
Math 2110 Practice Final
Instructions: You may not refer to any notes or your textbook. No calculators are permitted. You have from 3:30pm

until 5:30pm to complete the test.

1. Suppose that f (x, y) = x3y + xy2 − y, but x(s, t) = s cos t and y(s, t) = ts. Compute ∂ f
∂s and ∂ f

∂t at (s, t) = (3, π).

Solution: We use the chain rule:

fs = fxxs + fyys,

ft = fxxt + fyyt.

Now fx = 3x2y + y2, and fy = x3 + 2xy − 1. At the point (s, t) = (3, π) we have x = 3 cos π = −3 and y = 3π,
so fx = 81π + 9π2 and fy = −28 − 18π. Also xs = cos t = −1 at t = π, and xt = −s sin t = −3 sin π = 0.
Similarly ys = t = π and yt = s = 3. Substituting we get

fs = fxxs + fyys = (81π + 9π2)(−1) + (−28 − 18π)(π) = −27π2 − 109π,

ft = fxxt + fyyt = (81π + 9π2)(0) + (−28 − 18π)(3) = −54π − 84.

2. Set up two iterated integrals (in different orders) for the volume of the tetrahedron with vertices (0, 0, 0), (1, 0, 0),
(1, 0, 1), (1, 4, 0). (DO NOT EVALUATE THESE INTEGRALS.)

Solution: Several choices for the order are available. The object has 4 sides, each of which is a plane. We
can get the equations of these planes by using that each plane contains 3 of the vertices. The planes are then

Contains (0, 0, 0), (1, 0, 0), (1, 0, 1): Plane is y = 0 (the x − z plane)
Contains (0, 0, 0), (1, 0, 0), (1, 4, 0): Plane is z = 0 (the x − y plane)

Contains (1, 0, 0), (1, 0, 1), (1, 4, 0): Plane is x = 1
Contains (0, 0, 0), (1, 0, 1), (1, 4, 0): Plane has normal 〈−4, 1, 4〉 so is -4x+y+4z=0

In the all cases we can find the above by computing the normal using the cross product of two vectors in the
plane and using the equation (r − r0) · n = 0.

From the above we can make the outer integrals in the x− z plane and therefore over the triangle with vertices
(0, 0, 0), (1, 0, 0), (1, 0, 1). In this case the inner integral is over y, and runs from y = 0 to y = 4x − 4z (from
the last of the faces). The possibilities are∫ 1

0

∫ 1−x

0

∫ 4x−4z

0
dy dz dx∫ 1

0

∫ 1−z

0

∫ 4x−4z

0
dy dx dz

We could also make the outer integrals in the x − y plane, over the triangle with vertices (0, 0, 0), (1, 0, 0),
(1, 4, 0). The inner integral would be with respect to z from z = 0 to the last face z = x − y

4 . This gives
possibilities ∫ 1

0

∫ 4x

0

∫ x−y/4

0
dz dy dx∫ 4

0

∫ x/4

0

∫ x−y/4

0
dz dx dy



Finally, we could integrate over the y − z plane. In this case the triangle we integrate over is obtained by
projecting the third face above to the y − z plane so has vertices (0, 0, 0), (0, 0, 1), (0, 4, 0). The inner integral
is with respect to x from the fourth face x = y

4 + z to x = 1. This gives possibilities∫ 1

0

∫ 4−4z

0

∫ 1

y/4+z
dx dy dz∫ 4

0

∫ 1−y/4

0

∫ 1

y/4+z
dx dz dy

3. Find the distance from (8, 2, 3) to the plane x + 2y − 2z = 7.

Solution: The normal to the plane is n = 〈1, 2,−2〉. A point in the plane is (7, 0, 0), so a vector from a point
in the plane to (8, 2, 3) is

v = 〈8, 2, 3〉 − 〈7, 0, 0〉 = 〈1, 2, 3〉.

Now we know that the scalar projection of v in the direction of n has magnitude the distance from the plane
to the point. This scalar projection is

Compnv =
v · n
|n|
=

1 + 2(2) − 2(3)
√

9
=
−1
3

so the distance is 1
3 .

4. Compute "
R

3
2 e(y3/2)dA

where R is the region between the curves x = 0, y = x2 and y = 4. (Hint: The order of integration may affect
whether you can do the integral!)

Solution: This region can be written as either type I or type II. As a type I it is 0 ≤ x ≤ 2 and x2 ≤ y ≤ 4. As
a type II it is between y = 0 and y = 4 and has 0 ≤ x ≤

√
y. This gives the integrals∫ 2

0

∫ 4

x2

3
2 e(y3/2) dy dx∫ 4

0

∫ √
y

0

3
2 e(y3/2) dx dy

and we notice that we don’t know how to do the innermost integral in the first case. In the second case we
can do the innermost integral, and the outer one can be done by the substitution u = y3/2, du = 3

2 y1/2dy:∫ 4

0

3
2
√

ye(y3/2) dy =
∫ 8

0
eu du =

[
eu

]8

0
= e8 − 1

where the change in endpoints is as follows, y = 0 becomes u = 03/2 = 0 and y = 4 becomes u = 43/2 = 23 =

8.
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5. Find all local maximum, minimum and saddle points of

f (x, y) = 4x3 + xy2 + 2x2y − 9x

Solution: Compute critical points, where ∇ f = 0, by setting

0 =
∂ f
∂x
= 12x2 + y2 + 4xy − 9,

0 =
∂ f
∂y
= 2xy + 2x2 = 2x(y + x)

From the second equation, either x = 0 or y = −x. Substituting x = 0 into the first equation gives y2 = 9 so y =
±3. This gives points (0, 3) and (0,−3). Substituting y = −x into the first equation gives 12x2+x2−4x2−9 = 0,
so 9x2 = 9, so x = ±1. This gives points (1,−1) and (−1, 1).

Next we need to test what sorts of points these are. We use the discriminant.

D(x, y) = fxx fyy −
(

fxy

)2
= (24x + 4y)(2x) − (2y + 4x)2 = 48x2 + 8xy − 4y2 − 16xy − 16x2 = 32x2 − 8xy − 4y2

Thus D(0, 3) = D(0,−3) = −36, so both (0, 3) and (0,−3) are saddle points. Also D(1,−1) = D(−1, 1) = 36,
and fxx(1,−1) = 20 so there is a minimum at (1,−1), and fxx(−1, 1) = −20 so there is a maximum at (−1, 1).

6. Evaluate ∫ (
y + 7e

√
x
)

dx +
(
3x + 7 cos(y2)

)
dy

over the positively oriented boundary of the region between y = x2 and y2 = x.

Solution: This integral looks ridiculously hard to do by parametrization, so we try by Green’s theorem.
According to this theorem,∫ (

y + 7e
√

x
)

dx +
(
3x + 7 cos(y2)

)
dy =

"
R
(3 − 1) dA

where R is the region between those curves. Now this region is type I with 0 ≤ x ≤ 1 and x2 ≤ y ≤
√

x, so
we have "

R
2 dA =

∫ 1

0

∫ √
x

x2
2 dy dx =

∫ 1

0
2
√

x − 2x2 dx =
[

4
3 x3/2 − 2

3 x3
]1

0
= 4

3 −
2
3 =

2
3 .

7. Compute
#

E

√
x2 + y2 dV where E is the region between z = 45 − 4x2 − 4y2 and z = x2 + y2.

Solution: We can do this in any coordinate system, but it looks like it would be easiest in cylindrical polar
coordinates, because then the region is between z = 45 − 4r2 and z = r2, and the integrand is r =

√
x2 + y2.

The intersection of these surfaces is at 5r2 = 45, so r = 3, and we see that the points in E all have r ≤ 3, thus
we may make the triple integral into a double integral over the disc of radius 3 and have r2 ≤ z ≤ 45− 4r2. In
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cylindrical polars this is$
E

√
x2 + y2 dV =

∫ 2π

0

∫ 3

0

∫ 45−4r2

r2
r dz rdr dθ

=

∫ 2π

0

∫ 3

0
r2(45 − 5r2) dr dθ

=

∫ 2π

0

[
15r3 − r5

]3

0
dθ

= 2π
(
1533 − 35

)
= 2π34(5 − 3) = 4π81 = 324π.
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Formula Sheet: Math 2110

• Projections of b onto a

compab =
a · b
|a|

projab =
(

a · b
|a|

)
a
|a|

• Cross product of a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉

a × b =

∣∣∣∣∣∣∣∣
i j k

a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣∣
• Theorem on cross and dot products of vectors a, b, c.

a · (b × c) = (a × b) · c
a × (b × c) = (a · c)b − (a · b)c

• Volume of parallelpiped determined by a, b, and c is |a · b × c|.

• Derivatives of dot and cross products

d
dt

(
u(t) · v(t)

)
= u′(t) · v(t) + u(t) · v′(t)

d
dt

(
u(t) × v(t)

)
= u′(t) × v(t) + u(t) × v′(t)

• Curvature is given by

κ(t) =
|T′(t)|
|r′(t)|

=
|r′(t) × r′′(t)|
|r′(t)|3

• The binormal is B = T × N.

• Acceleration is a = aT T + aNN where

aT =
dv
dt
=

r′(t) · r′′(t)
|r′(t)|

aN = κv2 =
|r′(t) × r′′(t)|
|r′(t)|

• The discriminant in the second derivative test for two-variable functions is given by

D = fxx(a, b) fyy(a, b) −
(

fxy(a, b)
)2
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