12.4 Prove $\frac{1}{n^2+1} \to 0$ as $n \to \infty$.

Solution Given $\epsilon > 0$ take $N > \frac{1}{\sqrt{\epsilon}}$. If $n \ge N$ then $n^2 + 1 \ge N^2 + 1 \ge \frac{1}{\epsilon}$ so $\left|\frac{1}{n^2 + 1}\right| < \epsilon$.

12.6 Prove
$$\frac{n+2}{2n+3} \to \frac{1}{2}$$
 as $n \to \infty$.

Solution Given $\epsilon > 0$ let $N > \frac{1}{4\epsilon}$. If $n \ge N$ then

$$\frac{n+2}{2n+3} - \frac{1}{2} \Big| = \Big| \frac{2n+4-2n-3}{4n+6} \Big| = \Big| \frac{1}{4n+6} \Big| < \frac{1}{4n} < \frac{1}{4N} < \epsilon$$

- 12.7 Negate the definition of $\lim_{n\to\infty} a_n = L$ to get a definition of $\lim_{n\to\infty} a_n \neq L$. Then write a definition of $\{a_n\}$ diverges.
- Solution The definition of $\lim_{n\to\infty} a_n = L$ is $\forall \epsilon > 0 \exists \delta > 0, 0 < |x a| < \delta \implies$ $|f(x) - L| < \epsilon$. Negating step by step we invert the quantifiers (including the tacit $\forall x$ that goes with $0 < |x - a| < \delta$) and finally negate the $A \implies B$ as A and NOT B, to obtain $\exists \epsilon > 0 \forall \delta > 0 \exists x, 0 < |x - a| < \delta$ AND $|f(x) - L| \ge \epsilon$. The definition of $\{a_n\}$ converges is just $\exists L$, $\lim_{n\to\infty} a_n = L$, so its negation is $\forall L$, $\lim_{n\to\infty} a_n \neq L$. Combining it with the above we get $\forall L \exists \epsilon > 0 \forall \delta > 0 \exists x, 0 < |x - a| < \delta$ AND $|f(x) - L| \ge \epsilon$.

12.9 Show
$$\frac{n^5+2n}{n^2} \to \infty$$
 as $n \to \infty$

Solution Given *M* take N > M. If $n \ge N$ then $\frac{n^5 + 2n}{n^2} > \frac{n^5}{n^2} = n^3 \ge n \ge N > M$.

- 12.10 Prove $\sum_{i=1}^{n} \frac{1}{i} < 2\sqrt{n}$ for every $n \in \mathbb{N}$.
 - Solution Use induction. It is true for n = 1 because the sum is 1 and 1 < 2; this is our base case. If it is true for *n* then we have

$$\sum_{1}^{n+1} \frac{1}{j} = \frac{1}{n+1} + \sum_{1}^{n} \frac{1}{j} < \frac{1}{n+1} + 2\sqrt{n},$$

but if we square the right side and use $\frac{1}{(n+1)^2} \le \frac{1}{n+1}$ and $\sqrt{n} \le n$ then we get

$$\frac{1}{(n+1)^2} + \frac{4\sqrt{n}}{n+1} + 4n \le \frac{1}{n+1} + \frac{4n}{n+1} + 4n = \frac{4n+1}{n+1} + 4n < 4 + 4n = 4(n+1),$$

so taking the square root give $\frac{1}{n+1} + 2\sqrt{n} < 2\sqrt{n+1}$, completing the inductive step and proving the result by induction.

12.11 Prove that if $s_n \to L$ then $s_{n^2} \to L$.

Solution Given $\epsilon > 0$ use $s_n \to L$ to obtain N_1 so $n \ge N_1$ implies $|s_n - L| < \epsilon$. Let $N > \sqrt{N_1}$. If $n \ge N$ then $n^2 \ge N^2 > N_1$ so $|s_{n^2} - L| < \epsilon$.

12.12 Prove that the series $\sum_{1}^{\infty} \frac{1}{(3k-2)(3k+1)}$ converges and determine its sum.

Solution One may compute the partial sums for n = 1, 2, 3, 4 to be $\frac{1}{4}, \frac{2}{7}, \frac{3}{10}, \frac{4}{13}$, which suggests the partial sum $s_n = \frac{n}{3n+1}$. We have a base case n = 1 for induction, and if the formula is valid for *n* then

$$s_{n+1} = s_n + \frac{1}{(3(n+1)-2)(3(n+1)+1)} = \frac{n}{3n+1} + \frac{1}{(3n+1)(3n+4)}$$
$$= \frac{n(3n+4)+1}{(3n+1)(3n+4)} = \frac{(n+1)(3n+1)}{(3n+1)(3(n+1)+1)} = \frac{n+1}{3(n+1)+1}$$

which verifies the induction. Finally $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{1}{3+(1/n)} = \frac{1}{3}$.

- 12.14 The terms a_n are given by $a_1 = \frac{1}{6}$ and $a_n = a_{n-1} \frac{2}{n(n+1)(n+2)}$. Prove $\sum_{k=1}^{\infty} a_k$ converges and determine the sum.
 - Solution There is a difference between finding an argument that works and giving a proof. I remark that the fact $a_n - a_{n-1}$ is given means one can write $a_n - a_1 = \sum_{j=2}^n (a_j - a_{j-1})$ and thus compute a formula for a_j . Once you have it you can simply verify by induction that $a_k = \frac{1}{k+1} - \frac{1}{k+2}$, because for k = 1 this gives $a_1 = \frac{1}{6}$, so we have a base case, and if the formula is true for k = n - 1 then

$$a_n = a_{n-1} - \frac{2}{n(n+1)(n+2)} = \frac{1}{n} - \frac{1}{n+1} - \frac{2}{n(n+1)(n+2)}$$
$$= \frac{(n+1)(n+2) - n(n+2) - 2}{n(n+1)(n+2)} = \frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}$$

which verifies the induction. Finally,

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} \frac{1}{k+1} - \frac{1}{k+2} = \frac{1}{2} - \frac{1}{n+2} \to \frac{1}{2}$$

as $n \to \infty$.

12.15 Prove the series $\sum_{1}^{\infty} \frac{k+3}{(k+1)^2}$ diverges to ∞ .

Solution In essence we show it is bigger than the harmonic series, but we do so for partial sums. Observe $\sum_{1}^{n} \frac{k+3}{(k+1)^2} > \sum_{1}^{n} \frac{1}{k+1} = \sum_{2}^{n+1} \frac{1}{k}$, where we just used the inequality for each term in the (finite sum). Now we proved in class that $\sum_{1}^{\infty} \frac{1}{k}$ diverges to ∞ , so given *M* there is *N* so n > N implies $\sum_{1}^{n} \frac{1}{k} > (M+1)$. Then $n \ge N$ also implies

$$\sum_{1}^{n} \frac{k+3}{(k+1)^2} > \sum_{2}^{n+1} \frac{1}{k} > \left(\sum_{1}^{N+1} \frac{1}{k}\right) - 1 > M + 1 - 1 = M$$

which shows the result.

- 12.18 Give an $\epsilon \delta$ proof that $\lim_{x \to 2} \frac{3}{2}x + 1 = 4$.
 - Solution Given $\epsilon > 0$ let $\delta = \frac{2}{3}\epsilon$. Then $0 < |x-2| < \delta$ implies $|\frac{3}{2}x+1-4| = \frac{3}{2}|x-2| < \frac{3}{2}\delta = \epsilon$.

12.20 Give an $\epsilon - \delta$ proof that $\lim_{x \to 2} 2x^2 - x - 5 = 1$.

Solution Given $\epsilon > 0$ let $\delta = \min\{1, \epsilon/9\}$. If $0 < |x - 2| < \delta$ then |x - 2| < 1 so $|2x+3| \le 2|x|+3 < 9$ and therefore $|2x^2 - x - 5 - 1| = |2x+3||x-2| < 9\delta \le \epsilon$.

12.26 For

	1	<i>x</i> < 3
$f(x) = \langle$	1.5	x = 3
	2	x > 3

determine (with proof) whether $\lim_{x\to 3} f(x)$ exists and whether $\lim_{x\to\pi} f(x)$ exists.

Solution Suppose $\lim_{x\to 3} f(x)$ exists and is equal to *L*. Then with $\epsilon = \frac{1}{2}$ we can take $\delta > 0$ so $0 < |x - 3| < \delta$ implies $|f(x) - L| < \epsilon = \frac{1}{2}$. Now $3 \pm \frac{\delta}{2}$ are points in this interval and $f(3 \pm \delta/2) = 1.5 \pm .5$. But then both $|1 - L| < \epsilon$ and $|2 - L| < \epsilon$, producing $1 = 2 - 1 \le |2 - L| + |1 - L| < \epsilon + \epsilon = 1$. This contradiction (1 < 1) implies the limit $\lim_{x\to 3} f(x)$ does not exist.

We can also prove $\lim_{x\to\pi} f(x) = 2$, because if $\epsilon > 0$ is given we may take $\delta = \pi - 3 > 0$ and observe that $0 < |x - \pi| < \delta$ implies $x > \pi - \delta = 3$ so f(x) = 2 and thus $|f(x) - 2| = 0 < \epsilon$.