
6 Orthogonality and
Least Squares

INTRODUCTORY EXAMPLE

The North American Datum
and GPS Navigation
Imagine	starting	a	massive	project	that	you	estimate	will
take	ten	years	and	require	the	efforts	of	scores	of	people
to	construct	and	solve	a	1,800,000	by	900,000	system
of	linear	equations. That	is	exactly	what	the	National
Geodetic	Survey	did	in	1974, when	it	set	out	to	update
the	North	American	Datum	(NAD)—a	network	of	268,000
precisely	located	reference	points	that	span	the	entire	North
American	continent, together	with	Greenland, Hawaii, the
Virgin	Islands, Puerto	Rico, and	other	Caribbean	islands.

The	recorded	latitudes	and	longitudes	in	the	NAD
must	be	determined	to	within	a	few	centimeters	because
they	form	the	basis	for	all	surveys, maps, legal	property
boundaries, and	layouts	of	civil	engineering	projects
such	as	highways	and	public	utility	lines. However,
more	than	200,000	new	points	had	been	added	to	the
datum	since	the	last	adjustment	in	1927, and	errors	had
gradually	accumulated	over	the	years, due	to	imprecise
measurements 	and	shifts 	 in 	 the 	earth’s 	crust. Data
gathering	for	the	NAD readjustment	was	completed	in
1983.

The	system	of	equations	for	the	NAD had	no	solution
in	the	ordinary	sense, but	rather	had	a least-squares
solution, which	assigned	latitudes	and	longitudes	to	the
reference	points	in	a	way	that	corresponded	best	to	the	1.8
million	observations. The	least-squares	solution	was	found
in	1986	by	solving	a	related	system	of	so-called

normal	equations, which	involved	928,735	equations	in
928,735	variables.1

More	recently, knowledge	of	reference	points	on	the
ground	has	become	crucial	for	accurately	determining
the	locations	of	satellites	in	the	satellite-based Global
Positioning	System	(GPS).	A GPS satellite	calculates	its
position	relative	to	the	earth	by	measuring	the	time	it	takes
for	signals	to	arrive	from	three	ground	transmitters. To	do
this, the	satellites	use	precise	atomic	clocks	that	have	been
synchronized	with	ground	stations	(whose	locations	are
known	accurately	because	of	the	NAD).

The Global	Positioning	System is 	used	both	for
determining	the	locations	of	new	reference	points	on	the
ground	and	for	finding	a	user’s	position	on	the	ground
relative	to	established	maps. When	a	car	driver	(or	a
mountain	climber)	turns	on	a	GPS receiver, the	receiver
measures	the	relative	arrival	times	of	signals	from	at
least	three	satellites. This	information, together	with	the
transmitted	data	about	the	satellites’	locations	and	message
times, is	used	to	adjust	the	GPS receiver’s	time	and	to
determine	its	approximate	location	on	the	earth. Given
information	from	a	fourth	satellite, the	GPS receiver	can
even	establish	its	approximate	altitude.

1A mathematical	discussion	of	the	solution	strategy	(along	with	details
of	the	entire	NAD project)	appears	in North	American	Datum	of	1983,
Charles	R.	Schwarz	(ed.), National	Geodetic	Survey, National	Oceanic
and	Atmospheric	Administration	(NOAA) Professional	Paper	NOS 2,
1989.
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330 CHAPTER 6 Orthogonality and Least Squares

Both	the	NAD and	GPS problems	are	solved	by	finding
a	vector	that	“approximately	satisfies”	an	inconsistent

system	of	equations. A careful	explanation	of	this	apparent
contradiction	will	require	ideas	developed	in	the	first	five
sections	of	this	chapter.

WEB

In	order	to	find	an	approximate	solution	to	an	inconsistent	system	of	equations	that	has
no	actual	solution, a	well-defined	notion	of	nearness	is	needed. Section 6.1	introduces
the	concepts	of	distance	and	orthogonality	in	a	vector	space. Sections 6.2	and	6.3	show
how	orthogonality	can	be	used	to	identify	the	point	within	a	subspace W that	is	nearest
to	a	point y lying	outside	of W . By	taking W to	be	the	column	space	of	a	matrix,
Section 6.5	develops	a	method	for	producing	approximate	(“least-squares”)	solutions
for	inconsistent	linear	systems, such	as	the	system	solved	for	the	NAD report.

Section 6.4	provides	another	opportunity	to	see	orthogonal	projections	at	work,
creating	a	matrix	factorization	widely	used	in	numerical	linear	algebra. The	remaining
sections	examine	some	of	the	many	least-squares	problems	that	arise	in	applications,
including	those	in	vector	spaces	more	general	than R

n.

6.1 INNER PRODUCT, LENGTH, AND ORTHOGONALITY

Geometric	concepts	of	length, distance, and	perpendicularity, which	are	well	known	for
R

2 and R
3, are	defined	here	for R

n. These	concepts	provide	powerful	geometric	tools
for	solving	many	applied	problems, including	the	least-squares	problems	mentioned
above. All	three	notions	are	defined	in	terms	of	the	inner	product	of	two	vectors.

The Inner Product
If u and v are	vectors	in R

n, then	we	regard u and v as n � 1 matrices. The	transpose
uT is	a 1 � n matrix, and	the	matrix	product uT v is	a 1 � 1 matrix, which	we	write	as
a	single	real	number	(a	scalar)	without	brackets. The	number uT v is	called	the inner
product of u and v, and	often	it	is	written	as u�v. This	inner	product, mentioned	in	the
exercises	for	Section 2.1, is	also	referred	to	as	a dot	product. If
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EXAMPLE 1 Compute u�v and v�u for u D

2

4

2

�5

�1

3

5 and v D

2
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3
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�3

3

5.

SOLUTION

u�v D uT v D Œ 2 �5 �1 �

2

4

3

2

�3

3

5 D .2/.3/ C .�5/.2/ C .�1/.�3/ D �1

v�u D vT u D Œ 3 2 �3 �

2

4

2

�5

�1

3

5 D .3/.2/ C .2/.�5/ C .�3/.�1/ D �1

It	is	clear	from	the	calculations	in	Example 1	why u�v D v�u. This	commutativity
of	the	inner	product	holds	in	general. The	following	properties	of	the	inner	product
are	easily	deduced	from	properties	of	the	transpose	operation	in	Section 2.1. (See
Exercises 21	and	22	at	the	end	of	this	section.)

THEOREM 1 Let u, v, and w be	vectors	in R
n, and	let c be	a	scalar. Then

a. u�v D v�u
b. .u C v/�w D u�w C v�w
c. .cu/�v D c.u�v/ D u�.cv/

d. u�u � 0, and u�u D 0 if	and	only	if u D 0

Properties	(b)	and	(c)	can	be	combined	several	times	to	produce	the	following	useful
rule:

.c1u1 C � � � C cpup/�w D c1.u1 �w/ C � � � C cp.up �w/

The Length of a Vector
If v is	in R

n, with	entries v1; : : : ; vn, then	the	square	root	of v�v is	defined	because v�v
is	nonnegative.

DEF IN I T I ON The length (or norm)	of v is	the	nonnegative	scalar kvk defined	by

kvk D
p
v�v D

q

v2
1 C v2

2 C � � � C v2
n; and kvk2 D v�v

Suppose v is	in R
2, say, v D

�

a

b

�

. If	we	identify v with	a	geometric	point	in	the

|a|

|b|

x
1

x
2

(a, b)

a2 + b2√

0

FIGURE 1

Interpretation	of kvk as	length.

plane, as	usual, then kvk coincides	with	the	standard	notion	of	the	length	of	the	line
segment	from	the	origin	to v. This	follows	from	the	Pythagorean	Theorem	applied	to	a
triangle	such	as	the	one	in	Fig. 1.

A similar	calculation	with	the	diagonal	of	a	rectangular	box	shows	that	the	definition
of	length	of	a	vector v in R

3 coincides	with	the	usual	notion	of	length.
For	any	scalar c, the	length	of cv is jcj times	the	length	of v. That	is,

kcvk D jcjkvk

(To	see	this, compute kcvk2 D .cv/� .cv/ D c2v�v D c2kvk2 and	take	square	roots.)
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A vector	whose	length	is	1	is	called	a unit	vector. If	we divide a	nonzero	vector v
by	its	length—that	is, multiply	by 1=kvk—we	obtain	a	unit	vector u because	the	length
of u is .1=kvk/kvk. The	process	of	creating u from v is	sometimes	called normalizing
v, and	we	say	that u is in	the	same	direction as v.

Several	examples	that	follow	use	the	space-saving	notation	for	(column)	vectors.

EXAMPLE 2 Let v D .1; �2; 2; 0/. Find	a	unit	vector u in	the	same	direction	as v.

SOLUTION First, compute	the	length	of v:

kvk2 D v�v D .1/2 C .�2/2 C .2/2 C .0/2 D 9

kvk D
p

9 D 3

Then, multiply v by 1=kvk to	obtain

u D 1

kvkv D 1

3
v D 1
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To	check	that kuk D 1, it	suffices	to	show	that kuk2 D 1.

kuk2 D u�u D
�

1
3

�2 C
�

� 2
3

�2 C
�

2
3

�2 C .0/2

D 1
9

C 4
9

C 4
9

C 0 D 1

EXAMPLE 3 Let W be	the	subspace	of R
2 spanned	by x D . 2

3
; 1/. Find	a	unit

vector z that	is	a	basis	for W .

SOLUTION W consists	of	all	multiples	of x, as	in	Fig. 2(a). Any	nonzero	vector	in W

is	a	basis	for W . To	simplify	the	calculation, “scale” x to	eliminate	fractions. That	is,
multiply x by	3	to	get

y D
�

2

3

�

Now	compute kyk2 D 22 C 32 D 13, kyk D
p

13, and	normalize y to	get

z D 1p
13

�

2

3

�

D
�

2=
p

13

3=
p

13

�

See	Fig. 2(b). Another	unit	vector	is .�2=
p

13; �3=
p

13/.
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FIGURE 2

Normalizing	a	vector	to	produce	a
unit	vector.

Distance in R
n

We	are	ready	now	to	describe	how	close	one	vector	is	to	another. Recall	that	if a and b

are	real	numbers, the	distance	on	the	number	line	between a and b is	the	number ja � bj.
Two	examples	are	shown	in	Fig. 3. This	definition	of	distance	inR has	a	direct	analogue
in R

n.

|2 – 8| = |–6| = 6   or   |8 – 2| = |6| = 6 |(–3) – 4| = |–7| = 7   or   |4 – (–3)| = |7| = 7

6 units apart

a b a b

7 units apart

1 32 4 5 6 7 8 9 1 30 2–1–3 –2 4 5

FIGURE 3 Distances	in R.
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DEF IN I T I ON For u and v in R
n, the distance	between	u	and	v, written	as dist.u; v/, is	the

length	of	the	vector u � v. That	is,

dist.u; v/ D ku � vk

In R
2 and R

3, this	definition	of	distance	coincides	with	the	usual	formulas	for	the
Euclidean	distance	between	two	points, as	the	next	two	examples	show.

EXAMPLE 4 Compute	the	distance	between	the	vectors u D .7; 1/ and v D .3; 2/.

SOLUTION Calculate

u � v D
�

7

1

�

�
�

3

2

�

D
�

4

�1

�

ku � vk D
p

42 C .�1/2 D
p

17

The	vectors u, v, and u � v are	shown	in	Fig. 4. When	the	vector u � v is	added
to v, the	result	is u. Notice	that	the	parallelogram	in	Fig. 4	shows	that	the	distance	from
u to v is	the	same	as	the	distance	from u � v to 0.

||u – v||

x
1

x
2

v

u

u – v

–v

1

1

FIGURE 4 The	distance	between u and v is
the	length	of u � v.

EXAMPLE 5 If u D .u1; u2; u3/ and v D .v1; v2; v3/, then

dist.u; v/ D ku � vk D
p

.u � v/�.u � v/

D
p

.u1 � v1/2 C .u2 � v2/2 C .u3 � v3/2

Orthogonal Vectors
The	rest	of	this	chapter	depends	on	the	fact	that	the	concept	of	perpendicular	lines	in

||u –(– v)||

||u – v||

v

0

u

–v

FIGURE 5

ordinary	Euclidean	geometry	has	an	analogue	in R
n.

Consider R
2 or R

3 and	two	lines	through	the	origin	determined	by	vectors u and v.
The	two	lines	shown	in	Fig. 5	are	geometrically	perpendicular	if	and	only	if	the	distance
from u to v is	the	same	as	the	distance	from u to �v. This	is	the	same	as	requiring	the
squares	of	the	distances	to	be	the	same. Now

Œ dist.u; �v/ �
2 D ku � .�v/k2 D ku C vk2

D .u C v/� .u C v/

D u�.u C v/ C v� .u C v/ Theorem 1(b)
D u�u C u�v C v�u C v�v Theorem 1(a), (b)

D kuk2 C kvk2 C 2u�v Theorem 1(a) (1)
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The	same	calculations	with v and �v interchanged	show	that
Œdist.u; v/�2 D kuk2 C k � vk2 C 2u� .�v/

D kuk2 C kvk2 � 2u�v
The	two	squared	distances	are	equal	if	and	only	if 2u�v D �2u�v, which	happens	if	and
only	if u�v D 0.

This	calculation	shows	that	when	vectors u and v are	identified	with	geometric
points, the	corresponding	lines	through	the	points	and	the	origin	are	perpendicular	if
and	only	if u�v D 0. The	following	definition	generalizes	to R

n this	notion	of	perpen-
dicularity	(or orthogonality, as	it	is	commonly	called	in	linear	algebra).

DEF IN I T I ON Two	vectors u and v in R
n are orthogonal (to	each	other)	if u�v D 0.

Observe	that	the	zero	vector	is	orthogonal	to	every	vector	in R
n because 0T v D 0

for	all v.
The	next	theorem	provides	a	useful	fact	about	orthogonal	vectors. The	proof	fol-

lows	immediately	from	the	calculation	in	(1)	above	and	the	definition	of	orthogonality.
The	right	triangle	shown	in	Fig. 6	provides	a	visualization	of	the	lengths	that	appear	in
the	theorem.

THEOREM 2 The Pythagorean Theorem

Two	vectors u and v are	orthogonal	if	and	only	if ku C vk2 D kuk2 C kvk2.

Orthogonal Complements
To	provide	practice	using	inner	products, we	introduce	a	concept	here	that	will	be	of	use
in	Section 6.3	and	elsewhere	in	the	chapter. If	a	vector z is	orthogonal	to	every	vector
in	a	subspace W of R

n, then z is	said	to	be orthogonal	to W . The	set	of	all	vectors z
that	are	orthogonal	to W is	called	the orthogonal	complement of W and	is	denoted	by
W ? (and	read	as	“W perpendicular”	or	simply	“W perp”).

v

u + v

||u + v|| u

||v||

||u||

0

FIGURE 6

EXAMPLE 6 Let W be	a	plane	through	the	origin	in R
3, and	let L be	the	line

through	the	origin	and	perpendicular	to W . If z and w are	nonzero, z is	on L, and

w

z
L

W

0

FIGURE 7

A plane	and	line	through 0 as
orthogonal	complements.

w is	in W , then	the	line	segment	from 0 to z is	perpendicular	to	the	line	segment	from 0
to w; that	is, z�w D 0. See	Fig. 7. So	each	vector	on L is	orthogonal	to	every w in W .
In	fact, L consists	of all vectors	that	are	orthogonal	to	the w’s	in W , and W consists	of
all	vectors	orthogonal	to	the z’s	in L. That	is,

L D W ? and W D L?

The	following	two	facts	about W ?, with W a	subspace	of R
n, are	needed	later

in	the	chapter. Proofs	are	suggested	in	Exercises 29	and	30. Exercises 27–31	provide
excellent	practice	using	properties	of	the	inner	product.

1. A vector x is	in W ? if	and	only	if x is	orthogonal	to	every	vector	in	a	set	that
spans W .

2. W ? is	a	subspace	of R
n.
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The	next	theorem	and	Exercise 31	verify	the	claims	made	in	Section 4.6	concerning
the	subspaces	shown	in	Fig. 8. (Also	see	Exercise 28	in	Section 4.6.)

A

0 0

Row A

Nul A

Col A

Nul A
T

FIGURE 8 The	fundamental	subspaces	determined
by	an m � n matrix A.

THEOREM 3 Let A be	an m � n matrix. The	orthogonal	complement	of	the	row	space	of A is
the	null	space	of A, and	the	orthogonal	complement	of	the	column	space	of A is
the	null	space	of AT :

.RowA/? D NulA and .ColA/? D NulAT

PROOF The	row–column	rule	for	computing Ax shows	that	if x is	in NulA, then x is
orthogonal	to	each	row	of A (with	the	rows	treated	as	vectors	in R

n/. Since	the	rows
of A span	the	row	space, x is	orthogonal	to RowA. Conversely, if x is	orthogonal	to
RowA, then x is	certainly	orthogonal	to	each	row	of A, and	hence Ax D 0. This	proves
the	first	statement	of	the	theorem. Since	this	statement	is	true	for	any	matrix, it	is	true
for AT . That	is, the	orthogonal	complement	of	the	row	space	of AT is	the	null	space	of
AT . This	proves	the	second	statement, because RowAT D ColA.

Angles in R
2 and R

3 (Optional)
If u and v are	nonzero	vectors	in	eitherR

2 orR
3, then	there	is	a	nice	connection	between

their	inner	product	and	the	angle # between	the	two	line	segments	from	the	origin	to	the
points	identified	with u and v. The	formula	is

u�v D kuk kvk cos# (2)

To	verify	this	formula	for	vectors	inR
2, consider	the	triangle	shown	in	Fig. 9, with	sides

of	lengths kuk, kvk, and ku � vk. By	the	law	of	cosines,
ku � vk2 D kuk2 C kvk2 � 2kuk kvk cos#

(u
1
, u

2
)

(v
1
, v

2
)

||u – v||

||v||

||u|| �

FIGURE 9 The	angle	between	two	vectors.
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which	can	be	rearranged	to	produce

kuk kvk cos# D 1

2

�

kuk2 C kvk2 � ku � vk2
�

D 1

2

�

u2
1 C u2

2 C v2
1 C v2

2 � .u1 � v1/2 � .u2 � v2/2
�

D u1v1 C u2v2

D u�v

The	verification	for R
3 is	similar. When n > 3, formula (2)	may	be	used	to define the

angle	between	two	vectors	in R
n. In	statistics, for	instance, the	value	of cos# defined

by	(2)	for	suitable	vectors u and v is	what	statisticians	call	a correlation	coefficient.

PRACTICE PROBLEMS

Let a D
�

�2

1

�

, b D
�

�3

1

�

, c D

2

4

4=3

�1

2=3

3

5, and d D

2

4

5

6

�1

3

5.

1. Compute
a�b
a�a

and
�a�b
a�a

�

a.

2. Find	a	unit	vector u in	the	direction	of c.
3. Show	that d is	orthogonal	to c.
4. Use	the	results	of	Practice	Problems 2	and	3	to	explain	why dmust	be	orthogonal	to

the	unit	vector u.

6.1 EXERCISES
Compute	the	quantities	in	Exercises	1–8	using	the	vectors

u D
�

�1

2

�

, v D
�

4

6

�

, w D

2

4

3

�1

�5

3

5, x D

2

4

6

�2

3

3

5

1. u �u, v �u, and v �u
u �u

2. w �w, x �w, and x �w
w �w

3. 1

w �w
w 4. 1

u �u
u

5.
�u �v
v �v

�

v 6.
�x �w
x � x

�

x

7. kwk 8. kxk

In	Exercises	9–12, find	a	unit	vector	in	the	direction	of	the	given
vector.

9.
�

�30

40

�

10.

2

4

�6

4

�3

3

5

11.

2

4

7=4

1=2

1

3

5 12.
�

8=3

2

�

13. Find	the	distance	between x D
�

10

�3

�

and y D
�

�1

�5

�

.

14. Find	the	distance	between u D

2

4

0

�5

2

3

5 and z D

2

4

�4

�1

8

3

5.

Determine	which	pairs	of	vectors	in	Exercises	15–18	are	orthog-
onal.

15. a D
�

8

�5

�

, b D
�

�2

�3

�

16. u D

2

4

12

3

�5

3

5, v D

2

4

2

�3

3

3

5

17. u D

2

6
6
4

3

2

�5

0

3

7
7
5
, v D

2

6
6
4

�4

1

�2

6

3

7
7
5

18. y D

2

6
6
4

�3

7

4

0

3

7
7
5
, z D

2

6
6
4

1

�8

15

�7

3

7
7
5

In	Exercises	19	and	20, all	vectors	are	inR
n. Mark	each	statement

True	or	False. Justify	each	answer.

19. a. v �v D kvk2.
b. For	any	scalar c, u � .cv/ D c.u �v/.
c. If	the	distance	from u to v equals	the	distance	from u to

�v, then u and v are	orthogonal.
d. For	a	square	matrix A, vectors	in ColA are	orthogonal	to

vectors	in NulA.
e. If 	 vectors v1; : : : ; vp span 	 a 	 subspace W and 	 if x is

orthogonal	to	each vj for j D 1; : : : ; p, then x is	in W ?.
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20. a. u �v � v �u D 0.
b. For	any	scalar c, kcvk D ckvk.
c. If x is	orthogonal	to	every	vector	in	a	subspace W , then x

is	in W ?.
d. If kuk2 C kvk2 D ku C vk2, then u and v are	orthogonal.
e. For	an m � n matrix A, vectors	in	the	null	space	of A are

orthogonal	to	vectors	in	the	row	space	of A.
21. Use	the	transpose	definition	of	the	inner	product	to	verify

parts	(b)	and	(c)	of	Theorem 1. Mention	the	appropriate	facts
from	Chapter 2.

22. Let u D .u1; u2; u3/. Explain 	why u �u � 0. When 	 is
u �u D 0?

23. Let u D

2

4

2

�5

�1

3

5 and v D

2

4

�7

�4

6

3

5. Compute	and	compare

u �v, kuk2, kvk2, and ku C vk2. Do	not	use the	Pythagorean
Theorem.

24. Verify	the parallelogram	law for	vectors u and v in R
n:

ku C vk2 C ku � vk2 D 2kuk2 C 2kvk2

25. Let v D
�

a

b

�

. Describe	the	set H of	vectors
�

x

y

�

that	are

orthogonal	to v. [Hint: Consider v D 0 and v ¤ 0.]

26. Let u D

2

4

5

�6

7

3

5, and	let W be	the	set	of	all x in R
3 such	that

u �x D 0. What	theorem in	Chapter 4	can	be	used	to	show	that
W is	a	subspace	of R

3? Describe W in	geometric	language.
27. Suppose	a	vector y is	orthogonal	to	vectors u and v. Show

that y is	orthogonal	to	the	vector u C v.
28. Suppose y is 	orthogonal	 to u and v. Show	that y is 	or-

thogonal	to	every w in Span fu; vg. [Hint: An	arbitrary w
in Span fu; vg has	the	form w D c1u C c2v. Show	that y is
orthogonal	to	such	a	vector w.]

Span{u, v}

u

w

v
y

0

29. Let W D Span fv1; : : : ; vpg. Show	that	if x is	orthogonal	to
each vj , for 1 � j � p, then x is	orthogonal	to	every	vector
in W .

30. Let W be	a	subspace	of R
n, and	let W ? be	the	set	of	all

vectors	orthogonal	to W . Show	that W ? is	a	subspace	of R
n

using	the	following	steps.
a. Take z in W ?, and	let u represent	any	element	of W .

Then z �u D 0. Take	any	scalar c and	show	that cz is
orthogonal	to u. (Since u was	an	arbitrary	element	of W ,
this	will	show	that cz is	in W ?.)

b. Take z1 and z2 in W ?, and	let u be	any	element	of W .
Show	that z1 C z2 is 	orthogonal	 to u. What	can	you
conclude	about z1 C z2? Why?

c. Finish	the	proof	that W ? is	a	subspace	of R
n.

31. Show	that	if x is	in	both W and W ?, then x D 0.

32. [M] Construct	a	pair u, v of	random	vectors	in R
4, and	let

A D

2

6
6
4

:5 :5 :5 :5

:5 :5 �:5 �:5

:5 �:5 :5 �:5

:5 �:5 �:5 :5

3

7
7
5

a. Denote 	 the 	 columns 	 of A by a1; : : : ; a4. Com-
pute 	 the 	 length 	of 	 each 	 column, and 	 compute a1 �a2,
a1 �a3; a1 �a4; a2 �a3; a2 �a4, and a3 �a4.

b. Compute	and	compare	the	lengths	of u, Au, v, and Av.
c. Use	equation	(2)	in	this	section	to	compute	the	cosine	of

the	angle	between u and v. Compare	this	with	the	cosine
of	the	angle	between Au and Av.

d. Repeat	parts	(b)	and	(c)	for	two	other	pairs	of	random
vectors. What	do	you	conjecture	about	the	effect	of A on
vectors?

33. [M] Generate	random	vectors x, y, and v in R
4 with	integer

entries	(and v ¤ 0), and	compute	the	quantities
�x �v
v �v

�

v;
�y �v
v �v

�

v;
.x C y/�v

v �v
v;

.10x/�v
v �v

v

Repeat	the	computations	with	new	random	vectors x and
y. What	do	you	conjecture	about	the	mapping x 7! T .x/ D
�x �v
v �v

�

v (for v ¤ 0)? Verify	your	conjecture	algebraically.

34. [M] Let A D

2

6
6
6
6
4

�6 3 �27 �33 �13

6 �5 25 28 14

8 �6 34 38 18

12 �10 50 41 23

14 �21 49 29 33

3

7
7
7
7
5

. Construct

a 	matrix N whose	columns	form	a 	basis 	 for NulA, and
construct	a	matrixR whose rows form	a	basis	for RowA (see
Section	4.6	for	details). Perform	a	matrix	computation	with
N and R that	illustrates	a	fact	from	Theorem	3.
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SOLUTIONS TO PRACTICE PROBLEMS

1. a�b D 7, a�a D 5. Hence
a�b
a�a

D 7

5
, and

�a�b
a�a

�

a D 7

5
a D

�

�14=5

7=5

�

.

2. Scale c, multiplying	by	3	to	get y D

2

4

4

�3

2

3

5. Compute kyk2 D 29 and kyk D
p

29.

The	unit	vector	in	the	direction	of	both c and y is u D 1

kyky D

2

4

4=
p

29

�3=
p

29

2=
p

29

3

5.

3. d is	orthogonal	to c, because

d�c D

2

4

5

6

�1

3

5�

2

4

4=3

�1

2=3

3

5 D 20

3
� 6 � 2

3
D 0

4. d is	orthogonal	to u because u has	the	form kc for	some k, and
d�u D d� .kc/ D k.d�c/ D k.0/ D 0

6.2 ORTHOGONAL SETS

A set	of	vectors fu1; : : : ;upg inR
n is	said	to	be	an orthogonal	set if	each	pair	of	distinct

vectors	from	the	set	is	orthogonal, that	is, if ui �uj D 0 whenever i ¤ j .

EXAMPLE 1 Show	that fu1; u2; u3g is	an	orthogonal	set, where

u1 D

2

4

3

1

1

3

5; u2 D

2

4

�1

2

1

3

5; u3 D

2

4

�1=2

�2

7=2

3

5

SOLUTION Consider	the	three	possible	pairs	of	distinct	vectors, namely, fu1; u2g,
fu1; u3g, and fu2;u3g.

u1 �u2 D 3.�1/ C 1.2/ C 1.1/ D 0

u1 �u3 D 3
�

� 1
2

�

C 1.�2/ C 1
�

7
2

�

D 0

u2 �u3 D �1
�

� 1
2

�

C 2.�2/ C 1
�

7
2

�

D 0

Each	pair	of	distinct	vectors	is	orthogonal, and	so fu1; u2; u3g is	an	orthogonal	set. See
Fig. 1; the	three	line	segments	there	are	mutually	perpendicular.

x
1

x
2

x
3

u
1

u
2

u
3

FIGURE 1

THEOREM 4 If S D fu1; : : : ; upg is	an	orthogonal	set	of	nonzero	vectors	in R
n, then S is

linearly	independent	and	hence	is	a	basis	for	the	subspace	spanned	by S .

PROOF If 0 D c1u1 C � � � C cpup for	some	scalars c1; : : : ; cp , then
0 D 0�u1 D .c1u1 C c2u2 C � � � C cpup/�u1

D .c1u1/�u1 C .c2u2/�u1 C � � � C .cpup/�u1

D c1.u1 � u1/ C c2.u2 � u1/ C � � � C cp.up � u1/

D c1.u1 � u1/

because u1 is	orthogonal	to u2; : : : ; up . Since u1 is	nonzero, u1 �u1 is	not	zero	and	so
c1 D 0. Similarly, c2; : : : ; cp must	be	zero. Thus S is	linearly	independent.
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DEF IN I T I ON An orthogonal	basis for	a	subspace W of R
n is	a	basis	for W that	is	also	an

orthogonal	set.

The	next	theorem	suggests	why	an	orthogonal	basis	is	much	nicer	than	other	bases.
The	weights	in	a	linear	combination	can	be	computed	easily.

THEOREM 5 Let fu1; : : : ; upg be	an	orthogonal	basis	for	a	subspace W of R
n. For	each y in

W , the	weights	in	the	linear	combination

y D c1u1 C � � � C cpup

are	given	by
cj D y�uj

uj � uj

.j D 1; : : : ; p/

PROOF As	in	the	preceding	proof, the	orthogonality	of fu1; : : : ; upg shows	that

y�u1 D .c1u1 C c2u2 C � � � C cpup/�u1 D c1.u1 � u1/

Since u1 �u1 is 	not	zero, the	equation	above	can	be	solved	for c1. To	find cj for
j D 2; : : : ; p, compute y�uj and	solve	for cj .

EXAMPLE 2 The	set S D fu1; u2;u3g in	Example 1	is	an	orthogonal	basis	for R
3.

Express	the	vector y D

2

4

6

1

�8

3

5 as	a	linear	combination	of	the	vectors	in S .

SOLUTION Compute

y�u1 D 11; y�u2 D �12; y�u3 D �33

u1 � u1 D 11; u2 � u2 D 6; u3 � u3 D 33=2

By	Theorem 5,

y D y�u1

u1 � u1

u1 C y�u2

u2 � u2

u2 C y�u3

u3 � u3

u3

D 11

11
u1 C �12

6
u2 C �33

33=2
u3

D u1 � 2u2 � 2u3

Notice	how	easy	it	is	to	compute	the	weights	needed	to	build y from	an	orthogonal
basis. If	the	basis	were	not	orthogonal, it	would	be	necessary	to	solve	a	system	of	linear
equations	in	order	to	find	the	weights, as	in	Chapter 1.

We	turn	next	to	a	construction	that	will	become	a	key	step	in	many	calculations
involving	orthogonality, and	it	will	lead	to	a	geometric	interpretation	of	Theorem 5.

An Orthogonal Projection
Given	a	nonzero	vector u in R

n, consider	the	problem	of	decomposing	a	vector y in R
n

into	the	sum	of	two	vectors, one	a	multiple	of u and	the	other	orthogonal	to u. We	wish
to	write

y D Oy C z (1)
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where Oy D ˛u for	some	scalar ˛ and z is	some	vector	orthogonal	to u. See	Fig. 2. Given

u

y

0 ˆ

z = y – ŷ

y = �u

FIGURE 2

Finding ˛ to	make y � Oy
orthogonal	to u.

any	scalar ˛, let z D y � ˛u, so	that	(1)	is	satisfied. Then y � Oy is	orthogonal	to u if	and
only	if

0 D .y � ˛u/�u D y�u � .˛u/�u D y�u � ˛.u�u/

That	is, (1)	is	satisfied	with z orthogonal	to u if	and	only	if ˛ D y�u
u�u

and Oy D y�u
u�u

u.
The	vector Oy is	called	the orthogonal	projection	of	y	onto	u, and	the	vector z is	called
the component	of	y	orthogonal	to	u.

If c is	any	nonzero	scalar	and	if u is	replaced	by cu in	the	definition	of Oy, then	the
orthogonal	projection	of y onto cu is	exactly	the	same	as	the	orthogonal	projection	of y
onto u (Exercise 31). Hence	this	projection	is	determined	by	the subspace L spanned
by u (the	line	through u and 0). Sometimes Oy is	denoted	by projL y and	is	called	the
orthogonal	projection	of	y	onto L. That	is,

Oy D projL y D y�u
u�u

u (2)

EXAMPLE 3 Let y D
�

7

6

�

and u D
�

4

2

�

. Find	the	orthogonal	projection	of y

onto u. Then	write y as	the	sum	of	two	orthogonal	vectors, one	in Span fug and	one
orthogonal	to u.

SOLUTION Compute

y�u D
�

7

6

�

�

�

4

2

�

D 40

u�u D
�

4

2

�

�

�

4

2

�

D 20

The	orthogonal	projection	of y onto u is

Oy D y�u
u�u

u D 40

20
u D 2

�

4

2

�

D
�

8

4

�

and	the	component	of y orthogonal	to u is

y � Oy D
�

7

6

�

�
�

8

4

�

D
�

�1

2

�

The	sum	of	these	two	vectors	is y. That	is,
�

7

6

�

"
y

D
�

8

4

�

"
Oy

C
�

�1

2

�

"
.y � Oy/

This	decomposition	of y is	illustrated	in	Fig. 3. Note: If	the	calculations	above	are
correct, then fOy; y � Oyg will	be	an	orthogonal	set. As	a	check, compute

Oy�.y � Oy/ D
�

8

4

�

�

�

�1

2

�

D �8 C 8 D 0

Since	the	line	segment	in	Fig. 3	between y and Oy is	perpendicular	toL, by	construc-
tion	of Oy, the	point	identified	with Oy is	the	closest	point	of L to y. (This	can	be	proved
from	geometry. We	will	assume	this	for R

2 now	and	prove	it	for R
n in	Section 6.3.)
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x
1

x
2

y

u

ŷ

L = Span{u}

3

1 8

6

yy – ˆ

FIGURE 3 The	orthogonal	projection	of y onto	a
line L through	the	origin.

EXAMPLE 4 Find	the	distance	in	Fig. 3	from y to L.

SOLUTION The	distance	from y to L is	the	length	of	the	perpendicular	line	segment
from y to	the	orthogonal	projection Oy. This	length	equals	the	length	of y � Oy. Thus	the
distance	is

ky � Oyk D
p

.�1/2 C 22 D
p

5

A Geometric Interpretation of Theorem 5
The	formula	for	the	orthogonal	projection Oy in	(2)	has	the	same	appearance	as	each	of	the
terms	in	Theorem 5. Thus	Theorem 5	decomposes	a	vector y into	a	sum	of	orthogonal
projections	onto	one-dimensional	subspaces.

It	is	easy	to	visualize	the	case	in	which W D R
2 D Span fu1;u2g, with u1 and u2

orthogonal. Any y in R
2 can	be	written	in	the	form

y D y�u1

u1 � u1

u1 C y�u2

u2 � u2

u2 (3)

The	first	term	in	(3)	is	the	projection	of y onto	the	subspace	spanned	by u1 (the	line
through u1 and	the	origin), and	the	second	term	is	the	projection	of y onto	the	subspace
spanned	by u2. Thus	(3)	expresses y as	the	sum	of	its	projections	onto	the	(orthogonal)
axes	determined	by u1 and u2. See	Fig. 4.

0

y

u
1

u
2

ŷ
2
 = projection onto u

2

ŷ
1
 = projection onto u

1

FIGURE 4 A vector	decomposed	into
the	sum	of	two	projections.

Theorem 5	decomposes	each y in Span fu1; : : : ; upg into	the	sum	of p projections
onto	one-dimensional	subspaces	that	are	mutually	orthogonal.
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Decomposing a Force into Component Forces
The	decomposition	in	Fig. 4	can	occur	in	physics	when	some	sort	of	force	is	applied	to	an
object. Choosing	an	appropriate	coordinate	system	allows	the	force	to	be	represented
by	a	vector y in R

2 or R
3. Often	the	problem	involves	some	particular	direction	of

interest, which	is	represented	by	another	vector u. For	instance, if	the	object	is	moving
in	a	straight	line	when	the	force	is	applied, the	vector u might	point	in	the	direction
of	movement, as	in	Fig. 5. A key	step	in	the	problem	is	to	decompose	the	force	into
a	component	in	the	direction	of u and	a	component	orthogonal	to u. The	calculations
would	be	analogous	to	those	made	in	Example 3	above.

y

u

FIGURE 5

Orthonormal Sets
A set fu1; : : : ; upg is	an orthonormal	set if	it	is	an	orthogonal	set	of	unit	vectors. If W

is	the	subspace	spanned	by	such	a	set, then fu1; : : : ;upg is	an orthonormal	basis for
W , since	the	set	is	automatically	linearly	independent, by	Theorem 4.

The	simplest	example	of	an	orthonormal	set	is	the	standard	basis fe1; : : : ; eng for
R

n. Any	nonempty	subset	of fe1; : : : ; eng is	orthonormal, too. Here	is	a	more	compli-
cated	example.

EXAMPLE 5 Show	that fv1; v2; v3g is	an	orthonormal	basis	of R
3, where

v1 D

2

6
4

3=
p

11

1=
p

11

1=
p

11

3

7
5; v2 D

2

6
4

�1=
p

6

2=
p

6

1=
p

6

3

7
5; v3 D

2

6
4

�1=
p

66

�4=
p

66

7=
p

66

3

7
5

SOLUTION Compute

v1 �v2 D �3=
p

66 C 2=
p

66 C 1=
p

66 D 0

v1 �v3 D �3=
p

726 � 4=
p

726 C 7=
p

726 D 0

v2 �v3 D 1=
p

396 � 8=
p

396 C 7=
p

396 D 0

Thus fv1; v2; v3g is	an	orthogonal	set. Also,
v1 �v1 D 9=11 C 1=11 C 1=11 D 1

v2 �v2 D 1=6 C 4=6 C 1=6 D 1

v3 �v3 D 1=66 C 16=66 C 49=66 D 1

which	shows	that v1, v2, and v3 are	unit	vectors. Thus fv1; v2; v3g is	an	orthonormal	set.
Since	the	set	is	linearly	independent, its	three	vectors	form	a	basis	forR

3. See	Fig. 6.

x
1

x
2

x
3

v
1

v
2

v
3

FIGURE 6
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When	the	vectors	in	an	orthogonal	set	of	nonzero	vectors	are normalized to	have
unit	length, the	new	vectors	will	still	be	orthogonal, and	hence	the	new	set	will	be	an	or-
thonormal	set. See	Exercise 32. It	is	easy	to	check	that	the	vectors	in	Fig. 6	(Example 5)
are	simply	the	unit	vectors	in	the	directions	of	the	vectors	in	Fig. 1	(Example 1).

Matrices	whose	columns	form	an	orthonormal	set	are	important	in	applications	and
in	computer	algorithms	for	matrix	computations. Their	main	properties	are	given	in
Theorems 6	and	7.

THEOREM 6 An m � n matrix U has	orthonormal	columns	if	and	only	if U TU D I .

PROOF To	simplify	notation, we	suppose	that U has	only	three	columns, each	a	vector
in R

m. The	proof	of	the	general	case	is	essentially	the	same. Let U D Œ u1 u2 u3 �

and	compute

U TU D

2

6
4

uT
1

uT
2

uT
3

3

7
5

�

u1 u2 u3

�

D

2

6
4

uT
1 u1 uT

1 u2 uT
1 u3

uT
2 u1 uT

2 u2 uT
2 u3

uT
3 u1 uT

3 u2 uT
3 u3

3

7
5 (4)

The	entries	in	the	matrix	at	the	right	are	inner	products, using	transpose	notation. The
columns	of U are	orthogonal	if	and	only	if

uT
1 u2 D uT

2 u1 D 0; uT
1 u3 D uT

3 u1 D 0; uT
2 u3 D uT

3 u2 D 0 (5)

The	columns	of U all	have	unit	length	if	and	only	if

uT
1 u1 D 1; uT

2 u2 D 1; uT
3 u3 D 1 (6)

The	theorem	follows	immediately	from	(4)–(6).

THEOREM 7 Let U be	an m � n matrix	with	orthonormal	columns, and	let x and y be	in R
n.

Then

a. kU xk D kxk
b. .U x/�.U y/ D x�y
c. .U x/� .U y/ D 0 if	and	only	if x�y D 0

Properties	(a)	and	(c)	say	that	the	linear	mapping x 7! U x preserves	lengths	and
orthogonality. These	properties	are	crucial	for	many	computer	algorithms. See	Exer-
cise 25	for	the	proof	of	Theorem	7.

EXAMPLE 6 Let U D

2

6
4

1=
p

2 2=3

1=
p

2 �2=3

0 1=3

3

7
5 and x D

�p
2

3

�

. Notice	that U has	or-

thonormal	columns	and

U TU D
�

1=
p

2 1=
p

2 0

2=3 �2=3 1=3

�
2

4

1=
p

2 2=3

1=
p

2 �2=3

0 1=3

3

5 D
�

1 0

0 1

�

Verify	that kU xk D kxk.
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SOLUTION

U x D

2

4

1=
p

2 2=3

1=
p

2 �2=3

0 1=3

3

5

�p
2

3

�

D

2

4

3

�1

1

3

5

kU xk D
p

9 C 1 C 1 D
p

11

kxk D
p

2 C 9 D
p

11

Theorems	6	and	7	are	particularly	useful	when	applied	to square matrices. An
orthogonal	matrix is	a	square	invertible	matrixU such	thatU�1 D U T . By	Theorem 6,
such	a	matrix	has	orthonormal	columns.¹ It	is	easy	to	see	that	any square matrix	with
orthonormal	columns	is	an	orthogonal	matrix. Surprisingly, such	a	matrix	must	have
orthonormal rows, too. See	Exercises 27	and	28. Orthogonal	matrices	will	appear
frequently	in	Chapter 7.

EXAMPLE 7 The	matrix

U D

2

6
4

3=
p

11 �1=
p

6 �1=
p

66

1=
p

11 2=
p

6 �4=
p

66

1=
p

11 1=
p

6 7=
p

66

3

7
5

is	an	orthogonal	matrix	because	it	is	square	and	because	its	columns	are	orthonormal,
by	Example 5. Verify	that	the	rows	are	orthonormal, too!

PRACTICE PROBLEMS

1. Let u1 D
�

�1=
p

5

2=
p

5

�

and u2 D
�

2=
p

5

1=
p

5

�

. Show	that fu1; u2g is	an	orthonormal

basis	for R
2.

2. Let y and L be	as	in	Example 3	and	Fig. 3. Compute	the	orthogonal	projection Oy of
y onto L using u D

�

2

1

�

instead	of	the u in	Example 3.

3. Let U and x be	as	in	Example 6, and	let y D
�

�3
p

2

6

�

. Verify	that U x�U y D x�y.

6.2 EXERCISES
In	Exercises	1–6, determine	which	sets	of	vectors	are	orthogonal.

1.

2

4

�1

4

�3

3

5,

2

4

5

2

1

3

5,

2

4

3

�4

�7

3

5 2.

2

4

1

�2

1

3

5,

2

4

0

1

2

3

5,

2

4

�5

�2

1

3

5

3.

2

4

2

�7

�1

3

5,

2

4

�6

�3

9

3

5,

2

4

3

1

�1

3

5 4.

2

4

2

�5

�3

3

5,

2

4

0

0

0

3

5,

2

4

4

�2

6

3

5

5.

2

6
6
4

3

�2

1

3

3

7
7
5
,

2

6
6
4

�1

3

�3

4

3

7
7
5
,

2

6
6
4

3

8

7

0

3

7
7
5

6.

2

6
6
4

5

�4

0

3

3

7
7
5
,

2

6
6
4

�4

1

�3

8

3

7
7
5
,

2

6
6
4

3

3

5

�1

3

7
7
5

In	Exercises	7–10, show	that fu1;u2g or fu1;u2; u3g is	an	orthog-
onal	basis	for R

2 or R
3, respectively. Then	express x as	a	linear

combination	of	the u’s.

7. u1 D
�

2

�3

�

, u2 D
�

6

4

�

, and x D
�

9

�7

�

¹A better	name	might	be orthonormal	matrix, and	this	term	is	found	in	some	statistics	texts. However,
orthogonal	matrix is	the	standard	term	in	linear	algebra.
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8. u1 D
�

3

1

�

, u2 D
�

�2

6

�

, and x D
�

�6

3

�

9. u1 D

2

4

1

0

1

3

5, u2 D

2

4

�1

4

1

3

5, u3 D

2

4

2

1

�2

3

5, and x D

2

4

8

�4

�3

3

5

10. u1 D

2

4

3

�3

0

3

5, u2 D

2

4

2

2

�1

3

5, u3 D

2

4

1

1

4

3

5, and x D

2

4

5

�3

1

3

5

11. Compute	 the	orthogonal 	projection	of
�

1

7

�

onto	 the	 line

through
�

�4

2

�

and	the	origin.

12. Compute	the	orthogonal	projection	of
�

1

�1

�

onto	the	line

through
�

�1

3

�

and	the	origin.

13. Let y D
�

2

3

�

and u D
�

4

�7

�

. Write y as	the	sum	of	two

orthogonal	vectors, one	in Span fug and	one	orthogonal	to u.

14. Let y D
�

2

6

�

and u D
�

7

1

�

. Write y as	the	sum	of	a	vector

in Span fug and	a	vector	orthogonal	to u.

15. Let y D
�

3

1

�

and u D
�

8

6

�

. Compute	the	distance	from y
to	the	line	through u and	the	origin.

16. Let y D
�

�3

9

�

and u D
�

1

2

�

. Compute	the	distance	from y
to	the	line	through u and	the	origin.

In	Exercises	17–22, determine	which	sets	of	vectors	are	orthonor-
mal. If	a	set	is	only	orthogonal, normalize	the	vectors	to	produce
an	orthonormal	set.

17.

2

4

1=3

1=3

1=3

3

5,

2

4

�1=2

0

1=2

3

5 18.

2

4

0

1

0

3

5,

2

4

0

�1

0

3

5

19.
�

�:6

:8

�

,
�

:8

:6

�

20.

2

4

�2=3

1=3

2=3

3

5,

2

4

1=3

2=3

0

3

5

21.

2

4

1=
p

10

3=
p

20

3=
p

20

3

5,

2

4

3=
p

10

�1=
p

20

�1=
p

20

3

5,

2

4

0

�1=
p

2

1=
p

2

3

5

22.

2

4

1=
p

18

4=
p

18

1=
p

18

3

5,

2

4

1=
p

2

0

�1=
p

2

3

5,

2

4

�2=3

1=3

�2=3

3

5

In	Exercises	23	and	24, all	vectors	are	inR
n. Mark	each	statement

True	or	False. Justify	each	answer.

23. a. Not	every	linearly	independent	set	in R
n is	an	orthogonal

set.

b. If y is	a	linear	combination	of	nonzero	vectors	from	an
orthogonal	set, then	the	weights	in	the	linear	combination
can	be	computed	without	row	operations	on	a	matrix.

c. If	the	vectors	in	an	orthogonal	set	of	nonzero	vectors	are
normalized, then	some	of	the	new	vectors	may	not	be
orthogonal.

d. A matrix 	with 	orthonormal 	columns 	 is 	 an 	orthogonal
matrix.

e. IfL is	a	line	through 0 and	if Oy is	the	orthogonal	projection
of y onto L, then kOyk gives	the	distance	from y to L.

24. a. Not	every	orthogonal	set	in R
n is	linearly	independent.

b. If	a	set S D fu1; : : : ; upg has	the	property	that ui � uj D 0

whenever i ¤ j , then S is	an	orthonormal	set.
c. If	the	columns	of	anm � nmatrixA are	orthonormal, then

the	linear	mapping x 7! Ax preserves	lengths.
d. The	orthogonal	projection	of y onto v is	the	same	as	the

orthogonal	projection	of y onto cv whenever c ¤ 0.
e. An	orthogonal	matrix	is	invertible.

25. Prove	Theorem 7. [Hint: For	(a), compute kU xk2, or	prove
(b)	first.]

26. Suppose W is 	 a 	 subspace 	of R
n spanned 	by n nonzero

orthogonal	vectors. Explain	why W D R
n.

27. LetU be	a	square	matrix	with	orthonormal	columns. Explain
why U is	invertible. (Mention	the	theorems	you	use.)

28. Let U be	an n � n orthogonal	matrix. Show	that	the	rows	of
U form	an	orthonormal	basis	of R

n.

29. Let U and V be n � n orthogonal	matrices. Explain	why
UV is	an	orthogonal	matrix. [That	is, explain	why UV is
invertible	and	its	inverse	is .UV /T .]

30. Let U be	an	orthogonal	matrix, and	construct V by	inter-
changing	some	of	the	columns	of U . Explain	why V is	an
orthogonal	matrix.

31. Show	that	the	orthogonal	projection	of	a	vector y onto	a	line
L through	the	origin	in R

2 does	not	depend	on	the	choice
of	the	nonzero u in L used	in	the	formula	for Oy. To	do
this, suppose y and u are	given	and Oy has	been	computed	by
formula	(2)	in	this	section. Replace u in	that	formula	by cu,
where c is	an	unspecified	nonzero	scalar. Show	that	the	new
formula	gives	the	same Oy.

32. Let fv1; v2g be	an	orthogonal	set	of	nonzero	vectors, and	let
c1, c2 be	any	nonzero	scalars. Show	that fc1v1; c2v2g is	also
an	orthogonal	set. Since	orthogonality	of	a	set	is	defined	in
terms	of	pairs	of	vectors, this	shows	that	if	the	vectors	in
an	orthogonal	set	are	normalized, the	new	set	will	still	be
orthogonal.

33. Given u ¤ 0 in R
n, let L D Span fug. Show	that	the	map-

ping x 7! projL x is	a	linear	transformation.

34. Given u ¤ 0 in R
n, let L D Span fug. For y in R

n, the
reflection	of	y	in L is	the	point reflL y defined	by
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reflL y D 2� projL y � y

See 	 the 	 figure, which 	 shows 	 that reflL y is 	 the 	 sum 	 of
Oy D projL y and Oy � y. Show	that	the	mapping y 7! reflL y
is	a	linear	transformation.

x
1

x
2 y

u

ŷ

L = Span{u}

yy – ˆ ref l
L
 y

yy –ˆ

The	reflection	of y in	a	line	through	the	origin.

35. [M] Show	that	the	columns	of	the	matrix A are	orthogonal
by	making	an	appropriate	matrix	calculation. State	the	cal-
culation	you	use.

A D

2

6
6
6
6
6
6
6
6
6
6
4

�6 �3 6 1

�1 2 1 �6

3 6 3 �2

6 �3 6 �1

2 �1 2 3

�3 6 3 2

�2 �1 2 �3

1 2 1 6

3

7
7
7
7
7
7
7
7
7
7
5

36. [M] In	parts	(a)–(d), let U be	the	matrix	formed	by	normal-
izing	each	column	of	the	matrix A in	Exercise 35.
a. Compute U TU and U U T . How	do	they	differ?
b. Generate 	 a 	 random 	 vector y in R

8, and 	 compute
p D U U Ty and z D y � p. Explain	why p is	in ColA.
Verify	that z is	orthogonal	to p.

c. Verify	that z is	orthogonal	to	each	column	of U .
d. Notice	that y D p C z, with p in ColA. Explain	why z is

in .ColA/?. (The	significance	of	this	decomposition	of
y will	be	explained	in	the	next	section.)

SOLUTIONS TO PRACTICE PROBLEMS

1. The	vectors	are	orthogonal	because

u1 � u2 D �2=5 C 2=5 D 0

They	are	unit	vectors	because

ku1k2 D .�1=
p

5/2 C .2=
p

5/2 D 1=5 C 4=5 D 1

ku2k2 D .2=
p

5/2 C .1=
p

5/2 D 4=5 C 1=5 D 1

In	particular, the	set fu1; u2g is	linearly	independent, and	hence	is	a	basis	forR
2 since

there	are	two	vectors	in	the	set.

2. When y D
�

7

6

�

and u D
�

2

1

�

,

Oy D y�u
u�u

u D 20

5

�

2

1

�

D 4

�

2

1

�

D
�

8

4

�

This	is	the	same Oy found	in	Example 3. The	orthogonal	projection	does	not	seem	to
depend	on	the u chosen	on	the	line. See	Exercise 31.

3. U y D

2

4

1=
p

2 2=3

1=
p

2 �2=3

0 1=3

3

5

�

�3
p

2

6

�

D

2

4

1

�7

2

3

5

Also, from	Example 6, x D
�p

2

3

�

and U x D

2

4

3

�1

1

3

5. Hence

U x�U y D 3 C 7 C 2 D 12; and x�y D �6 C 18 D 12SG
Mastering: Orthogonal
Basis 6–4
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6.3 ORTHOGONAL PROJECTIONS

The	orthogonal	projection	of	a	point	inR
2 onto	a	line	through	the	origin	has	an	important

analogue	in R
n. Given	a	vector y and	a	subspace W in R

n, there	is	a	vector Oy in W such
that	(1) Oy is	the	unique	vector	in W for	which y � Oy is	orthogonal	to W , and	(2) Oy is
the	unique	vector	in W closest	to y. See	Fig. 1. These	two	properties	of Oy provide	the
key	to	finding	least-squares	solutions	of	linear	systems, mentioned	in	the	introductory
example	for	this	chapter. The	full	story	will	be	told	in	Section	6.5.

To	prepare	for	the	first	theorem, observe	that	whenever	a	vector y is	written	as	a
linear	combination	of	vectors u1; : : : ;un inR

n, the	terms	in	the	sum	for y can	be	groupedy

ŷ0
W

FIGURE 1

into	two	parts	so	that y can	be	written	as

y D z1 C z2

where z1 is	a	linear	combination	of	some	of	the ui and z2 is	a	linear	combination	of
the	rest	of	the ui . This	idea	is	particularly	useful	when fu1; : : : ;ung is	an	orthogonal
basis. Recall	from	Section 6.1	that W ? denotes	the	set	of	all	vectors	orthogonal	to	a
subspace W .

EXAMPLE 1 Let fu1; : : : ; u5g be	an	orthogonal	basis	for R
5 and	let

y D c1u1 C � � � C c5u5

Consider	the	subspace W D Span fu1;u2g, and	write y as	the	sum	of	a	vector z1 in W

and	a	vector z2 in W ?.

SOLUTION Write

y D c1u1 C c2u2
„ ƒ‚ …

z1

C c3u3 C c4u4 C c5u5
„ ƒ‚ …

z2

z1 D c1u1 C c2u2 is	in Span fu1; u2gwhere

z2 D c3u3 C c4u4 C c5u5 is	in Span fu3;u4;u5g:and

To	show	that z2 is	in W ?, it	suffices	to	show	that z2 is	orthogonal	to	the	vectors	in	the
basis fu1; u2g for W . (See	Section 6.1.) Using	properties	of	the	inner	product, compute

z2 �u1 D .c3u3 C c4u4 C c5u5/�u1

D c3u3 � u1 C c4u4 � u1 C c5u5 � u1

D 0

because u1 is	orthogonal	to u3, u4, and u5. A similar	calculation	shows	that z2 �u2 D 0.
Thus z2 is	in W ?.

The	next	theorem	shows	that	the	decomposition y D z1 C z2 in	Example 1	can	be
computed	without	having	an	orthogonal	basis	forR

n. It	is	enough	to	have	an	orthogonal
basis	only	for W .
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THEOREM 8 The Orthogonal Decomposition Theorem

Let W be	a	subspace	of R
n. Then	each y in R

n can	be	written	uniquely	in	the
form

y D Oy C z (1)

where Oy is	in W and z is	in W ?. In	fact, if fu1; : : : ; upg is	any	orthogonal	basis
of W , then

Oy D y�u1

u1 � u1

u1 C � � � C y�up

up � up

up (2)

and z D y � Oy.

The	vector Oy in	(1)	is	called	the orthogonal	projection	of y onto W and	often	is
written	as projW y. See	Fig. 2. When W is	a	one-dimensional	subspace, the	formula	for
Oy matches	the	formula	given	in	Section 6.2.

0

W

y

y = proj
W

yˆ

z = y – ŷ

FIGURE 2 The	orthogonal	projection	of y
onto W .

PROOF Let fu1; : : : ; upg be	any	orthogonal	basis	for W , and	define Oy by	(2).¹ Then Oy
is	in W because Oy is	a	linear	combination	of	the	basis u1; : : : ; up . Let z D y � Oy. Since
u1 is	orthogonal	to u2; : : : ; up , it	follows	from	(2)	that

z�u1 D .y � Oy/�u1 D y�u1 �
� y�u1

u1 � u1

�

u1 � u1 � 0 � � � � � 0

D y�u1 � y�u1 D 0

Thus z is	orthogonal	to u1. Similarly, z is	orthogonal	to	each uj in	the	basis	for W .
Hence z is	orthogonal	to	every	vector	in W . That	is, z is	in W ?.

To	show	that	the	decomposition	in	(1)	is	unique, suppose y can	also	be	written	as
y D Oy1 C z1, with Oy1 inW and z1 inW ?. Then Oy C z D Oy1 C z1 (since	both	sides	equal
y/, and	so

Oy � Oy1 D z1 � z

This	equality	shows	that	the	vector v D Oy � Oy1 is	in W and	in W ? (because z1 and z
are	both	in W ?, and W ? is	a	subspace). Hence v�v D 0, which	shows	that v D 0. This
proves	that Oy D Oy1 and	also z1 D z.

The	uniqueness	of	the	decomposition	(1)	shows	that	the	orthogonal	projection Oy
depends	only	on W and	not	on	the	particular	basis	used	in	(2).

¹We	may	assume	that W is	not	the	zero	subspace, for	otherwise W? D Rn and	(1)	is	simply y D 0C y.
The	next	section	will	show	that	any	nonzero	subspace	of Rn has	an	orthogonal	basis.
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EXAMPLE 2 Let u1 D

2

4

2

5

�1

3

5, u2 D

2

4

�2

1

1

3

5, and y D

2

4

1

2

3

3

5. Observe	that fu1; u2g

is	an	orthogonal	basis	for W D Span fu1; u2g. Write y as	the	sum	of	a	vector	in W and
a	vector	orthogonal	to W .

SOLUTION The	orthogonal	projection	of y onto W is

Oy D y�u1

u1 � u1

u1 C y�u2

u2 � u2

u2

D 9

30

2

4

2

5

�1

3

5C 3

6

2

4

�2

1

1

3

5 D 9

30

2

4

2

5

�1

3

5C 15

30

2

4

�2

1

1

3

5 D

2

4

�2=5

2

1=5

3

5

Also

y � Oy D

2

4

1

2

3

3

5 �

2

4

�2=5

2

1=5

3

5 D

2

4

7=5

0

14=5

3

5

Theorem 8	ensures	that y � Oy is	in W ?. To	check	the	calculations, however, it	is	a	good
idea	to	verify	that y � Oy is	orthogonal	to	both u1 and u2 and	hence	to	all	of W . The
desired	decomposition	of y is

y D

2

4

1

2

3

3

5 D

2

4

�2=5

2

1=5

3

5C

2

4

7=5

0

14=5

3

5

A Geometric Interpretation of the Orthogonal Projection
When W is	a	one-dimensional	subspace, the	formula	(2)	for projW y contains	just	one
term. Thus, when dimW > 1, each	term	in	(2)	is	itself	an	orthogonal	projection	of y
onto	a	one-dimensional	subspace	spanned	by	one	of	the u’s	in	the	basis	for W . Figure 3
illustrates	this	whenW is	a	subspace	ofR

3 spanned	by u1 and u2. Here Oy1 and Oy2 denote
the	projections	of y onto	the	lines	spanned	by u1 and u2, respectively. The	orthogonal
projection Oy of y onto W is	the	sum	of	the	projections	of y onto	one-dimensional	sub-
spaces	that	are	orthogonal	to	each	other. The	vector Oy in	Fig. 3	corresponds	to	the	vector
y in	Fig. 4	of	Section 6.2, because	now	it	is Oy that	is	in W .

u
1

u
2

0

y

y
2

ˆ

y
1

ˆ

ŷ = u
2
 = y

1
 + y

2
ˆˆ–––––u

2
 . u

2

y . u
2–––––u

1
 . u

1

y . u
1 u

1
+

FIGURE 3 The	orthogonal	projection	of y is	the	sum	of
its	projections	onto	one-dimensional	subspaces	that	are
mutually	orthogonal.
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Properties of Orthogonal Projections
If fu1; : : : ; upg is	an	orthogonal	basis	for W and	if y happens	to	be	in W , then	the
formula	for projW y is	exactly	the	same	as	the	representation	of y given	in	Theorem 5
in	Section 6.2. In	this	case, projW y D y.

If y is	in W D Span fu1; : : : ; upg, then projW y D y.

This	fact	also	follows	from	the	next	theorem.

THEOREM 9 The Best Approximation Theorem

Let W be	a	subspace	of R
n, let y be	any	vector	in R

n, and	let Oy be	the	orthogonal
projection	of y onto W . Then Oy is	the	closest	point	in W to y, in	the	sense	that

ky � Oyk < ky � vk (3)

for	all v in W distinct	from Oy.

The	vector Oy in	Theorem 9	is	called the	best	approximation	to y by	elements	ofW .
Later	sections	in	the	text	will	examine	problems	where	a	given y must	be	replaced, or
approximated, by	a	vector v in	some	fixed	subspace W . The	distance	from y to v, given
by ky � vk, can	be	regarded	as	the	“error”	of	using v in	place	of y. Theorem 9	says	that
this	error	is	minimized	when v D Oy.

Inequality	(3)	leads	to	a	new	proof	that Oy does	not	depend	on	the	particular	orthogo-
nal	basis	used	to	compute	it. If	a	different	orthogonal	basis	forW were	used	to	construct
an	orthogonal	projection	of y, then	this	projection	would	also	be	the	closest	point	in W

to y, namely, Oy.

PROOF Take v inW distinct	from Oy. See	Fig. 4. Then Oy � v is	inW . By	the	Orthogonal
Decomposition	Theorem, y � Oy is	orthogonal	to W . In	particular, y � Oy is	orthogonal
to Oy � v (which	is	in W ). Since

y � v D .y � Oy/ C .Oy � v/

the	Pythagorean	Theorem	gives

ky � vk2 D ky � Oyk2 C kOy � vk2

(See	the	colored	right	triangle	in	Fig. 4. The	length	of	each	side	is	labeled.) Now
kOy � vk2 > 0 because Oy � v ¤ 0, and	so	inequality	(3)	follows	immediately.

y

v

0

W

||y – v||
ŷ

||y – v||ˆ

||y – y||ˆ

FIGURE 4 The	orthogonal	projection	of y
onto W is	the	closest	point	in W to y.



6.3 Orthogonal Projections 351

EXAMPLE 3 If u1 D

2

4

2

5

�1

3

5, u2 D

2

4

�2

1

1

3

5, y D

2

4

1

2

3

3

5, and W D Span fu1; u2g,

as	in	Example 2, then the	closest	point	in W to y is

Oy D y�u1

u1 � u1

u1 C y�u2

u2 � u2

u2 D

2

4

�2=5

2

1=5

3

5

EXAMPLE 4 The	distance	from	a	point y in R
n to	a	subspace W is	defined	as	the

distance	from y to	the	nearest	point	inW . Find	the	distance	from y toW D Span fu1; u2g,
where

y D

2

4

�1

�5

10

3

5; u1 D

2

4

5

�2

1

3

5; u2 D

2

4

1

2

�1

3

5

SOLUTION By	the	Best	Approximation	Theorem, the	distance	from y toW is ky � Oyk,
where Oy D projW y. Since fu1; u2g is	an	orthogonal	basis	for W ,

Oy D 15

30
u1 C �21

6
u2 D 1

2

2

4

5

�2

1

3

5 � 7

2

2

4

1

2

�1

3

5 D

2

4

�1

�8

4

3

5

y � Oy D

2

4

�1

�5

10

3

5 �

2

4

�1

�8

4

3

5 D

2

4

0

3

6

3

5

ky � Oyk2 D 32 C 62 D 45

The	distance	from y to W is
p

45 D 3
p

5.

The	final	theorem	in	this	section	shows	how	formula	(2)	for projW y is	simplified
when	the	basis	for W is	an	orthonormal	set.

THEOREM 10 If fu1; : : : ; upg is	an	orthonormal	basis	for	a	subspace W of R
n, then

projW y D .y�u1/u1 C .y�u2/u2 C � � � C .y�up/up (4)

If U D Œ u1 u2 � � � up �, then

projW y D U U Ty for	all y in R
n (5)

PROOF Formula	(4)	follows	immediately	from	(2)	in	Theorem 8. Also, (4)	shows
that projW y is 	a	 linear	combination	of	 the	columns	of U using	the	weights y�u1,
y�u2; : : : ; y�up . The	weights	can	be	written	as uT

1 y; uT
2 y; : : : ; uT

py, showing	that	they
are	the	entries	in U Ty and	justifying	(5).

Suppose U is	an n � p matrix	with	orthonormal	columns, and	let W be	the	column
WEB

space	of U . Then
U TU x D Ipx D x for	all x in R

p Theorem 6

U U Ty D projW y for	all y in R
n Theorem 10

If U is	an n � n (square)	matrix	with	orthonormal	columns, then U is	an orthogonal
matrix, the	column	space W is	all	of R

n, and U U Ty D Iy D y for	all y in R
n.

Although	formula	(4)	is	important	for	theoretical	purposes, in	practice	it	usually
involves	calculations	with	square	roots	of	numbers	(in	the	entries	of	the ui /. Formula
(2)	is	recommended	for	hand	calculations.
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PRACTICE PROBLEM

Let u1 D

2

4

�7

1

4

3

5, u2 D

2

4

�1

1

�2

3

5, y D

2

4

�9

1

6

3

5, and W D Span fu1; u2g. Use	the	fact

that u1 and u2 are	orthogonal	to	compute projW y.

6.3 EXERCISES
In	Exercises	1	and	2, you	may	assume	that fu1; : : : ; u4g is	an
orthogonal	basis	for R

4.

1. u1 D

2

6
6
4

0

1

�4

�1

3

7
7
5
, u2 D

2

6
6
4

3

5

1

1

3

7
7
5
, u3 D

2

6
6
4

1

0

1

�4

3

7
7
5
, u4 D

2

6
6
4

5

�3

�1

1

3

7
7
5
,

x D

2

6
6
4

10

�8

2

0

3

7
7
5
. Write x as	the	sum	of	two	vectors, one	in

Span fu1;u2;u3g and	the	other in Span fu4g.

2. u1 D

2

6
6
4

1

2

1

1

3

7
7
5
, u2 D

2

6
6
4

�2

1

�1

1

3

7
7
5
, u3 D

2

6
6
4

1

1

�2

�1

3

7
7
5
, u4 D

2

6
6
4

�1

1

1

�2

3

7
7
5
,

v D

2

6
6
4

4

5

�3

3

3

7
7
5
. Write v as	the	sum	of two	vectors, one	in

Span fu1g and	the	other in Span fu2;u3;u4g.

In	Exercises	3–6, verify	that fu1;u2g is	an	orthogonal	set, and	then
find	the	orthogonal	projection	of y onto Span fu1;u2g.

3. y D

2

4

�1

4

3

3

5, u1 D

2

4

1

1

0

3

5, u2 D

2

4

�1

1

0

3

5

4. y D

2

4

6

3

�2

3

5, u1 D

2

4

3

4

0

3

5, u2 D

2

4

�4

3

0

3

5

5. y D

2

4

�1

2

6

3

5, u1 D

2

4

3

�1

2

3

5, u2 D

2

4

1

�1

�2

3

5

6. y D

2

4

6

4

1

3

5, u1 D

2

4

�4

�1

1

3

5, u2 D

2

4

0

1

1

3

5

In	Exercises	7–10, let W be	the	subspace	spanned	by	the u’s, and
write y as	the	sum	of	a	vector	in W and	a	vector	orthogonal	to W .

7. y D

2

4

1

3

5

3

5, u1 D

2

4

1

3

�2

3

5, u2 D

2

4

5

1

4

3

5

8. y D

2

4

�1

4

3

3

5, u1 D

2

4

1

1

1

3

5, u2 D

2

4

�1

3

�2

3

5

9. y D

2

6
6
4

4

3

3

�1

3

7
7
5
, u1 D

2

6
6
4

1

1

0

1

3

7
7
5
, u2 D

2

6
6
4

�1

3

1

�2

3

7
7
5
, u3 D

2

6
6
4

�1

0

1

1

3

7
7
5

10. y D

2

6
6
4

3

4

5

6

3

7
7
5
, u1 D

2

6
6
4

1

1

0

�1

3

7
7
5
, u2 D

2

6
6
4

1

0

1

1

3

7
7
5
, u3 D

2

6
6
4

0

�1

1

�1

3

7
7
5

In	Exercises	11	and	12, find	the	closest	point	to y in	the	subspace
W spanned	by v1 and v2.

11. y D

2

6
6
4

3

1

5

1

3

7
7
5
, v1 D

2

6
6
4

3

1

�1

1

3

7
7
5
, v2 D

2

6
6
4

1

�1

1

�1

3

7
7
5

12. y D

2

6
6
4

3

�1

1

13

3

7
7
5
, v1 D

2

6
6
4

1

�2

�1

2

3

7
7
5
, v2 D

2

6
6
4

�4

1

0

3

3

7
7
5

In	Exercises	13	and	14, find	the	best	approximation	to z by	vectors
of	the	form c1v1 C c2v2.

13. z D

2

6
6
4

3

�7

2

3

3

7
7
5
, v1 D

2

6
6
4

2

�1

�3

1

3

7
7
5
, v2 D

2

6
6
4

1

1

0

�1

3

7
7
5

14. z D

2

6
6
4

2

4

0

�1

3

7
7
5
, v1 D

2

6
6
4

2

0

�1

�3

3

7
7
5
, v2 D

2

6
6
4

5

�2

4

2

3

7
7
5

15. Let y D

2

4

5

�9

5

3

5, u1 D

2

4

�3

�5

1

3

5, u2 D

2

4

�3

2

1

3

5. Find 	 the

distance	from y to	the plane	in R
3 spanned	by u1 and u2.

16. Let y, v1, and v2 be	as	in	Exercise 12. Find	the	distance	from
y to	the	subspace	of R

4 spanned	by v1 and v2.

17. Let y D

2

4

4

8

1

3

5, u1 D

2

4

2=3

1=3

2=3

3

5, u2 D

2

4

�2=3

2=3

1=3

3

5, and

W D Span fu1;u2g.
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a. Let U D Œ u1 u2 �. Compute U TU and U U T .
b. Compute projW y and .U U T /y.

18. Let y D
�

7

9

�

, u1 D
�

1=
p

10

�3=
p

10

�

, and W D Span fu1g.

a. Let U be	 the 2 � 1 matrix	whose	only	column	is u1.
Compute U TU and U U T .

b. Compute projW y and .U U T /y.

19. Let u1 D

2

4

1

1

�2

3

5, u2 D

2

4

5

�1

2

3

5, and u3 D

2

4

0

0

1

3

5. Note	that

u1 and u2 are	orthogonal	but	that u3 is	not	orthogonal	to u1 or
u2. It	can	be	shown	that u3 is	not	in	the	subspace W spanned
by u1 and u2. Use	this	fact	to	construct	a	nonzero	vector v in
R

3 that	is	orthogonal	to u1 and u2.

20. Let u1 and u2 be	as	in	Exercise 19, and	let u4 D

2

4

0

1

0

3

5. It	can

be	shown	that u4 is	not	in	the	subspace W spanned	by u1 and
u2. Use	this	fact	to	construct	a	nonzero	vector v in R

3 that	is
orthogonal	to u1 and u2.

In	Exercises	21	and	22, all	vectors	and	subspaces	are	in R
n. Mark

each	statement	True	or	False. Justify	each	answer.

21. a. If z is 	 orthogonal 	 to u1 and 	 to u2 and 	 if W D
Span fu1;u2g, then z must	be	in W ?.

b. For	each y and	each	subspace W , the	vector y � projW y
is	orthogonal	to W .

c. The	orthogonal	projection Oy of y onto	a	subspace W can
sometimes	depend	on	the	orthogonal	basis	for W used	to
compute Oy.

d. If y is	in	a	subspace W , then	the	orthogonal	projection	of
y onto W is y itself.

e. If	the	columns	of	ann � pmatrixU are	orthonormal, then
U U Ty is	the	orthogonal	projection	of y onto	the	column
space	of U .

22. a. If W is	a	subspace	of R
n and	if v is	in	both W and W ?,

then v must	be	the	zero	vector.
b. In	the	Orthogonal	Decomposition	Theorem, each	term	in

formula	(2)	for Oy is	itself	an	orthogonal	projection	of y
onto	a	subspace	of W .

c. If y D z1 C z2, where z1 is	in	a	subspace W and z2 is	in
W ?, then z1 must	be	the	orthogonal	projection	of y onto
W .

d. The	best	approximation	to y by	elements	of	a	subspace
W is	given	by	the	vector y � projW y.

e. If 	an n � p matrix U has	orthonormal 	columns, then
U U Tx D x for	all x in R

n.
23. Let A be	an m � n matrix. Prove	that	every	vector x in R

n

can	be	written	in	the	form x D p C u, where p is	in RowA

and u is	in NulA. Also, show	that	if	the	equation Ax D b
is	consistent, then	there	is	a	unique p in RowA such	that
Ap D b.

24. Let W be 	 a 	 subspace 	 of R
n with 	 an 	 orthogonal 	 basis

fw1; : : : ;wpg, and	let fv1; : : : ; vqg be	an	orthogonal	basis	for
W ?.
a. Explain	why fw1; : : : ;wp; v1; : : : ; vqg is 	an	orthogonal

set.
b. Explain	why	the	set	in	part	(a)	spans R

n.
c. Show	that dimW C dimW ? D n.

25. [M] Let U be	the 8 � 4 matrix	in	Exercise 36	in	Section 6.2.
Find	the	closest	point	to y D .1; 1; 1; 1; 1; 1; 1; 1/ in ColU .
Write 	 the 	keystrokes 	or 	commands	you	use	 to 	solve	 this
problem.

26. [M] Let U be	the	matrix	in	Exercise 25. Find	the	distance
from b D .1; 1; 1; 1; �1; �1; �1; �1/ to ColU .

SOLUTION TO PRACTICE PROBLEM

Compute

projW y D y�u1

u1 � u1

u1 C y�u2

u2 � u2

u2 D 88

66
u1 C �2

6
u2

D 4

3

2

4

�7

1

4

3

5 � 1

3

2

4

�1

1

�2

3

5 D

2

4

�9

1

6

3

5 D y

In	this	case, y happens	to	be	a	linear	combination	of u1 and u2, so y is	in W . The	closest
point	in W to y is y itself.
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6.4 THE GRAM SCHMIDT PROCESS

The	Gram–Schmidt 	process 	 is 	a 	simple 	algorithm	for 	producing	an	orthogonal 	or
orthonormal	basis	for	any	nonzero	subspace	ofR

n. The	first	two	examples	of	the	process
are	aimed	at	hand	calculation.

EXAMPLE 1 Let W D Span fx1; x2g, where x1 D

2

4

3

6

0

3

5 and x2 D

2

4

1

2

2

3

5. Con-

x
1

x
2

x
2

v
2

x
3

W

v
1 
=

 
x

1

p

0

FIGURE 1

Construction	of	an	orthogonal
basis fv1; v2g.

struct	an	orthogonal	basis fv1; v2g for W .

SOLUTION The	subspace W is	shown	in	Fig. 1, along	with x1, x2, and	the	projection
p of x2 onto x1. The	component	of x2 orthogonal	to x1 is x2 � p, which	is	in W because
it	is	formed	from x2 and	a	multiple	of x1. Let v1 D x1 and

v2 D x2 � p D x2 � x2 � x1

x1 � x1

x1 D

2

4

1

2

2

3

5 � 15

45

2

4

3

6

0

3

5 D

2

4

0

0

2

3

5

Then fv1; v2g is	an	orthogonal	set	of	nonzero	vectors	in W . Since dimW D 2, the	set
fv1; v2g is	a	basis	for W .

The	next	example	fully	illustrates	the	Gram–Schmidt	process. Study	it	carefully.

EXAMPLE 2 Let x1 D

2

6
6
4

1

1

1

1

3

7
7
5
, x2 D

2

6
6
4

0

1

1

1

3

7
7
5
, and x3 D

2

6
6
4

0

0

1

1

3

7
7
5
. Then fx1; x2; x3g is

clearly	linearly	independent	and	thus	is	a	basis	for	a	subspace W of R
4. Construct	an

orthogonal	basis	for W .

SOLUTION

Step	1. Let v1 D x1 and W1 D Span fx1g D Span fv1g.
Step	2. Let v2 be	the	vector	produced	by	subtracting	from x2 its	projection	onto	the
subspace W1. That	is, let

v2 D x2 � projW1
x2

D x2 � x2 � v1

v1 � v1

v1 Since v1 D x1

D

2

6
6
4

0

1

1

1

3

7
7
5

� 3

4

2

6
6
4

1

1

1

1

3

7
7
5

D

2

6
6
4

�3=4

1=4

1=4

1=4

3

7
7
5

As	in	Example 1, v2 is 	 the	component 	of x2 orthogonal 	 to x1, and fv1; v2g is 	an
orthogonal	basis	for	the	subspace W2 spanned	by x1 and x2.
Step	20 (optional). If	appropriate, scale v2 to	simplify	later	computations. Since v2 has
fractional	entries, it	is	convenient	to	scale	it	by	a	factor	of	4	and	replace fv1; v2g by	the
orthogonal	basis

v1 D

2

6
6
4

1

1

1

1

3

7
7
5

; v02 D

2

6
6
4

�3

1

1

1

3

7
7
5
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Step	3. Let v3 be	the	vector	produced	by	subtracting	from x3 its	projection	onto	the
subspace W2. Use	the	orthogonal	basis fv1; v02g to	compute	this	projection	onto W2:

projW2
x3 D

Projection	of
x3 onto v1

❄

x3 � v1

v1 � v1

v1 C

Projection	of
x3 onto v02

❄

x3 � v02
v02 � v02

v02 D 2

4

2

6
6
4

1

1

1

1

3

7
7
5

C 2

12

2

6
6
4

�3

1

1

1

3

7
7
5

D

2

6
6
4

0

2=3

2=3

2=3

3

7
7
5

Then v3 is	the	component	of x3 orthogonal	to W2, namely,

v3 D x3 � projW2
x3 D

2

6
6
4

0

0

1

1

3

7
7
5

�

2

6
6
4

0

2=3

2=3

2=3

3

7
7
5

D

2

6
6
4

0

�2=3

1=3

1=3

3

7
7
5

See	Fig. 2	for	a	diagram	of	this	construction. Observe	that v3 is	in W , because x3

and projW2x3 are	both	in W . Thus fv1; v02; v3g is	an	orthogonal	set	of	nonzero	vectors
and	hence	a	linearly	independent	set	in W . Note	that W is	three-dimensional	since	it
was	defined	by	a	basis	of	three	vectors. Hence, by	the	Basis	Theorem	in	Section 4.5,
fv1; v02; v3g is	an	orthogonal	basis	for W .

proj
W

2

x
3

x
3

v
3

v
1

0

v'
2

W
2
 = Span{v

1
, v'

2
}

FIGURE 2 The	construction	of v3 from x3

and W2.

The	proof	of	the	next	theorem	shows	that	this	strategy	really	works. Scaling	of
vectors	is	not	mentioned	because	that	is	used	only	to	simplify	hand	calculations.

THEOREM 11 The Gram--Schmidt Process

Given	a	basis fx1; : : : ; xpg for	a	nonzero	subspace W of R
n, define

v1 D x1

v2 D x2 � x2 � v1

v1 � v1

v1

v3 D x3 � x3 � v1

v1 � v1

v1 � x3 � v2

v2 � v2

v2

:::

vp D xp � xp � v1

v1 � v1

v1 � xp � v2

v2 � v2

v2 � � � � � xp � vp�1

vp�1 � vp�1

vp�1

Then fv1; : : : ; vpg is	an	orthogonal	basis	for W . In	addition

Span fv1; : : : ; vkg D Span fx1; : : : ; xkg for 1 � k � p (1)
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PROOF For 1 � k � p, letWk D Span fx1; : : : ; xkg. Set v1 D x1, so	that Span fv1g D
Span fx1g. Suppose, for 	 some k < p, we 	 have 	 constructed v1; : : : ; vk so 	 that
fv1; : : : ; vkg is	an	orthogonal	basis	for Wk . Define

vkC1 D xkC1 � projWk
xkC1 (2)

By	the	Orthogonal	Decomposition	Theorem, vkC1 is	orthogonal	to Wk . Note	that
projWk

xkC1 is	inWk and	hence	also	inWkC1. Since xkC1 is	inWkC1, so	is vkC1 (because
WkC1 is	a	subspace	and	is	closed	under	subtraction). Furthermore, vkC1 ¤ 0 because
xkC1 is	not	in Wk D Span fx1; : : : ; xkg. Hence fv1; : : : ; vkC1g is	an	orthogonal	set	of
nonzero	vectors	in	the .k C 1/-dimensional	space WkC1. By	the	Basis	Theorem	in	Sec-
tion 4.5, this	set	is	an	orthogonal	basis	for WkC1. Hence WkC1 D Span fv1; : : : ; vkC1g.
When k C 1 D p, the	process	stops.

Theorem 11	shows	that	any	nonzero	subspaceW ofR
n has	an	orthogonal	basis, be-

cause	an	ordinary	basis fx1; : : : ; xpg is	always	available	(by	Theorem 11	in	Section 4.5),
and	the	Gram–Schmidt	process	depends	only	on	the	existence	of	orthogonal	projections
onto	subspaces	of W that	already	have	orthogonal	bases.

Orthonormal Bases
An	orthonormal 	basis 	 is 	constructed	easily 	 from	an	orthogonal 	basis fv1; : : : ; vpg:
simply	normalize	(i.e., “scale”)	all	the vk . When	working	problems	by	hand, this	is
easier	than	normalizing	each vk as	soon	as	it	is	found	(because	it	avoids	unnecessary
writing	of	square	roots).

EXAMPLE 3 Example 1	constructed	the	orthogonal	basis

v1 D

2

4

3

6

0

3

5; v2 D

2

4

0

0

2

3

5

An	orthonormal	basis	is

u1 D 1

kv1k
v1 D 1p

45

2

4

3

6

0

3

5 D

2

4

1=
p

5

2=
p

5

0

3

5

u2 D 1

kv2k
v2 D

2

4

0

0

1

3

5

QR Factorization of Matrices
If	an m � n matrix A has	linearly	independent	columns x1; : : : ; xn, then	applying	theWEB

Gram–Schmidt	process	(with	normalizations)	to x1; : : : ; xn amounts	to factoring A, as
described	in	the	next	theorem. This	factorization	is	widely	used	in	computer	algorithms
for	various	computations, such	as	solving	equations	(discussed	in	Section 6.5)	and
finding	eigenvalues	(mentioned	in	the	exercises	for	Section 5.2).
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THEOREM 12 The QR Factorization

IfA is	anm � nmatrix	with	linearly	independent	columns, thenA can	be	factored
as A D QR, where Q is	an m � n matrix	whose	columns	form	an	orthonormal
basis	for ColA and R is	an n � n upper	triangular	invertible	matrix	with	positive
entries	on	its	diagonal.

PROOF The	columns	of A form	a	basis fx1; : : : ; xng for ColA. Construct	an	orthonor-
mal	basis fu1; : : : ; ung for W D ColA with	property	(1)	in	Theorem 11. This	basis	may
be	constructed	by	the	Gram–Schmidt	process	or	some	other	means. Let

Q D Œ u1 u2 � � � un �

For k D 1; : : : ; n; xk is	in Span fx1; : : : ; xkg D Span fu1; : : : ; ukg. So	there	are	con-
stants, r1k ; : : : ; rkk , such	that

xk D r1ku1 C � � � C rkkuk C 0�ukC1 C � � � C 0�un

We	may	assume	that rkk � 0. (If rkk < 0, multiply	both rkk and uk by �1.) This	shows
that xk is	a	linear	combination	of	the	columns	of Q using	as	weights	the	entries	in	the
vector

rk D

2

6
6
6
6
6
6
6
4

r1k

:::

rkk

0
:::

0

3

7
7
7
7
7
7
7
5

That	is, xk D Qrk for k D 1; : : : ; n. Let R D Œ r1 � � � rn �. Then

A D Œ x1 � � � xn � D Œ Qr1 � � � Qrn � D QR

The	fact	thatR is	invertible	follows	easily	from	the	fact	that	the	columns	ofA are	linearly
independent	(Exercise 19). SinceR is	clearly	upper	triangular, its	nonnegative	diagonal
entries	must	be	positive.

EXAMPLE 4 Find	a	QR factorization	of A D

2

6
6
4

1 0 0

1 1 0

1 1 1

1 1 1

3

7
7
5
.

SOLUTION The	columns	of A are	 the	vectors x1, x2, and x3 in	Example 2. An
orthogonal	basis	for ColA D Span fx1; x2; x3g was	found	in	that	example:

v1 D

2

6
6
4

1

1

1

1

3

7
7
5

; v02 D

2

6
6
4

�3

1

1

1

3

7
7
5

; v3 D

2

6
6
4

0

�2=3

1=3

1=3

3

7
7
5

To	simplify	the	arithmetic	that	follows, scale v3 by	letting v03 D 3v3. Then	normalize
the	three	vectors	to	obtain u1, u2, and u3, and	use	these	vectors	as	the	columns	of Q:

Q D

2

6
6
6
4

1=2 �3=
p

12 0

1=2 1=
p

12 �2=
p

6

1=2 1=
p

12 1=
p

6

1=2 1=
p

12 1=
p

6

3

7
7
7
5



358 CHAPTER 6 Orthogonality and Least Squares

By	construction, the	first k columns	ofQ are	an	orthonormal	basis	of Span fx1; : : : ; xkg.
From	the	proof	of	Theorem 12,A D QR for	someR. To	findR, observe	thatQTQ D I ,
because	the	columns	of Q are	orthonormal. Hence

QTA D QT .QR/ D IR D R

and

R D

2

4

1=2 1=2 1=2 1=2

�3=
p

12 1=
p

12 1=
p

12 1=
p

12

0 �2=
p

6 1=
p

6 1=
p

6

3

5

2

6
6
4

1 0 0

1 1 0

1 1 1

1 1 1

3

7
7
5

D

2

4

2 3=2 1

0 3=
p

12 2=
p

12

0 0 2=
p

6

3

5

NUMER ICAL NOTES

1. When	the	Gram–Schmidt	process	is	run	on	a	computer, roundoff	error	can
build	up	as	the	vectors uk are	calculated, one	by	one. For j and k large	but
unequal, the	inner	products uT

j uk may	not	be	sufficiently	close	to	zero. This
loss	of	orthogonality	can	be	reduced	substantially	by	rearranging	the	order
of	the	calculations.1 However, a	different	computer-based	QR factorization	is
usually	preferred	to	this	modified	Gram–Schmidt	method	because	it	yields	a
more	accurate	orthonormal	basis, even	though	the	factorization	requires	about
twice	as	much	arithmetic.

2. To	produce	a	QR factorization	of	a	matrix A, a	computer	program	usually
left-multiplies A by	a	sequence	of	orthogonal	matrices	until A is	transformed
into	an	upper	triangular	matrix. This	construction	is	analogous	to	the	left-
multiplication	by	elementary	matrices	that	produces	an	LU factorization	ofA.

PRACTICE PROBLEM

LetW D Span fx1; x2g, where x1 D

2

4

1

1

1

3

5 and x2 D

2

4

1=3

1=3

�2=3

3

5. Construct	an	orthonor-

mal	basis	for W .

6.4 EXERCISES
In	Exercises	1–6, the	given	set	is	a	basis	for	a	subspace W . Use
the	Gram–Schmidt	process	to	produce	an	orthogonal	basis	for W .

1.

2

4

3

0

�1

3

5,

2

4

8

5

�6

3

5 2.

2

4

0

4

2

3

5,

2

4

5

6

�7

3

5

3.

2

4

2

�5

1

3

5,

2

4

4

�1

2

3

5 4.

2

4

3

�4

5

3

5,

2

4

�3

14

�7

3

5

5.

2

6
6
4

1

�4

0

1

3

7
7
5
,

2

6
6
4

7

�7

�4

1

3

7
7
5

6.

2

6
6
4

3

�1

2

�1

3

7
7
5
,

2

6
6
4

�5

9

�9

3

3

7
7
5

¹See Fundamentals	of	Matrix	Computations, by	David	S. Watkins	(New	York: John	Wiley	&	Sons, 1991),
pp. 167–180.
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7. Find	an	orthonormal	basis	of	the	subspace	spanned	by	the
vectors	in	Exercise 3.

8. Find	an	orthonormal	basis	of	the	subspace	spanned	by	the
vectors	in	Exercise 4.

Find	an	orthogonal	basis	for	the	column	space	of	each	matrix	in
Exercises	9–12.

9.

2

6
6
4

3 �5 1

1 1 1

�1 5 �2

3 �7 8

3

7
7
5

10.

2

6
6
4

�1 6 6

3 �8 3

1 �2 6

1 �4 �3

3

7
7
5

11.

2

6
6
6
6
4

1 2 5

�1 1 �4

�1 4 �3

1 �4 7

1 2 1

3

7
7
7
7
5

12.

2

6
6
6
6
4

1 3 5

�1 �3 1

0 2 3

1 5 2

1 5 8

3

7
7
7
7
5

In	Exercises 	13	and	14, the	columns	of Q were	obtained	by
applying	the	Gram–Schmidt	process	to	the	columns	ofA. Find	an
upper	triangular	matrix R such	that A D QR. Check	your	work.

13. A D

2

6
6
4

5 9

1 7

�3 �5

1 5

3

7
7
5
, Q D

2

6
6
4

5=6 �1=6

1=6 5=6

�3=6 1=6

1=6 3=6

3

7
7
5

14. A D

2

6
6
4

�2 3

5 7

2 �2

4 6

3

7
7
5
, Q D

2

6
6
4

�2=7 5=7

5=7 2=7

2=7 �4=7

4=7 2=7

3

7
7
5

15. Find	a	QR factorization	of	the	matrix	in	Exercise 11.
16. Find	a	QR factorization	of	the	matrix	in	Exercise 12.

In	Exercises	17	and	18, all	vectors	and	subspaces	are	in R
n. Mark

each	statement	True	or	False. Justify	each	answer.

17. a. If fv1; v2; v3g is	an	orthogonal	basis	for W , then	mul-
tiplying v3 by	a	scalar c gives	a	new	orthogonal	basis
fv1; v2; cv3g.

b. The	Gram–Schmidt	process	produces	from	a	linearly	in-
dependent	set fx1; : : : ; xpg an	orthogonal	set fv1; : : : ; vpg
with	the	property	that	for	each k, the	vectors v1; : : : ; vk

span	the	same	subspace	as	that	spanned	by x1; : : : ; xk .
c. If A D QR, where Q has	orthonormal	columns, then

R D QTA.
18. a. If W D Span fx1; x2; x3g with fx1; x2; x3g linearly	inde-

pendent, and	if fv1; v2; v3g is	an	orthogonal	set	inW , then
fv1; v2; v3g is	a	basis	for W .

b. If x is	not	in	a	subspace W , then x � projW x is	not	zero.
c. In	a	QR factorization, say A D QR (when A has	lin-

early	independent	columns), the	columns	of Q form	an
orthonormal	basis	for	the	column	space	of A.

19. Suppose A D QR, where Q is m � n and R is n � n. Show
that	if	the	columns	ofA are	linearly	independent, thenRmust
be	invertible. [Hint: Study	the	equation Rx D 0 and	use	the
fact	that A D QR.]

20. Suppose A D QR, where R is	an	invertible	matrix. Show
that A and Q have	the	same	column	space. [Hint: Given y in
ColA, show	that y D Qx for	some x. Also, given y in ColQ,
show	that y D Ax for	some x.]

21. Given A D QR as	in	Theorem 12, describe	how	to	find	an
orthogonalm � m (square)	matrixQ1 and	an	invertible n � n

upper	triangular	matrix R such	that

A D Q1

�

R

0

�

The	MATLAB qr command	supplies	this	“full”	QR factor-
ization	when rankA D n.

22. Let u1; : : : ; up be	an	orthogonal	basis	for	a	subspace W of
R

n, and	 let T W R
n ! R

n be	defined	by T .x/ D projW x.
Show	that T is	a	linear	transformation.

23. Suppose A D QR is	a	QR factorization	of	an m � n ma-
trix A (with	linearly	independent	columns). Partition A as
ŒA1 A2�, where A1 has p columns. Show	how	to	obtain	a
QR factorization	of A1, and	explain	why	your	factorization
has	the	appropriate	properties.

24. [M] Use 	 the 	Gram–Schmidt 	process 	 as 	 in 	Example 	2 	 to
produce	an	orthogonal	basis	for	the	column	space	of

A D

2

6
6
6
6
4

�10 13 7 �11

2 1 �5 3

�6 3 13 �3

16 �16 �2 5

2 1 �5 �7

3

7
7
7
7
5

25. [M] Use	the	method	in	this	section	to	produce	a	QR factor-
ization	of	the	matrix	in	Exercise 24.

26. [M] For	a	matrix	program, the	Gram–Schmidt	process	works
better	with	orthonormal	vectors. Starting	with x1; : : : ; xp as
in	Theorem 11, let A D Œ x1 � � � xp �. Suppose Q is	an
n � k matrix	whose	columns	form	an	orthonormal	basis	for
the	subspace Wk spanned	by	the	first k columns	of A. Then
for x in R

n, QQT x is	the	orthogonal	projection	of x onto Wk

(Theorem 10	in	Section 6.3). If xkC1 is	the	next	column	of
A, then	equation	(2)	in	the	proof	of	Theorem 11	becomes

vkC1 D xkC1 � Q.QT xkC1/

(The 	parentheses 	above 	 reduce 	 the 	number 	of 	 arithmetic
operations.) Let ukC1 D vkC1=kvkC1k. The	new Q for	the
next	step	is Œ Q ukC1 �. Use	this	procedure	to	compute	the
QR factorization	of	the	matrix	in	Exercise 24. Write	the
keystrokes	or	commands	you	use.

WEB
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SOLUTION TO PRACTICE PROBLEM

Let v1 D x1 D

2

4

1

1

1

3

5 and v2 D x2 � x2 � v1

v1 � v1

v1 D x2 � 0v1 D x2. So fx1; x2g is	already

orthogonal. All	that	is	needed	is	to	normalize	the	vectors. Let

u1 D 1

kv1k
v1 D 1p

3

2

4

1

1

1

3

5 D

2

4

1=
p

3

1=
p

3

1=
p

3

3

5

Instead	of	normalizing v2 directly, normalize v02 D 3v2 instead:

u2 D 1

kv02kv
0
2 D 1

p

12 C 12 C .�2/2

2

4

1

1

�2

3

5 D

2

4

1=
p

6

1=
p

6

�2=
p

6

3

5

Then fu1;u2g is	an	orthonormal	basis	for W .

6.5 LEAST-SQUARES PROBLEMS

The	chapter’s	introductory	example	described	a	massive	problem Ax D b that	had	no
solution. Inconsistent	systems	arise	often	in	applications, though	usually	not	with	such
an	enormous	coefficient	matrix. When	a	solution	is	demanded	and	none	exists, the	best
one	can	do	is	to	find	an x that	makes Ax as	close	as	possible	to b.

Think	of Ax as	an approximation to b. The	smaller	the	distance	between b and Ax,
given	by kb � Axk, the	better	the	approximation. The general	least-squares	problem
is	to	find	an x that	makes kb � Axk as	small	as	possible. The	adjective	“least-squares”
arises	from	the	fact	that kb � Axk is	the	square	root	of	a	sum	of	squares.

DEF IN I T I ON If A is m � n and b is	in R
m, a least-squares	solution of Ax D b is	an Ox in R

n

such	that
kb � AOxk � kb � Axk

for	all x in R
n.

The	most	important	aspect	of	the	least-squares	problem	is	that	no	matter	what x we
select, the	vector Ax will	necessarily	be	in	the	column	space, ColA. So	we	seek	an x
that	makes Ax the	closest	point	in ColA to b. See	Fig.	1. (Of	course, if b happens	to	be
in ColA, then b is Ax for	some x, and	such	an x is	a	“least-squares	solution.”)

Ax̂

Ax

Ax

Col A

b

0

FIGURE 1 The	vector b is	closer	to AOx than
to Ax for	other x.
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Solution of the General Least-Squares Problem
Given A and b as	above, apply	the	Best	Approximation	Theorem	in	Section 6.3	to	the
subspace ColA. Let

Ob D projColA b

Because Ob is	in	the	column	space	of A, the	equation Ax D Ob is consistent, and	there	is
an Ox in R

n such	that
AOx D Ob (1)

Since Ob is	the	closest	point	in ColA to b, a	vector Ox is	a	least-squares	solution	ofAx D b
if	and	only	if Ox satisfies	(1). Such	an Ox in R

n is	a	list	of	weights	that	will	build Ob out	of
the	columns	of A. See	Fig. 2. [There	are	many	solutions	of	(1)	if	the	equation	has	free
variables.]

x̂

�
n

0

A

subspace of �m

bb – Ax̂

b = Ax̂ˆ

Col A

FIGURE 2 The	least-squares	solution Ox is	in R
n.

Suppose Ox satisfies AOx D Ob. By	the	Orthogonal	Decomposition	Theorem	in	Sec-
tion 6.3, the	projection Ob has	the	property	that b � Ob is	orthogonal	to ColA, so b � AOx
is	orthogonal	to	each	column	of A. If aj is	any	column	of A, then aj �.b � AOx/ D 0,
and aT

j .b � AOx/ D 0. Since	each aT
j is	a	row	of AT ,

AT .b � AOx/ D 0 (2)

(This	equation	also	follows	from	Theorem	3	in	Section	6.1.) Thus

AT b � ATAOx D 0
ATAOx D AT b

These	calculations	show	that	each	least-squares	solution	ofAx D b satisfies	the	equation

ATAx D AT b (3)

The	matrix	equation	(3)	represents	a	system	of	equations	called	the normal	equations
for Ax D b. A solution	of	(3)	is	often	denoted	by Ox.

THEOREM 13 The	set	of	least-squares	solutions	of Ax D b coincides	with	the	nonempty	set	of
solutions	of	the	normal	equations ATAx D AT b.

PROOF As	shown	above, the	set	of	least-squares	solutions	is	nonempty	and	each
least-squares	solution Ox satisfies	the	normal	equations. Conversely, suppose Ox satisfies
ATAOx D AT b. Then Ox satisfies	(2)	above, which	shows	that b � AOx is	orthogonal	to	the



362 CHAPTER 6 Orthogonality and Least Squares

rows	of AT and	hence	is	orthogonal	to	the	columns	of A. Since	the	columns	of A span
ColA, the	vector b � AOx is	orthogonal	to	all	of ColA. Hence	the	equation

b D AOx C .b � AOx/

is	a	decomposition	of b into	the	sum	of	a	vector	in ColA and	a	vector	orthogonal	to
ColA. By	the	uniqueness	of	the	orthogonal	decomposition, AOx must	be	the	orthogonal
projection	of b onto ColA. That	is, AOx D Ob, and Ox is	a	least-squares	solution.

EXAMPLE 1 Find	a	least-squares	solution	of	the	inconsistent	system Ax D b for

A D

2

4

4 0

0 2

1 1

3

5; b D

2

4

2

0

11

3

5

SOLUTION To	use	normal	equations	(3), compute:

ATA D
�

4 0 1

0 2 1

�
2

4

4 0

0 2

1 1

3

5 D
�

17 1

1 5

�

AT b D
�

4 0 1

0 2 1

�
2

4

2

0

11

3

5 D
�

19

11

�

Then	the	equation ATAx D AT b becomes
�

17 1

1 5

��

x1

x2

�

D
�

19

11

�

Row	operations	can	be	used	to	solve	this	system, but	since ATA is	invertible	and 2 � 2,
it	is	probably	faster	to	compute

.ATA/�1 D 1

84

�

5 �1

�1 17

�

and	then	to	solve ATAx D AT b as

Ox D .ATA/�1AT b

D 1

84

�

5 �1

�1 17

��

19

11

�

D 1

84

�

84

168

�

D
�

1

2

�

In	many	calculations, ATA is	invertible, but	this	is	not	always	the	case. The	next
example	involves	a	matrix	of	the	sort	that	appears	in	what	are	called analysis	of	variance
problems	in	statistics.

EXAMPLE 2 Find	a	least-squares	solution	of Ax D b for

A D

2

6
6
6
6
6
6
4

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

3

7
7
7
7
7
7
5

; b D

2

6
6
6
6
6
6
4

�3

�1

0

2

5

1

3

7
7
7
7
7
7
5
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SOLUTION Compute

ATA D

2

6
6
4

1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

3

7
7
5

2

6
6
6
6
6
6
4

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

3

7
7
7
7
7
7
5

D

2

6
6
4

6 2 2 2

2 2 0 0

2 0 2 0

2 0 0 2

3

7
7
5

AT b D

2

6
6
4

1 1 1 1 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

3

7
7
5

2

6
6
6
6
6
6
4

�3

�1

0

2

5

1

3

7
7
7
7
7
7
5

D

2

6
6
4

4

�4

2

6

3

7
7
5

The	augmented	matrix	for ATAx D AT b is
2

6
6
4

6 2 2 2 4

2 2 0 0 �4

2 0 2 0 2

2 0 0 2 6

3

7
7
5

�

2

6
6
4

1 0 0 1 3

0 1 0 �1 �5

0 0 1 �1 �2

0 0 0 0 0

3

7
7
5

The	general	solution	is x1 D 3 � x4, x2 D �5 C x4, x3 D �2 C x4, and x4 is	free. So
the	general	least-squares	solution	of Ax D b has	the	form

Ox D

2

6
6
4

3

�5

�2

0

3

7
7
5

C x4

2

6
6
4

�1

1

1

1

3

7
7
5

The	next	theorem	gives	useful	criteria	for	determining	when	there	is	only	one	least-
squares	solution	of Ax D b. (Of	course, the	orthogonal	projection Ob is	always	unique.)

THEOREM 14 Let A be	an m � n matrix. The	following	statements	are	logically	equivalent:

a. The	equation Ax D b has	a	unique	least-squares	solution	for	each b in R
m.

b. The	columns	of A are	linearly	indpendent.
c. The	matrix ATA is	invertible.

When	these	statements	are	true, the	least-squares	solution Ox is	given	by
Ox D .ATA/�1AT b (4)

The	main	elements	of	a	proof	of	Theorem 14	are	outlined	in	Exercises	19–21, which
also	review	concepts	from	Chapter 4. Formula	(4)	for Ox is	useful	mainly	for	theoretical
purposes	and	for	hand	calculations	when ATA is	a 2 � 2 invertible	matrix.

When	a	least-squares	solution Ox is	used	to	produce AOx as	an	approximation	to b,
the	distance	from b to AOx is	called	the least-squares	error of	this	approximation.

EXAMPLE 3 Given A and b as	in	Example 1, determine	the	least-squares	error	in
the	least-squares	solution	of Ax D b.
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SOLUTION From	Example 1,

(2, 0, 11)

(0, 2, 1)

0

b

Ax̂

x
3

x
1

(4, 0, 1)

�84

Col A

FIGURE 3

b D

2

4

2

0

11

3

5 and AOx D

2

4

4 0

0 2

1 1

3

5

�

1

2

�

D

2

4

4

4

3

3

5

Hence

b � AOx D

2

4

2

0

11

3

5 �

2

4

4

4

3

3

5 D

2

4

�2

�4

8

3

5

and
kb � AOxk D

p

.�2/2 C .�4/2 C 82 D
p

84

The	least-squares	error	is
p

84. For	any x in R
2, the	distance	between b and	the	vector

Ax is	at	least
p

84. See	Fig. 3. Note	that	the	least-squares	solution Ox itself	does	not
appear	in	the	figure.

Alternative Calculations of Least-Squares Solutions
The	next	example	shows	how	to	find	a	least-squares	solution	of Ax D b when	the
columns	of A are	orthogonal. Such	matrices	often	appear	in	linear	regression	problems,
discussed	in	the	next	section.

EXAMPLE 4 Find	a	least-squares	solution	of Ax D b for

A D

2

6
6
4

1 �6

1 �2

1 1

1 7

3

7
7
5

; b D

2

6
6
4

�1

2

1

6

3

7
7
5

SOLUTION Because 	 the 	columns a1 and a2 of A are 	orthogonal, the 	orthogonal
projection	of b onto ColA is	given	by

Ob D b�a1

a1 � a1

a1 C b�a2

a2 � a2

a2 D 8

4
a1 C 45

90
a2 (5)

D

2

6
6
4

2

2

2

2

3

7
7
5

C

2

6
6
4

�3

�1

1=2

7=2

3

7
7
5

D

2

6
6
4

�1

1

5=2

11=2

3

7
7
5

Now	that Ob is	known, we	can	solve AOx D Ob. But	this	is	trivial, since	we	already
know	what	weights	to	place	on	the	columns	of A to	produce Ob. It	is	clear	from	(5)	that

Ox D
�

8=4

45=90

�

D
�

2

1=2

�

In 	 some 	 cases, the 	 normal 	 equations 	 for 	 a 	 least-squares 	 problem 	can 	be ill-
conditioned; that	is, small	errors	in	the	calculations	of	the	entries	of ATA can	sometimes
cause 	 relatively 	 large 	errors 	 in 	 the 	 solution Ox. If 	 the 	 columns 	of A are 	 linearly
independent, the	least-squares	solution	can	often	be	computed	more	reliably	through
a	QR factorization	of A (described	in	Section 6.4).¹

¹The	QR method	is	compared	with	the	standard	normal	equation	method	in	G.	Golub	and	C.	Van	Loan,
Matrix	Computations, 3rd	ed. (Baltimore: Johns	Hopkins	Press, 1996), pp.	230–231.
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THEOREM 15 Given	an m � n matrix A with	linearly	independent	columns, let A D QR be	a
QR factorization	of A as	in	Theorem 12. Then, for	each b in R

m, the	equation
Ax D b has	a	unique	least-squares	solution, given	by

Ox D R�1QT b (6)

PROOF Let Ox D R�1QT b. Then

AOx D QROx D QRR�1QT b D QQT b

By	Theorem 12, the	columns	of Q form	an	orthonormal	basis	for ColA. Hence, by
Theorem 10, QQTb is	the	orthogonal	projection Ob of b onto ColA. Then AOx D Ob,
which	shows	that Ox is	a	least-squares	solution	of Ax D b. The	uniqueness	of Ox follows
from	Theorem 14.

NUMER ICAL NOTE

Since R in	Theorem 15	is	upper	triangular, Ox should	be	calculated	as	the	exact
solution	of	the	equation

Rx D QT b (7)

It	is	much	faster	to	solve	(7)	by	back-substitution	or	row	operations	than	to
compute R�1 and	use	(6).

EXAMPLE 5 Find	the	least-squares	solution	of Ax D b for

A D

2

6
6
4

1 3 5

1 1 0

1 1 2

1 3 3

3

7
7
5

; b D

2

6
6
4

3

5

7

�3

3

7
7
5

SOLUTION The	QR factorization	of A can	be	obtained	as	in	Section 6.4.

A D QR D

2

6
6
4

1=2 1=2 1=2

1=2 �1=2 �1=2

1=2 �1=2 1=2

1=2 1=2 �1=2

3

7
7
5

2

4

2 4 5

0 2 3

0 0 2

3

5

Then

QT b D

2

4

1=2 1=2 1=2 1=2

1=2 �1=2 �1=2 1=2

1=2 �1=2 1=2 �1=2

3

5

2

6
6
4

3

5

7

�3

3

7
7
5

D

2

4

6

�6

4

3

5

The	least-squares	solution Ox satisfies Rx D QT b; that	is,
2

4

2 4 5

0 2 3

0 0 2

3

5

2

4

x1

x2

x3

3

5 D

2

4

6

�6

4

3

5

This	equation	is	solved	easily	and	yields Ox D

2

4

10

�6

2

3

5.
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PRACTICE PROBLEMS

1. LetA D

2

4

1 �3 �3

1 5 1

1 7 2

3

5 and b D

2

4

5

�3

�5

3

5. Find	a	least-squares	solution	ofAx D b,

and	compute	the	associated	least-squares	error.
2. What	can	you	say	about	the	least-squares	solution	of Ax D b when b is	orthogonal

to	the	columns	of A?

6.5 EXERCISES
In 	Exercises 	1–4, find	a 	 least-squares 	solution 	of Ax D b by
(a)	constructing	the	normal	equations	for Ox and	(b)	solving	for
Ox.

1. A D

2

4

�1 2

2 �3

�1 3

3

5, b D

2

4

4

1

2

3

5

2. A D

2

4

2 1

�2 0

2 3

3

5, b D

2

4

�5

8

1

3

5

3. A D

2

6
6
4

1 �2

�1 2

0 3

2 5

3

7
7
5
, b D

2

6
6
4

3

1

�4

2

3

7
7
5

4. A D

2

4

1 3

1 �1

1 1

3

5, b D

2

4

5

1

0

3

5

In	Exercises	5	and	6, describe	all	least-squares	solutions	of	the
equation Ax D b.

5. A D

2

6
6
4

1 1 0

1 1 0

1 0 1

1 0 1

3

7
7
5
, b D

2

6
6
4

1

3

8

2

3

7
7
5

6. A D

2

6
6
6
6
6
6
4

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

3

7
7
7
7
7
7
5

, b D

2

6
6
6
6
6
6
4

7

2

3

6

5

4

3

7
7
7
7
7
7
5

7. Compute	the	least-squares	error	associated	with	the	least-
squares	solution	found	in	Exercise 3.

8. Compute	the	least-squares	error	associated	with	the	least-
squares	solution	found	in	Exercise 4.

In	Exercises	9–12, find	(a)	the	orthogonal	projection	of b onto
ColA and	(b)	a	least-squares	solution	of Ax D b.

9. A D

2

4

1 5

3 1

�2 4

3

5, b D

2

4

4

�2

�3

3

5

10. A D

2

4

1 2

�1 4

1 2

3

5, b D

2

4

3

�1

5

3

5

11. A D

2

6
6
4

4 0 1

1 �5 1

6 1 0

1 �1 �5

3

7
7
5
, b D

2

6
6
4

9

0

0

0

3

7
7
5

12. A D

2

6
6
4

1 1 0

1 0 �1

0 1 1

�1 1 �1

3

7
7
5
, b D

2

6
6
4

2

5

6

6

3

7
7
5

13. Let A D

2

4

3 4

�2 1

3 4

3

5, b D

2

4

11

�9

5

3

5, u D
�

5

�1

�

, and v D
�

5

�2

�

. Compute Au and Av, and	compare	them	with b.

Could u possibly	be	a 	 least-squares 	solution	of Ax D b?
(Answer	this	without	computing	a	least-squares	solution.)

14. Let A D

2

4

2 1

�3 �4

3 2

3

5, b D

2

4

5

4

4

3

5, u D
�

4

�5

�

, and v D
�

6

�5

�

. Compute Au and Av, and	compare	them	with b. Is

it	possible	that	at	least	one	of u or v could	be	a	least-squares
solution	ofAx D b? (Answer	this	without	computing	a	least-
squares	solution.)

In	Exercises	15	and	16, use	the	factorization A D QR to	find	the
least-squares	solution	of Ax D b.

15. A D

2

4

2 3

2 4

1 1

3

5 D

2

4

2=3 �1=3

2=3 2=3

1=3 �2=3

3

5

�

3 5

0 1

�

, b D

2

4

7

3

1

3

5

16. A D

2

6
6
4

1 �1

1 4

1 �1

1 4

3

7
7
5

D

2

6
6
4

1=2 �1=2

1=2 1=2

1=2 �1=2

1=2 1=2

3

7
7
5

�

2 3

0 5

�

;b D

2

6
6
4

�1

6

5

7

3

7
7
5

In	Exercises	17	and	18,A is	anm � nmatrix	and b is	inR
m. Mark

each	statement	True	or	False. Justify	each	answer.

17. a. The	general	least-squares	problem	is	to	find	an x that
makes Ax as	close	as	possible	to b.
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b. A least-squares	solution	of Ax D b is 	a 	vector Ox that
satisfies AOx D Ob, where Ob is	the	orthogonal	projection	of
b onto ColA.

c. A least-squares	solution	of Ax D b is	a	vector Ox such	that
kb � Axk � kb � AOxk for	all x in R

n.
d. Any	solution	of ATAx D AT b is	a	least-squares	solution

of Ax D b.
e. If	the	columns	of A are	linearly	independent, then	the

equation Ax D b has	exactly	one	least-squares	solution.
18. a. If b is	in	the	column	space	of A, then	every	solution	of

Ax D b is	a	least-squares	solution.
b. The	least-squares	solution	of Ax D b is	the	point	in	the

column	space	of A closest	to b.
c. A least-squares	solution	of Ax D b is	a	list	of	weights

that, when	applied	to	the	columns	of A, produces	the
orthogonal	projection	of b onto ColA.

d. If Ox is 	 a 	 least-squares 	 solution 	 of Ax D b, then
Ox D .ATA/�1AT b.

e. The	normal	equations	always	provide	a	reliable	method
for	computing	least-squares	solutions.

f. If A has	a	QR factorization, say A D QR, then	the	best
way	to	find	the	least-squares	solution	of Ax D b is	to
compute Ox D R�1QT b.

19. LetA be	anm � nmatrix. Use	the	steps	below	to	show	that	a
vector x inR

n satisfiesAx D 0 if	and	only	ifATAx D 0. This
will	show	that NulA D NulATA.
a. Show	that	if Ax D 0, then ATAx D 0.
b. Suppose ATAx D 0. Explain	why xTATAx D 0, and	use

this	to	show	that Ax D 0.
20. Let A be	an m � n matrix	such	that ATA is	invertible. Show

that	the	columns	of A are	linearly	independent. [Careful:
You	may	not	assume	that A is	invertible; it	may	not	even
be	square.]

21. Let A be	an m � n matrix	whose	columns	are	linearly	inde-
pendent. [Careful: A need	not	be	square.]
a. Use	Exercise 19	to	show	that ATA is	an	invertible	matrix.
b. Explain 	why A must 	have 	 at 	 least 	 as 	many 	 rows 	 as

columns.
c. Determine	the	rank	of A.

22. Use	Exercise 19	to	show	that rankATA D rankA. [Hint:
How	many	columns	does ATA have? How	is	this	connected
with	the	rank	of ATA?]

23. Suppose A is m � n with	linearly	independent	columns	and
b is	in R

m. Use	the	normal	equations	to	produce	a	formula
for Ob, the	projection	of b onto ColA. [Hint: Find Ox first. The
formula	does	not	require	an	orthogonal	basis	for ColA.]

24. Find	a	formula	for	the	least-squares	solution	ofAx D bwhen
the	columns	of A are	orthonormal.

25. Describe	all	least-squares	solutions	of	the	system

x C y D 2

x C y D 4

26. [M] Example 3	in	Section 4.8	displayed	a	low-pass	linear
filter	that	changed	a	signal fykg into fykC1g and	changed	a
higher-frequency	signal fwkg into 	 the 	zero 	signal, where
yk D cos.�k=4/ and wk D cos.3�k=4/. The	following	cal-
culations	will	design	a	filter	with	approximately	those	prop-
erties. The	filter	equation	is

a0ykC2 C a1ykC1 C a2yk D ´k for	all k .8/

Because	the	signals	are	periodic, with	period 8, it	suffices
to	study	equation	(8)	for k D 0; : : : ; 7. The	action	on	the
two	signals	described	above	translates	into	two	sets	of	eight
equations, shown	below:

k D 0

k D 1
:::

k D 7

2

6
6
6
6
6
6
6
6
6
6
4

ykC2

0
ykC1

.7
yk

1
�:7 0 :7

�1 �:7 0

�:7 �1 �:7

0 �:7 �1

:7 0 �:7

1 :7 0

:7 1 :7

3

7
7
7
7
7
7
7
7
7
7
5

2

4

a0

a1

a2

3

5 D

2

6
6
6
6
6
6
6
6
6
6
4

ykC1

.7
0

�:7

�1

�:7

0

:7

1

3

7
7
7
7
7
7
7
7
7
7
5

k D 0

k D 1
:::

k D 7

2

6
6
6
6
6
6
6
6
6
6
4

wkC2

0 �
wkC1

.7
wk

1
:7 0 �:7

�1 :7 0

:7 �1 :7

0 :7 �1

�:7 0 :7

1 �:7 0

�:7 1 �:7

3

7
7
7
7
7
7
7
7
7
7
5

2

4

a0

a1

a2

3

5 D

2

6
6
6
6
6
6
6
6
6
6
4

0

0

0

0

0

0

0

0

3

7
7
7
7
7
7
7
7
7
7
5

Write 	 an 	 equation Ax D b, where A is 	 a 16 � 3 matrix
formed	from	the	two	coefficient	matrices	above	and	where b
in R

16 is	formed	from	the	two	right	sides	of	the	equations.
Find a0, a1, and a2 given	by	the	least-squares	solution	of
Ax D b. (The	.7	in	the	data	above	was	used	as	an	approx-
imation	for

p
2=2, to	illustrate	how	a	typical	computation

in	an	applied	problem	might	proceed. If	 .707	were	used
instead, the	resulting	filter	coefficients	would	agree	to	at	least
seven	decimal	places	with

p
2=4; 1=2, and

p
2=4, the	values

produced	by	exact	arithmetic	calculations.)

WEB
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SOLUTIONS TO PRACTICE PROBLEMS

1. First, compute

ATA D

2

4

1 1 1

�3 5 7

�3 1 2

3

5

2

4

1 �3 �3

1 5 1

1 7 2

3

5 D

2

4

3 9 0

9 83 28

0 28 14

3

5

AT b D

2

4

1 1 1

�3 5 7

�3 1 2

3

5

2

4

5

�3

�5

3

5 D

2

4

�3

�65

�28

3

5

Next, row	reduce	the	augmented	matrix	for	the	normal	equations, ATAx D AT b:
2

4

3 9 0 �3

9 83 28 �65

0 28 14 �28

3

5 �

2

4

1 3 0 �1

0 56 28 �56

0 28 14 �28

3

5 � � � � �

2

4

1 0 �3=2 2

0 1 1=2 �1

0 0 0 0

3

5

The	general	least-squares	solution	is x1 D 2 C 3
2
x3, x2 D �1 � 1

2
x3, with x3 free.

For	one	specific	solution, take x3 D 0 (for	example), and	get

Ox D

2

4

2

�1

0

3

5

To	find	the	least-squares	error, compute

Ob D AOx D

2

4

1 �3 �3

1 5 1

1 7 2

3

5

2

4

2

�1

0

3

5 D

2

4

5

�3

�5

3

5

It	turns	out	that Ob D b, so kb � Obk D 0. The	least-squares	error	is	zero	because b
happens	to	be	in ColA.

2. If b is	orthogonal	to	the	columns	ofA, then	the	projection	of b onto	the	column	space
of A is 0. In	this	case, a	least-squares	solution Ox of Ax D b satisfies AOx D 0.

6.6 APPLICATIONS TO LINEAR MODELS

A common	task	in	science	and	engineering	is	to	analyze	and	understand	relationships
among	several	quantities	that	vary. This	section	describes	a	variety	of	situations	in
which	data	are	used	to	build	or	verify	a	formula	that	predicts	the	value	of	one	variable
as	a	function	of	other	variables. In	each	case, the	problem	will	amount	to	solving	a
least-squares	problem.

For	easy	application	of	the	discussion	to	real	problems	that	you	may	encounter	later
in	your	career, we	choose	notation	that	is	commonly	used	in	the	statistical	analysis	of
scientific	and	engineering	data. Instead	of Ax D b, we	write Xˇ D y and	refer	to X as
the design	matrix, ˇ as	the parameter	vector, and y as	the observation	vector.

Least-Squares Lines
The 	 simplest 	 relation 	 between 	 two 	 variables x and y is 	 the 	 linear 	 equation
y D ˇ0 C ˇ1x.¹ Experimental	data	often	produce	points .x1; y1/; : : : ; .xn; yn/ that,

¹This	notation	is	commonly	used	for	least-squares	lines	instead	of y D mx C b.
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when	graphed, seem	to	lie	close	to	a	line. We	want	to	determine	the	parameters ˇ0

and ˇ1 that	make	the	line	as	“close”	to	the	points	as	possible.
Suppose ˇ0 and ˇ1 are 	fixed, and	consider 	 the 	 line y D ˇ0 C ˇ1x in 	Fig. 1.

Corresponding	to	each	data	point .xj ; yj / there	is	a	point .xj ; ˇ0 C ˇ1xj / on	the	line
with	the	same x-coordinate. We	call yj the observed value	of y and ˇ0 C ˇ1xj the
predicted y-value	(determined	by	the	line). The	difference	between	an	observed y-
value	and	a	predicted y-value	is	called	a residual.

Residual
Residual

Point on line

Data point
y

x
j

x
1

x
n

x

y = �
0
 + �

1
x

(x
j
, �

0
 + �

1
x

j
)

(x
j
, y

j
)

FIGURE 1 Fitting	a	line	to	experimental	data.

There	are	several	ways	to	measure	how	“close”	the	line	is	to	the	data. The	usual
choice	(primarily	because	the	mathematical	calculations	are	simple)	is	to	add	the	squares
of	the	residuals. The least-squares	line is	the	line y D ˇ0 C ˇ1x that	minimizes	the
sum	of	the	squares	of	the	residuals. This	line	is	also	called	a line	of	regression	of y
on x, because	any	errors	in	the	data	are	assumed	to	be	only	in	the y-coordinates. The
coefficients ˇ0, ˇ1 of	the	line	are	called	(linear) regression	coefficients.²

If	the	data	points	were	on	the	line, the	parameters ˇ0 and ˇ1 would	satisfy	the
equations

Predicted Observed
y-value y-value

ˇ0 C ˇ1x1 = y1

ˇ0 C ˇ1x2 = y2

:::
:::

ˇ0 C ˇ1xn = yn

We	can	write	this	system	as

Xˇ D y; where X D

2

6
6
6
4

1 x1

1 x2
:::

:::

1 xn

3

7
7
7
5

; ˇ D
�

ˇ0

ˇ1

�

; y D

2

6
6
6
4

y1

y2
:::

yn

3

7
7
7
5

(1)

Of	course, if	the	data	points	don’t	lie	on	a	line, then	there	are	no	parameters ˇ0, ˇ1 for
which	the	predicted y-values	in Xˇ equal	the	observed y-values	in y, and Xˇ D y has
no	solution. This	is	a	least-squares	problem, Ax D b, with	different	notation!

The	square	of	the	distance	between	the	vectors Xˇ and y is	precisely	the	sum	of
the	squares	of	the	residuals. The ˇ that	minimizes	this	sum	also	minimizes	the	distance
between Xˇ and y. Computing	the	least-squares	solution	of Xˇ D y is	equivalent	to
finding	the ˇ that	determines	the	least-squares	line	in	Fig. 1.

² If	the	measurement	errors	are	in x instead	of y, simply	interchange	the	coordinates	of	the	data .xj ; yj /

before	plotting	the	points	and	computing	the	regression	line. If	both	coordinates	are	subject	to	possible	error,
then	you	might	choose	the	line	that	minimizes	the	sum	of	the	squares	of	the orthogonal (perpendicular)
distances	from	the	points	to	the	line. See	the	Practice	Problems	for	Section 7.5.
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EXAMPLE 1 Find	the	equation y D ˇ0 C ˇ1x of	the	least-squares	line	that	best	fits
the	data	points .2; 1/, .5; 2/, .7; 3/, and .8; 3/.

SOLUTION Use	the x-coordinates	of	the	data	to	build	the	design	matrix X in	(1)	and
the y-coordinates	to	build	the	observation	vector y:

X D

2

6
6
4

1 2

1 5

1 7

1 8

3

7
7
5

; y D

2

6
6
4

1

2

3

3

3

7
7
5

For	the	least-squares	solution	of Xˇ D y, obtain	the	normal	equations	(with	the	new
notation):

XTXˇ D XTy

That	is, compute

XTX D
�

1 1 1 1

2 5 7 8

�

2

6
6
4

1 2

1 5

1 7

1 8

3

7
7
5

D
�

4 22

22 142

�

XTy D
�

1 1 1 1

2 5 7 8

�

2

6
6
4

1

2

3

3

3

7
7
5

D
�

9

57

�

The	normal	equations	are
�

4 22

22 142

��

ˇ0

ˇ1

�

D
�

9

57

�

Hence
�

ˇ0

ˇ1

�

D
�

4 22

22 142

��1�
9

57

�

D 1

84

�

142 �22

�22 4

��

9

57

�

D 1

84

�

24

30

�

D
�

2=7

5=14

�

Thus	the	least-squares	line	has	the	equation

y D 2

7
C 5

14
x

See	Fig. 2.
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x

FIGURE 2 The	least-squares	line
y D 2

7
C 5

14
x.

A common	practice	before	computing	a	least-squares	line	is	to	compute	the	average
x of	the	original x-values	and	form	a	new	variable x� D x � x. The	new x-data	are	said
to	be	in mean-deviation	form. In	this	case, the	two	columns	of	the	design	matrix	will
be	orthogonal. Solution	of	the	normal	equations	is	simplified, just	as	in	Example 4	in
Section 6.5. See	Exercises 17	and	18.
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The General Linear Model
In	some	applications, it	is	necessary	to	fit	data	points	with	something	other	than	a	straight
line. In	the	examples	that	follow, the	matrix	equation	is	still Xˇ D y, but	the	specific
form	of X changes	from	one	problem	to	the	next. Statisticians	usually	introduce	a
residual	vector �, defined	by � D y � Xˇ, and	write

y D Xˇ C �

Any	equation	of	this	form	is	referred	to	as	a linear	model. OnceX and y are	determined,
the	goal	is	to	minimize	the	length	of �, which	amounts	to	finding	a	least-squares	solution
of Xˇ D y. In	each	case, the	least-squares	solution Ǒ is	a	solution	of	the	normal
equations

XTXˇ D XTy

Least-Squares Fitting of Other Curves
When	data	points .x1; y1/; : : : ; .xn; yn/ on	a	scatter	plot	do	not	lie	close	to	any	line, it
may	be	appropriate	to	postulate	some	other	functional	relationship	between x and y.

The	next	two	examples	show	how	to	fit	data	by	curves	that	have	the	general	form
y D ˇ0f0.x/ C ˇ1f1.x/ C � � � C ˇkfk.x/ (2)

where f0; : : : ; fk are	known	functions	and ˇ0; : : : ; ˇk are	parameters	 that 	must	be
determined. As	we	will	see, equation	(2)	describes	a	linear	model	because	it	is	linear	in
the	unknown	parameters.

For	a	particular	value	of x, (2)	gives	a	predicted, or	“fitted,” value	of y. The
difference	between	the	observed	value	and	the	predicted	value	is	the	residual. The
parameters ˇ0; : : : ; ˇk must	be	determined	so	as	to	minimize	the	sum	of	the	squares
of	the	residuals.

EXAMPLE 2 Suppose	data	points .x1; y1/; : : : ; .xn; yn/ appear	to	lie	along	some
sort	of	parabola	instead	of	a	straight	line. For	instance, if	the x-coordinate	denotes	the
production	level	for	a	company, and y denotes	the	average	cost	per	unit	of	operating	at
a	level	of x units	per	day, then	a	typical	average	cost	curve	looks	like	a	parabola	that
opens	upward	(Fig. 3). In	ecology, a	parabolic	curve	that	opens	downward	is	used	to
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FIGURE 3

Average	cost	curve.
model	the	net	primary	production	of	nutrients	in	a	plant, as	a	function	of	the	surface
area	of	the	foliage	(Fig. 4). Suppose	we	wish	to	approximate	the	data	by	an	equation	of
the	form

y D ˇ0 C ˇ1x C ˇ2x
2 (3)

Describe	the	linear	model	that	produces	a	“least-squares	fit”	of	the	data	by	equation (3).
SOLUTION Equation	(3)	describes	the	ideal	relationship. Suppose	the	actual	values	of
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FIGURE 4

Production	of	nutrients.

the	parameters	are ˇ0, ˇ1, ˇ2. Then	the	coordinates	of	the	first	data	point .x1; y1/ satisfy
an	equation	of	the	form

y1 D ˇ0 C ˇ1x1 C ˇ2x
2
1 C �1

where �1 is	the	residual	error	between	the	observed	value y1 and	the	predicted y-value
ˇ0 C ˇ1x1 C ˇ2x2

1 . Each	data	point	determines	a	similar	equation:

y1 D ˇ0 C ˇ1x1 C ˇ2x2
1 C �1

y2 D ˇ0 C ˇ1x2 C ˇ2x2
2 C �2

:::
:::

yn D ˇ0 C ˇ1xn C ˇ2x2
n C �n
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It	is	a	simple	matter	to	write	this	system	of	equations	in	the	form y D Xˇ C �. To	find
X , inspect	the	first	few	rows	of	the	system	and	look	for	the	pattern.

2

6
6
6
4

y1

y2

:::

yn

3

7
7
7
5

D

2

6
6
6
6
4

1 x1 x2
1

1 x2 x2
2

:::
:::

:::

1 xn x2
n

3

7
7
7
7
5

2

6
4

ˇ0

ˇ1

ˇ2

3

7
5 C

2

6
6
6
6
4

�1

�2

:::

�n

3

7
7
7
7
5

y D X ˇ C �

EXAMPLE 3 If	data	points	tend	to	follow	a	pattern	such	as	in	Fig. 5, then	an

x

y

FIGURE 5

Data	points	along	a	cubic	curve.

appropriate	model	might	be	an	equation	of	the	form

y D ˇ0 C ˇ1x C ˇ2x
2 C ˇ3x3

Such	data, for	instance, could	come	from	a	company’s	total	costs, as	a	function	of	the
level	of	production. Describe	the	linear	model	that	gives	a	least-squares	fit	of	this	type
to	data .x1; y1/; : : : ; .xn; yn/.

SOLUTION By	an	analysis	similar	to	that	in	Example 2, we	obtain

Observation Design Parameter Residual
vector matrix vector vector

y D

2

6
6
6
6
4

y1

y2

:::

yn

3

7
7
7
7
5

; X D

2

6
6
6
6
4

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

:::
:::

:::
:::

1 xn x2
n x3

n

3

7
7
7
7
5

; ˇ D

2

6
6
6
6
4

ˇ0

ˇ1

ˇ2

ˇ3

3

7
7
7
7
5

; � D

2

6
6
6
6
4

�1

�2

:::

�n

3

7
7
7
7
5

Multiple Regression
Suppose	an	experiment	involves	two	independent	variables—say, u and v—and	one
dependent	variable, y. A simple	equation	for	predicting y from u and v has	the	form

y D ˇ0 C ˇ1u C ˇ2v (4)

A more	general	prediction	equation	might	have	the	form

y D ˇ0 C ˇ1u C ˇ2v C ˇ3u
2 C ˇ4uv C ˇ5v2 (5)

This	equation	is	used	in	geology, for	instance, to	model	erosion	surfaces, glacial	cirques,
soil	pH,	and	other	quantities. In	such	cases, the	least-squares	fit	is	called	a trend	surface.

Equations	(4)	and	(5)	both	lead	to	a	linear	model	because	they	are	linear	in	the
unknown	parameters	(even	though u and v are	multiplied). In	general, a	linear	model
will	arise	whenever y is	to	be	predicted	by	an	equation	of	the	form

y D ˇ0f0.u; v/ C ˇ1f1.u; v/ C � � � C ˇkfk.u; v/

with f0; : : : ; fk any	sort	of	known	functions	and ˇ0; : : : ; ˇk unknown	weights.

EXAMPLE 4 In 	geography, local 	models 	of 	 terrain 	 are 	 constructed 	 from	data
.u1; v1; y1/; : : : ; .un; vn; yn/, where uj , vj , and yj are	latitude, longitude, and	altitude,
respectively. Describe	the	linear	model	based	on	(4)	that	gives	a	least-squares	fit	to	such
data. The	solution	is	called	the least-squares	plane. See	Fig. 6.
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FIGURE 6 A least-squares	plane.

SOLUTION We	expect	the	data	to	satisfy	the	following	equations:

y1 D ˇ0 C ˇ1u1 C ˇ2v1 C �1

y2 D ˇ0 C ˇ1u2 C ˇ2v2 C �2

:::
:::

yn D ˇ0 C ˇ1un C ˇ2vn C �n

This	system	has	the	matrix	form y D Xˇ C �, where
Observation Design Parameter Residual

vector matrix vector vector

y D

2

6
6
6
4

y1

y2

:::

yn

3

7
7
7
5

; X D

2

6
6
6
4

1 u1 v1

1 u2 v2

:::
:::

:::

1 un vn

3

7
7
7
5

; ˇ D

2

4

ˇ0

ˇ1

ˇ2

3

5; � D

2

6
6
6
4

�1

�2

:::

�n

3

7
7
7
5

Example 4	shows	that	the	linear	model	for	multiple	regression	has	the	same	abstract
form	as	the	model	for	the	simple	regression	in	the	earlier	examples. Linear	algebra	gives
us	the	power	to	understand	the	general	principle	behind	all	the	linear	models. Once X

is	defined	properly, the	normal	equations	for ˇ have	the	same	matrix	form, no	matter
how	many	variables	are	involved. Thus, for	any	linear	model	where XTX is	invertible,
the	least-squares Ǒ is	given	by .XTX/�1XTy.SG

The Geometry of a
Linear Model 6–19

Further Reading
Ferguson, J., Introduction	to	Linear	Algebra	in	Geology (New	York: Chapman	&	Hall,
1994).
Krumbein, W.	C., and	F.	A.	Graybill, An	Introduction	to	Statistical	Models	in	Geology
(New	York: McGraw-Hill, 1965).
Legendre, P., and	L.	Legendre, Numerical	Ecology (Amsterdam: Elsevier, 1998).
Unwin, David	J., An	Introduction	to	Trend	Surface	Analysis, Concepts	and	Techniques
in	Modern	Geography, No. 5	(Norwich, England: Geo	Books, 1975).

PRACTICE PROBLEM

When	the	monthly	sales	of	a	product	are	subject	to	seasonal	fluctuations, a	curve	that
approximates	the	sales	data	might	have	the	form

y D ˇ0 C ˇ1x C ˇ2 sin .2�x=12/

where x is	the	time	in	months. The	term ˇ0 C ˇ1x gives	the	basic	sales	trend, and
the	sine	term	reflects	the	seasonal	changes	in	sales. Give	the	design	matrix	and	the
parameter	vector	for	the	linear	model	that	leads	to	a	least-squares	fit	of	the	equation
above. Assume	the	data	are .x1; y1/; : : : ; .xn; yn/.
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6.6 EXERCISES
In	Exercises	1–4, find	the	equation y D ˇ0 C ˇ1x of	the	least-
squares	line	that	best	fits	the	given	data	points.

1. .0; 1/, .1; 1/, .2; 2/, .3; 2/

2. .1; 0/, .2; 1/, .4; 2/, .5; 3/

3. .�1; 0/, .0; 1/, .1; 2/, .2; 4/

4. .2; 3/, .3; 2/, .5; 1/, .6; 0/

5. Let X be	the	design	matrix	used	to	find	the	least-squares	line
to	fit	data .x1; y1/; : : : ; .xn; yn/. Use	a	theorem	in	Section 6.5
to	show	that	the	normal	equations	have	a	unique	solution
if	and	only	if	the	data	include	at	least	two	data	points	with
different x-coordinates.

6. Let X be	the	design	matrix	in	Example 2	corresponding	to
a	least-squares	fit	of	a	parabola	to	data .x1; y1/; : : : ; .xn; yn/.
Suppose x1, x2, and x3 are	distinct. Explain	why	there	is	only
one	parabola	that	fits	the	data	best, in	a	least-squares	sense.
(See	Exercise 5.)

7. A certain 	experiment 	produces 	 the 	data .1; 1:8/, .2; 2:7/,
.3; 3:4/, .4; 3:8/, .5; 3:9/. Describe	the	model	that	produces
a	least-squares	fit	of	these	points	by	a	function	of	the	form

y D ˇ1x C ˇ2x
2

Such	a	function	might	arise, for	example, as	the	revenue	from
the	sale	of x units	of	a	product, when	the	amount	offered	for
sale	affects	the	price	to	be	set	for	the	product.
a. Give	the	design	matrix, the	observation	vector, and	the

unknown	parameter	vector.
b. [M] Find	the	associated	least-squares	curve	for	the	data.

8. A simple	curve	that	often	makes	a	good	model	for	the	vari-
able	costs	of	a	company, as	a	function	of	the	sales	level x,
has	the	form y D ˇ1x C ˇ2x

2 C ˇ3x
3. There	is	no	constant

term	because	fixed	costs	are	not	included.
a. Give	the	design	matrix	and	the	parameter	vector	for	the

linear	model	that	leads	to	a	least-squares	fit	of	the	equa-
tion	above, with	data .x1; y1/; : : : ; .xn; yn/.

b. [M] Find	the	least-squares	curve	of	the	form	above	to	fit
the	data .4; 1:58/, .6; 2:08/, .8; 2:5/, .10; 2:8/, .12; 3:1/,
.14; 3:4/, .16; 3:8/, and .18; 4:32/, with	values	in	thou-
sands. If	possible, produce	a	graph	that	shows	the	data
points	and	the	graph	of	the	cubic	approximation.

9. A certain	experiment	produces	the	data .1; 7:9/, .2; 5:4/, and
.3; �:9/. Describe	the	model	that	produces	a	least-squares	fit
of	these	points	by	a	function	of	the	form

y D A cos x C B sin x

10. Suppose	radioactive	substances	A and	B have	decay	con-
stants	of	.02	and	.07, respectively. If	a	mixture	of	these	two
substances	at	time t D 0 contains MA grams	of	A and MB
grams	of	B,	then	a	model	for	the	total	amount y of	the	mixture
present	at	time t is

y D MAe�:02t C MBe�:07t .6/

Suppose 	 the 	 initial 	 amounts MA and MB are 	 unknown,
but 	 a 	 scientist 	 is 	 able 	 to 	 measure 	 the 	 total 	 amounts
present 	at 	several 	 times	and	records	 the	following	points
.ti ; yi /: .10; 21:34/, .11; 20:68/, .12; 20:05/, .14; 18:87/,
and .15; 18:30/.
a. Describe	a	linear	model	that	can	be	used	to	estimate MA

and MB.
b. [M] Find	the	least-squares	curve	based	on	(6).

Halley’s	Comet	last	appeared	in	1986	and	will	reappear	in
2061.

11. [M] According	to	Kepler’s	first	law, a	comet	should	have
an	elliptic, parabolic, or	hyperbolic	orbit	(with	gravitational
attractions	from	the	planets	ignored). In	suitable	polar	coor-
dinates, the	position .r; #/ of	a	comet	satisfies	an	equation	of
the	form

r D ˇ C e.r � cos#/

where ˇ is	a	constant	and e is	the eccentricity of	the	orbit,
with 0 � e < 1 for	an	ellipse, e D 1 for	a	parabola, and e > 1

for	a	hyperbola. Suppose	observations	of	a	newly	discovered
comet	provide	the	data	below. Determine	the	type	of	orbit,
and	predict	where	the	comet	will	be	when# D 4:6 (radians).3

# .88 1.10 1.42 1.77 2.14
r 3.00 2.30 1.65 1.25 1.01

12. [M] A healthy	child’s	systolic	blood	pressure p (in	millime-
ters	of	mercury)	and	weightw (in	pounds)	are	approximately
related	by	the	equation

ˇ0 C ˇ1 lnw D p

Use	the	following	experimental	data	to	estimate	the	systolic
blood	pressure	of	a	healthy	child	weighing	100	pounds.

3 The	basic	idea	of	least-squares	fitting	of	data	is	due	to	K. F. Gauss
(and, independently, to	A.	Legendre), whose	initial	rise	to	fame	occurred
in	1801	when	he	used	the	method	to	determine	the	path	of	the	asteroid
Ceres. Forty	days	after	the	asteroid	was	discovered, it	disappeared	behind
the	sun. Gauss	predicted	it	would	appear	ten	months	later	and	gave	its
location. The	accuracy	of	the	prediction	astonished	the	European	scientific
community.
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w 44 61 81 113 131
lnw 3.78 4.11 4.39 4.73 4.88
p 91 98 103 110 112

13. [M] To	measure	the	takeoff	performance	of	an	airplane, the
horizontal	position	of	the	plane	was	measured	every	second,
from t D 0 to t D 12. The	positions	(in	feet)	were: 0, 8.8,
29.9, 62.0, 104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7,
686.8, and	809.2.
a. Find 	 the 	 least-squares 	 cubic 	 curve y D ˇ0 C ˇ1t C

ˇ2t
2 C ˇ3t

3 for	these	data.
b. Use	the	result	of	part	(a)	to	estimate	the	velocity	of	the

plane	when t D 4:5 seconds.

14. Let x D 1

n
.x1 C � � � C xn/ and y D 1

n
.y1 C � � � C yn/.

Show 	 that 	 the 	 least-squares 	 line 	 for 	 the 	 data
.x1; y1/; : : : ; .xn; yn/must	pass	through .x; y/. That	is, show
that x and y satisfy	the	linear	equation y D Ǒ

0 C Ǒ
1x. [Hint:

Derive	this	equation	from	the	vector	equation y D X Ǒ C �.
Denote	the	first	column	of X by 1. Use	the	fact	that	the
residual	vector � is	orthogonal	to	the	column	space	of X and
hence	is	orthogonal	to 1.]

Given	data	for	a	least-squares	problem, .x1; y1/; : : : ; .xn; yn/, the
following	abbreviations	are	helpful:
P

x D
Pn

iD1 xi ;
P

x2 D
Pn

iD1 x2
i ;

P
y D

Pn
iD1 yi ;

P
xy D

Pn
iD1 xi yi

The	normal	equations	for	a	least-squares	line y D Ǒ
0 C Ǒ

1x may
be	written	in	the	form

n Ǒ
0 C Ǒ

1

P
x D

P
y

Ǒ
0

P
x C Ǒ

1

P
x2 D

P
xy

.7/

15. Derive	the	normal	equations	(7)	from	the	matrix	form	given
in	this	section.

16. Use	a	matrix	inverse	to	solve	the	system	of	equations	in	(7)
and	thereby	obtain	formulas	for Ǒ

0 and Ǒ
1 that	appear	in	many

statistics	texts.

17. a. Rewrite	the	data	in	Example 1	with	new x-coordinates
in	mean	deviation	form. Let X be	the	associated	design
matrix. Why	are	the	columns	of X orthogonal?

b. Write	the	normal	equations	for	the	data	in	part	(a), and
solve	them	to	find	the	least-squares	line, y D ˇ0 C ˇ1x

�,
where x� D x � 5:5.

18. Suppose	the x-coordinates	of	the	data .x1; y1/; : : : ; .xn; yn/

are	in	mean	deviation	form, so	that
P

xi D 0. Show	that	if
X is	the	design	matrix	for	the	least-squares	line	in	this	case,
then XTX is	a	diagonal	matrix.

Exercises	19	and	20	involve	a	design	matrix X with	two	or	more
columns	and	a	least-squares	solution Ǒ of y D Xˇ. Consider	the
following	numbers.

(i) kX Ǒ k2—the sum	of	the squares	of	the	“regression	term.”
Denote	this	number	by SS(R).

(ii) ky � X Ǒ k2—the sum	of	the squares	for error	term. Denote
this	number	by	SS(E).

(iii) kyk2—the	“total” sum	of	the squares	of	the y-values. Denote
this	number	by	SS(T).

Every	statistics	text	that	discusses	regression	and	the	linear	model
y D Xˇ C � introduces	these	numbers, though	terminology	and
notation	vary	somewhat. To	simplify	matters, assume	that	the
mean	of	the y-values	is	zero. In	this	case, SS(T) is	proportional
to	what	is	called	the variance of	the	set	of y-values.

19. Justify	the	equation SS(T) D SS(R) C SS(E). [Hint: Use	a
theorem, and	explain	why	the	hypotheses	of	the	theorem	are
satisfied.] This	equation	is	extremely	important	in	statistics,
both	in	regression	theory	and	in	the	analysis	of	variance.

20. Show	that kX Ǒ k2 = Ǒ T XTy. [Hint: Rewrite	the	left	side
and	use	the	fact	that Ǒ satisfies	the	normal	equations.] This
formula	for	SS(R) is	used	in	statistics. From	this	and	from
Exercise 19, obtain	the	standard	formula	for	SS(E):

SS(E) D yT y � Ǒ T
XT y

SOLUTION TO PRACTICE PROBLEM

Construct X and ˇ so	that	the kth	row	of Xˇ is	the	predicted y-value	that	corresponds

x

y

Sales	trend	with	seasonal
fluctuations.

to	the	data	point .xk ; yk/, namely,

ˇ0 C ˇ1xk C ˇ2 sin.2�xk=12/

It	should	be	clear	that

X D

2

6
4

1 x1 sin.2�x1=12/
:::

:::
:::

1 xn sin.2�xn=12/

3

7
5 ; ˇ D

2

4

ˇ0

ˇ1

ˇ2

3

5
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6.7 INNER PRODUCT SPACES

Notions 	of 	 length, distance, and 	orthogonality 	are 	often 	 important 	 in 	applications
involving	a	vector	space. For R

n, these	concepts	were	based	on	the	properties	of	the
inner	product	listed	in	Theorem 1	of	Section 6.1. For	other	spaces, we	need	analogues	of
the	inner	product	with	the	same	properties. The	conclusions	of	Theorem 1	now	become
axioms in	the	following	definition.

DEF IN I T I ON An inner	product on	a	vector	space V is	a	function	that, to	each	pair	of	vectors
u and v in V , associates	a	real	number hu; vi and	satisfies	the	following	axioms,
for	all u, v, w in V and	all	scalars c:

1. hu; vi D hv; ui
2. hu C v;wi D hu;wi C hv;wi
3. hcu; vi D chu; vi
4. hu;ui � 0 and hu; ui D 0 if	and	only	if u D 0

A vector	space	with	an	inner	product	is	called	an inner	product	space.

The	vector	space R
n with	the	standard	inner	product	is	an	inner	product	space, and

nearly	everything	discussed	in	this	chapter	for R
n carries	over	to	inner	product	spaces.

The	examples	in	this	section	and	the	next	lay	the	foundation	for	a	variety	of	applications
treated	in	courses	in	engineering, physics, mathematics, and	statistics.

EXAMPLE 1 Fix 	 any 	 two 	 positive 	 numbers—say, 4 	 and 	 5—and 	 for 	 vectors
u D .u1; u2/ and v D .v1; v2/ in R

2, set

hu; vi D 4u1v1 C 5u2v2 (1)

Show	that	equation	(1)	defines	an	inner	product.

SOLUTION Certainly 	 Axiom 1 	 is 	 satisfied, because hu; vi D 4u1v1 C 5u2v2 D
4v1u1 C 5v2u2 D hv; ui. If w D .w1; w2/, then

hu C v;wi D 4.u1 C v1/w1 C 5.u2 C v2/w2

D 4u1w1 C 5u2w2 C 4v1w1 C 5v2w2

D hu;wi C hv;wi
This	verifies	Axiom 2. For	Axiom 3, compute

hcu; vi D 4.cu1/v1 C 5.cu2/v2 D c.4u1v1 C 5u2v2/ D chu; vi
For	Axiom 4, note	that hu; ui D 4u2

1 C 5u2
2 � 0, and 4u2

1 C 5u2
2 D 0 only	if u1 D u2 D

0, that	is, if u D 0. Also, h0; 0i D 0. So	(1)	defines	an	inner	product	on R
2.

Inner 	products 	 similar 	 to 	 (1) 	can 	be 	defined 	on R
n. They 	arise 	naturally 	 in

connection	with	“weighted	least-squares”	problems, in	which	weights	are	assigned	to
the	various	entries	in	the	sum	for	the	inner	product	in	such	a	way	that	more	importance
is	given	to	the	more	reliable	measurements.

From	now	on, when	an	inner	product	space	involves	polynomials	or	other	functions,
we	will	write	the	functions	in	the	familiar	way, rather	than	use	the	boldface	type	for
vectors. Nevertheless, it	is	important	to	remember	that	each	function is a	vector	when
it	is	treated	as	an	element	of	a	vector	space.
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EXAMPLE 2 Let t0; : : : ; tn be	distinct	real	numbers. For p and q in Pn, define
hp; qi D p.t0/q.t0/ C p.t1/q.t1/ C � � � C p.tn/q.tn/ (2)

Inner	product	Axioms 1–3	are	readily	checked. For	Axiom 4, note	that
hp; pi D Œp.t0/�2 C Œp.t1/�2 C � � � C Œp.tn/�2 � 0

Also, h0; 0i D 0. (The	boldface	zero	here	denotes	the	zero	polynomial, the	zero	vector
in Pn.) If hp; pi D 0, then p must	vanish	at n C 1 points: t0; : : : ; tn. This	is	possible
only	if p is	the	zero	polynomial, because	the	degree	of p is	less	than n C 1. Thus	(2)
defines	an	inner	product	on Pn.

EXAMPLE 3 Let V be P2, with	the	inner	product	from	Example 2, where t0 D 0,
t1 D 1

2
, and t2 D 1. Let p.t/ D 12t2 and q.t/ D 2t � 1. Compute hp; qi and hq; qi.

SOLUTION

hp; qi D p.0/q.0/ C p
�

1
2

�

q
�

1
2

�

C p.1/q.1/

D .0/.�1/ C .3/.0/ C .12/.1/ D 12

hq; qi D Œq.0/�2 C Œq
�

1
2

�

�2 C Œq.1/�2

D .�1/2 C .0/2 C .1/2 D 2

Lengths, Distances, and Orthogonality
Let V be	an	inner	product	space, with	the	inner	product	denoted	by hu; vi. Just	as	in
R

n, we	define	the length, or norm, of	a	vector v to	be	the	scalar

kvk D
p

hv; vi
Equivalently, kvk2 D hv; vi. (This	definition	makes	sense	because hv; vi � 0, but	the
definition does	not say	that hv; vi is	a	“sum	of	squares,” because v need	not	be	an	element
of R

n.)
A unit	vector is	one	whose	length	is	1. The distance	between u and v is ku � vk.

Vectors u and v are orthogonal if hu; vi D 0.

EXAMPLE 4 Let P2 have	the	inner	product	(2)	of	Example 3. Compute	the	lengths
of	the	vectors p.t/ D 12t2 and q.t/ D 2t � 1.
SOLUTION

kpk2 D hp; pi D Œp.0/�2 C
�

p
�

1
2

��2 C Œp.1/�2

D 0 C Œ3�2 C Œ12�2 D 153

kpk D
p

153

From	Example 3, hq; qi D 2. Hence kqk D
p

2.

The Gram–Schmidt Process
The	existence	of	orthogonal	bases	for	finite-dimensional	subspaces	of	an	inner	product
space	can	be	established	by	the	Gram–Schmidt	process, just	as	in R

n. Certain	orthogo-
nal	bases	that	arise	frequently	in	applications	can	be	constructed	by	this	process.

The	orthogonal	projection	of	a	vector	onto	a	subspace W with	an	orthogonal	basis
can	be	constructed	as	usual. The	projection	does	not	depend	on	the	choice	of	orthogonal
basis, and	it	has	the	properties	described	in	the	Orthogonal	Decomposition	Theorem	and
the	Best	Approximation	Theorem.
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EXAMPLE 5 LetV beP4 with	the	inner	product	in	Example 2, involving	evaluation
of	polynomials	at �2, �1, 0, 1, and	2, and	view P2 as	a	subspace	of V . Produce	an
orthogonal	basis	for P2 by	applying	the	Gram–Schmidt	process	to	the	polynomials	1, t ,
and t2.
SOLUTION The	inner	product	depends	only	on	the	values	of	a	polynomial	at�2; : : : ; 2,
so	we	list	the	values	of	each	polynomial	as	a	vector	in R

5, underneath	the	name	of	the
polynomial:¹

Polynomial: 1 t t 2

Vector	of	values:

2

6
6
6
6
4

1

1

1

1

1

3

7
7
7
7
5

;

2

6
6
6
6
4

�2

�1

0

1

2

3

7
7
7
7
5

;

2

6
6
6
6
4

4

1

0

1

4

3

7
7
7
7
5

The	inner	product	of	two	polynomials	in V equals	the	(standard)	inner	product	of	their
corresponding	vectors	in R

5. Observe	that t is	orthogonal	to	the	constant	function	1. So
take p0.t/ D 1 and p1.t/ D t . For p2, use	the	vectors	in R

5 to	compute	the	projection
of t2 onto Span fp0; p1g:

ht2; p0i D ht2; 1i D 4 C 1 C 0 C 1 C 4 D 10

hp0; p0i D 5

ht2; p1i D ht2; ti D �8 C .�1/ C 0 C 1 C 8 D 0

The	orthogonal	projection	of t2 onto Span f1; tg is 10
5

p0 C 0p1. Thus

p2.t/ D t2 � 2p0.t/ D t2 � 2

An	orthogonal	basis	for	the	subspace P2 of V is:
Polynomial: p0 p1 p2

Vector	of	values:

2

6
6
6
6
4

1

1

1

1

1

3

7
7
7
7
5

;

2

6
6
6
6
4

�2

�1

0

1

2

3

7
7
7
7
5

;

2

6
6
6
6
4

2

�1

�2

�1

2

3

7
7
7
7
5

(3)

Best Approximation in Inner Product Spaces
A common	problem	in	applied	mathematics	involves	a	vector	space V whose	elements
are	functions. The	problem	is	to	approximate	a	function f in V by	a	function g from	a
specified	subspace W of V . The	“closeness”	of	the	approximation	of f depends	on	the
way kf � gk is	defined. We	will	consider	only	the	case	in	which	the	distance	between
f and g is	determined	by	an	inner	product. In	this	case, the best	approximation	to f by
functions	in W is	the	orthogonal	projection	of f onto	the	subspace W .

EXAMPLE 6 Let V be P4 with	the	inner	product	in	Example 5, and	let p0, p1,
and p2 be	the	orthogonal	basis	found	in	Example 5	for	the	subspace P2. Find	the	best
approximation	to p.t/ D 5 � 1

2
t4 by	polynomials	in P2.

¹Each	polynomial	in P4 is	uniquely	determined	by	its	value	at	the	five	numbers �2; : : : ; 2. In	fact, the
correspondence	between p and	its	vector	of	values	is	an	isomorphism, that	is, a	one-to-one	mapping	onto
R5 that	preserves	linear	combinations.
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SOLUTION The	values	of p0; p1, and p2 at	the	numbers �2, �1, 0, 1, and	2	are	listed
in R

5 vectors	in	(3)	above. The	corresponding	values	for p are �3, 9/2, 5, 9/2, and �3.
Compute

hp; p0i D 8; hp; p1i D 0; hp; p2i D �31

hp0; p0i D 5; hp2; p2i D 14

Then	the	best	approximation	in V to p by	polynomials	in P2 is

Op D projP2
p D hp; p0i

hp0; p0ip0 C hp; p1i
hp1; p1ip1 C hp; p2i

hp2; p2ip2

D 8
5
p0 C �31

14
p2 D 8

5
� 31

14
.t2 � 2/:

This	polynomial	is	the	closest	to p of	all	polynomials	in P2, when	the	distance	between
polynomials	is	measured	only	at �2, �1, 0, 1, and	2. See	Fig. 1.

t

y

2

2

p(t)

p(t)ˆ

FIGURE 1

The	polynomials p0, p1, and p2 in	Examples 5	and	6	belong	to	a	class	of	polynomi-
als	that	are	referred	to	in	statistics	as orthogonal	polynomials.² The	orthogonality	refers
to	the	type	of	inner	product	described	in	Example 2.

Two Inequalities
Given	a	vector v in	an	inner	product	space V and	given	a	finite-dimensional	subspace
W , we	may	apply	the	Pythagorean	Theorem	to	the	orthogonal	decomposition	of v with
respect	to W and	obtain

kvk2 D k projW vk2 C kv � projW vk2

See	Fig.	2. In	particular, this	shows	that	the	norm	of	the	projection	of v ontoW does	not
exceed	the	norm	of v itself. This	simple	observation	leads	to	the	following	important

v

0
W

||v – proj
W

v||

||proj
W

v||

||v||

proj
W

v

FIGURE 2

The	hypotenuse	is	the	longest	side.
inequality.

THEOREM 16 The Cauchy--Schwarz Inequality

For	all u, v in V ,
jhu; vij � kuk kvk (4)

²See Statistics	and	Experimental	Design	in	Engineering	and	the	Physical	Sciences, 2nd	ed., by	Norman
L. Johnson	and	Fred	C. Leone	(New	York: John	Wiley	&	Sons, 1977). Tables	there	list	“Orthogonal
Polynomials,” which	are	simply	the	values	of	the	polynomial	at	numbers	such	as �2, �1, 0, 1, and	2.
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PROOF If u D 0, then	both	sides	of	(4)	are	zero, and	hence	the	inequality	is	true	in	this
case. (See	Practice	Problem 1.) If u ¤ 0, let W be	the	subspace	spanned	by u. Recall
that kcuk D jcj kuk for	any	scalar c. Thus

k projW vk D









hv;ui
hu; uiu










D jhv; uij
jhu;uijkuk D jhv; uij

kuk2
kuk D jhu; vij

kuk

Since k projW vk � kvk, we	have jhu; vij
kuk � kvk, which	gives	(4).

The	Cauchy–Schwarz	inequality	is	useful	in	many	branches	of	mathematics. A few
simple	applications	are	presented	in	the	exercises. Our	main	need	for	this	inequality	here
is	to	prove	another	fundamental	inequality	involving	norms	of	vectors. See	Fig. 3.

THEOREM 17 The Triangle Inequality

For	all u; v in V ,
ku C vk � kuk C kvk

PROOF ku C vk2 D hu C v;u C vi D hu;ui C 2hu; vi C hv; vi
� kuk2 C 2jhu; vij C kvk2

� kuk2 C 2kuk kvk C kvk2 Cauchy–Schwarz
D .kuk C kvk/2

The	triangle	inequality	follows	immediately	by	taking	square	roots	of	both	sides.

0 u

v

||u + v||

u + v

||v||

||u||

FIGURE 3

The	lengths	of	the	sides	of	a
triangle.

An Inner Product for C Œa; b� (Calculus required)
Probably	the	most	widely	used	inner	product	space	for	applications	is	the	vector	space
C Œa; b� of	all	continuous	functions	on	an	interval a � t � b, with	an	inner	product	that
we	will	describe.

We	begin	by	considering	a	polynomial p and	any	integer n larger	than	or	equal
to	the	degree	of p. Then p is	in Pn, and	we	may	compute	a	“length”	for p using	the
inner	product	of	Example 2	involving	evaluation	at n C 1 points	in Œa; b�. However,
this	length	of p captures	the	behavior	at	only	those n C 1 points. Since p is	in Pn for
all	large n, we	could	use	a	much	larger n, with	many	more	points	for	the	“evaluation”
inner	product. See	Fig. 4.

t
ba

t
ba

p(t) p(t)

FIGURE 4 Using	different	numbers	of	evaluation	points	in Œa; b� to	compute
kpk2.
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Let	us	partition Œa; b� into n C 1 subintervals	of	length �t D .b � a/=.n C 1/, and
let t0; : : : ; tn be	arbitrary	points	in	these	subintervals.

a t0

∆t

tj btn

If n is	large, the	inner	product	on Pn determined	by t0; : : : ; tn will	tend	to	give	a	large
value	to hp; pi, so	we	scale	it	down	and	divide	by n C 1. Observe	that 1=.n C 1/ D
�t=.b � a/, and	define

hp; qi D 1

n C 1

n
X

jD0

p.tj /q.tj / D 1

b � a

2

4

n
X

jD0

p.tj /q.tj /�t

3

5

Now, let n increase	without	bound. Since	polynomialsp and q are	continuous	functions,
the	expression	in	brackets	is	a	Riemann	sum	that	approaches	a	definite	integral, and	we
are	led	to	consider	the average	value	of p.t/q.t/ on	the	interval Œa; b�:

1

b � a

Z b

a

p.t/q.t/ dt

This	quantity	is	defined	for	polynomials	of	any	degree	(in	fact, for	all 	continuous
functions), and	it	has	all	the	properties	of	an	inner	product, as	the	next	example	shows.
The	scale	factor 1=.b � a/ is	inessential	and	is	often	omitted	for	simplicity.

EXAMPLE 7 For f , g in C Œa; b�, set

hf; gi D
Z b

a

f .t/g.t/ dt (5)

Show	that	(5)	defines	an	inner	product	on C Œa; b�.

SOLUTION Inner	product	Axioms 1–3	follow	from	elementary	properties	of	definite
integrals. For	Axiom 4, observe	that

hf; f i D
Z b

a

Œf .t/�2 dt � 0

The	function Œf .t/�2 is	continuous	and	nonnegative	on Œa; b�. If	the	definite	integral	of
Œf .t/�2 is	zero, then Œf .t/�2 must	be	identically	zero	on Œa; b�, by	a	theorem	in	advanced
calculus, in	which	case f is	the	zero	function. Thus hf; f i D 0 implies	that f is	the
zero	function	on Œa; b�. So	(5)	defines	an	inner	product	on C Œa; b�.

EXAMPLE 8 Let V be	the	space C Œ0; 1� with	the	inner	product	of	Example 7, and
let W be	the	subspace	spanned	by	the	polynomials p1.t/ D 1, p2.t/ D 2t � 1, and
p3.t/ D 12t2. Use	the	Gram–Schmidt	process	to	find	an	orthogonal	basis	for W .

SOLUTION Let q1 D p1, and	compute

hp2; q1i D
Z 1

0

.2t � 1/.1/ dt D .t2 � t /

ˇ
ˇ
ˇ
ˇ

1

0

D 0
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So p2 is	already	orthogonal	to q1, and	we	can	take q2 D p2. For	the	projection	of p3

onto W2 D Span fq1; q2g, compute

hp3; q1i D
Z 1

0

12t2 � 1 dt D 4t3

ˇ
ˇ
ˇ
ˇ

1

0

D 4

hq1; q1i D
Z 1

0

1 � 1 dt D t

ˇ
ˇ
ˇ
ˇ

1

0

D 1

hp3; q2i D
Z 1

0

12t2.2t � 1/ dt D
Z 1

0

.24t3 � 12t2/ dt D 2

hq2; q2i D
Z 1

0

.2t � 1/2 dt D 1

6
.2t � 1/3

ˇ
ˇ
ˇ
ˇ

1

0

D 1

3

Then

projW2
p3 D hp3; q1i

hq1; q1i q1 C hp3; q2i
hq2; q2i

q2 D 4

1
q1 C 2

1=3
q2 D 4q1 C 6q2

and
q3 D p3 � projW2

p3 D p3 � 4q1 � 6q2

As	a	function, q3.t/ D 12t2 � 4 � 6.2t � 1/ D 12t2 � 12t C 2. The	orthogonal	basis
for	the	subspace W is fq1; q2; q3g.

PRACTICE PROBLEMS

Use	the	inner	product	axioms	to	verify	the	following	statements.

1. hv; 0i D h0; vi D 0.
2. hu; v C wi D hu; vi C hu;wi.

6.7 EXERCISES
1. Let R

2 have 	 the 	 inner 	 product 	 of 	 Example 1, and 	 let
x D .1; 1/ and y D .5; �1/.
a. Find kxk, kyk, and jhx; yij2.
b. Describe	all	vectors .´1; ´2/ that	are	orthogonal	to y.

2. Let R
2 have	the	inner	product	of	Example 1. Show	that

the	Cauchy–Schwarz	inequality	holds	for x D .3; �2/ and
y D .�2; 1/. [Suggestion: Study jhx; yij2.]

Exercises	3–8	refer	to P2 with	the	inner	product	given	by	evalua-
tion	at �1, 0, and	1. (See	Example 2.)

3. Compute hp; qi, where p.t/ D 4 C t , q.t/ D 5 � 4t 2.

4. Compute hp; qi, where p.t/ D 3t � t 2, q.t/ D 3 C 2t 2.

5. Compute kpk and kqk, for p and q in	Exercise 3.

6. Compute kpk and kqk, for p and q in	Exercise 4.

7. Compute	the	orthogonal	projection	of q onto	the	subspace
spanned	by p, for p and q in	Exercise 3.

8. Compute	the	orthogonal	projection	of q onto	the	subspace
spanned	by p, for p and q in	Exercise 4.

9. Let P3 have	the	inner	product	given	by	evaluation	at �3, �1,
1, and	3. Let p0.t/ D 1, p1.t/ D t , and p2.t/ D t 2.
a. Compute	the	orthogonal	projection	of p2 onto	the	sub-

space	spanned	by p0 and p1.
b. Find 	 a 	 polynomial q that 	 is 	 orthogonal 	 to p0 and

p1, such 	 that fp0; p1; qg is 	 an 	 orthogonal 	 basis 	 for
Span fp0; p1; p2g. Scale 	 the 	polynomial q so 	 that 	 its
vector	of	values	at .�3; �1; 1; 3/ is .1; �1; �1; 1/.

10. Let P3 have	the	inner	product	as	in	Exercise 9, with p0; p1,
and q the	polynomials	described	there. Find	the	best	approx-
imation	to p.t/ D t 3 by	polynomials	in Span fp0; p1; qg.

11. Let p0, p1, and p2 be	the	orthogonal	polynomials	described
in	Example	5, where	the	inner	product	on P4 is	given	by
evaluation	at �2, �1, 0, 1, and	2. Find	 the 	orthogonal
projection	of t 3 onto Span fp0; p1; p2g.

12. Find	a 	polynomial p3 such	 that fp0; p1; p2; p3g (see 	Ex-
ercise 11) 	 is 	an 	orthogonal 	basis 	 for 	 the 	 subspace P3 of
P4. Scale	the	polynomial p3 so	that	its	vector	of	values	is
.�1; 2; 0; �2; 1/.
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13. Let A be	any	invertible n � n matrix. Show	that	for u, v in
R

n, the	formula hu; vi D .Au/� .Av/ D .Au/T .Av/ defines
an	inner	product	on R

n.

14. Let T be	a	one-to-one	linear	transformation	from	a	vector
space V into R

n. Show	that	for u, v in V , the	formula
hu; vi D T .u/�T .v/ defines	an	inner	product	on V .

Use	the	inner	product	axioms	and	other	results	of	this	section	to
verify	the	statements	in	Exercises	15–18.

15. hu; cvi D chu; vi for	all	scalars c.

16. If fu; vg is	an	orthonormal	set	in V , then ku � vk D
p

2.

17. hu; vi D 1
4
ku C vk2 � 1

4
ku � vk2.

18. ku C vk2 C ku � vk2 D 2kuk2 C 2kvk2.

19. Given a � 0 and b � 0, let u D
�p

ap
b

�

and v D
�p

bp
a

�

.

Use	the	Cauchy–Schwarz	inequality	to	compare	the	geomet-
ric	mean

p
ab with	the	arithmetic	mean .a C b/=2.

20. Let u D
�

a

b

�

and v D
�

1

1

�

. Use	 the 	Cauchy–Schwarz

inequality	to	show	that
�

a C b

2

�2

� a2 C b2

2

Exercises 	21–24	refer 	 to V D C Œ0; 1�, with 	 the 	 inner 	product
given	by	an	integral, as	in	Example 7.

21. Compute hf; gi, where f .t/ D 1 � 3t 2 and g.t/ D t � t 3.
22. Compute hf; gi, where f .t/ D 5t � 3 and g.t/ D t 3 � t 2.
23. Compute kf k for f in	Exercise 21.
24. Compute kgk for g in	Exercise 22.
25. Let V be	the	space C Œ�1; 1� with	the	inner	product	of	Exam-

ple 7. Find	an	orthogonal	basis	for	the	subspace	spanned	by
the	polynomials 1, t , and t 2. The	polynomials	in	this	basis
are	called Legendre	polynomials.

26. Let V be	the	space C Œ�2; 2� with	the	inner	product	of	Exam-
ple 7. Find	an	orthogonal	basis	for	the	subspace	spanned	by
the	polynomials 1, t , and t 2.

27. [M] Let P4 have	the	inner	product	as	in	Example 5, and	let
p0, p1, p2 be	the	orthogonal	polynomials	from	that	exam-
ple. Using	your	matrix	program, apply	the	Gram–Schmidt
process	to	the	set fp0; p1; p2; t 3; t 4g to	create	an	orthogonal
basis	for P4.

28. [M] Let V be 	 the 	 space C Œ0; 2�� with 	 the 	 inner 	 prod-
uct 	 of 	 Example 7. Use 	 the 	Gram–Schmidt 	 process 	 to
create 	 an 	 orthogonal 	 basis 	 for 	 the 	 subspace 	 spanned 	 by
f1; cos t; cos2 t; cos3 tg. Use	a	matrix	program	or	computa-
tional	program	to	compute	the	appropriate	definite	integrals.

SOLUTIONS TO PRACTICE PROBLEMS

1. By	Axiom 1, hv; 0i D h0; vi. Then h0; vi D h0v; vi D 0hv; vi, by 	Axiom 3, so
h0; vi D 0.

2. By	Axioms 1, 2, and	then	1	again, hu; v C wi D hv C w; ui D hv; ui C hw; ui D
hu; vi C hu;wi.

6.8 APPLICATIONS OF INNER PRODUCT SPACES

The	examples	in	this	section	suggest	how	the	inner	product	spaces	defined	in	Section 6.7
arise	in	practical	problems. The	first	example	is	connected	with	the	massive	least-
squares	problem	of	updating	the	North	American	Datum, described	in	the	chapter’s
introductory	example.

Weighted Least-Squares
Let y be	a	vector	of n observations, y1; : : : ; yn, and	suppose	we	wish	to	approximate y by
a	vector Oy that	belongs	to	some	specified	subspace	of R

n. (In	Section 6.5, Oy was	written
as Ax so	that Oy was	in	the	column	space	of A.) Denote	the	entries	in Oy by Oy1; : : : ; Oyn.
Then	the sum	of	the	squares	for	error, or SS(E), in	approximating y by Oy is

SS(E) D .y1 � Oy1/2 C � � � C .yn � Oyn/2 (1)

This	is	simply ky � Oyk2, using	the	standard	length	in R
n.
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Now	suppose	the	measurements	that	produced	the	entries	in y are	not	equally
reliable. (This	was	the	case	for	the	North	American	Datum, since	measurements	were
made	over	a	period	of	140	years.) As	another	example, the	entries	in y might	be
computed	from	various	samples	of	measurements, with	unequal	sample	sizes.) Then
it	becomes	appropriate	to	weight	the	squared	errors	in	(1)	in	such	a	way	that	more
importance	is	assigned	to	the	more	reliable	measurements.¹ If	the	weights	are	denoted
by w2

1 ; : : : ; w2
n, then	the	weighted	sum	of	the	squares	for	error	is

Weighted	SS(E) D w2
1.y1 � Oy1/2 C � � � C w2

n.yn � Oyn/2 (2)

This	is	the	square	of	the	length	of y � Oy, where	the	length	is	derived	from	an	inner
product	analogous	to	that	in	Example 1	in	Section 6.7, namely,

hx; yi D w2
1x1y1 C � � � C w2

nxnyn

It	is	sometimes	convenient	to	transform	a	weighted	least-squares	problem	into	an
equivalent	ordinary	least-squares	problem. LetW be	the	diagonal	matrix	with	(positive)
w1; : : : ; wn on	its	diagonal, so	that

W y D

2

6
6
6
4

w1 0 � � � 0

0 w2

:::
: : :

:::

0 � � � wn

3

7
7
7
5

2

6
6
6
4

y1

y2

:::

yn

3

7
7
7
5

D

2

6
6
6
4

w1y1

w2y2

:::

wnyn

3

7
7
7
5

with	a	similar	expression	for W Oy. Observe	that	the j th	term	in	(2)	can	be	written	as

w2
j .yj � Oyj /2 D .wj yj � wj Oyj /2

It	follows	that	the	weighted SS(E) in	(2)	is	the	square	of	the	ordinary	length	in R
n of

W y � W Oy, which	we	write	as kW y � W Oyk2.
Now	suppose	the	approximating	vector Oy is	to	be	constructed	from	the	columns	of

a	matrix A. Then	we	seek	an Ox that	makes AOx D Oy as	close	to y as	possible. However,
the	measure	of	closeness	is	the	weighted	error,

kW y � W Oyk2 D kW y � WAOxk2

Thus Ox is	the	(ordinary)	least-squares	solution	of	the	equation

WAx D W y

The	normal	equation	for	the	least-squares	solution	is

.WA/T WAx D .WA/T W y

EXAMPLE 1 Find 	 the 	 least-squares 	 line y D ˇ0 C ˇ1x that 	 best 	 fits 	 the 	 data
.�2; 3/, .�1; 5/, .0; 5/, .1; 4/, and .2; 3/. Suppose	the	errors	in	measuring	the y-values
of	the	last	two	data	points	are	greater	than	for	the	other	points. Weight	these	data	half
as	much	as	the	rest	of	the	data.

¹Note	for	readers	with	a	background	in	statistics: Suppose	the	errors	in	measuring	the yi are	independent
random	variables	with	means	equal	to	zero	and	variances	of �2

1 ; : : : ; �2
n . Then	the	appropriate	weights	in	(2)

are w2
i D 1=�2

i . The	larger	the	variance	of	the	error, the	smaller	the	weight.
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SOLUTION As	in	Section 6.6, write X for	the	matrix A and ˇ for	the	vector x, and
obtain

X D

2

6
6
6
6
4

1 �2

1 �1

1 0

1 1

1 2

3

7
7
7
7
5

; ˇ D
�

ˇ0

ˇ1

�

; y D

2

6
6
6
6
4

3

5

5

4

3

3

7
7
7
7
5

For	a	weighting	matrix, choose W with	diagonal	entries	2, 2, 2, 1, and	1. Left-
multiplication	by W scales	the	rows	of X and y:

WX D

2

6
6
6
6
4

2 �4

2 �2

2 0

1 1

1 2

3

7
7
7
7
5

; W y D

2

6
6
6
6
4

6

10

10

4

3

3

7
7
7
7
5

For	the	normal	equation, compute

.WX/T WX D
�

14 �9

�9 25

�

and .WX/T W y D
�

59

�34

�

and	solve �

14 �9

�9 25

��

ˇ0

ˇ1

�

D
�

59

�34

�

The	solution	of	the	normal	equation	is	(to	two	significant	digits) ˇ0 D 4:3 and ˇ1 D :20.
The	desired	line	is

y D 4:3 C :20x

In	contrast, the	ordinary	least-squares	line	for	these	data	is

y D 4:0 � :10x

Both	lines	are	displayed	in	Fig. 1.

2

2

–2

y = 4 – .1x

y = 4.3 + .2x

y

x

FIGURE 1

Weighted	and	ordinary
least-squares	lines.

Trend Analysis of Data
Let f represent	an	unknown	function	whose	values	are	known	(perhaps	only	approx-
imately)	at t0; : : : ; tn. If	there	is	a	“linear	trend”	in	the	data f .t0/; : : : ; f .tn/, then
we	might	expect	to	approximate	the	values	of f by	a	function	of	the	form ˇ0 C ˇ1t .
If	there	is	a	“quadratic	trend”	to	the	data, then	we	would	try	a	function	of	the	form
ˇ0 C ˇ1t C ˇ2t2. This	was	discussed	in	Section 6.6, from	a	different	point	of	view.

In	some	statistical	problems, it	is	important	to	be	able	to	separate	the	linear	trend
from	the	quadratic	trend	(and	possibly	cubic	or	higher-order	trends). For	instance,
suppose	engineers	are	analyzing	the	performance	of	a	new	car, and f .t/ represents
the	distance	between	the	car	at	time t and	some	reference	point. If	the	car	is	traveling
at	constant	velocity, then	the	graph	of f .t/ should	be	a	straight	line	whose	slope	is	the
car’s	velocity. If	the	gas	pedal	is	suddenly	pressed	to	the	floor, the	graph	of f .t/ will
change	to	include	a	quadratic	term	and	possibly	a	cubic	term	(due	to	the	acceleration).
To	analyze	the	ability	of	the	car	to	pass	another	car, for	example, engineers	may	want
to	separate	the	quadratic	and	cubic	components	from	the	linear	term.

If	the	function	is	approximated	by	a	curve	of	the	form y D ˇ0 C ˇ1t C ˇ2t2, the
coefficient ˇ2 may	not	give	the	desired	information	about	the	quadratic	trend	in	the	data,
because	it	may	not	be	“independent”	in	a	statistical	sense	from	the	other ˇi . To	make
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what	is	known	as	a trend	analysis of	the	data, we	introduce	an	inner	product	on	the
space Pn analogous	to	that	given	in	Example 2	in	Section 6.7. For p, q in Pn, define

hp; qi D p.t0/q.t0/ C � � � C p.tn/q.tn/

In	practice, statisticians	seldom	need	to	consider	trends	in	data	of	degree	higher	than
cubic	or	quartic. So	let p0, p1, p2, p3 denote	an	orthogonal	basis	of	the	subspace P3 of
Pn, obtained	by	applying	the	Gram–Schmidt	process	to	the	polynomials	1, t , t2, and t3.
By	Supplementary	Exercise 11	in	Chapter 2, there	is	a	polynomial g in Pn whose	values
at t0; : : : ; tn coincide	with	those	of	the	unknown	function f . Let Og be	the	orthogonal
projection	(with	respect	to	the	given	inner	product)	of g onto P3, say,

Og D c0p0 C c1p1 C c2p2 C c3p3

Then Og is	called	a	cubic trend	function, and c0; : : : ; c3 are	the trend	coefficients of
the	data. The	coefficient c1 measures	the	linear	trend, c2 the	quadratic	trend, and c3 the
cubic	trend. It	turns	out	that	if	the	data	have	certain	properties, these	coefficients	are
statistically	independent.

Since p0; : : : ; p3 are	orthogonal, the	trend	coefficients	may	be	computed	one	at
a	time, independently	of	one	another. (Recall	that ci D hg; pi i=hpi ; pi i.) We	can
ignore p3 and c3 if	we	want	only	the	quadratic	trend. And	if, for	example, we	needed
to	determine	the	quartic	trend, we	would	have	to	find	(via	Gram–Schmidt)	only	a
polynomial p4 in P4 that	is	orthogonal	to P3 and	compute hg; p4i=hp4; p4i.

EXAMPLE 2 The	simplest	and	most	common	use	of	trend	analysis	occurs	when	the
points t0; : : : ; tn can	be	adjusted	so	that	they	are	evenly	spaced	and	sum	to	zero. Fit	a
quadratic	trend	function	to	the	data .�2; 3/, .�1; 5/, .0; 5/, .1; 4/, and .2; 3/.

SOLUTION The t -coordinates	are	suitably	scaled	to	use	the	orthogonal	polynomials
found	in	Example 5	of	Section 6.7:

Polynomial: p0 p1 p2 Data: g

Vector	of	values:

2

6
6
6
6
4

1

1

1

1

1

3

7
7
7
7
5

;

2

6
6
6
6
4

�2

�1

0

1

2

3

7
7
7
7
5

;

2

6
6
6
6
4

2

�1

�2

�1

2

3

7
7
7
7
5

;

2

6
6
6
6
4

3

5

5

4

3

3

7
7
7
7
5

The	calculations	involve	only	these	vectors, not	the	specific	formulas	for	the	orthogonal
polynomials. The	best	approximation	to	the	data	by	polynomials	in P2 is	the	orthogonal
projection	given	by

Op D hg; p0i
hp0; p0i

p0 C hg; p1i
hp1; p1i

p1 C hg; p2i
hp2; p2i

p2

D 20
5

p0 � 1
10

p1 � 7
14

p2

and
Op.t/ D 4 � :1t � :5.t2 � 2/ (3)

Since	the	coefficient	of p2 is	not	extremely	small, it	would	be	reasonable	to	conclude
that	the	trend	is	at	least	quadratic. This	is	confirmed	by	the	graph	in	Fig. 2.

2

2

–2

y

y = p(t)

x

FIGURE 2

Approximation	by	a	quadratic
trend	function.
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Fourier Series (Calculus required)
Continuous	functions	are	often	approximated	by	linear	combinations	of	sine	and	cosine
functions. For	instance, a	continuous	function	might	represent	a	sound	wave, an	electric
signal	of	some	type, or	the	movement	of	a	vibrating	mechanical	system.

For	simplicity, we	consider	functions	on 0 � t � 2� . It	turns	out	that	any	function
in C Œ0; 2�� can	be	approximated	as	closely	as	desired	by	a	function	of	the	form

a0

2
C a1 cos t C � � � C an cos nt C b1 sin t C � � � C bn sin nt (4)

for	a	sufficiently	large	value	of n. The	function	(4)	is	called	a trigonometric	poly-
nomial. If an and bn are	not	both	zero, the	polynomial	is	said	to	be	of order n. The
connection	between	trigonometric	polynomials	and	other	functions	inC Œ0; 2�� depends
on	the	fact	that	for	any n � 1, the	set

f1; cos t; cos 2t; : : : ; cos nt; sin t; sin 2t; : : : ; sin ntg (5)

is	orthogonal	with	respect	to	the	inner	product

hf; gi D
Z 2�

0

f .t/g.t/ dt (6)

This	orthogonality	is	verified	as	in	the	following	example	and	in	Exercises 5	and	6.

EXAMPLE 3 Let C Œ0; 2�� have	the	inner	product	(6), and	let m and n be	unequal
positive	integers. Show	that cosmt and cos nt are	orthogonal.

SOLUTION Use	a	trigonometric	identity. When m ¤ n,

hcosmt; cos nti D
Z 2�

0

cosmt cosnt dt

D 1

2

Z 2�

0

Œcos.mt C nt/ C cos.mt � nt/� dt

D 1

2

�
sin.mt C nt/

m C n
C sin.mt � nt/

m � n

�ˇ
ˇ
ˇ
ˇ

2�

0

D 0

Let W be	the	subspace	of C Œ0; 2�� spanned	by	the	functions	in	(5). Given f

in C Œ0; 2��, the	best	approximation	to f by	functions	in W is	called	the nth-order
Fourier	approximation to f on Œ0; 2��. Since	the	functions	in	(5)	are	orthogonal,
the	best	approximation	is	given	by	the	orthogonal	projection	onto W . In	this	case, the
coefficients ak and bk in	(4)	are	called	the Fourier	coefficients of f . The	standard
formula	for	an	orthogonal	projection	shows	that

ak D hf; cos kti
hcos kt; cos kti ; bk D hf; sin kti

hsin kt; sin kti ; k � 1

Exercise 7	asks	you	to	show	that hcos kt; cos kti D � and hsin kt; sin kti D � . Thus

ak D 1

�

Z 2�

0

f .t/ cos kt dt; bk D 1

�

Z 2�

0

f .t/ sin kt dt (7)

The	coefficient	of	the	(constant)	function 1 in	the	orthogonal	projection	is

hf; 1i
h1; 1i D 1

2�

Z 2�

0

f .t/�1 dt D 1

2

�
1

�

Z 2�

0

f .t/ cos.0�t / dt

�

D a0

2

where a0 is	defined	by	(7)	for k D 0. This	explains	why	the	constant	term	in	(4)	is
written	as a0=2.



388 CHAPTER 6 Orthogonality and Least Squares

EXAMPLE 4 Find	the nth-order	Fourier	approximation	to	the	function f .t/ D t on
the	interval Œ0; 2��.
SOLUTION Compute

a0

2
D 1

2
�

1

�

Z 2�

0

t dt D 1

2�

"

1

2
t2

ˇ
ˇ
ˇ
ˇ

2�

0

#

D �

and	for k > 0, using	integration	by	parts,

ak D 1

�

Z 2�

0

t cos kt dt D 1

�

�
1

k2
cos kt C t

k
sin kt

�2�

0

D 0

bk D 1

�

Z 2�

0

t sin kt dt D 1

�

�
1

k2
sin kt � t

k
cos kt

�2�

0

D � 2

k

Thus	the nth-order	Fourier	approximation	of f .t/ D t is

� � 2 sin t � sin 2t � 2

3
sin 3t � � � � � 2

n
sin nt

Figure 3	shows	the	third-	and	fourth-order	Fourier	approximations	of f .

(a) Third order

y

2�

2�

y = t

�

�

t

y

2�

2�

y = t

�

�

t

(b) Fourth order

FIGURE 3 Fourier	approximations	of	the	function f .t/ D t .

The	norm	of	the	difference	between f and	a	Fourier	approximation	is	called	the
mean	square	error in	the	approximation. (The	term mean refers	 to	the	fact	 that
the	norm	is	determined	by	an	integral.) It	can	be	shown	that	the	mean	square	error
approaches	zero	as	the	order	of	the	Fourier	approximation	increases. For	this	reason, it
is	common	to	write

f .t/ D a0

2
C
1
X

mD1

.am cosmt C bm sinmt/

This	expression	for f .t/ is 	called	the Fourier	series for f on Œ0; 2��. The	term
am cosmt , for	example, is	 the	projection	of f onto	the	one-dimensional	subspace
spanned	by cosmt .

PRACTICE PROBLEMS

1. Let q1.t/ D 1, q2.t/ D t , and q3.t/ D 3t2 � 4. Verify	that fq1; q2; q3g is	an	orthog-
onal	set	in C Œ�2; 2� with	the	inner	product	of	Example 7	in	Section 6.7	(integration
from �2 to	2).

2. Find	the	first-order	and	third-order	Fourier	approximations	to
f .t/ D 3 � 2 sin t C 5 sin 2t � 6 cos 2t
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6.8 EXERCISES
1. Find	the	least-squares	line y D ˇ0 C ˇ1x that	best	fits	the

data .�2; 0/, .�1; 0/, .0; 2/, .1; 4/, and .2; 4/, assuming	that
the	first	and	last	data	points	are	less	reliable. Weight	them
half	as	much	as	the	three	interior	points.

2. Suppose	5	out	of	25	data	points	in	a	weighted	least-squares
problem	have	a y-measurement	that	is	less	reliable	than	the
others, and	they	are	to	be	weighted	half	as	much	as	the	other
20	points. One	method	is	to	weight	the	20	points	by	a	factor
of	1	and	the	other	5	by	a	factor	of 1

2
. A second	method	is

to	weight	the	20	points	by	a	factor	of	2	and	the	other	5	by	a
factor	of	1. Do	the	two	methods	produce	different	results?
Explain.

3. Fit	a	cubic	trend	function	to	the	data	in	Example 2. The
orthogonal	cubic	polynomial	is p3.t/ D 5

6
t 3 � 17

6
t .

4. To	make	a	trend	analysis	of	six	evenly	spaced	data	points, one
can	use	orthogonal	polynomials	with	respect	to	evaluation	at
the	points t D �5; �3; �1; 1; 3, and	5.
a. Show	that	the	first	three	orthogonal	polynomials	are

p0.t/ D 1; p1.t/ D t; and p2.t/ D 3
8
t 2 � 35

8

(The	polynomial p2 has	been	scaled	so	that	its	values	at
the	evaluation	points	are	small	integers.)

b. Fit	a	quadratic	trend	function	to	the	data

.�5; 1/; .�3; 1/; .�1; 4/; .1; 4/; .3; 6/; .5; 8/

In	Exercises	5–14, the	space	is C Œ0; 2�� with	the	inner	product
(6).

5. Show	that sinmt and sin nt are	orthogonal	when m ¤ n.
6. Show	that sinmt and cosnt are	orthogonal	for	all	positive

integers m and n.
7. Show	that k cos ktk2 D � and k sin ktk2 D � for k > 0.
8. Find	the	third-order	Fourier	approximation	to f .t/ D t � 1.

9. Find 	 the 	 third-order 	 Fourier 	 approximation 	 to f .t/ D
2� � t .

10. Find 	 the 	 third-order 	Fourier 	approximation 	 to 	 the square
wave	function, f .t/ D 1 for 0 � t < � and f .t/ D �1 for
� � t < 2� .

11. Find	the	third-order	Fourier	approximation	to sin2 t , without
performing	any	integration	calculations.

12. Find	the	third-order	Fourier	approximation	to cos3 t , without
performing	any	integration	calculations.

13. Explain	why	a	Fourier	coefficient	of	the	sum	of	two	functions
is	the	sum	of	the	corresponding	Fourier	coefficients	of	the
two	functions.

14. Suppose	the	first	few	Fourier	coefficients	of	some	function
f in C Œ0; 2�� are a0, a1, a2, and b1, b2, b3. Which	of	the
following	trigonometric	polynomials	is	closer	to f ? Defend
your	answer.

g.t/ D a0

2
C a1 cos t C a2 cos 2t C b1 sin t

h.t/ D a0

2
C a1 cos t C a2 cos 2t C b1 sin t C b2 sin 2t

15. [M] Refer	to	the	data	in	Exercise 13	in	Section 6.6, con-
cerning	the	takeoff	performance	of	an	airplane. Suppose	the
possible	measurement	errors	become	greater	as	the	speed	of
the	airplane	increases, and	let W be	the	diagonal	weighting
matrix	whose	diagonal	entries	are	1, 1, 1, .9, .9, .8, .7, .6, .5,
.4, .3, .2, and	.1. Find	the	cubic	curve	that	fits	the	data	with
minimum	weighted	least-squares	error, and	use	it	to	estimate
the	velocity	of	the	plane	when t D 4:5 seconds.

16. [M] Let f4 and f5 be	the	fourth-order	and	fifth-order	Fourier
approximations	in C Œ0; 2�� to	the	square	wave	function	in
Exercise 10. Produce	separate	graphs	of f4 and f5 on	the
interval Œ0; 2��, and	produce	a	graph	of f5 on Œ�2�; 2��.
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SOLUTIONS TO PRACTICE PROBLEMS

1. Compute

hq1; q2i D
Z 2

�2

1�t dt D 1

2
t2

ˇ
ˇ
ˇ
ˇ

2

�2

D 0

hq1; q3i D
Z 2

�2

1� .3t2 � 4/ dt D .t3 � 4t/

ˇ
ˇ
ˇ
ˇ

2

�2

D 0

hq2; q3i D
Z 2

�2

t � .3t2 � 4/ dt D
�

3

4
t4 � 2t2

�ˇ
ˇ
ˇ
ˇ

2

�2

D 0
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2. The	third-order	Fourier	approximation	to f is	the	best	approximation	in C Œ0; 2��

to f by	functions	(vectors)	in	the	subspace	spanned	by	1, cos t , cos 2t , cos 3t ,
sin t , sin 2t , and sin 3t . But f is	obviously in this	subspace, so f is	its	own	best
approximation:

f .t/ D 3 � 2 sin t C 5 sin 2t � 6 cos 2t

For	the	first-order	approximation, the	closest	function	to f in	the	subspace W D
Spanf1; cos t; sin tg is 3 � 2 sin t . The	other	two	terms	in	the	formula	for f .t/ are
orthogonal	to	the	functions	in W , so	they	contribute	nothing	to	the	integrals	that
give	the	Fourier	coefficients	for	a	first-order	approximation.

y = 3 – 2 sin t
y = f (t)

t

3

9

–3
2π

y

π

First-	and	third-order
approximations	to f .t/.

CHAPTER 6 SUPPLEMENTARY EXERCISES
1. The	following	statements	refer	to	vectors	in R

n (or R
m/ with

the	standard	inner	product. Mark	each	statement	True	or
False. Justify	each	answer.
a. The	length	of	every	vector	is	a	positive	number.
b. A vector v and	its	negative �v have	equal	lengths.
c. The	distance	between u and v is ku � vk.
d. If r is	any	scalar, then krvk D rkvk.
e. If	two	vectors	are	orthogonal, they	are	linearly	indepen-

dent.
f. If x is 	orthogonal 	 to 	both u and v, then x must 	be

orthogonal	to u � v.
g. If ku C vk2 D kuk2 C kvk2, then u and v are	orthogonal.
h. If ku � vk2 D kuk2 C kvk2, then u and v are	orthogonal.
i. The	orthogonal	projection	of y onto u is	a	scalar	multiple

of y.
j. If	a	vector y coincides	with	its	orthogonal	projection	onto

a	subspace W , then y is	in W .
k. The	set	of	all	vectors	inR

n orthogonal	to	one	fixed	vector
is	a	subspace	of R

n.
l. If W is	a	subspace	of R

n, then W and W ? have	no
vectors	in	common.

m. If fv1; v2; v3g is	an	orthogonal	set	and	if c1, c2, and c3 are
scalars, then fc1v1; c2v2; c3v3g is	an	orthogonal	set.

n. If	a	matrix U has	orthonormal	columns, then U U T D I .
o. A square	matrix	with	orthogonal	columns	is	an	orthogo-

nal	matrix.
p. If	a	square	matrix	has	orthonormal	columns, then	it	also

has	orthonormal	rows.
q. IfW is	a	subspace, then k projW vk2 C kv � projW vk2 D

kvk2.

r. A least-squares	solution	of Ax D b is	the	vector AOx in
ColA closest	to b, so	that kb � AOx k � kb � Axk for
all x.

s. The 	normal 	 equations 	 for 	 a 	 least-squares 	 solution 	of
Ax D b are	given	by Ox D .ATA/�1AT b.

2. Let fv1; : : : ; vpg be	an	orthonormal	set. Verify	the	following
equality	by	induction, beginning	with p D 2. If x D c1v1C
� � � C cpvp , then

kxk2 D jc1j2 C � � � C jcpj2

3. Let fv1; : : : ; vpg be	an	orthonormal	set	in R
n. Verify	the

following	inequality, called Bessel’s	inequality, which	is	true
for	each x in R

n:

kxk2 � jx �v1j2 C jx �v2j2 C � � � C jx �vpj2

4. Let U be 	 an n � n orthogonal 	 matrix. Show 	 that 	 if
fv1; : : : ; vng is 	 an 	 orthonormal 	 basis 	 for R

n, then 	 so 	 is
fU v1; : : : ; U vng.

5. Show	that	if	an n � n matrix U satisfies .U x/� .U y/ D x �y
for	all x and y in R

n, then U is	an	orthogonal	matrix.

6. Show	that	if U is	an	orthogonal	matrix, then	any	real	eigen-
value	of U must	be ˙1.

7. A Householder	matrix, or	an elementary	reflector, has	the
form Q D I � 2uuT where u is	a	unit	vector. (See	Exer-
cise 13	in	the	Supplementary	Exercises	for	Chapter 2.) Show
thatQ is	an	orthogonal	matrix. (Elementary	reflectors	are	of-
ten	used	in	computer	programs	to	produce	a	QR factorization
of	a	matrix A. If A has	linearly	independent	columns, then
left-multiplication	by	a	sequence	of	elementary	reflectors	can
produce	an	upper	triangular	matrix.)
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8. Let T W R
n ! R

n be	a	linear	transformation	that	preserves
lengths; that	is, kT .x/k D kxk for	all x in R

n.
a. Show 	 that T also 	 preserves 	 orthogonality; that 	 is,

T .x/�T .y/ D 0 whenever x �y D 0.
b. Show	 that 	 the 	standard 	matrix 	of T is 	an 	orthogonal

matrix.

9. Let u and v be	linearly	independent	vectors	in R
n that	are

not orthogonal. Describe	how	to	find	the	best	approximation
to z in R

n by	vectors	of	the	form x1u C x2v without	first
constructing	an	orthogonal	basis	for Span fu; vg.

10. Suppose	the	columns	of A are	linearly	independent. Deter-
mine	what	happens	to	the	least-squares	solution Ox of Ax D b
when b is	replaced	by cb for	some	nonzero	scalar c.

11. If a, b, and c are 	 distinct 	 numbers, then 	 the 	 following
system	is	inconsistent	because	the	graphs	of	the	equations
are	parallel	planes. Show	that	the	set	of	all	least-squares
solutions	of	the	system	is	precisely	the	plane	whose	equation
is x � 2y C 5´ D .a C b C c/=3.

x � 2y C 5´ D a

x � 2y C 5´ D b

x � 2y C 5´ D c

12. Consider	the	problem	of	finding	an	eigenvalue	of	an n � n

matrix A when 	an 	approximate 	 eigenvector v is 	known.
Since v is	not	exactly	correct, the	equation

Av D �v .1/

will 	 probably 	not 	 have 	 a 	 solution. However, � can 	be
estimated	by	a 	 least-squares 	solution	when	(1) 	 is 	viewed
properly. Think	of v as	an n � 1 matrix V , think	of � as
a	vector	in R

1, and	denote	the	vector Av by	the	symbol b.
Then	(1)	becomes b D �V , which	may	also	be	written	as
V � D b. Find	the	least-squares	solution	of	this	system	of n

equations	in	the	one	unknown �, and	write	this	solution	using
the	original	symbols. The	resulting	estimate	for � is	called	a
Rayleigh	quotient. See	Exercises	11	and	12	in	Section	5.8.

13. Use	the	steps	below	to	prove	the	following	relations	among
the 	 four 	 fundamental 	 subspaces 	determined 	by 	an m � n

matrix A.

RowA D .NulA/?; ColA D .NulAT /?

a. Show	that RowA is	contained	in .NulA/?. (Show	that	if
x is	in RowA, then x is	orthogonal	to	every u in NulA.)

b. Suppose rankA D r . Find dimNulA and dim .NulA/?,
and	then	deduce	from	part	(a)	that RowA D .NulA/?.
[Hint: Study	the	exercises	for	Section 6.3.]

c. Explain	why ColA D .NulAT /?.

14. Explain	why	an	equation Ax D b has	a	solution	if	and	only
if b is	orthogonal	to	all	solutions	of	the	equation ATx D 0.

Exercises	15	and	16	concern	the	(real) Schur	factorization of	an
n � nmatrixA in	the	formA D URU T , whereU is	an	orthogonal
matrix	and R is	an n � n upper	triangular	matrix.1

15. Show	 that 	 if A admits 	a 	 (real) 	Schur 	 factorization, A D
URU T , then A has n real	eigenvalues, counting	multiplic-
ities.

16. Let A be	an n � n matrix	with n real	eigenvalues, counting
multiplicities, denoted	by �1; : : : ; �n. It	can	be	shown	that
A admits	a	(real)	Schur	factorization. Parts	(a)	and	(b)	show
the	key	ideas	in	the	proof. The	rest	of	the	proof	amounts	to
repeating	(a)	and	(b)	for	successively	smaller	matrices, and
then	piecing	together	the	results.
a. Let u1 be	a 	unit 	eigenvector 	corresponding	 to �1, let

u2; : : : ; un be	any	other	vectors	such	that fu1; : : : ; ung
is 	 an 	 orthonormal 	 basis 	 for R

n, and 	 then 	 let U D
Œ u1 u2 � � � un �. Show 	 that 	 the 	 first 	 column 	 of
U T AU is �1e1, where e1 is	the	first	column	of	the n � n

identity	matrix.
b. Part	(a)	implies	that U TAU has	the	form	shown	below.

Explain	why	the	eigenvalues	of A1 are �2; : : : ; �n. [Hint:
See	the	Supplementary	Exercises	for	Chapter 5.]

U TAU D

2

6
6
6
4

�1 � � � �
0
::: A1

0

3

7
7
7
5

[M] When 	 the 	 right 	 side 	 of 	 an 	 equation Ax D b is 	 changed
slightly—say, toAx D b C �b for	some	vector�b—the	solution
changes	from x to x C �x, where �x satisfies A.�x/ D �b.
The	quotient k�bk=kbk is	called	the relative	change in b (or
the relative	error in b when �b represents	possible	error	in	the
entries	of b/. The	relative	change	in	the	solution	is k�xk=kxk.
When A is	invertible, the condition	number of A, written	as
cond.A/, produces	a	bound	on	how	large	the	relative	change	in
x can	be:

k�xk
kxk � cond.A/�

k�bk
kbk .2/

In	Exercises	17–20, solve Ax D b and A.�x/ D �b, and	show
that	the	inequality	(2)	holds	in	each	case. (See	the	discussion	of
ill-conditioned matrices	in	Exercises	41–43	in	Section 2.3.)

17. A D
�

4:5 3:1

1:6 1:1

�

, b D
�

19:249

6:843

�

, �b D
�

:001

�:003

�

18. A D
�

4:5 3:1

1:6 1:1

�

, b D
�

:500

�1:407

�

, �b D
�

:001

�:003

�

1 If	complex	numbers	are	allowed, every n� n matrix A admits	a
(complex)	Schur	factorization,A D URU�1, whereR is	upper	triangular
and U�1 is	the conjugate transpose	of U . This	very	useful	fact	is
discussed	in Matrix	Analysis, by	Roger	A. Horn	and	Charles	R. Johnson
(Cambridge: Cambridge	University	Press, 1985), pp. 79–100.
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19. A D

2

6
6
4

7 �6 �4 1

�5 1 0 �2

10 11 7 �3

19 9 7 1

3

7
7
5
, b D

2

6
6
4

:100

2:888

�1:404

1:462

3

7
7
5
,

�b D 10�4

2

6
6
4

:49

�1:28

5:78

8:04

3

7
7
5

20. A D

2

6
6
4

7 �6 �4 1

�5 1 0 �2

10 11 7 �3

19 9 7 1

3

7
7
5
, b D

2

6
6
4

4:230

�11:043

49:991

69:536

3

7
7
5
,

�b D 10�4

2

6
6
4

:27

7:76

�3:77

3:93

3

7
7
5


