos(log 2) + i sin(log 2) single valued because 2 ∈ R

ii = exp(i log i) = exp
(−π

2
− 2kπ), k ∈ Z

(−1)2i = exp(2i log(−1)) = exp(−2π − 4πk), k ∈ Z.

Note that the last example shows something we have lost in making the convention
that the logarithm is single valued on the positive reals and multivalued elsewhere,
because (−1)2i , ((−1)2)i = 1, but simply contains 1 as one of its values.


