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Abstract

In this paper the problem of complexity of multiplication of a matrix with a vector

is studied for Toeplitz, Hankel, Vandermonde and Cauchy matrices and for matrices

connected with them (i.e. for transpose, inverse and transpose to inverse matrices).

The proposed algorithms have complexities at most O(n log2 n) 
ops and in a number

of cases improve the known estimates. In these algorithms, in a separate preprocessing

phase, are singled out all the actions on the preparation of a given matrix, which

aimed at the reduction of the complexity of the second stage of computations directly

connected with the multiplication by an arbitrary vector. Incidentally, the e�ective

algorithms for computing the Vandermonde determinant and the determinant of a

Cauchy matrix, are given.
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0 Introduction

Let the matrix A 2 Cn�n be given by all its n2 entries. The problem is to compute the

product Ab of a matrix A by input vector b 2 Cn. Using the standard rule of a matrix

times vector multiplication, the above problem can be solved in 2n2 � n 
ops (i.e. 
oat

point operations of addition, subtraction, multiplication and division). In the following

three simple examples the special structure of a matrix enables faster computation of the

product by a vector.

Examples

1) Band matrices.

Let A = (aij)
n�1
i;j=0 be a band matrix with the width of the band � (i.e., by de�nition, aij = 0

while j i� j j> ��1
2
). Obviously, in this case the computing the product Ab costs (2� � 1)n


ops.�

2) Small rank matrices.

Let matrix A 2 Cn�n with rank � 2 R be given in the form of the outer sum of � terms :

A =
�X

m=1

hm � gTm (hm; gm 2 Cn): (0.1)

The representation (0.1) shows thatA can be multiplied by an arbitrary vector in (4��1)n��


ops.�

3) Semiseparable matrices.

Such a matrix A = (aij)
n�1
i;j=0 is de�ned by the equalities

aij =

( P�
m=1 fm;i � gm;i i < j

0 i � j
;

where fm = (fm;i)
n�1
i=0 ; gm = (gm;i)

n�1
i=0 (m = 1; 2; :::; �) are given vectors from Cn. In this

case

A =
�X

m=1

diag(fm) �

2
66666664

0 1 1 � � � 1

0 0 1 � � � 1
...

. . .
. . .

...
...

. . . 1

0 � � � � � � � � � 0

3
77777775
� diag(gm); (0.2)

where by diag(f) is denoted the diagonal matrix, whose entries on the main diagonal equal

the coordinates of the vector f 2 Cn. The product of a semiseparable matrix by an arbitrary

vector can be computed using (0.2) in (4��1)n�� 
ops. Obviously, the analogous estimate

holds for the transpose to the matrices of the form (0.2).�

Let matrix A 2 Cn�n be given. The task is to compute the products Ab0; Ab1; ::: of the

matrix A by input vectors b0;b1; ::: 2 Cn in the smallest possible time. Such a situation

arises naturally in a number of computational problems, for example, when we have to carry

out the iterations with a given matrix. The problem of computing the product of a matrix
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by a matrix can also be solved in the above framework. In the latter case the columns of a

second matrix are interpreted as input vectors.

In accordance with the accepted scheme, we single out all the computations which are

not dependent upon the input vectors b0;b1; ::: Accordingly, the proposed algorithms will

be divided into two separate phases :

I. Preprocessing for matrix A 2 Cn�n,

II. Application to the vector,

The �rst phase also contains the preparation of the given matrix, which enables the second

phase to be accomplished more e�ectively.

In the present paper we embody this scheme and propose a number of fast algorithms for

matrices with a certain structure, namely for transposed Vandermonde matrix, for transpose

to inverse of Vandermonde matrix, for Cauchy matrices and for matrices connected with them

(i.e. for transpose, inverse and transpose to inverse matrices).

1 Background

1.1 Basic algorithms

In this paper a limited number of well known algorithms is used intensively. These algorithms

are listed below and accompanied by the estimates of their complexities. The particular

implementations of these basic algorithms and complexity analysis for them can be found in

various sources (see, for example, Aho, Hopcroft and Ullman (1976)).

(BA1) Evaluation algorithm.

An algorithm of evaluation of a (n�1) degree polynomial at n points. The complexity

of this algorithm will be denoted by "(n). It is well known that

"(n) � O(n log2 n):

(BA2) Interpolation algorithm.

An algorithm of interpolation of a (n � 1) degree polynomial from its values at n

points. The complexity of the interpolation algorithm is denoted by �(n) and, as it is

well known,

�(n) � O(n log2 n):

(BA3) Fast Fourier Transform algorithm.

The discrete Fourier transform of the vector r = (ri)
n�1
i=0 2 Cn is by de�nition the vector

(
Pn�1
k=0 rk!

ik)n�1i=0 2 Cn, where ! is the primitive n-th root from unity. The discrete

Fourier transform can be computed by well known methods, collectively named Fast

Fourier Transform (FFT). It is well known that for the complexity �(n) of computing

one FFT of order n, the following estimate holds

�(n) � O(n logn):
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1.2 Basic matrices

In this subsection some matrices, which are known to have a lower than O(n2) 
ops complex-

ity of multiplication with a vector, are considered. Note that the methods for fast computing

of the products of these basic matrices by vectors are based on the algorithms (BA1) - (BA3).

(BM1) Vandermonde matrix.

By de�nition, the Vandermonde matrix V (t) is the matrix of the form

V (t) =

2
66664
1 t0 � � � tn�10

1 t1 � � � tn�11

...
...

...

1 tn�1 � � � tn�1n�1

3
77775 ; with t = (ti)

n�1
i=0 2 Cn:

Obviously, the problem of computing the product V (t)b of the matrix V (t) by a vector

b = (bi)
n�1
i=0 is equivalent to the problem of evaluation of p(�) =

P
n�1
i=0 bi ��

i at n points

t0; t1; ::: tn�1. Thus, the product V (t)b can be computed using the algorithm (BA1)

in "(n) 
ops.

(BM2) Inverse of Vandermonde matrix.

Consider the problem of application to a vector of the matrix A 2 Cn�n, which is

de�ned as the inverse of the given Vandermonde matrix V (t) (t 2 Cn). It is easy to

see that the product Ab can be computed using the algorithm (BA2). Thus, for the

inverse of Vandermonde matrix, the application to a vector costs �(n) 
ops.

(BM3) Fourier matrix and its inverse.

Let ! = e
2�i
n be primitive n-th root from the unity. Consider the Fourier matrix

F = 1p
n
�V ( ) with = (!i)n�1i=0 and its inverse F�1 = F�, where superscript � means

conjugate transpose. The products Fb and F�b can be computed using the algorithm

(BA3) in �(n) 
ops.

(BM4) Factor circulant.

By Circ'(r) will be denoted '-circulant with the �rst column r = (ri)
n�1
i=0 , i.e. matrix

of the form

Circ'(r) =

2
666666664

r0 'rn�1 � � � � � � 'r1

r1 r0 'rn�1
...

... r1
. . .

. . .
...

...
. . .

. . . 'rn�1
rn�1 � � � � � � r1 r0

3
777777775
:

The matrix Circ1(r) is referred to as a circulant. It is known (see Cline, Plemmons

and Worm (1974)) that the matrix Circ'(r) admits the following decomposition :

Circ'(r) = D�1
' � F� � �'(r) � F �D'; (1.1)

where F is the Fourier matrix, �'(r) = diag(FD'r) and D' = diag((�i)n�1i=0 ) with

� 2 C satisfying the condition �n = '. From (1.1) it follows that if the coordinates of
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the vector = (�i)n�1i=0 2 Cn are given, then the product of the matrix Circ'(r) by an

arbitrary vector can be computed in

2�(n) +O(n)


ops. In this case the preprocessing phase consists of computation of the central factor

�'(r) in the right-hand side of (1.1) and costs

�(n) +O(n)


ops.

(BM5) Toeplitz matrices

The product of Toeplitz matrix A = (ai�j)
n�1
i;j=0 by a vector can be computed by em-

bedding of the matrix A in the circulant of double size. Correspondingly, the amount

of operations is

2�(2n) +O(n) = 4�(n) +O(n)


ops after

�(2n) +O(n) = 2�(n) +O(n)

preprocessing.

(BM6) Inverses of Toeplitz matrices

In computations with the inverses of Toeplitz matrices, the Gohberg-Semencul formula

(see Gohberg and Semencul (1972) or Gohberg and Feldman (1974) ) is useful. This

formula represents the inverse of a Toeplitz matrix in the form of the sum of products

of triangular Toeplitz matrices. Namely, if for the Toeplitz matrix T the equations

Tx = e0; Ty = en�1 (1.2)

with e0 =
h
1 0 � � � 0

iT
, en�1 =

h
0 � � � 0 1

iT
have solutions x = (xi)

n�1
i=0 ,

y = (yi)
n�1
i=0 and x0 6= 0, then T is invertible and

T�1 =
1

x0
(

2
666666664

x0 0 � � � � � � 0

x1 x0
...

... x1
. . .

...
...

. . .
. . . 0

xn�1 � � � � � � x1 x0

3
777777775
�

2
666666664

yn�1 yn�2 � � � � � � y0

0 yn�1 yn�2
...

...
. . .

. . .
...

...
. . . yn�2

0 � � � � � � 0 yn�1

3
777777775
�

�

2
666666664

0 0 � � � � � � 0

y0 0
...

... y0
. . .

...
...

. . .
. . .

...

yn�2 � � � � � � y0 0

3
777777775
�

2
666666664

0 xn�1 � � � � � � x1

0 0 xn�1
...

...
. . .

. . .
...

...
. . . xn�1

0 � � � � � � � � � 0

3
777777775
): (1.3)
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On the basis of formula (1.3) the number of fast algorithms for the inversion of Toeplitz

matrices was elaborated (see Brent, Gustavson and Yun (1980), de Hoog (1987), Chun

and Kailath (1991), where the methods for solving the equations of the form (1.2) are

suggested). Denote by �(n) the complexity of solving one equation of the form (1.2).

According to Brent, Gustavson and Yun (1980), de Hoog (1987), Chun and Kailath

(1991)

�(n) � O(n log2 n):

Thus, if matrix A 2 Cn�n is the inverse of the given Toeplitz matrix, then from the

above arguments follows that after 2�(n) + 8�(n) 
ops preprocessing the product of

A by an arbitrary vector can be computed by (1.3) in 16�(n) + O(n) 
ops. Below we

show how this complexity can be reduced.

If for Toeplitz matrix T 2 Cn�n the equations (1.2) have solutions x = (xi)
n�1
i=0 , y =

(yi)
n�1
i=0 and x0 6= 0, then

T�1 =
1

x0('�  )
(Circ (x) � Circ'(Z'y)� Circ (Z y) � Circ'(x)); (1.4)

where numbers ' and  (6= ') are arbitrary and

Z' =

2
66666664

0 � � � � � � 0 '

1 0 0

0 1
. . .

...
...

. . .
. . .

. . .
...

0 � � � 0 1 0

3
77777775

(' 6= 0)

is the '-cyclic lower shift matrix. Formula (1.4) was obtained in Ammar and Gader

(1990) for positive de�nite Toeplitz matrices and ' = 1;  = �1, and was extended

to the general case in Gohberg and Olshevsky (1992). Note, in the latter paper one

can also �nd other factor circulant decompositions for the inverses of Toeplitz matri-

ces, which are useful in the fast computations with Toeplitz matrices. Furthermore,

representing each factor circulant in the left-hand side of (1.4) in the form of (1.1), we

�nally get

T�1 =
1

x0('�  )
D�1
 � F� � (� (x) � F �D �D

�1
' � F� � �'(Z'y)�

�� (Z y) � F �D �D
�1
' � F� � �'(x)) � F �D'; (1.5)

where F is a Fourier matrix and the diagonal matrices D' and �'(r) (r 2 Cn) are

de�ned as in (BM4). From (1.5) it follows that after

2�(n) + 4�(n) +O(n) (1.6)


ops preprocessing, the product of the inverse of the Toeplitz matrix by an arbitrary

vector can be computed in

6�(n) +O(n) (1.7)
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ops. The last estimate is obtained here without the additional requirement for matrix

A to be Hermitian. In the Hermitian case this result is obtained in the earlier paper

Ammar and Gader (1990). Note, (1.6) and (1.7) imply that the product of the inverse

of Toeplitz matrix by an arbitrary matrix can be computed in 6�(n)n+O(n2) 
ops.

(BM7) Hankel matrices.

Let us recall that an arbitrary Hankel matrix H = (ai+j)
n�1
i;j=0 can be transformed in

the Toeplitz matrix by means of multiplication from the right by the reverse identity

matrix

J =

2
666666664

0 � � � � � � 0 1
... . .

.
1 0

... . .
.

. .
.

. .
. ...

0 1 . .
. ...

1 0 � � � � � � 0

3
777777775
:

Therefore the complexity of the multiplication with a vector for the class of Hankel

matrices coincides with the same complexity for the class of Toeplitz matrices.

2 Transpose to Vandermonde and to inverse of Van-

dermonde matrices

2.1 Relations between Vandermonde matrices and Bezoutians

Let n 2 R be the maximal degree of two polynomials f(�) and g(�), then the bilinear form

Bf;g(�; �) =
f(�) � g(�)� f(�) � g(�)

�� �
=

n�1X
i;j=0

bij�
i�j

is called the Bezoutian of f(�) and g(�). The matrix

Bf;g = (bij)
n�1
i;j=0 ;

whose entries are determined by the coe�cients of the bilinear form Bf;g(�; �), will be referred

to as a Bezout matrix which corresponds to the polynomials f(�) and g(�). Obviously,

h
1 � �2 � � � �n�1

i
�Bf;g �

2
66666664

1

�

�2

...

�n�1

3
77777775
= Bf;g(�; �): (2.1)

The equality (2.1) yields the following useful property of the Bezout matrix :

V (s) �Bf;g � V (t)
T = (Bf;g(si; tj))

n�1
i;j=0 ; (2.2)
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where s = (si)
n�1
i=0 , t = (ti)

n�1
i=0 2 Cn. From (2.2) and obvious equality

Bf;g(�; �) = f 0(�) � g(�)� f(�) � g0(�)

it follows that if t0; t1; :::; tn�1 are n simple roots of the polynomial f(�), then

V (t) �Bf;g � V (t)
T = diag((f 0(ti) � g(ti))

n�1
i=0 ): (2.3)

The latter formula appeared in Lander (1974) and can also be found in Heinig and Rost

(1984). On the basis of (2.3) in the next subsection the fast algorithm for multiplication of

transpose Vandermonde matrix by a vector is presented.

2.2 Transpose to Vandermonde matrix and its inverse

For vector t = (ti)
n�1
i=0 (ti 6= tj while i 6= j) set

f(�) =
n�1Y
i=0

(�� ti) = �n +
n�1X
i=0

ri � �
i; and g(�) = '� �n; (2.4)

where ' is such that ' 6= tni (i = 0; 1; :::; n � 1). Under these conditions the matrix in the

right-hand side of (2.3) is invertible. Hence, all the matrices in the left-hand side of (2.3)

are also invertible, and moreover

V (t)T = B�1
f;g � V (t)

�1 � diag((f 0(ti) � g(ti))
n�1
i=0 ): (2.5)

Furthermore, matrix Bf;g is the Bezout matrix of two polynomials, one of them having

the special form g(�) = ' � �n. This fact allows to receive for Bf;g and for its inverse a

representation involving a factor circulant. To prove this, let us compute the Bezoutian

Bf;g(�; �) of the polynomials f(�) and g(�), de�ned by (2.4) :

Bf;g(�; �) = '
f(�)� f(�)

�� �
�
f(�) � �n � �n � f(�)

�� �
=

= '
nX
i=1

ri(�
i�1 + �i�2�+ ::: + �i�1) +

n�1X
i=0

ri(�
i�n�1 + �i+1�n�2 + :::+ �n�1�i):

with rn = 1. From the last identity it can be easily seen that the corresponding Bezout

matrix Bf;g has the special form

Bf;g =

2
66666664

'r1 'r2 � � � 'rn�1 r0 + '

'r2 . .
.

. .
.

r1
... . .

.
. .
.

. .
. ...

'rn�1 . .
.

. .
.

rn�2
r0 + ' r1 � � � rn�2 rn�1

3
77777775
= Circ'(r+ 'e0) � J ; (2.6)

where J is, as above, the reverse identity matrix. Substituting (2.6) in (2.5), we have

V (t)T = J � Circ'(r+ 'e0)
�1 � V (t)�1 � diag((f 0(ti) � g(ti))

n�1
i=0 ): (2.7)
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On the basis of the last formula the following algorithm is proposed.

Algorithm 2.1. Computing the product of transpose Vandermonde matrix with an

arbitrary vector.

I. Preprocessing.

Complexity : �(n) + "(n) + �(n) + 2n logn +O(n) 
ops.

Input : Vector t = (ti)
n�1
i=0 2 Cn (ti 6= tj while i 6= j):

Output : Parameters of the representation V (t)T in the form

V (t)T = J �D' � F � �'(r+ 'e0)
�1 � F� �D�1

' � V (t)�1 �Df;g: (2.8)

1. Compute the coe�cients of the polynomial f(�) =
Qn�1
i=0 (��ti) = �n+

Pn�1
i=0 ri ��

i

in �(n) 
ops.

2. Compute in O(n) 
ops the coe�cients of the polynomial f 0(�).

3. Evaluate in "(n) 
ops the values f 0(ti) (i = 0; 1; :::; n� 1).

4. Evaluate in at most 2n logn+n 
ops the values g(ti) = '�tni (i = 0; 1; :::; n�1)

using, for example, the algorithms from x4.6.3 in Knuth (1969).

5. Compute in n 
ops the entries of the matrix Df;g = diag((f 0(ti) � g(ti))
n�1
i=0 ).

6. Set � = 1+max0�i�n�1 ti. Compute in O(n) 
ops the numbers �i (i = 0; 1; :::; n).

Set ' = �n and D' = diag((�i)n�1i=0 ).

7. Compute in O(n) 
ops the entries of the matrix D�1
' .

8. Compute the coordinates of the vector FD'y with y = r + 'e0 in �(n) + O(n)


ops using (BM3), where r = (ri)
n�1
i=0 .

9. Compute in O(n) 
ops the inverse of the diagonal matrix

�'(r+ 'e0) = diag(FD'y).

II. Application to the vector.

Complexity : �(n) + 2�(n) +O(n) 
ops.

Input : Vector b 2 Cn.

Output : Vector V (t)Tb 2 Cn.

1. Compute vector V (t)Tb by (2.8) using (BM2) and (BM3).�

The product of transposed Vandermonde matrix with an arbitrary matrix can be com-

puted using algorithm 2.1 in

�(n)n + 2�(n)n+O(n2)


ops.
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Note that representations of the matrix V (t)T in the form of the product of matrix V (t)�1

by some matrices with lower complexity of multiplication with vectors, could be found in

Heinig and Rost (1984) and Canny, Kaltofen and Yagati (1989). In Canny, Kaltofen and

Yagati (1989), for example, the matrix V (t)T is represented in the form

V (t)T = H � V (t)�1; (2.9)

where matrix H = V (t)T � V (t) turned out to be a Hankel matrix. For computing the

entries of H it is proposed in Canny, Kaltofen and Yagati (1989) to interpolate the n-th

degree polynomial from its zeros at n points, and then to solve an equation of the type

Tx = b with Toeplitz matrix T from C2n�2n. Let �(n) be as above the complexity of solving
one Toeplitz equation of the form (1.2). Thus, computing the entries of the matrix H in

(2.9) by the scheme in Canny, Kaltofen and Yagati (1989) and afterwards the preparation

of the Hankel matrix H according to (BM5) costs 2�(2n) + �(n) + 2�(n) +O(n) 
ops. This

complexity exceeds the complexity of preprocessing in the algorithm 2.1. Furthermore, the

appearance of the factor circulant in (2.7) instead of the Hankel matrix in (2.9) is re
ected

in the additional economy in 2�(n) 
ops at the stage of application to the vector.

Formula (2.7) also enables the proposition of fast algorithm for computing the product

of matrix V (t)�T by a vector. Moreover, the preprocessing phase consists of computing the

parameters of the representation of V (t)�T in the form analogous to the representation (2.8)

of V (t)T and costs

�(n) + "(n) + �(n) + 2n logn+O(n)


ops. Afterwards, the application to the vector costs

"(n) + 2�(n) +O(n)


ops. The product of the matrix V (t)�T by an arbitrary matrix can be computed in

"(n)n + 2�(n)n+O(n2)


ops.

Formulas (2.3) and (2.6) yield the following representation for the inverse to a Vander-

monde matrix :

V (t)�1 = Circ'(r+ 'e0) � J � V (t)
T � diag(( 1

f 0(ti) � ('� tni )
)
n�1

i=0
):

Here, as above, J stands for the reverse identity matrix, f(�) =
Qn�1
i=0 (��ti) = �n+

Pn�1
i=0 ri��

i

and r = (ri)
n�1
i=0 . The last formula can be used for computing the entries of the inverse of

Vandermonde matrix in O(n2) 
ops.

3 Cauchy matrices and matrices connected with them

By de�nition, the Cauchy matrix C(s; t) has the form

C(s; t) = ( 1

si � tj
)
n�1

i;j=0
;
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where s = (si)
n�1
i=0 and t = (ti)

n�1
i=0 are given vectors fromCn such that ti; si (i = 0; 1; :::; n�1)

are 2n di�erent complex numbers. As in the previous section set

f(�) =
n�1Y
i=0

(�� ti) = �n +
n�1X
i=0

ri � �
i; g(�) = '� �n;

where ' is such that ' 6= tni (i = 0; 1; :::; n� 1). Formula (2.2) yields

V (s) �Bf;g � V (t)
T = (f(si) � g(tj)

si � tj
)
n�1

i;j=0
= diag((f(si))

n�1
i=0 ) � C(s; t) � diag((g(ti))

n�1
i=0 ):

From here follows

C(s; t) = diag(( 1

f(si)
)
n�1

i=0
) � V (s) �Bf;g � V (t)

T � diag(( 1

g(ti)
)
n�1

i=0
):

This equality and (2.5) yields the following representation of the Cauchy matrix :

C(s; t) = diag(( 1

f(si)
)
n�1

i=0
) � V (s) � V (t)�1 � diag((f 0(ti))

n�1
i=0 ): (3.1)

Formula (3.1) enables us to propose of the following algorithm.

Algorithm 3.1. Computing the product of the Cauchy matrix by a vector

I. Preprocessing.

Complexity : �(n) + 2"(n) +O(n) 
ops.

Input : Vectors s = (si)
n�1
i=0 and t = (ti)

n�1
i=0 (ti 6= tj while i 6= j):

Output : Parameters of the representation C(s; t) in the form (4.1).

1. Compute the coe�cients of the polynomial f(�) =
Qn�1
i=0 (�� ti) in �(n) 
ops.

2. Evaluate in "(n) +O(n) 
ops the values 1

f(si)
(i = 0; 1; :::; n� 1).

3. Compute in O(n) 
ops the coe�cients of the polynomial f 0(�).

4. Evaluate in "(n) 
ops the values f 0(ti) (i = 0; 1; :::; n� 1).

II. Application to the vector.

Complexity : �(n) + "(n) +O(n) 
ops.

Input : Vector b 2 Cn.

Output : Vector C(s; t)b 2 Cn.

1. Compute C(s; t)b by (3.1) using (BM1) and (BM2).�
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In an earlier paper of Gerasoulis (1987) another algorithm for computing the product of

Cauchy matrix with a vector was proposed. Moreover, this algorithm does not restrict itself

to Cauchy matrices and is valid for more general classes of matrices. Gerasoulis algorithm

applied for computing the product C(s; t)b requires 2�(n) + 3"(n) + O(n) 
ops of which

�(n) + 2"(n) +O(n) can be incorporated into a preprocessing stage.

Note, the product of C(s; t) by an arbitrary matrix can be computed using algorithm 2.1

in

�(n)n + "(n)n +O(n2)


ops.

Formula (3.1) also enables the fast algorithms of multiplication with vectors for matrices

C(s; t)T ; C(s; t)�1 and C(s; t)�T to be elaborated. For example, formula (3.1) implies the

following representation for the inverse of Cauchy matrix :

C(s; t)�1 = diag(( 1

f 0(ti)
)
n�1

i=0
) � V (t) � V (s)�1 � diag((f(si))

n�1
i=0 ):

This formula yields that product of the inverse of Cauchy matrix by a vector can be computed

in

�(n) + "(n) +O(n)


ops after the same preprocessing as in algorithm 3.1. In fact the latter proposition can be

formulated as follows. The system of linear equations with invertible Cauchy matrix can be

solved in O(n log2 n) 
ops.

4 Determinants of Vandermonde and Cauchy matrices

In the recent paper Pan (1990) an outline of some algorithms for computing up to a sign

the determinants of Vandermonde and Cauchy matrices with real entries is suggested. For

computing the Vandermonde determinant it is proposed therein �rst to compute using the

algorithm from Canny, Kaltofen and Yagati (1989) the entries of the Hankel matrix H in

(2.9). This step costs 2�(2n) + �(n) + O(n) 
ops. Then compute detH = (detV (t))2.

This seems to be quite expensive. For the determinant of a Cauchy matrix in Pan (1990)

a complicated procedure of reducing this problem to the analogous problem for some close-

to-Toeplitz matrix is proposed. It turned out that well-known formulas lead to simple and

signi�cantly more e�ective algorithms for computing the determinants of Vandermonde and

Cauchy matrices with complex entries. Indeed, as is well known,

detV (t) =
Y

0�i<j�n�1
(tj � ti): (4.1)

The square of the expression in the right-hand side of (4.1) is, by de�nition, the discriminant

D(f) of the polynomial f(�) =
Qn�1
i=0 (� � ti). It is well known (see, for example, van der

Warden (1971)) and can easily be seen, that D(f) = (�1)
n(n�1)

2
Q
n�1
i=0 f

0(ti). Thus,

(detV (t))
2

= (�1)
n(n�1)

2

n�1Y
i=0

f 0(ti):

12



This formula enables the following algorithm to be proposed.

Algorithm 4.1. Computing the Vandermonde determinant.

Complexity: �(n) + "(n) +O(n) 
ops plus one extraction of a square root.

Input : Vector t = (ti)
n�1
i=0 2 Cn (ti 6= tj while i 6= j):

Output : Value detV (t) up to a sign.

1. Compute in �(n) 
ops the coe�cients of the polynomial f(�) =
Qn�1
i=0 (�� ti).

2. Compute in O(n) 
ops the coe�cients of the polynomial f 0(�).

3. Evaluate the values f 0(ti) (i = 0; 1; :::; n� 1) in "(n) 
ops.

4. Compute det (V (t))
2
= (�1)

n(n�1)

2
Q
n�1
i=0 f

0(ti) in O(n) 
ops.

5. Recover det V (t) up to a sign in one operation of the extraction of a square root.�

Furthermore, if all the coordinates of the vector t are real numbers (this situation was

considered in Pan (1990) ), then the explicit expression in the right-hand side of (4.1) allows

in O(n logn) time to come to a conclusion about the sign of V (t). Indeed, in this case the

sign of V (t) is determined by the quantity of the pairs (ti; tj) satisfying the condition ti > tj
while i < j. Thus, the sign of detV (t) is determined by the number of inversions in the

permutation k = (k0; k1; :::; kn�1), where ki is the position of the element ti in the sequence,

which is derived from ftig
n�1
i=0 by the rearrangement of all the elements in increasing order.

To compute this number of inversions, we have to rearrange the two-component sequence

f(ti; i)g
n�1
i=0 in the increasing order of the �rst components and then extract the second

components into the separate sequence m = (m0; m1; :::; mn�1). It is easy to see thatm is the

inverse of the permutation k and consequently has the same number of inversions. Therefore,

to determine the sign of detV (t) it remains to compute the number In(m) of inversions in

the permutation m. The algorithm based on these arguments is proposed below. Note that

here we deviate from the rule accepted in the present paper, and estimate the complexity in

terms time, and not in 
ops. The reason for this is that we use here the algorithms of sorting

and of computing the number of inversions in a permutation. These two algorithms do not

involve 
oat point operations and involve cheaper operations of comparison and exchange.

Algorithm 4.2. Determination of the sign of Vandermonde determinant.

Complexity : O(n logn) time.

Input : Vector t = (ti)
n�1
i=0 2 Rn (ti 6= tj while i 6= j):

Output : Sign of detV (t) .

1. Sort in O(n logn) time the sequence of the pairs � = f(ti; i)g
n�1
i=0 in the increasing

order of the �rst components, using, for example, an algorithm from x5.2.6 in

Knuth (1973).
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2. For the permutation m, formed from the second components of the sorted se-

quence �, compute in O(n logn) time the number In(m) of its inversions, using,

for example, the algorithm from Knuth (1973), problem 5.1.1.6.

3. Set sign V (t) = 1 if the number In(m) is even and sign V (t) = �1 in the opposite

case.�

Furthermore, for the determinant of Cauchy matrix the following expression is well-

known :

detC(s; t) =

Q
0�i<j�n�1(sj � si) �

Q
0�i<j�n�1(ti � tj)Q

0�i;j�n�1(si � tj)

(see, for example Polya and Szego (1972), where it is attributed to Cauchy (1891)). Using

(4.1), the latter formula can be rewritten in the form :

detC(s; t) = (�1)
n(n�1)

2 �
detV (s) � detV (t)Qn�1

i=0 f(si)
; (4.2)

where as above f(�) =
Q
n�1
i=0 (� � ti). Using this formula and the algorithm 4.1, one can

compute the value detC(s; t) up to a sign in

2�(n) + 3"(n) +O(n)


ops plus one operation of the extraction of a square root.

Furthermore, in the case when si and ti are real, the formula (4.2) and the algorithm 4.2

allow to determine the sign of the value detC(s; t) in O(n logn) time.
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