
Math 5120: Complex analysis. Homework 10 Solutions
4.6.2.2 If M(r) = 0 for some r > 0 then f vanishes on a set containing a limit point, so

f ≡ 0 and the result is trivial. Hence there is no loss of generality in assuming
M(r) > 0 for r > 0, in which case the statement

M(r) ≤ M(r1)αM(r2)(1−α)

for α = log(r2/r)
log(r2/r1) is equivalent to

log M(r) ≤ α log M(r1)+(1−α) log M(r2) =
log r2 − log r
log r2 − log r1

log M(r1)+
log r − log r1

log r2 − log r1
log M(r2)

which is the same as(
log r2− log r1

)
log M(r) ≤ log r2 log M(r1)− log r1 log M(r2)+

(
log M(r2)− log M(r1)

)
log r

or(
log M(r1)− log M(r2)

)
log r+

(
log r2− log r1

)
log M(r) ≤ log r2 log M(r1)− log r1 log M(r2)

and it is this that we will prove.
It is suggested in the book that we apply the maximum principle (for harmonic

functions) to a linear combination of log |z| + log | f (z)|. Of course we cannot do
this directly if f has zeros, because log | f (z)| is not harmonic in any neighborhood
of a zero of f (in fact it is subharmonic, and there is still a maximum principle for
subharmonic functions, but we have not proved that). We will therefore need to do
something about points where f is zero, but let us begin by assuming that no such
points exist.

If f is analytic on the annulus 0 < r1 < |z| < r2 then A log |z| + B log | f (z)| is
harmonic there, and the maximum principle for harmonic functions implies that
the maximum occurs on the boundary. We obtain

(1)
A log r+B log M(r) = max

|z|=r

(
A log |z|+B log | f (z)|

)
≤ max{A log r1+B log M(r1), A log r2+B log M(r2)}

Taking A = log M(r1)− log M(r2) and B = log r2 − log r1 we find that the terms on
the right are both equal to log r2 log M(r1) − log r1 log M(r2). Thus

log r2 log M(r1)− log r1 log M(r2) ≥
(
log M(r1)− log M(r2)

)
log r+

(
log r2− log r1

)
log M(r)

which is what we needed to prove.
Now we deal with the points {z j} where f (z) = 0. Such points are can accumu-

late only at the boundary. Suppose that around each we place a small disc of radius
δ j (small enough that it is inside the annulus), and delete these discs from our do-
main. Then (1) must be modified so that for each j there is a term on the right
side corresponding to the maximum of A log |z| + B log | f (z)| on the new boundary
circle |z − z j| = δ j. However B log | f (z)| → −∞ as z→ z j, so we may choose δ j so
small that this new term is less than the right side of (1), and therefore need not be
included. It follows that (1) is still valid when f has zeros, and therefore the result
holds for general f .

Note that there is a degenerate case we did not consider, namely r1 = 0. In
this situation one should interpret the formula for α as corresponding to α = 0,
whereupon the result follows directly from the usual maximum principle for the
harmonic function | f (z)|.
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5.1.1.1 Let K ⊂ C be compact and M = maxz∈K |z|. Observe that for n > M we have∣∣∣ z
n

∣∣∣ < 1 when z ∈ K. The principal branch of the logarithm is well-defined on
{w : |1 + w| < 1}, so we conclude log

(
1 + z

n
)

is well-defined on K for all n > M
and has Taylor expansion

log
(
1 +

z
n

)
=

∞∑
j=1

(−1) j+1

j

( z
n

) j
.

The series is readily seen to be convergent on
∣∣∣1+ z

n

∣∣∣ < 1, thus uniformly convergent
on compact subsets of this region, and in particular on K for n > M. Uniformity
of the convergence implies we can exchange the limits in

lim
n→∞

n log
(
1 +

z
n

)
=

∞∑
j=1

lim
n→∞

(−1) j+1

j
z j

n j−1 = z

Exponentiating both sides and using continuity of the exponential we get that

ez = lim
n→∞

exp n log
(
1 +

z
n

)
= lim

n→∞

(
1 +

z
n

)n

uniformly on K, and since K was arbitrary the convergence is uniform on all com-
pact sets in C.

5.1.2.3 We wish to develop log
( sin z

z
)

around 0 up to terms of order z6. Since sin z has a
simple zero at 0 the function sin z

z has a removable singularity at 0 and its extension
(which is equal to 1 at 0) is entire. It is helpful to recall the series for sin z and
divide by z to obtain a series convergent uniformly on all compact sets to sin z

z

sin z
z
=

1
z

∞∑
j=0

(−1) jz2 j+1

(2 j + 1)!
=

∞∑
j=0

(−1) jz2 j

(2 j + 1)!
= 1 +

∞∑
j=1

(−1) jz2 j

(2 j + 1)!
.

Next we may compose with the series
∑∞

k=1
(−1)k+1

k wk for log(1 + w), which is con-
vergent for |w| < 1. This amounts to setting w =

∑∞
j=1

(−1) jz2 j

(2 j+1)! , which we note
satisfies |w| < 1 on a neighborhood of 0. Observe that since the lead z-term is z2 it
suffices to consider the 3rd-order polynomial in w. We have

log
( sin z

z

)
=

( sin z
z
− 1

)
−

1
2

( sin z
z
− 1

)2
+

1
3

( sin z
z
− 1

)3
+ [z8]

=

3∑
j=1

(−1) jz2 j

(2 j + 1)!
−

1
2

 2∑
j=1

(−1) jz2 j

(2 j + 1)!


2

+
1
3

 1∑
j=1

(−1) jz2 j

(2 j + 1)!


3

+ [z8]

= −
z2

3!
+

z4

5!
−

z6

7!
−

1
2

(
−

z2

3!
+

z4

5!

)2

+
1
3

(
−

z2

3!

)3

+ [z8]

=
(
−

1
3!

)
z2 +

( 1
5!
−

1
2(3!)2

)
z4 +

(
−

1
7!
+

1
(3!)(5!)

−
1

3(3!)3

)
z6 + [z8]

= −
z3

3!
+

(3 − 5)z4

23325
+

(−9 + 63 − 70)z6

24345 · 7
+ [z8]

= −
z3

2 · 3
−

z4

22325
−

z6

345 · 7
+ [z8]


