1. Let \(f(x) \) be defined by

\[
 f(x) = \begin{cases}
 \sin \left(\frac{1}{x} \right) & \text{if } x \neq 0; \\
 \frac{1}{2} & \text{if } x = 0.
 \end{cases}
\]

Is \(f(x) \) continuous? **Justify** your assertion using the \(\varepsilon - \delta \) definition of continuity.

2. Use the \(\varepsilon - \delta \) definition of continuity to prove that \(f(x) = x^2 \) is continuous at every point in the interval \([-10, 10]\).

3. (a) Prove that \(\sin x \leq x \) if \(x \in [0, \frac{\pi}{2}] \). (Hint: Express \(\sin x \) as an integral.)
 (b) Prove that \(\sin x \leq x \) for all \(x \geq 0 \).
 (c) Prove that \(|\sin x| \leq |x| \) for all \(x \in \mathbb{R} \).

4. Compute the following integrals
 (a) \(\int_0^1 f(x) \, dx \) where \(f \) is a continuous function satisfying \(f(1 - x) = -f(x) \) for \(x \in [0, 1] \).
 (b) \(\int_1^5 f(x) \, dx \) if \(f \) is periodic of period 1 and we know \(\int_0^2 f(2x) \, dx = 3 \).

5. Suppose that \(f \) and \(g \) are monotonic functions on \([0, 2]\) such that \(f(x) \leq g(x) \) for all \(x \in [0, 1] \) and \(\int_0^2 f(x) \, dx > \int_0^2 g(x) \, dx \).
 (a) Show that there is a number \(c \in [1, 2] \) for which \(\int_c^1 f(x) - g(x) \, dx = 0 \).
 (b) Is there necessarily a point \(d \) where \(f(d) = g(d) \)? Either prove that there is, or give a counterexample.

6. The following inductive proof must be wrong, because it “proves” that all positive integers are equal. What is the error in the argument?

 For positive integers \(a \) and \(b \), define

 \[
 \max(a, b) = \begin{cases}
 a & \text{if } a > b \\
 b & \text{if } b > a \\
 a = b & \text{if } a = b
 \end{cases}
 \]

 and let \(\Lambda_n \) be the statement “If \(\max(a, b) = n \) then \(a = b = n \)”.

 Let us prove that \(\Lambda_n \) holds for all \(n \geq 1 \), using induction:

 For the base case, observe that if \(n = 1 \) and \(a, b \) are positive integers with \(\max(a, b) = 1 \), then \(a = b = 1 \).

 For the inductive step, suppose \(\Lambda_n \) is true. Let \(a, b \) be positive integers with \(\max(a, b) = n + 1 \). Then set \(a' = a - 1 \), \(b' = b - 1 \). We have \(\max(a', b') = n \), so by the truth of \(\Lambda_n \) we know \(a' = b' = n \), from which \(a = b = n + 1 \). Thus \(\Lambda_{n+1} \) is true.

 Hence by induction \(\Lambda_n \) is true for all \(n \). But then any two positive integers \(a \) and \(b \) such that \(\max(a, b) = n \) satisfy \(a = b = n \), so \(a = b \) and so are equal to each other.