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Abstract

In this paper the problem of complexity of multiplication of a matrix with a vector
is studied for Toeplitz, Hankel, Vandermonde and Cauchy matrices and for matrices
connected with them (i.e. for transpose, inverse and transpose to inverse matrices).
The proposed algorithms have complexities at most O(n log? n) flops and in a number
of cases improve the known estimates. In these algorithms, in a separate preprocessing
phase, are singled out all the actions on the preparation of a given matrix, which
aimed at the reduction of the complexity of the second stage of computations directly
connected with the multiplication by an arbitrary vector. Incidentally, the effective
algorithms for computing the Vandermonde determinant and the determinant of a
Cauchy matrix, are given.



0 Introduction

Let the matrix A € C™*" be given by all its n? entries. The problem is to compute the
product Ab of a matrix A by input vector b € C". Using the standard rule of a matrix
times vector multiplication, the above problem can be solved in 2n? — n flops (i.e. float
point operations of addition, subtraction, multiplication and division). In the following
three simple examples the special structure of a matrix enables faster computation of the
product by a vector.

Examples

1) Band matrices.
Let A = (az-j)zj’:lo be a band matrix with the width of the band  (i.e., by definition, a;; =0
while | i —j |> £51). Obviously, in this case the computing the product Ab costs (26 — 1)n
flops.Z

2) Small rank matrices.
Let matrix A € C™*" with rank o € R be given in the form of the outer sum of « terms :

A= Z h,, -g’ (hy,, gm € C"). (0.1)

m=1

The representation (0.1) shows that A can be multiplied by an arbitrary vector in (4a—1)n—«
flops.=
3) Semiseparable matrices.
Such a matrix A = (a;;)};2, is defined by the equalities
G — m=1 Jmi * Gmi 1<J
1) O Z Z] Y
where £, = (fm.i)"¢ &n = (gmi)ig (m = 1,2,...,a) are given vectors from C". In this
case

o 1 1 .-+ 17
o o0 1 ---1
A=) diag(f,)- | : oo | - diag(gm), (0.2)
m=1 . . 1
0 - e e 0]

where by diag(f) is denoted the diagonal matrix, whose entries on the main diagonal equal
the coordinates of the vector f € C". The product of a semiseparable matrix by an arbitrary
vector can be computed using (0.2) in (4a—1)n—« flops. Obviously, the analogous estimate
holds for the transpose to the matrices of the form (0.2).2

Let matrix A € C™*" be given. The task is to compute the products Abg, Aby, ... of the
matrix A by input vectors bg,by,... € C" in the smallest possible time. Such a situation
arises naturally in a number of computational problems, for example, when we have to carry
out the iterations with a given matrix. The problem of computing the product of a matrix



by a matrix can also be solved in the above framework. In the latter case the columns of a
second matrix are interpreted as input vectors.

In accordance with the accepted scheme, we single out all the computations which are
not dependent upon the input vectors bg, by, ... Accordingly, the proposed algorithms will
be divided into two separate phases :

I. Preprocessing for matrix A € C™*",
II. Application to the vector,

The first phase also contains the preparation of the given matrix, which enables the second
phase to be accomplished more effectively.

In the present paper we embody this scheme and propose a number of fast algorithms for
matrices with a certain structure, namely for transposed Vandermonde matrix, for transpose
to inverse of Vandermonde matrix, for Cauchy matrices and for matrices connected with them
(i.e. for transpose, inverse and transpose to inverse matrices).

1 Background

1.1 Basic algorithms

In this paper a limited number of well known algorithms is used intensively. These algorithms
are listed below and accompanied by the estimates of their complexities. The particular
implementations of these basic algorithms and complexity analysis for them can be found in
various sources (see, for example, Aho, Hopcroft and Ullman (1976)).

(BA1) Ewvaluation algorithm.
An algorithm of evaluation of a (n — 1) degree polynomial at n points. The complexity
of this algorithm will be denoted by &(n). It is well known that

£(n) < O(n log®n).

(BA2) Interpolation algorithm.
An algorithm of interpolation of a (n — 1) degree polynomial from its values at n
points. The complexity of the interpolation algorithm is denoted by ¢(n) and, as it is
well known,

(n) < O(n log*n).

(BA3) Fuast Fourier Transform algorithm.
The discrete Fourier transform of the vector r = (r;)?_) € C" is by definition the vector
(SrZy rew™)=) € C", where w is the primitive n-th root from unity. The discrete
Fourier transform can be computed by well known methods, collectively named Fust
Fourier Transform (FFT). It is well known that for the complexity ¢(n) of computing
one FFT of order n, the following estimate holds

6(n) < O(n logn).



1.2 Basic matrices

In this subsection some matrices, which are known to have a lower than O(n?) flops complex-
ity of multiplication with a vector, are considered. Note that the methods for fast computing
of the products of these basic matrices by vectors are based on the algorithms (BA1) - (BA3).

(BM1) Vandermonde matriz.
By definition, the Vandermonde matrix V'(t) is the matrix of the form

1ty - tgﬂ
1 4 et ‘ .

Vi) = . C|, with t=(t)r e
1 tpy -or 007)

Obviously, the problem of computing the product V' (t)b of the matrix V'(t) by a vector
b = (b;)!~4 is equivalent to the problem of evaluation of p(\) = Y17/ b;- A’ at n points
to, t1, ... tn_1. Thus, the product V(t)b can be computed using the algorithm (BA1)
in e(n) flops.

(BM2) Inverse of Vandermonde matriz.
Consider the problem of application to a vector of the matrix A € C™*", which is
defined as the inverse of the given Vandermonde matrix V'(t) (t € C"). It is easy to
see that the product Ab can be computed using the algorithm (BA2). Thus, for the
inverse of Vandermonde matrix, the application to a vector costs ¢(n) flops.

(BM3) Fourier matriz and its inverse.
Let w = e be primitive n-th root from the unity. Consider the Fourier matrix
F= ﬁ V() with = (w5 and its inverse F~! = F* where superscript * means
conjugate transpose. The products Fb and F*b can be computed using the algorithm
(BA3) in ¢(n) flops.

(BM4) Factor circulant.
By Circ,(r) will be denoted ¢-circulant with the first column r = (r;)?', i.e. matrix

of the form
To  $PTn-1 IR 2 |
T To Prn—1
Circy(r) = : -
PTrn—1
[ Tp1 e T T

The matrix Circy(r) is referred to as a circulant. It is known (see Cline, Plemmons
and Worm (1974)) that the matrix Circ,(r) admits the following decomposition :

Circy(r) = D' - F* - Ay(r) - F - Dy, (1.1)

where F is the Fourier matrix, A,(r) = diag(FD,r) and D, = diag((£))?=) with
¢ € C satisfying the condition £" = ¢. From (1.1) it follows that if the coordinates of
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the vector = (&%) € C" are given, then the product of the matrix Circ,(r) by an
arbitrary vector can be computed in

2¢(n) + O(n)

flops. In this case the preprocessing phase consists of computation of the central factor
A,(r) in the right-hand side of (1.1) and costs

¢(n) +O(n)
flops.

(BM5) Toeplitz matrices
The product of Toeplitz matrix A = (a;_;)7;2, by a vector can be computed by em-
bedding of the matrix A in the circulant of double size. Correspondingly, the amount

of operations is
2¢(2n) + O(n) = 4¢(n) + O(n)

flops after
¢(2n) + O(n) = 2¢(n) + O(n)

preprocessing.

(BMG6) Inverses of Toeplitz matrices
In computations with the inverses of Toeplitz matrices, the Gohberg-Semencul formula
(see Gohberg and Semencul (1972) or Gohberg and Feldman (1974) ) is useful. This
formula represents the inverse of a Toeplitz matrix in the form of the sum of products
of triangular Toeplitz matrices. Namely, if for the Toeplitz matrix 7' the equations

Tx = €p, Ty =€p_1 (12)
) T T . -1
with ey = [ 10 --- 0 ] , €, = [ 0o --- 01 have solutions x = (x;)i=,,

y = (y;)!- and xy # 0, then T is invertible and

B "L‘O 0 " e ) 0 ] B yn—l yn_2 ) " e yo
T Ty : 0 Yn—1 Yn—2 '
A i( : - : . : . . : _
T . T . . . . . .
0 - Yn—2
L l‘n_l ) " e "L‘l 1‘0 i L 0 ) ) 0 yn—l i
0 0 -« -+ 07 [0 zpy -+ oo a7 ]
Yo 0 0 0 Tn—1 :
B o i i ) ) (1.3)
. . - : Tp—1
| Ypo - - oyo O] LO oo oo e 0]




On the basis of formula (1.3) the number of fast algorithms for the inversion of Toeplitz
matrices was elaborated (see Brent, Gustavson and Yun (1980), de Hoog (1987), Chun
and Kailath (1991), where the methods for solving the equations of the form (1.2) are
suggested). Denote by 7(n) the complexity of solving one equation of the form (1.2).
According to Brent, Gustavson and Yun (1980), de Hoog (1987), Chun and Kailath
(1991)

7(n) < O(n log’n).

Thus, if matrix A € C™*" is the inverse of the given Toeplitz matrix, then from the
above arguments follows that after 27(n) + 8¢(n) flops preprocessing the product of
A by an arbitrary vector can be computed by (1.3) in 16¢(n) + O(n) flops. Below we
show how this complexity can be reduced.

If for Toeplitz matrix 7 € C™*" the equations (1.2) have solutions x = (z;)", y =
(y;)"=) and zy # 0, then
1
T-' = ————(Cirey(x) - Circ,(Z,y) — Circy(Zyy) - Circ,(x)), (1.4)
zo(p — )

where numbers ¢ and ¢ (# ¢) are arbitrary and

[0 oo oo 0 @]
1 0 0

Z,=10 1 " : (o #0)
0 --- 0 1 0]

is the p-cyclic lower shift matrix. Formula (1.4) was obtained in Ammar and Gader
(1990) for positive definite Toeplitz matrices and ¢ = 1, 1 = —1, and was extended
to the general case in Gohberg and Olshevsky (1992). Note, in the latter paper one
can also find other factor circulant decompositions for the inverses of Toeplitz matri-
ces, which are useful in the fast computations with Toeplitz matrices. Furthermore,
representing each factor circulant in the left-hand side of (1.4) in the form of (1.1), we
finally get

1

:ml)@bl'f*'<A1/’(X)'f.D1/"anl'f*'Anp(Z<p )_

T*l

—Ay(Zyy) - F-Dy - D' - F*- Aw(x)> - F - D,, (1.5)

where F is a Fourier matrix and the diagonal matrices D, and A,(r) (r € C") are
defined as in (BM4). From (1.5) it follows that after

27(n) + 4¢(n) + O(n) (1.6)

flops preprocessing, the product of the inverse of the Toeplitz matrix by an arbitrary
vector can be computed in

66(n) + O(n) (1.7)
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flops. The last estimate is obtained here without the additional requirement for matrix
A to be Hermitian. In the Hermitian case this result is obtained in the earlier paper
Ammar and Gader (1990). Note, (1.6) and (1.7) imply that the product of the inverse
of Toeplitz matrix by an arbitrary matrix can be computed in 6¢(n)n + O(n?) flops.

(BMY7) Hankel matrices.
Let us recall that an arbitrary Hankel matrix H = (a;4;)};2, can be transformed in
the Toeplitz matrix by means of multiplication from the right by the reverse identity

matrix
0 c-r - 0 17
: 1 0
J = :
o 1 . :
1 0 - - 0]

Therefore the complexity of the multiplication with a vector for the class of Hankel
matrices coincides with the same complexity for the class of Toeplitz matrices.

2 Transpose to Vandermonde and to inverse of Van-
dermonde matrices

2.1 Relations between Vandermonde matrices and Bezoutians

Let n € R be the maximal degree of two polynomials f(A) and g()), then the bilinear form

By p) = L) -g(uA) - i(u) 9\ _ ”2_:1 b\

is called the Bezoutian of f(\) and g(A). The matrix

By = (b)i ity

i,j=0

whose entries are determined by the coefficients of the bilinear form By 4(\, 11), will be referred
to as a Bezout matriz which corresponds to the polynomials f(A) and g()). Obviously,

1

[ 1A A2 o X By | | =B\ ) (2.1)

The equality (2.1) yields the following useful property of the Bezout matrix :

V(s)- By V(t)T = (Bf,g(siatj))Z;zlo ) (2.2)



where s = (5;)7, t = (t;)"-y € C™. From (2.2) and obvious equality
Brg(AA) = f'(A) - g(A) = F(A) - g'(A)
it follows that if ¢y, ¢y, ..., t,_1 are n simple roots of the polynomial f()), then
V(t): By - V(t)" = diag((f'(t:) - 9(t:)i%0). (2.3)

The latter formula appeared in Lander (1974) and can also be found in Heinig and Rost
(1984). On the basis of (2.3) in the next subsection the fast algorithm for multiplication of
transpose Vandermonde matrix by a vector is presented.

2.2 Transpose to Vandermonde matrix and its inverse

For vector t = (t;)y (t; # t; while i # j) set

n—1 n—1
FAO=T[A=t)=A"+>r- X, and g(\)=p— ", (2.4)
1=0 1=0

where ¢ is such that ¢ # t (i = 0,1,...,n — 1). Under these conditions the matrix in the
right-hand side of (2.3) is invertible. Hence, all the matrices in the left-hand side of (2.3)
are also invertible, and moreover

V(t)" =By, - V(t)" - diag((f'(t:) - 9(t:))izo)- (2.5)

Furthermore, matrix By, is the Bezout matrix of two polynomials, one of them having
the special form g(\) = ¢ — A™. This fact allows to receive for By, and for its inverse a

representation involving a factor circulant. To prove this, let us compute the Bezoutian
By (A, i) of the polynomials f(A) and g(\), defined by (2.4) :

S = fw)  f)-p" = A" f(w)
A = — =
n n—1
— @Zri(Ai_l 4 )\i—?u+ +Mi—1) 4 Z Ti()\iun—l 4 )\i—l—lun—? 4o+ )\n—lluli)‘
=1 =0

with r, = 1. From the last identity it can be easily seen that the corresponding Bezout
matrix By g has the special form

eri @ro crc Pra ro+ @ ]
Pro T
By, = : : = Circy(r + pey) - J , (2.6)
Orp—1 - Th—2
L To + 2 T o T'n—2 T'n—1

where J is, as above, the reverse identity matrix. Substituting (2.6) in (2.5), we have
V()" = J - Circy(r + peg) ' - V(t) ' - diag((f'(t:) - g(t:))i=g)- (2.7)
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On the basis of the last formula the following algorithm is proposed.

Algorithm 2.1. Computing the product of transpose Vandermonde matrix with an
arbitrary vector.

I. Preprocessing.

Complexity : «(n) 4+ ¢(n) + ¢(n) + 2nlogn + O(n) flops.
Input : Vector t = (t;)!7 € C" (t; # t; while i # j).

Output : Parameters of the representation V (t) in the form
V(t)" =J-Dy- F-Ay(r+pe)™ - F*- D' - V(t)™" - Dy (2.8)

1. Compute the coefficients of the polynomial f()\) = [Tl (A—#;) = A"+ ry- A
in +(n) flops.

2. Compute in O(n) flops the coefficients of the polynomial f'(A).
3. Evaluate in ¢(n) flops the values f'(¢;) (i =0,1,....,n —1).

4. Evaluate in at most 2nlogn+n flops the values ¢(t;) = p—t (i=0,1,...,n—1)
using, for example, the algorithms from §4.6.3 in Knuth (1969).

5. Compute in n flops the entries of the matrix Dy, = diag((f'(t:;) - g(t:))I=).

6. Set £ =1+ maxo<j<,_1t;. Compute in O(n) flops the numbers & (i = 0,1, ..., n).
Set p = &™ and D, = diag((£)!S)).

7. Compute in O(n) flops the entries of the matrix D).

8. Compute the coordinates of the vector FD,y with y =r + e, in ¢(n) + O(n)

n—1

flops using (BM3), where r = (7;)i—, .
9. Compute in O(n) flops the inverse of the diagonal matrix
Ay (r + pey) = diag(FD,y).
I1. Application to the vector.

Complexity : «(n) + 2¢(n) + O(n) flops.
Input : Vector b € C".
Output : Vector V(t)Tb € C".

1. Compute vector V (t)Tb by (2.8) using (BM2) and (BM3).=5

The product of transposed Vandermonde matrix with an arbitrary matrix can be com-
puted using algorithm 2.1 in
((n)n + 2¢(n)n + O(n?)

flops.



Note that representations of the matrix V()7 in the form of the product of matrix V' (t)~!
by some matrices with lower complexity of multiplication with vectors, could be found in
Heinig and Rost (1984) and Canny, Kaltofen and Yagati (1989). In Canny, Kaltofen and
Yagati (1989), for example, the matrix V()7 is represented in the form

Vi)' =H-V(t), (2.9)

where matrix H = V(t)” - V(t) turned out to be a Hankel matrix. For computing the
entries of H it is proposed in Canny, Kaltofen and Yagati (1989) to interpolate the n-th
degree polynomial from its zeros at n points, and then to solve an equation of the type
Tx = b with Toeplitz matrix 7 from C*"*?". Let 7(n) be as above the complexity of solving
one Toeplitz equation of the form (1.2). Thus, computing the entries of the matrix H in
(2.9) by the scheme in Canny, Kaltofen and Yagati (1989) and afterwards the preparation
of the Hankel matrix H according to (BM5) costs 27(2n) + «(n) + 2¢(n) + O(n) flops. This
complexity exceeds the complexity of preprocessing in the algorithm 2.1. Furthermore, the
appearance of the factor circulant in (2.7) instead of the Hankel matrix in (2.9) is reflected
in the additional economy in 2¢(n) flops at the stage of application to the vector.

Formula (2.7) also enables the proposition of fast algorithm for computing the product
of matrix V(t)~7 by a vector. Moreover, the preprocessing phase consists of computing the
parameters of the representation of V' (t)~7 in the form analogous to the representation (2.8)
of V(t)T and costs

t(n) +e(n) + ¢(n) + 2nlogn + O(n)

flops. Afterwards, the application to the vector costs
£(n) +2¢(n) + O(n)
flops. The product of the matrix V(t)~7 by an arbitrary matrix can be computed in
e(n)n + 2¢(n)n + O(n?)

flops.
Formulas (2.3) and (2.6) yield the following representation for the inverse to a Vander-
monde matrix :

V()" = Circy(r + pey) - - V(8)" - diag((f,(ti) . 290 —1m) )z:_O )

Here, as above, .J stands for the reverse identity matrix, f(\) = [T75 (A—t;) = A"+ i\
and r = (r;)". The last formula can be used for computing the entries of the inverse of
Vandermonde matrix in O(n?) flops.

3 Cauchy matrices and matrices connected with them

By definition, the Cauchy matrix C(s,t) has the form

C’(s,t)z( ! )"‘1

s; — t; 7 =0’
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where s = (s;)I; and t = (¢;)7_, are given vectors from C" such that ¢;,s; (i = 0, 1, ...

are 2n different complex numbers. As in the previous section set

n—1 n—1
=0 =0

where ¢ is such that ¢ #¢? (1 =0,1,...,n — 1). Formula (2.2) yields

f(s:) - g(t)) )

Si—-h

V() By ViR = (

1,j=0

From here follows

(s, t) = diag((ﬁ)j:) V(s)- Bry- V()T diag(<g(1—tz_)>j:).

This equality and (2.5) yields the following representation of the Cauchy matrix :

Cls,t) =g ) ) Vo) V0t 1)

Formula (3.1) enables us to propose of the following algorithm.

Algorithm 3.1. Computing the product of the Cauchy matrix by a vector

I. Preprocessing.
Complexity : «(n) + 2¢(n) + O(n) flops.
Input : Vectors s = (s;)/y and t = (t;)) (t; #t; while i # j).
Output : Parameters of the representation C(s,t) in the form (4.1).

= diag((f(s:))i%y ) - C(s, t) - diag((g(t:))i=

,n—1)

).

(3.1)

. Compute the coefficients of the polynomial f(\) = [T (A — t;) in ¢(n) flops.

. Evaluate in e(n) + O(n) flops the values ﬁ (1=0,1,....,n—1).

1
2
3. Compute in O(n) flops the coefficients of the polynomial f'()).
4. Evaluate in £(n) flops the values f'(¢;) (¢ =0,1,...,n —1).

II. Application to the vector.

Complexity : t(n) +£(n) + O(n) flops.
Input : Vector b € C".
Output : Vector C(s,t)b € C".

1. Compute C(s,t)b by (3.1) using (BM1) and (BM2).2
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In an earlier paper of Gerasoulis (1987) another algorithm for computing the product of
Cauchy matrix with a vector was proposed. Moreover, this algorithm does not restrict itself
to Cauchy matrices and is valid for more general classes of matrices. Gerasoulis algorithm
applied for computing the product C(s, t)b requires 2i(n) + 3e(n) + O(n) flops of which
t(n) 4+ 2¢(n) + O(n) can be incorporated into a preprocessing stage.

Note, the product of C'(s,t) by an arbitrary matrix can be computed using algorithm 2.1
in

v(n)n + e(n)n + O(n?)
flops.

Formula (3.1) also enables the fast algorithms of multiplication with vectors for matrices
C(s,t)", C(s,t)™" and C(s,t)™7 to be elaborated. For example, formula (3.1) implies the
following representation for the inverse of Cauchy matrix :

C(s,t)" = ding( f,(ltz_) ) )V Ve diag((F)).

This formula yields that product of the inverse of Cauchy matrix by a vector can be computed
in

t(n) +e(n) + O(n)

flops after the same preprocessing as in algorithm 3.1. In fact the latter proposition can be
formulated as follows. The system of linear equations with invertible Cauchy matrix can be
solved in O(nlog”n) flops.

4 Determinants of Vandermonde and Cauchy matrices

In the recent paper Pan (1990) an outline of some algorithms for computing up to a sign
the determinants of Vandermonde and Cauchy matrices with real entries is suggested. For
computing the Vandermonde determinant it is proposed therein first to compute using the
algorithm from Canny, Kaltofen and Yagati (1989) the entries of the Hankel matrix H in
(2.9). This step costs 27(2n) + t(n) + O(n) flops. Then compute det H = (det V (t))?.
This seems to be quite expensive. For the determinant of a Cauchy matrix in Pan (1990)
a complicated procedure of reducing this problem to the analogous problem for some close-
to-Toeplitz matrix is proposed. It turned out that well-known formulas lead to simple and
significantly more effective algorithms for computing the determinants of Vandermonde and
Cauchy matrices with complex entries. Indeed, as is well known,

det V(t)= J[ (& —t). (4.1)

0<i<j<n—1

The square of the expression in the right-hand side of (4.1) is, by definition, the discriminant
D(f) of the polynomial f(A) = [T-y (A — t;). It is well known (see, for example, van der

n(n—1)

Warden (1971)) and can easily be seen, that D(f) = (=1)~ = [I’~y f'(t:;). Thus,
2 n(n—1) n—1 /
(detV(£)) = (=15 L F'(t).
=0

=
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This formula enables the following algorithm to be proposed.

Algorithm 4.1. Computing the Vandermonde determinant.

Complexity: ¢(n) + (n) + O(n) flops plus one extraction of a square root.
Input : Vector t = (t;)!7 € C" (t; # t; while i # j).

Output : Value det V (t) up to a sign.

n—1

1. Compute in ¢(n) flops the coefficients of the polynomial f(\) =125 (A — ;).
2. Compute in O(n) flops the coefficients of the polynomial f'()).

3. Evaluate the values f'(t;) (i =0,1,...,n — 1) in &(n) flops.
4
5

n(n—1)

. Compute det (V(t))* = (=1)™ > [I"-2 f'(#;) in O(n) flops.

. Recover det V (t) up to a sign in one operation of the extraction of a square root.z

Furthermore, if all the coordinates of the vector t are real numbers (this situation was
considered in Pan (1990) ), then the explicit expression in the right-hand side of (4.1) allows
in O(n logn) time to come to a conclusion about the sign of V' (t). Indeed, in this case the
sign of V (t) is determined by the quantity of the pairs (¢;,?;) satisfying the condition ¢; > t;
while i < j. Thus, the sign of det V(t) is determined by the number of inversions in the
permutation k = (ko, k1, ..., kn_1), where k; is the position of the element ¢; in the sequence,
which is derived from {t;}7= by the rearrangement of all the elements in increasing order.
To compute this number of inversions, we have to rearrange the two-component sequence
{(t;,i)}?=) in the increasing order of the first components and then extract the second
components into the separate sequence m = (mg, my, ..., m,_1). It is easy to see that m is the
inverse of the permutation k£ and consequently has the same number of inversions. Therefore,
to determine the sign of det V' (t) it remains to compute the number In(m) of inversions in
the permutation m. The algorithm based on these arguments is proposed below. Note that
here we deviate from the rule accepted in the present paper, and estimate the complexity in
terms time, and not in flops. The reason for this is that we use here the algorithms of sorting
and of computing the number of inversions in a permutation. These two algorithms do not
involve float point operations and involve cheaper operations of comparison and exchange.

Algorithm 4.2. Determination of the sign of Vandermonde determinant.
Complexity : O(n logn) time.

Input : Vector t = (t;)!- € R* (t; #t; while i # j).

Output : Sign of det V'(t) .

1. Sort in O(n logn) time the sequence of the pairs n = {(#;,4)}"=, in the increasing
order of the first components, using, for example, an algorithm from §5.2.6 in
Knuth (1973).
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2. For the permutation m, formed from the second components of the sorted se-
quence 7, compute in O(n logn) time the number In(m) of its inversions, using,
for example, the algorithm from Knuth (1973), problem 5.1.1.6.

3. Set sign V/(t) = 1 if the number In(m) is even and sign V(t) = —1 in the opposite

case.=

Furthermore, for the determinant of Cauchy matrix the following expression is well-
known :

det C'(s, t) = o<icj<n—1(55 = 8i) - [o<icj<n—1(ti — ;)
Hogi,jgn—1(8i - tj)
(see, for example Polya and Szego (1972), where it is attributed to Cauchy (1891)). Using
(4.1), the latter formula can be rewritten in the form :

nn-1) - det V(s) - det V(t)
[T f (1) ,
n—1

where as above f(A) = [T (A — ¢;). Using this formula and the algorithm 4.1, one can
compute the value det C'(s,t) up to a sign in

det C'(s,t) = (—1)

(4.2)

2u(n) + 32(n) + O(n)

flops plus one operation of the extraction of a square root.
Furthermore, in the case when s; and t; are real, the formula (4.2) and the algorithm 4.2
allow to determine the sign of the value det C'(s,t) in O(n logn) time.
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