
Math 2144Q - Advanced Calculus IV - Practice Final

Instructions:

• You may not refer to any notes or your textbook. No calculators, cellphones, or other electronic devices are
permitted.

• You have from 12:30pm until 1:45pm to complete the test.

• In every question you must justify your answers.

• In any question, you may use the result of an earlier part to solve a later part, even if you did not solve the earlier
part. For example, you may use the result of 3(a) to solve 3(c) even if you did not do 3(a).

1. Let F(x, y, z) = (3y,−xz, yz2). Compute
!

S (∇× F) · dS where S is the surface 2z = x2 + y2 below the plane z = 2,
oriented downwards.

Solution: One can do this by parametrizing the surface as a graph, finding the relevant Jacobian, substituting
and integrating. Or one can use Stokes’ theorem. I think the latter is easier. Let C be the boundary curve
z = 2 and 2x = x2 + y2, so x2 + y2 = 4. This is a circle radius 2 around the z axis on the plane z = 2. Orient it
counterclockwise when seen from above (i.e. from a point with z > 2) so its orientation is opposite that of the
surface, and parametrize it by α(θ) = (2 cos θ, 2 sin θ, 2). Stokes’ theorem says

!
S (∇ × F) · dS = −

∫
C F · dα.

We compute F(α(θ)) = (6 sin θ,−4 cos θ, 8 sin θ) and dα = (−2 sin θ, 2 cos θ, 0). Then"
S

(∇×F)·dS = −

∫
C

F ·dα =

∫ 2π

0
12 sin2 θ+8 cos2 θ dθ =

∫ 2π

0
8+4 sin2 θ dθ =

∫ 2π

0
10−2 cos 2θ dθ = 20π



2. Let f (x, y, z) = x2 + 3y2 + 2z2 − 2xy + 2xz. Find and classify all critical points of f .

Solution: Compute the first and second partial derivatives. Note that the order of the second partials does
not matter because these are continuous (since f is a polynomial).

∂ f
∂x

= 2x − 2y + 2z
∂ f
∂y

= 6y − 2x
∂ f
∂z

= 4z + 2x

∂2 f
∂x2 = 2

∂2 f
∂y2 = 6

∂2 f
∂z2 = 4

∂2 f
∂x∂y

=
∂2 f
∂y∂x

= −2
∂2 f
∂y∂z

=
∂2 f
∂z∂y

= 0
∂2 f
∂x∂z

=
∂2 f
∂z∂x

= 2

Setting the equations in the first line to be zero we find the critical point(s) have x = 3y = −2z and 0 =

2x − 2y + 2z = 6y − 2y − 3y = y, so x = y = z = 0 and the only critical point is (0, 0, 0). From the remaining
equations we find that the Hessian is

H =

 2 −2 2
−2 6 0
2 0 4


Then the characteristic equation is

p(λ) =

∣∣∣∣∣∣∣∣
λ − 2 2 −2

2 λ − 6 0
−2 0 λ − 4

∣∣∣∣∣∣∣∣ = (λ − 4)

∣∣∣∣∣∣λ − 2 2
2 λ − 6

∣∣∣∣∣∣ − 2

∣∣∣∣∣∣ 2 −2
λ − 6 0

∣∣∣∣∣∣
= (λ − 4)(λ2 − 8λ + 12 − 4) − 4(λ − 6)

= λ3 − 12λ2 + 36λ − 8

It does not look easy to find the roots. Let us consider another option. Maybe we can say something about
the location of the roots. Observe that p′(λ) = 3λ2 − 24λ + 36 = 3(λ2 − 8λ + 12) = 3(λ − 2)(λ − 6), so p(λ)
is increasing on (−∞, 2) ∪ (6,∞) and decreasing on (2, 6). Thus p(λ) has a max of p(2) = 24 then a min of
p(6) = −8 and then p(λ) → ∞ as λ → ∞. Note also that p(0) = −8. The intermediate value theorem then
gives that there is a root in (0, 2), another in (2, 6) and a third in (6,∞). This accounts for all 3 roots and they
are all positive. So all are positive and the critical point is a minimum.
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3. Six students are each given a real 3 × 3 matrix (different students get different matrices). They compute the
eigenvalues and eigenvectors, using the standard basis, and write them in a table, in which v j is the eigenvector
corresponding to λ j. The results are:

NAME λ1 v1 λ2 v2 λ3 v3

Amy 1 (1, 0, 1) −1 (0, 1, 0) 0 (1, 1, 0)
Bob 1

√
2
(1 − i) v1

1
√

2
(1 + i) v2 i v3

Carrie 3 (0, 1, 1) −1 (1, 1, 1)
Devon 2 (1,−2, 0) 2 (0, 1,−1) −4 (0, 0, 1)

Elizabeth 0 (2,−1,−1) −1 (−4, 2, 2) 1 (2, 0, 0)
Frank i (0, 1, i) −i (0, 1,−i) 1 (1, 0, 0)

In each of the following you must justify your answer
(a) Which student(s) (if any) can you be sure made a mistake? (i.e. put a line in the table which is impossible.)

(b) Which student(s) (if any) were given a matrix that could be diagonalized? (Omit those listed in part a.)

(c) Which student(s) (if any) were given a unitary matrix? (Omit those listed in part a.)

(d) Write down the matrix for Amy’s transformation.

Solution:
(a) B is impossible because the matrix is real but the eigenvalues are not in complex conjugate pairs; for

example the determinant would be (1/2)(1− i)(1+ i)i = i, which cannot be the case for a matrix with real
entries. E is impossible because (−4, 2, 2) = −2(2,−1,−1) so these cannot be eigenvectors with distinct
eigenvalues.

(b) We can omit B and E, because these students made errors. If the eigenvectors form a basis the matrix
can be diagonalized. This occurs for A, D, F and not for C.

(c) A unitary matrix must have eigenvalues with absolute value (as complex numbers) equal to 1. Both B
and F have this property, but B had an error so we are left with F as a possibility. Now a unitary matrix
also has orthogonal eigenvectors, and for F v3 is obviously orthogonal to v1 and v2, and the complex dot
product v1 ·v2 = 1+ i2 = 0, so the eigenvectors are orthogonal. This is enough to say the matrix is unitary
(because, for example, we can normalize the eigenvectors, put them as columns of a matrix U which is
then unitary, and see the matrix is UΛU−1 for Λ the matrix with the eigenvalues on the diagonal). So F
got a unitary matrix.

(d) If Λ is the matrix with diagonal entries 1,−1, 0 and we label the matrix in row A by A then Λ = T−1AT
where T has columns the eigenvectors of A. So

A = TΛT−1 =

1 0 1
0 1 1
1 0 0


1 0 0
0 −1 0
0 0 0


 0 0 1
−1 1 1
1 0 −1

 =

0 0 1
1 −1 −1
0 0 1


where we made a subsidiary calculation of T−1 which I did not write out. You can check easily that the
eigenvectors and values are correct if you like.
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4. Find the general solution of the differential equation y′′′ − 4y′ = 2 cosh(2x).

Solution: The equation y′′′ − 4y′ = 2 cosh 2x is (D2 − 4)Dy = 2 cosh 2x. The corresponding homogeneous
equation 0 = (D2−4)Dz = (D+2)(D−2)Dz has solutions e2x, e−2x, 1. We apply an annihilator method. Recall
that 2 cosh 2x = (e2x + e−2x), so is annihilated by D2 − 4. Then (D2 − 4)2Dy = 0, or (D + 2)2(D − 2)2Dy = 0.
The usual basis for the solution set is e2x, xe2x, e−2x, xe−2x, 1. Evidently the e2x, e−2x and 1 are not useful
in finding a particular solution because they are solutions of the homogeneous solution. So we consider
y1 = axe2x + bxe−2x. Then y′1 = ae2x + 2xae2x + be−2x − 2bxe−2x, y′′1 = 4ae2x + 4xae2x − 4be−2x + 4bxe−2x

and finally y′′′1 = 12ae2x + 8xe2x + 12be−2x − 8bxe−2x. Thus y′′′1 − 4y′1 = 8ae2x + 8be−2x. We want this equal
to (e2x + e−2x), so must have 8a = 8b = 1, therefore a = 1/8 and b = 1/8; we can then recognize that
y1 = (x cosh 2x)/4. This gives us the general solution

y(x) =
x
4

cosh 2x + Ae2x + Be−2x + C.
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5. Solve the simultaneous differential equations 2y′ − 16z + 6y = −2 and z′ = 3z + 2y + 1 with y(0) = 1, z(0) = −1.

Solution: Write them as a system by setting Y =
[

y
z

]
, so that

Y ′ =

[
−3 8
2 3

]
Y +

[
−1
1

]
= AY + Q

We know a general solution to this problem when Y(0) is known: it is Y(x) = exAY(0) + exA
∫ x

0 e−tAQ(t) dt. In
this instance Q is constant, so may be moved out of the right side of the integration to obtain exA

∫ x
0 e−tA dtQ.

Since we know the derivative of e−tA is −e−tAA and can see A is invertible we can perform the integration to
obtain

∫ x
0 e−tA dt = (I − e−xA)A−1. We use this to simplify our solution to

Y(x) = exAY(0) + exA
∫ x

0
e−tAQ(t) dt = exAY(0) + (exA − I)A−1Q = exA(Y(0) + A−1Q) − A−1Q.

It remains to compute A−1 = (−1/25)
[

3 −8
−2 −3

]
= A/25 and thus A−1Q = (1/25)

[
11
1

]
, and to compute exA. One

convenient way to get exA is to say A2 = 52I, so that A2k = 52kI and A2k+1 = 52kA. Then

etA =

∞∑
j=0

1
j!

t jA j

=

∞∑
k=0

1
(2k)!

t2kA2k +

∞∑
k=0

1
(2k + 1)!

t2k+1A2k+1

= I
∞∑

k=0

1
(2k)!

t2k52k +
A
5

∞∑
k=0

1
(2k + 1)!

t2k+152k+1

= I cosh 5t +
A
5

sinh 5t

where we used the fact that cosh has the even terms of the power series for the exponential and sinh has the
odd terms – this is obvious from cosh x = (ex + e−x)/2 and sinh x = (ex − e−x)/2. We then obtain

Y(x) = exA(Y(0) + A−1Q) − A−1Q = (Y(0) + A−1Q) cosh 5x +
1
5

A(Y(0) + A−1Q) sinh 5x − A−1Q

=

([ 1
−1

]
+

1
25

[
11
1

])
cosh 5x +

1
5

([
−11
−1

]
+

[
−1
1

])
sinh 5x −

1
25

[
11
1

]
=

12
25

[
3
−2

]
cosh 5x −

12
5

[
1
0

]
sinh 5x −

1
25

[
11
1

]
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6. Suppose that A is an n × n matrix having n distinct eigenvalues. Let p(λ) be the characteristic polynomial of
A. Without using the Cayley-Hamilton theorem, show that p(A) = 0 (note that both sides of this equation are
matrices).

Solution: Since all eigenvalues are distinct we have p(λ) =
∏n

k=1(λ − λk), where the λk are the eigenvalues.
We also then know that the corresponding eigenvectors vk are a linearly independent set, hence a basis.
Observe that (A − λ jI)v j = Av j − λ jv j = 0. Now consider p(A)v j. We can write the factors in p(A) =∏n

k=1(A − λkI) in any order, because A and I commute, so we think of putting the (A − λ j) at the far right, so
that p(A) = q j(A)(A − λ jI) for some polynomial q j(A). But then p(A)v j = q j(A)(A − λ jI)v j = q j(A)0 = 0. So
p(A)v j = 0 for any j. Now for any vector v we can write it in terms of the eigenvector basis as v =

∑
j a jv j.

We have p(A)v = p(A)
∑

j a jv j =
∑

j a j p(A)v j =
∑

j 0 = 0. However the only matrix that multiplies every
vector to give zero is the zero matrix, so p(A) = 0.
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