Math 2144 Final: Things you should definitely know.

Note: This is not an exhaustive list of topics we covered in class, but if you have a solid grasp of

these topics and can do problems with them you should be fine on the final exam.

1.

Surface integrals. Sections 12.1 through 12.4 introduce several concepts that are
important for dealing with surfaces. From this, you need to be able to do the
following:

i) Parameterize a surface as r(u,v) = (X(u,v),Y(u,v),Z(u,v)) for (u,v) € T
a region in R?. This might involve using cylindrical polar or spherical po-
lar coordinates, or using the fact that the surface is a graph, or some basic
geometry of surfaces (like planes, cones, cylinders, spheres). Bear in mind
that r(u, v) has to be a function.

ii) Compute the fundamental vector product g—; X %.

iii) Understand the geometric properties of this vector product, that it is nor-
mal to the surface and that its magnitude is the area scaling factor relating
the area of a small parallelogram on the surface to that of a corresponding
square in 7.

Compute the area of a surface by parameterizing and integrating the magnitude
of the fundamental vector product (equation (12.7) page 424). This could involve
directly parameterizing a simple geometric object or a graph of a function. You
may find it useful to know the formula (12.9), but if you understand (12.7) you
can get (12.9) in a few lines.

Compute surface integrals f f fdS and flux integrals f f F -ndS. (Section 12.7)

All you really need to know from Theorems 12.1 and 12.2 (page 433-434) is
that the value of a surface integral does not depend on how it is parameterized.
Of course for a flux integral the sign can depend on the direction of the normal
vector. (There are other things one can do with Theorem 12.1 but we did not
cover them.)

Section 12.9. The important thing here is the wedge notation, e.g. dx A dy. You
should know that whenever it occurs there is a parametrization of the surface
lurking in the background. Since these come from flux integrals and only the
sign of the flux integral can change with the parametrization, all that matters
is what direction (there are only two that are possible) the fundamental vector
product of the parametrization has. With the correct parametrization r(u,v) =
(X(u,v), Y(u,v), Z(u,v)), meaning the one with the correct fundamental vector
product direction, one has

oX,y) |& &
dx ANdy = =% b
rnay o(u,v) g—z %—’v/

and similarly for dy A dz (replace X with Y and Y with Z) etc. Note that
dx A dy = —dy A dx. Knowing the above lets you convert any wedge expression
into an integral you can compute.
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Stokes theorem (page 438). Know and be able to apply Stokes theorem. I sup-
pose this has to be memorized, and I recommend you learn the version

f fs (VX F)-ndS = fc F - da. Here you must be careful about the orientation
of the curve C which is the boundary of S. It should be related to the normal n
in the surface integral by the right hand rule (equivalently the rule about walk-
ing around the boundary with head in normal direction and region on left side).
Note that if you start out with a flux integral through a surface then this theorem
is only usable if the vector field is a curl. Not all vector fields are curls (this
occurs iff the field has zero divergence on a suitable domain) so you can’t apply
Stokes theorem to every problem of the form f f G-ndS.

A vector field F is a gradient on an open convex set iff VX F' = 0 (Theorem 12.4
page 442). (Note that the set is important as well as the condition on F.)

. Sections 12.12 and 12.14 have an introduction to the notation in which V =

((,—‘1, a%’ ﬁ%) is treated as if it were a vector. The highlights are that V- (Vf) = V2f
V- (Vx F)=0and the productrules V- (fF)=Vf-F+ fV-F

and VX (fF) = Vf X F + f(V X F).

From Section 12.16, the theorem that given F on a rectangular region there is G
with VX G = F if and only if V.F = 0 in the region, and that one can get G by
assuming G = (0, M, N) and solving for M and N using partial integration. Then
all solutions are of the form G + V¢ for scalar functions ¢.

From Section 12.18, Stoke’s theorem for surfaces with holes (the relevant bit is
the orientation of the holes) and surfaces that cannot be given using a single one-
to-one smooth parametrization but must be parametrized in pieces. The key to
the latter is that the curves where the pieces join must be in opposite directions
so the path integrals on the boundaries cancel.

The divergence theorem 12.6 page 457. fffv V-FdV = ffs F-ndS where V is the
region bounded by the surface S, and S is orientable with outward orientation.
The latter means that there is a way to choose a normal direction to the surface
consistently everywhere (this is the same as there being a consistent inside and
outside of the region), and that we choose the outward-directed normal.

Definition of an eigenvector and eigenvalue (page 97)

A linear transformation can be represented by a diagonal matrix if and only if
there is a basis of eigenvectors (Theorem 4.1 page 96).

An eigenvector has only one eigenvalue, but an eigenvalue can have many eigen-
vectors (eg, the identity map).

What eigenvalues a transformation has depends on the field you are using (a
transformation might have no real eigenvalues but will always have some com-
plex eigenvalues).
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Eigenvectors corresponding to distinct eigenvalues form a linearly independent
set. (Theorem 4.2 page 100). You should know how to prove this, at least for 2
or 3 eigenvalues. Instead of trying to learn the proof from the book, try to write
your own for these cases.

Consequently a linear transformation on an n dimensional space has at most n
distinct eigenvalues (it may have less) (Theorem 4.3 page 100). And if it does
have n distinct eigenvalues then it can be represented by a diagonal matrix (by
Theorem 4.1) and the diagonal entries are the eigenvalues.

How to find eigenvalues of a matrix by computing the characteristic polynomial
(see page 103 for Definition and Theorem 4.5). You can be certain this will be
tested.

A matrix always has n eigenvalues (counting multiplicity) in C (though it may
have less or none in R). (You should know why, and be able to give examples of
each possible situation.)

How to find the eigenvectors of a matrix once you know the eigenvalues (exam-
ples pages 104-106).

Given a linear transformation which has a basis of eigenvectors, how to change
to that basis so as to make the matrix diagonal. (Theorems 4.6 and 4.7 page 110.

Similar matrices represent the same linear transformation and have the same
eigenvalues (Definition, Theorems 4.8, 4.9, page 111).

If the characteristic polynomial of a matrix has n distinct roots then the matrix is
similar to the diagonal matrix with eigenvalues on the diagonal. (Theorem 4.10
page 112).

However, if the characteristic polynomial of a matrix does not have n distinct
roots then it might be able to be diagonalized (e.g. the identity) or not (you
should know an example that can’t be diagonalized over the reals).

Complex vector spaces and how the inner product is different than it is in the real
case (page 114). You should know the formula for the standard dot product on
C" as well as the Hermitean symmetry property.

How to compute an eigenvalue from the eigenvector using the inner product
(Theorem 5.1 page 114).

The notions of Hermitean (symmetric), skew-Hermitean (skew-symmetric) for
linear transformations (this property is defined using inner products (Definition
page 115).

Hermitean transformations have real eigenvalues, skew-Hermitean have imagi-
nary eigenvalues.
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For a Hermitean (or skew-Hermitean) transformation, eigenvectors correspond-
ing to distinct eigenvalues are orthogonal. This is a major theorem (Theorem 5.3
page 117). You should know how to prove it.

A Hermitean (or skew-Hermitean) transformation on a finite dimensional space
has a basis of orthonormal eigenvectors. This is another major result (Theorem
5.4 page 120).

To check if a transformation is Hermitean or skew-Hermitean it is enough to
check on a basis (Theorem 5.5 page 121).

The notions of Hermitean (symmetric), skew-Hermitean (skew-symmetric) for
matrices, and the adjoint of a matrix (Definitions page 122). It is crucial to
understand how these are connected to the same notions for transformations. In
particular, the notions for a transformation do not depend on the basis (at all), but
a Hermitean transformation has a Hermitean matrix when written with respect to
an orthonormal basis (Theorem 5.6 page 121). This need not be the case if the
basis is not orthonormal. It is also not the case that having a Hermitean matrix
means the transformation is Hermitean, as you know from the fact that some
matrices which are not Hermitean can still be diagonalized (using a basis that is
not orthonormal).

Since a Hermitean (or skew Hermitean) matrix has an orthonormal basis of
eigenvectors it is similar to the diagonal matrix with the eigenvalues on the diag-
onal (by Theorem 4.1 page 96). The change of basis matrix C from the standard
basis to an orthonormal basis is unitary (see Theorem 5.7 page 122, and Defini-
tion page 123).

The quadratic form Q associated to a real symmetric transformation 7T is the
function Q(x) = (T x, x). In a basis in which x = (x;), and T has matrix A = (a;;)
the function is Q(x) = ; jaijXiXj = xAx'. (Theorem 5.8 and 5.9 page 127). This
sum is called the quadratic form associated to A.

The function xAx' makes sense even if A is not symmetric, but it is the same as
xBx" where B is the symmetric matrix B = %(A + A"), so we can always assume
that a symmetric matrix is used. (Theorem 5.10 page 128).

More usefully, if A is real symmetric then it is similar to a diagonal matrix via
an orthogonal matrix C. So D = C~'AC = C'AC is diagonal with entries d;;
on the diagonal. This change of basis converts the quadratic form into a simpler
expression )1, diiy%, where y = XC. (Theorem 5.11 page 129).

The quadratic form gives an easy way of finding some eigenvalues of a symmet-
ric matrix. If we look at the values of Q(x) on the set {x : ||x]| = 1}, then all
real eigenvalues occur in this collection of values. Also any maximum and min-
imum values of Q are eigenvalues and they occur when x is the corresponding
eigenvector (this gives us at least two eigenvalues). (This summarizes Theorems
5.12,13,14.)
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A transformation is called unitary if it preserves inner products: (T'(x), T(y)) =
(x, ).

A unitary transformation preserves lengths (and distances) and angles. It is in-
vertible and its inverse is unitary. (Theorem 5.15 page 138).

Eigenvalues of a unitary transformation have absolute value 1 (in C). Eigenspaces
for distinct eigenvalues are orthogonal and there is an orthonormal basis of eigen-
vectors. (Theorem 5.16 page 139).

To determine whether a transformation is unitary it suffices to check on a basis
(Theorem 5.17 page 140) hence a unitary transformation has a unitary matrix
when written with respect to an orthonormal basis (Theorem 5.18 page 140).

Chapter 9. Second order Taylor. You should know how to approximate a scalar
function of several variables by the linear transformation given by the gradient
with a second order term involving the Hessian, as in Theorem 9.4 (page 308).

Second derivative test for max and min (Theorem 9.6 page 311). This is based on
Theorem 9.5 page 310 which says that a quadratic form is strictly positive if its
eigenvalues are all positive and strictly negative if all eigenvalues are negative,
and on Theorem 9.4 page 308. It tells you that if a scalar field f has a stationary
point at x = a, (so V f(a) = 0) then you may be able to tell the type of stationary
point (max or min or saddle) using the eigenvalues of the Hessian. You should
know how to do problems using this, including all cases that can occur.

There is a version of Theorem 9.6 given in Theorem 9.7 page 312 that you pre-
sumably know, and should be able to use.

Chapter 6. In this chapter a theory for using linear algebra to work with differen-
tial equations is built up step by step. Rather than repeat the steps here, I want to
summarize the structure. To do any of it, you need both to be able to recognize
a differential equation, and to identify whether a differential equation is linear or
non-linear, whether it has constant or variable coefficients, and what the order
of the differential equation is. In particular note the order n linear differential
equation description on page 146 (equation 6.7).

The linear algebra methods of Chapter 6 apply only to linear differential equa-
tions. The heart of the theory is that the set of solutions to a homogeneous linear
differential equation of order n is a dimension n subspace of the differentiable
functions on an interval (Theorem 6.4 page 147). Hence if we can find n lin-
early independent solutions then every solution is a linear combination of these
(Theorem 6.5 page 148). The solution to an inhomogeneous linear differential
equation of order n is the sum of any particular solution with the general solu-
tion of the corresponding homogeneous equation (Theorem 6.10 page 156). It
may help to think of n = 2, where the solutions to a homogeneous equation are
a plane through the origin are a plane in the space of differentiable functions,
and the solutions to an inhomogeneous equation are a plane not through the ori-
gin: a particular solution takes you to some point on this plane, and to get to all
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other points you add a solution of the homogeneous equation, just as you would
with vectors describing a plane in Euclidean space. Higher order equations have
higher dimension solution sets.

As a result of this theory we can solve a linear differential equation by solving
the homogeneous equation (i.e. finding a basis for the n dimensional solution
space) and finding a particular solution. Our main methods for doing this are
applicable to the case of constant coefficient linear differential equations.

To find a solution to a homogeneous constant coefficient linear differential equa-
tion we write it as a differential operator applied to a function f. We may fac-
torize the operator just as we would factorize a polynomial (this is justified by
Theorem 6.6 page 149), and the solution of any factor applied to f is a solution
of the whole equation (Theorem 6.7 page 151). Moreover we can write down the
solution to any of these simple differential equations: (D — )" f = 0 has linearly
independent solutions e®*, xe®*, ..., x**"'¢®* (Theorem 6.9 page 152). Solutions
for different factors are linearly independent, there are n factors (in C, counting
multiplicity) so they give a basis for solutions to the differential equation and
allow us to write the general solution.

One thing to note in the above. If the coefficients in the differential equa-
tion are real numbers then any complex root occurs along with its complex
conjugate, and we may obtain real solutions by taking the real and imaginary
parts of the complex exponentials that occur in the above solution. Specifi-
cally, a basis for the solution space of (D — a — bi)(D — a + bi)‘f = 0 is

e cos(bx), ™ sin(bx), xe™ cos(bx), xe®™ sin(bx), . . ., x*1e® cos(bx), x*~1e®* sin(bx).

Finding a solution to an inhomogeneous constant coefficient linear differential
equation is a matter of finding a particular solution and the general solution of the
corresponding homogeneous equation. We have done the latter. For the former
we have two methods. One is called the “variation of parameters” or “Wronsky”
method. It is in Theorem 6.11 page 160. It is completely general, but sometimes
has a lot of computation in it. The other is called the “annihilator method” (and
is related to the “guessing” method we had earlier). The idea is that if the inho-
mogeneous term in the equation can be killed using a constant coefficient linear
differential operator then by applying this operator to both sides of the equa-
tion one gets a homogeneous constant coefficient linear differential equation, for
which we can get a basis of solutions by our earlier method. We then substitute
a general linear combination of these basis elements into the original inhomoge-
neous equation and solve to find the coefficients that give a solution. It is hard
to explain this method except by examples, which are in Section 6.14 starting on
page 163. Note also Table 6.1 page 166.

We had a general linear algebra approach for linear differential equations, but
only had techniques to make it all work for the constant coefficient case. This
is just reality — d.e.s are too complicated for fully general methods to exist. In
particular if the equation does not have constant coefficients then it may not be
possible to factorize the operator, and even if you can factorize you might not
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get solutions by applying one factor at a time (try to come up with examples for
yourself — I think I gave one in class).

There was one class of non-constant coefficient linear differential equations for
which we said something. Recall that a function is called analytic if it has a
power series expansion. Now if we have linear differential equation in which
all of the coefficient functions are analytic, then we can try replacing them with
their power series expansions and plugging in a power series with unknown coef-
ficients for the solution. This may allow us to solve for the unknown coefficients
and give a solution to the equation (as a power series). Theorem 6.13 on page
169 gives one setting where this works (n = 2 and homogeneous equation). In
fact this is true more generally but we did not cover that.

As an example of the power series method we looked at the Legendre equation
(section 6.18), the Legendre polynomials (section 6.19) and the Rodrigues for-
mula (section 6.20). You do not need to memorize anything about these.

The only thing we did from Sections 6.22—6.24 was the Gamma function; you
do not have to know the formula for this.

One other thing from Chapter 6. There is a method to solve first order linear
IVPs of the type ¥y + P(x)y = Q(x), y(a) = b, by the integrating factor method
(Theorem 6.1 on page 143). This is from earlier in the course, but comes back in
Chapter 7.

Chapter 7 deals with first order linear systems of differential equations. This is
more general than Chapter 6 in that one can have several equations happening
at the same time and interacting with one another. It is also possible to convert
an order n linear equation into a first order linear system (see page 191 for an
example — you should know how to do this).

The main point of Chapter 7 is that a first order linear system can be written as
a differential equation for a vector, with a coefficient that is a matrix. (equation
7.6 page 192). We can then hope to solve it by studying the calculus of matrices.

Calculus operations (derivatives, integrals, limits) are done term by term in the
matrix (or vector). Derivatives and integrals are linear, and the product rule
applies for derivatives (though the order is important, which it was not in the
scalar case) see page 193.

Series of matrices are defined. Convergence is that each location in the matrix is
a convergent series of numbers (page 194).

A norm is defined on matrices (page 195) by adding the absolute values of each
term in the matrix. It has the usual norm properties, and also [|AB|| < ||Al|||B]|-

There is a convergence test for series of matrices using the norm. If the series of
the norms converges then so does the series of matrices (Theorem 7.2 page 195).
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Using a power series one can define the exponential ¢ for a matrix A (page
197). It commutes with A, is invertible and has inverse e (Theorem 7.4 page
198) and the solution of the vector differential equation F’ = AF, F(0) = B is
F = ¢ B when A is a constant matrix (Theorem 7.5 page 199).

The index laws for exponentials of matrices are valid if the matrices commute
(Theorem 7.6 page 199). They usually fail if the matrices don’t commute (try to
find an example).

From this we have an alternative method for solving constant coefficient linear
differential equations by exponentiating matrices (Theorem 7.13 on page 213).

Exponentiating matrices is not always easy. It is easy if the matrix is diagonal
because then we just get the exponential of each term on the diagonal (page 201).
It is also true that e/S~'4S = S-1gAS , so if we can diagonalize the matrix A via
S~1e"AS then it is easy to compute the exponential (make sure you know how to
do this — example on page 201-202).

In general we have to be able to compute powers of A to compute e4. It is a
fact that all powers of A can be written as linear combinations of the powers
I=A%A' ..., A" when A is size n x n. This comes from the Cayley-Hamilton
theorem 7.8 page 203) which says that f(A) = 0 if f is the characteristic polyno-
mial of A.

A good basis for computing ¢ in terms of powers of A is found like this. Fac-
torize the characteristic polynomial f(1) as []}(1 — 4;) (with repeated factors if
needed). Let Pi(A) = H'{(A—/ljl) foreachk =1,...,nand Py(A) = I. Then one
can give a formula for ¢" in terms of the polynomials P;(A) with coefficients that
are obtained fairly easily (see Theorem 7.9 page 206). There are simpler versions
for particular sorts of matrices (Theorems 7.10, 7.11, 7.12 on pages 209-210);
the first two might be worth knowing but the third is too complicated to be useful
and none of them are critical if you know how to use the main theorem 7.9.

Sections 7.18-7.23 are basically concerned with proving Theorem 7.17 and its
generalization Theorem 7.19. These are very important theorems, as they are
basically the foundation on which our whole treatment of differential equations is
based (they prove Theorem 6.3 page 147, which is where all our work started!).
However the theory is quite difficult, and is hard to test. What I want you to
know from this theory is just the method of successive approximations given in
Section 7.21. In essence this is that you have to solve an equation Y’(¢) = A(1)Y
with initial condition Y(0) = B. You do so by finding a sequence of functions
Yo(0), Y1(2), Ya(f),.... The function Yy(f) is a first guess, usually the constant
function B. One gets Y;(?) by setting Y] = A(#)Y((?) and integrating. Similarly
Y>(?) is from Y](r) = A()Y1(?) and in general Y (t) = A()Y,—1(r). Under some
conditions this sequence of functions will converge; it is not crucial for you
to know the conditions or how they operate. Since there will not be returned
homework on this topic there will not be an exam question about it.



