Math 2144Q - Advanced Calculus IV Midterm

Instructions:

- You may not refer to any notes or your textbook. No calculators, cellphones, or other electronic devices are permitted.
- You have from 12:30pm until 1:45pm to complete the test.
- In every question you must justify your answers.
- If asked to prove something almost identical to a theorem in the text, you should not use that theorem in your proof.

[10 points] 1. Compute $\iint_{S} \frac{x}{\sqrt{x^2 + y^2}} dS$, where *S* is the parabolic surface $x^2 + y^2 + z = 4$ that lies in the region $x \ge 0, z \ge 0$.

Solution: The surface can be parametrized as a graph $z = f(x, y) = 4 - x^2 - y^2$. Note that $\frac{\partial f}{\partial x} = -2x$ and $\frac{\partial f}{\partial y} = -2y$. The projection of the region then satisfies, from $z \ge 0$, that $x^2 + y^2 \le 4$ and also the given $x \ge 0$. This region is half-disc *T* in the *xy*-plane. Then we can rewrite the integral using the parametrization and change to polar coordinates to evaluate:

$$\iint_{S} \frac{x}{\sqrt{x^{2} + y^{2}}} dS = \iint_{T} \frac{x}{\sqrt{x^{2} + y^{2}}} \sqrt{1 + (\frac{\partial f}{\partial x})^{2} + (\frac{\partial f}{\partial y})^{2}} dx dy = \int_{0}^{2} \int_{-\pi/2}^{\pi/2} \frac{r \cos \theta}{r} \sqrt{1 + 4r^{2}} d\theta r dr$$
$$= \int_{1}^{17} \sqrt{u} \frac{du}{8} [\sin \theta]_{-\pi/2}^{\pi/2} = \frac{1}{6} ((17)^{3/2} - 1).$$

[10 points] 2. For the following matrix A, find all eigenvalues and eigenvectors, and if possible find a matrix C such that $C^{-1}AC$ is diagonal. If it is not possible, explain why this is the case.

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$

Solution: The characteristic polynomial is $(\lambda - 3)((\lambda - 2)(\lambda - 3)) - (\lambda - 2) = (\lambda - 2)(\lambda^2 - 6\lambda + 9 - 1) = (\lambda - 2)^2(\lambda - 4)$ so the eigenvalues are 2 and 4, with 2 having multiplicity two. We can find eigenvectors by determining, for $\lambda = 4$, the nullspace of

$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 2 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$

which is one-dimensional and spanned by $(1, 1, 1)^t$, and, for $\lambda = 2$, the nullspace of

$$\begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix}$$

which is two dimensional and spanned by $(0, 1, 0)^t$ and $(1, 0, -1)^t$ (though linear combinations of these also work). Then we can take

$$C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

to get the desired diagonalization. Note that other choices of basis for the $\lambda = 2$ eigenspace are equally valid and give correct answers for *C*.

[10 points] 3. Let S be the surface $5 - z = x^2 + y^2$ with $z \ge 0$. Let $\mathbf{F} = (y^2 z - y + x \sin z, x + y^2 \log(1 + z), x^2 y - z^3 + \cos x)$. Compute

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$$

where \mathbf{n} denotes the unit normal which has a negative component in the *z*-direction.

Solution: From Stoke's theorem the integral is $\int_C F \cdot d\alpha$ where α parametrizes the boundary curve *C* with the correct orientation. Since the the surface is a graph $z = 5 - (x^2 + y^2)$ and $z \ge 0$ the curve *C* is the intersection of the graph with the *xy*-plane, which is the circle $x^2 + y^2 = 5$. The normal is downward and the right-hand rule gives that *C* is oriented clockwise. We can parametrize this way as $\alpha(\theta) = \sqrt{5}(\cos \theta, -\sin \theta, 0)$, which gives $\alpha'(\theta) = -\sqrt{5}(\sin \theta, \cos \theta, 0)$. Now compute $F(\alpha(\theta)) = (\sqrt{5} \sin \theta, \sqrt{5} \cos \theta, -5^{3/2} \cos \theta \sin \theta + \cos(\sqrt{5} \cos \theta))$, so that

$$\int_C F \cdot d\alpha = \int_0^{2\pi} (-5\sin^2\theta - 5\cos^2\theta) \, d\theta = -5 \int_0^{2\pi} d\theta = -10\pi$$