Math 2110 Final

Instructions: You may not refer to any notes or your textbook. No calculators are permitted. You have from 3:30pm until 5:30pm to complete the test.

[5 points] 1. Find the equation of the tangent plane to the function

$$z = xy^3 - 2xy + x + y$$

at the point (2, -1).

Solution: We use the equation for a tangent plane. First compute

$$f_x(2,-1) = y^3 - 2y + 1 = -1 + 2 + 1 = 2,$$

 $f_y(2,-1) = 3xy^2 - 2x + 1 = 3(2)(-1)^2 - 4 + 1 = 3.$

The value of z at (2, -1) is $z = 2(-1)^3 - 2(2)(-1) + 2 - 1 = 3$, so the equation of the tangent plane is

$$z = 2(x-2) + 3(y+1) + 3 = 2x + 3y + 2.$$

[5 points] 2. Given functions f(x, y), x(s, t) and y(s, t), suppose that at some point we have $f_s = 2$, $f_t = 1$, $f_t = 3$, $f_t = 1$, $f_t = 3$, and $f_t = 4$, and $f_t = 4$ are this point.

Solution: From the chain rule, at the point in question:

$$2 = f_s = f_x x_s + f_y y_s = 3f_x + 5f_y,$$

$$1 = f_t = f_x x_t + f_y y_t = 1f_x + 2f_y.$$

The first equation minus 3 times the second equation gives $-1 = -f_y$, so $f_y = 1$. Substituting $f_y = 1$ in the first equation gives $2 = 3f_x + 5$, so $f_x = -3$, and $f_x = -1$.

[5 points] 3. Compute

$$\iint_{R} 10 \sqrt{y} dA$$

where R is the region between the curves y = 2x, y = 1 and $y = x^2$.

Solution: The region is of type II, and is between y = 0 and y = 1 and has $\frac{y}{2} \le x \le \sqrt{y}$. Thus we compute

$$\iint_{R} 10 \sqrt{y} dA = \int_{0}^{1} \int_{y/2}^{\sqrt{y}} 10 \sqrt{y} dx dy = \int_{0}^{1} 10 \sqrt{y} \left(\sqrt{y} - \frac{y}{2}\right) dy$$
$$= \int_{0}^{1} 10y - 5y^{3/2} dy$$
$$= \left[5y^{2} - 2y^{5/2}\right]_{0}^{1}$$
$$= 5 - 2 = 3.$$

[7 points] 4. Compute $\iiint_E 4(x^2 + y^2 + z^2) dV$ where E is the solid region above the x - y plane and between the spheres of radius 1 and radius 2 around the origin in 3-dimensional space.

Solution: It is convenient to use spherical polar coordinates, in which $x^2 + y^2 + z^2 = \rho^2$, and the region between the spheres is given simply by $1 \le \rho \le 2$. The part of this region above the x - y plane has $0 \le \phi \le \frac{\pi}{2}$ and $0 \le \theta \le 2\pi$.

Therefore the integral is

$$\int_0^{\pi/2} \int_0^{2\pi} \int_1^2 4\rho^2 \, \rho^2 \sin\phi \, d\rho \, d\theta \, d\phi = \int_0^{\pi/2} \int_0^{2\pi} \frac{4}{5} \left[\rho^5 \right]_1^2 d\theta \, d\phi$$

$$= \int_0^{\pi/2} \frac{124}{5} (2\pi) \sin\phi \, d\phi$$

$$= \frac{248\pi}{5} \left[-\cos\phi \right]_0^{\pi/2}$$

$$= \frac{248\pi}{5} (-0 + 1) = \frac{248\pi}{5}.$$

[8 points] 5. Find the maximum and minimum values of

$$f(x, y) = x^3 + xy^2 + y$$

on the disc $x^2 + y^2 \le 1$.

Solution: We first look for critical points $\nabla f = 0$, by setting

$$0 = \frac{\partial f}{\partial x} = 3x^2 + y^2,$$

$$0 = \frac{\partial f}{\partial y} = 2xy + 1.$$

From the first equation x = y = 0, so the second equation can't be true, and there are no critical points. Next we restrict to the boundary, which is the circle of radius 1 and can be parameterized by $(\cos t, \sin t)$, $0 \le t < 2\pi$. Substituting this into f we get

$$f(\cos t, \sin t) = \cos^3 t + \cos t \sin^2 t + \sin t = \cos t (\cos^2 t + \sin^2 t) + \sin t = \cos t + \sin t.$$

To find the maximum and minimum we look at the derivative with respect to t, which is $-\sin t + \cos t$. It is zero when $\sin t = \cos t$, so $t = \pi/4$ or $t = 5\pi/4$. This gives

$$f\left(\cos\frac{\pi}{4}, \sin\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$
$$f\left(\cos\frac{5\pi}{4}, \sin\frac{5\pi}{4}\right) = \frac{-1}{\sqrt{2}} + \frac{-1}{\sqrt{2}} = -\sqrt{2}$$

[10 points] 6. Set up an integral in rectangular coordinates (x, y, and z, in an order of your choice) for the volume of the part of the region between the sphere x² + y² + z² = 1 and the ellipsoid x²/4 + y² + z² = 1 that has x ≥ 0.
 (DO NOT EVALUATE THIS INTEGRAL.)

Solution: Only two choices of integration order give just one integral, and both have the dx integral in the innermost position. The two surfaces intersect when x=0 and $y^2+z^2=1$, so the outer integral is over the disc of radius 1 in the y-z plane. The inner (x) integral has as its lower endpoint the hemispherical surface $x=\sqrt{1-y^2-z^2}$, and as its upper endpoint the part of the ellipsoid with $x\geq 0$, which is $x=2\sqrt{1-y^2-z^2}$. Thus the two possible answers are

$$\int_{-1}^{1} \int_{y=-\sqrt{1-z^2}}^{y=\sqrt{1-z^2}} \int_{x=-\sqrt{1-y^2-z^2}}^{x=2\sqrt{1-y^2-z^2}} dx \, dy \, dz$$

and

$$\int_{-1}^{1} \int_{z=-\sqrt{1-y^2}}^{z=\sqrt{1-y^2}} \int_{x=-\sqrt{1-y^2-z^2}}^{x=2\sqrt{1-y^2-z^2}} dx \, dz \, dy.$$

[10 points] 7. Let $F(x, y) = \langle y^2 \sin(xy), xy \sin(xy) - \cos(xy) \rangle$. Compute $\int_C F.dr$ for the curve C which starts at (0, 0), travels in a straight line to (1, 1), and then travels in a straight line from (1, 1) to (0, 2).

Solution: It is possible to do this by parameterizing the curve, but it is a bit messy. A better way is to say $F = \langle P, Q \rangle$ for $P = y^2 \sin(xy)$ and $Q = xy \sin(xy) - \cos(xy)$, and to check that

$$\frac{\partial P}{\partial y} = 2y\sin(xy) + y^2x\cos(xy)$$

$$\frac{\partial Q}{\partial x} = y\sin(xy) + xyy\cos(xy) + y\sin(xy) = 2y\sin(xy) + y^2x\cos(xy)$$

so that the field F is conservative. Then we can either find a scalar function f such that $\nabla f = F$ or use the fact that it is path-independent to take a path from (0,0) to (0,2) on which the integral is simpler. A simpler choice of path is the straight line $r(t) = \langle 0, 2t \rangle$ with $0, \le t \le 1$. Then $r'(t) = \langle 0, 2 \rangle$ and the integral is

$$\int_0^1 F(r(t)) \cdot r'(t) \, dt = \int_0^1 2 \Big(0 \sin(0) - \cos(0) \Big) \, dt = \int_0^1 -2 \, dt = -2.$$

If instead you choose to find f, then you would set

$$f(x,y) = \int y^2 \sin(xy) \, dx + g(y) = -y \cos(xy) + g(y)$$

and since $xy \sin(xy) - \cos(xy) = f_y = xy \sin(xy) - \cos(xy) + g'(y)$ it follows that g(y) is a constant that may be taken to be zero. Then the integral is

$$\int_C F.dr = \int_C \nabla f.dr = f(0,2) - f(0,0) = -2\cos(0) - 0\cos(0) = -2.$$

Formula Sheet: Math 2110

• Projections of **b** onto **a**

$$comp_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$
$$proj_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}$$

• Cross product of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

• Theorem on cross and dot products of vectors a, b, c.

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

- Volume of parallelpiped determined by \mathbf{a} , \mathbf{b} , and \mathbf{c} is $|\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}|$.
- Derivatives of dot and cross products

$$\frac{d}{dt}(\mathbf{u}(t) \cdot \mathbf{v}(t)) = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$
$$\frac{d}{dt}(\mathbf{u}(t) \times \mathbf{v}(t)) = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

• Curvature is given by

$$\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

- The binormal is $\mathbf{B} = \mathbf{T} \times \mathbf{N}$.
- Acceleration is $\mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}$ where

$$a_T = \frac{dv}{dt} = \frac{\mathbf{r}'(t) \cdot \mathbf{r}''(t)}{|\mathbf{r}'(t)|}$$
$$a_N = \kappa v^2 = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|}$$

• The discriminant in the second derivative test for two-variable functions is given by

$$D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^{2}$$

• Green's theorem: For a smooth positively oriented simple closed curve C enclosing a region D

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$