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Abstract. This paper mainly concerns the area growth and bottom spectrum

of complete stable minimal surfaces in a three-dimensional manifold with scalar
curvature bounded from below. When the ambient manifold is the Euclidean

space, by an elementary argument, it is shown directly from the stability in-

equality that the area of such minimal surfaces grows exactly as the Euclidean
plane. Consequently, such minimal surfaces must be flat, a well-known result

due to Fisher-Colbrie and Schoen as well as do Carmo and Peng. In the case

of general ambient manifold, explicit area growth estimate is also derived. For
the bottom spectrum, a self-contained argument involving positive Green’s

function is provided for its upper bound estimates. The argument extends to

stable minimal hypersurfaces in a complete manifold of dimension up to six
with sectional curvature bounded from below.

1. Introduction

This paper mainly concerns stable minimal surfaces in three-dimensional man-
ifolds. Our goal is to derive geometric information of such surfaces under scalar
curvature assumption on the ambient manifold. Recall that a minimal hypersur-
face Σ of a complete manifold M is said to be stable if it minimizes area up to the
second order with respect to compactly supported variations. This is equivalent to
the validity of the following stability inequality.

(1.1)

∫
Σ

(
|h|2 + Ric (ν, ν)

)
φ2 ≤

∫
Σ

|∇φ|2

for any φ ∈ C∞0 (Σ) , where h is the second fundamental form of Σ and Ric (ν, ν) the
Ricci curvature of M evaluated at the unit normal vector ν to Σ. As is well-known,
the stability inequality is equivalent to the existence of a positive solution u to the
following equation.

∆u+
(
|h|2 + Ric (ν, ν)

)
u = 0

on Σ. Since the lift of u to the universal cover Σ̃ of Σ remains a solution to the
above equation, this shows that Σ̃ is a stable minimal surface in the universal cover

M̃ of M as well. Also, observe that such u is positive superharmonic when M has
nonnegative Ricci curvature. In particular, if Σ is parabolic, then function u must
be a constant. Consequently, Σ is totally geodesic.

Historically, when the ambient three-dimensional manifold M has nonnegative
scalar curvature, it was shown by Schoen and Yau in their pioneering work [25] that

The first author was partially supported by NSF grant DMS-1811845 and the second by MOST,
Taiwan.

1



2 OVIDIU MUNTEANU, CHIUNG-JUE ANNA SUNG, AND JIAPING WANG

a compact stable minimal surface Σ must be of genus 0. Subsequently, it was proven
by Fisher-Colbrie and Schoen [13] that a simply connected complete stable minimal
surface Σ must be conformal to the Euclidean plane, hence parabolic. As pointed
out above, this enabled them to conclude that such Σ is necessarily totally geodesic
if the Ricci curvature of the ambient manifold M is nonnegative. In particular,
they obtained the following theorem, which was also proved independently by do
Carmo and Peng [11].

Theorem 1 (Fisher-Colbrie and Schoen, do Carmo and Peng). A complete stable
minimal surface Σ in R3 must be flat.

Later, an alternative proof of the above theorem was produced by Pogorelov [23]
and Colding-Minicozzi [9] by establishing the following area estimate

A(r) ≤ 4

3
π r2

for all r > 0. Here, A(r) denotes the area of the geodesic ball of radius r in Σ. It then
follows [5] that Σ must be parabolic, hence totally geodesic and flat. In passing,
we mention a recent exciting result by Chodosh and Li [7] that a three-dimensional
complete stable minimal hypersurface in R4 must be flat as well.

One of our goals here is to improve the above area estimate to the sharp form
of A(r) ≤ π r2 for all r > 0, thus bypassing the parabolicity consideration and
leading directly to Theorem 1. Indeed, since the sectional curvature KΣ of Σ is
nonpositive and Σ can be assumed to be simply connected, one sees immediately
from the area bound that Σ must be flat. In fact, our area estimate can be localized
to stable minimal surfaces with boundary. In the following, we use Bp (r) to denote
the geodesic ball in Σ of radius r centered at point p ∈ Σ. Its area and the length
of geodesic circle ∂Bp (r) are denoted by A(r) and L(r), respectively.

Theorem 2. Let Σ be a stable minimal surface in R3. Then there exists a universal
constant R0 such that for any geodesic ball Bp (R) with no intersection with the
boundary of Σ,

L (r) ≤ 2πr

(
1 +

10

lnR

)
and

A (r) ≤ π r2

(
1 +

10

lnR

)
for all r ≤

√
R and R ≥ R0. In particular, if Σ is complete, then A (r) ≤ π r2 for

all r > 0. Consequently, Σ is flat.

More generally, we also obtain area estimate for Σ in terms of the lower bound
of the scalar curvature S of the ambient manifold M.

Theorem 3. Let Bp (R) be a geodesic ball in a stable minimal surface Σ in a three
dimensional manifold M. Assume that Bp (R) does not intersect the boundary of Σ.

• If the scalar curvature S of M satisfies S ≥ −6, then

A (R) ≤ C1 e
2R

for some absolute constant C1 > 0.
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• If the sectional curvature K of M satisfies K ≥ −1, then

A (R) ≤ C1 e
4√
7
R

for some absolute constant C1 > 0.

Corollary 4. Let Σ be a complete stable minimal surface in a three dimensional
manifold M. Then there exists an absolute constant C1 > 0 such that for all R > 0,

A (R) ≤ C1 e
β R,

where β = 2 if the scalar curvature of M satisfies S ≥ −6 and β = 4√
7

if the

sectional curvature of M satisfies K ≥ −1.

It is unclear to us whether this estimate is sharp. It should be mentioned that,
unlike the Euclidean case, there are infinitely many non-totally geodesic stable
minimal surfaces in the hyperbolic space H3. Rotationally symmetric examples
were constructed in [20] and [10].

Let us now briefly indicate the main ideas behind the proofs. Observe that for a
geodesic ball Bp(R) of a general surface N, if it has no intersection with either the
boundary of N or the cut locus of p, then the Gauss-Bonnet formula gives

d

dr
L(r) =

d

dr

(∫
∂Bp(r)

ds

)

=

∫
∂Bp(r)

(∆r) ds

=

∫
∂Bp(r)

kgds

= 2π χ (Bp (r))−
∫
Bp(r)

KNdA

≤ 2π −
∫
Bp(r)

KNdA,

where kg is the geodesic curvature of ∂Bp (r) and KN the sectional curvature of N.
Note that we have used the fact that the Euler characteristic number χ (Bp (r)) ≤ 1.

In particular, for a complete stable minimal surface Σ in R3, since KΣ ≤ 0, by
working with the universal cover of Σ if necessary, the inequality

(1.2)
d

dr
L(r) ≤ 2π −

∫
Bp(r)

KΣ

is valid for all r. Combining it with the stability inequality (1.1) one concludes that

(1.3) 3

∫
Σ

(φ′)
2

+ 4

∫
Σ

φφ′′ ≤ 4πφ2 (0)

holds for any compactly supported C2 nonincreasing function φ = φ (r) on [0,∞).
So far, we have followed the argument in [9, 8] closely. In fact, similar argument

had been adopted earlier in [14], where it was shown that the area must be of
quadratic growth for a finite index minimal surface in a three dimensional complete
manifold with real analytic metric and nonnegative scalar curvature.



4 OVIDIU MUNTEANU, CHIUNG-JUE ANNA SUNG, AND JIAPING WANG

By choosing a linear cut-off function φ in (1.3), one concludes immediately that
A(r) ≤ 4

3 π r
2. For the desired conclusion that A(r) ≤ π r2, a different choice of φ

is needed.
In a similar fashion, for the proof of Theorem 3, we only use the inequality (1.2)

and the stability inequality (1.1). Of course, the preceding derivation shows that
(1.2) holds for balls with no boundary points of Σ or the cut locus of p. It turns out
that it remains true for any ball Bp(r) in an arbitrary complete surface, possibly
containing cut locus of p. This highly nontrivial result is due to Fiala [12] when the
surface is the Euclidean plane endowed with a real analytic metric. Fiala’s result
was later extended by Hartman [15] to smooth metrics. In its full generality, the
result is established by Shiohama and Tanaka [27, 28].

Our second goal concerns upper bound of the bottom spectrum of the Laplacian
on stable minimal hypersurfaces. The bottom spectrum of the Laplacian on a
complete manifold N, denoted by λ0(N), is an important geometric invariant and
characterized as the optimal Poincaré inequality constant

(1.4) λ0 (N)

∫
N

φ2 ≤
∫
N

|∇φ|2

for all compactly supported smooth function φ.
According to [18], for any p ∈ N,

(1.5) λ0 (N) ≤ 1

4

(
lim inf
R→∞

lnVp(R)

R

)2

,

where Vp(R) denotes the volume of the geodesic ball Bp(R) centered at point p of
radius R. For a stable minimal surface Σ in three-dimensional complete manifolds
M, applying Corollary 4 on the area estimate, one immediately obtains from (1.5)
an upper bound estimate for λ0 (Σ) , a result previously proven by Bérard, Castillon,
and Cavalcante (see Theorem 5.1 in [2]) by a different approach.

Theorem 5 (Bérard, Castillon, and Cavalcante). Let Σ be a complete stable min-
imal surface in a three dimensional manifold M.

• If the scalar curvature of M satisfies S ≥ −6, then

λ0 (Σ) ≤ 1.

• If the sectional curvature of M satisfies K ≥ −1, then

λ0 (Σ) ≤ 4

7
.

Previously, in [3], it was shown that for complete stable minimal surface Σ in
H3, its bottom spectrum is at most 4

3 . It would be interesting to see if the improved

upper bound of 4
7 is sharp.

The proof in [2] and the one indicated above through the area estimates both rely
on Fiala’s inequality (1.2). To get around this rather difficult and dimension specific
result, we provide yet another approach to the theorem. The argument instead
follows the idea in [17, 21, 22] and involves the minimal positive Green’s function

G. Indeed, we take φ = ψ |∇G|1/2 as a test function in the Poincaré inequality
(1.4), where ψ is a suitably chosen cut-off function. The Bochner formula for |∇G|
is then used to estimate the relevant terms, with the Ricci curvature term arising
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from the formula controlled by the stability inequality (1.1). This approach seems
to be more direct and self-contained. Moreover, it generalizes to stable minimal
hypersurfaces of dimension up to five.

Theorem 6. Let Σ be a complete stable minimal hypersurface in (n+1)-dimensional
manifold Mwith n ≤ 5. If the sectional curvature of M satisfies K ≥ −κ for some
nonnegative constant κ, then

λ0 (Σ) ≤ 2n(n− 1)2

6n− n2 − 1
κ.

Presently, it is unclear to us how to derive an upper bound for λ0 (Σ) when
n ≥ 6. It is also worth mentioning that for any complete m-dimensional minimal
submanifold Σ in Hn, according to [6], its bottom spectrum satisfies

λ0 (Σ) ≥ (m− 1)2

4
.

The paper is arranged as follows. Section 2 is devoted to the proofs of Theorem
2 and Theorem 3. The estimates for the bottom spectrum Theorem 5 and Theorem
6 are proved in Section 3.

We thank Marcos P. Cavalcante for his interest and for bringing the paper [2]
to our attention. We would like to dedicate this work to Professor Peter Li on the
occasion of his seventieth birthday. All of us have benefited enormously from his
teaching and support over the years.

2. Area estimates

In this section, we prove both Theorem 2 and Theorem 3. We continue to
assume that Σ is a stable minimal surface in three-dimensional manifold M. Recall
the stability inequality.

(2.1)

∫
Σ

(
|h|2 + Ric (ν, ν)

)
φ2 ≤

∫
Σ

|∇φ|2

for any φ ∈ C∞0 (Σ) , where h is the second fundamental form of Σ and Ric (ν, ν)
the Ricci curvature of M in the direction of the unit normal ν to Σ.

Fix p ∈ Σ. Let

r (x) = dΣ (p, x)

be the intrinsic distance on Σ and

Bp (R) = {x ∈ Σ : r (x) < R}
the intrinsic geodesic ball of radius R in Σ. Denote with

L (r) =

∫
∂Bp(r)

ds

A (r) =

∫
Bp(r)

dA

the length of the geodesic circle ∂Bp (r) and the area of Bp (r) , respectively.
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Everywhere S, Ric and K denote the scalar, Ricci and sectional curvatures of
M, respectively, while KΣ denotes the Gauss curvature of Σ. For minimal surface
Σ in M, the Gauss curvature equation gives

(2.2) KΣ = R1212 −
1

2
|h|2 ,

where {e1, e2} is a local orthonormal frame on Σ and R1212 the sectional curvature
of M for the two-plane spanned by {e1, e2} . Note that since M is three dimensional,

R1212 + Ric (ν, ν) =
1

2
S.

Therefore,

(2.3) KΣ =
1

2
S −

(
Ric (ν, ν) +

1

2
|h|2
)
.

In the following, we present detailed proofs for Theorem 2 and Theorem 3 by
assuming that the ball Bp(R) contains no cut locus of p in Σ. This suffices for
proving Theorem 2 in its full generality. It also proves Theorem 3 in the case that
M has nonpositive sectional curvature. Indeed, by (2.2), the sectional curvature
KΣ ≤ 0 when R1212 ≤ 0. By working on the universal covering space of Σ if
necessary, geodesic ball Bp(R) is free of cut locus for all R > 0 as Σ is a Cartan-
Hadamard manifold.

The same argument also applies to the general case of Theorem 3 by invoking
Fiala’s inequality (1.2) alluded in the introduction.

We start with the following lemma which has appeared in [14, 9] or Theorem 2.8
in [8], as well as [19, 4].

Lemma 7. Let Σ be stable minimal surface in a three dimensional manifold M.
Let Bp (R) be a geodesic ball in Σ that does not intersect the cut locus of p in Σ or
the boundary of Σ. Assume that φ = φ (r) is a Lipschitz continuous, nonincreasing
function on [0, R] with φ (R) = 0.

• If the scalar curvature of M satisfies S ≥ −6α for some α ≥ 0, then

(2.4) −2

∫ R

0

φ (r)φ′ (r)L′ (r) dr ≤ 2πφ2 (0) +

∫
Bp(R)

(φ′)
2

+ 3α

∫
Bp(R)

φ2.

• If the sectional curvature of M satisfies K ≥ −α for some α ≥ 0, then

(2.5) −4

∫ R

0

φ (r)φ′ (r)L′ (r) dr ≤ 4πφ2 (0) +

∫
Bp(R)

(φ′)
2

+ 4α

∫
Bp(R)

φ2.

Proof. For any 0 < r < R, by the Gauss-Bonnet formula we have
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d

dr
L(r) =

d

dr

(∫
∂Bp(r)

ds

)
(2.6)

=

∫
∂Bp(r)

(∆r) ds

=

∫
∂Bp(r)

kgds

= 2πχ (Bp (r))−
∫
Bp(r)

KΣdA

≤ 2π −
∫
Bp(r)

KΣdA,

where kg is the geodesic curvature of ∂Bp (r) . Note that the Euler characteristic
number χ (Bp (r)) ≤ 1.

(a) Assume first that S ≥ −6α. By (2.3) we have that

KΣ ≥ −3α−
(

Ric (ν, ν) + |h|2
)
.

Hence,

d

dr

(∫
∂Bp(r)

ds

)
≤ 2π + 3α

∫
Bp(r)

dA+

∫
Bp(r)

(
Ric (ν, ν) + |h|2

)
.

Equivalently,

(2.7) L′ (r) ≤ 2π + 3αA (r) +

∫
Bp(r)

(
Ric (ν, ν) + |h|2

)
.

Multiply (2.7) by −2φ (r)φ′ (r) ≥ 0 and integrate from r = 0 to r = R. It follows
that

−2

∫ R

0

φ (r)φ′ (r)L′ (r) dr(2.8)

≤ 2πφ2 (0)− 6α

∫ R

0

φ (r)φ′ (r)A (r) dr

−2

∫ R

0

φ (r)φ′ (r)

(∫
Bp(r)

Ric (ν, ν) + |h|2
)
dr.

Note that for any function f (r) with f (0) = 0 we have

(2.9) −2

∫ R

0

φ (r)φ′ (r) f (r) dr =

∫ R

0

f ′ (r)φ2 (r) dr.

Applying this to f (r) =
∫
Bp(r)

dA we conclude
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−6α

∫ R

0

φ (r)φ′ (r)A (r) dr = 3α

∫ R

0

φ2 (r)L (r) dr(2.10)

= 3α

∫
Bp(R)

φ2,

where in the last line we have used the co-area formula. Similarly, for

f (r) =

∫
Bp(r)

(
Ric (ν, ν) + |h|2

)
we get

−2

∫ R

0

φ (r)φ′ (r)

(∫
Bp(r)

Ric (ν, ν) + |h|2
)

(2.11)

=

∫ R

0

φ2 (r)

(∫
∂Bp(r)

Ric (ν, ν) + |h|2
)
dr

=

∫
Bp(R)

(
Ric (ν, ν) + |h|2

)
φ2

≤
∫
Bp(R)

(φ′)
2
,

where in the last line we have used the stability inequality (2.1). Combining (2.10)
and (2.11), we conclude from (2.8) that

−2

∫ R

0

φ (r)φ′ (r)L′ (r) dr ≤ 2πφ2 (0) + 3α

∫
Bp(R)

φ2 +

∫
Bp(R)

(φ′)
2
,

which is (2.4).
(b) Assume now that K ≥ −α. Then according to (2.2),

−2KΣ ≤ 2α+ |h|2 .
Plugging into (2.6) gives

2L′ (r) ≤ 4π + 2αA (r) +

∫
Bp(r)

|h|2 .

Multiplying by −2φ (r)φ′ (r) ≥ 0 and integrating from r = 0 to r = R we obtain

−4

∫ R

0

φ (r)φ′ (r)L′ (r) dr ≤ 4πφ2 (0)(2.12)

−4α

∫ R

0

φ (r)φ′ (r)A (r) dr

−2

∫ R

0

φ (r)φ′ (r)

(∫
Bp(r)

|h|2
)
dr.

Since Ric (ν, ν) ≥ −2α, it follows from (2.11) that
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−2

∫ R

0

φ (r)φ′ (r)

(∫
Bp(r)

|h|2
)
≤
∫

Σ

(φ′)
2

+ 2α

∫
Σ

φ2.

Together with (2.10), we conclude from (2.12) that

−4

∫ R

0

φ (r)φ′ (r)L′ (r) dr ≤ 4π φ2 (0) +

∫
Bp(R)

(φ′)
2

+ 4α

∫
Bp(R)

φ2.

This proves (2.5). �

Corollary 8. Let Σ be stable minimal surface in a three dimensional manifold M.
Let Bp (R) be a geodesic ball in Σ that does not intersect the cut locus of p in Σ or
the boundary of Σ. Assume that φ = φ (r) is a C2 nonincreasing function on [0, R]
with φ (R) = 0.

• If the scalar curvature of M satisfies S ≥ −6α for some α ≥ 0, then∫
Bp(R)

(φ′)
2

+ 2

∫
Bp(R)

φφ′′ ≤ 2πφ2 (0) + 3α

∫
Bp(R)

φ2.

• If the sectional curvature of M satisfies K ≥ −α for some α ≥ 0, then

3

∫
Bp(R)

(φ′)
2

+ 4

∫
Bp(R)

φφ′′ ≤ 4πφ2 (0) + 4α

∫
Bp(R)

φ2.

Proof. Integrating by parts we have

−2

∫ R

0

φ (r)φ′ (r)L′ (r) dr = 2

∫ R

0

(
φφ′′ + (φ′)

2
)
L (r) dr

= 2

∫
Bp(R)

(
φφ′′ + (φ′)

2
)
.

By (2.4) and (2.5), the desired conclusions follow. �

We now use the lemma and the corollary to establish area estimates for stable
minimal surfaces. We start with the case M = R3.

Theorem 9. Let Σ be a stable minimal surface in R3. Then there exists a universal
constant R0 such that for geodesic ball Bp (R) with no intersection with the boundary
of Σ or the cut locus of p,

L (r) ≤ 2πr

(
1 +

10

lnR

)
and

A (r) ≤ π r2

(
1 +

10

lnR

)
for all r ≤

√
R and R ≥ R0. In particular, if Σ is complete, then A (r) ≤ π r2 for

all r > 0. Consequently, Σ is flat.

Proof. By Corollary 8, the inequality

3

∫
Bp(R)

(φ′)
2

+ 4

∫
Bp(R)

φφ′′ ≤ 4πφ2 (0)

holds for any C2 nonincreasing function φ = φ (r) on [0, R] with φ (R) = 0. Set
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φ (r) = ln (R+ 1)− ln (r + 1) .

The inequality becomes

3

∫
Bp(R)

1

(r + 1)
2 + 4

∫
Bp(R)

ln (R+ 1)− ln (r + 1)

(r + 1)
2 ≤ 4π ln2 (R+ 1) .

In particular,

(2.13)

∫
Bp(R)

ln (R+ 1)− ln (r + 1)

(r + 1)
2 ≤ π ln2 (R+ 1) .

Since KΣ ≤ 0 on Bp (R), the Hessian comparison theorem (see Theorem 1.1 in
[26]) implies that

(2.14) 2π ≤ L (r)

r
≤ L (R)

R

for all 0 < r < R. Assume by contradiction that

(2.15)
L (r)

r
≥ 2π

(
1 +

10

ln (R+ 1)

)
for all r ∈

[√
R,R

]
. According to (2.13) we have

π ln2 (R+ 1) ≥
∫ R

0

ln (R+ 1)− ln (r + 1)

(r + 1)
2 L (r) dr

=

∫ R

0

ln (R+ 1)− ln (r + 1)

(r + 1)
2 (L (r)− 2πr) dr

+2π

∫ R

0

ln (R+ 1)− ln (r + 1)

(r + 1)
2 r dr.

Hence, (2.14) and (2.15) imply that

π ln2 (R+ 1) ≥ 2π

∫ R

0

ln (R+ 1)− ln (r + 1)

(r + 1)
2 r dr(2.16)

+
20π

ln (R+ 1)

∫ R

√
R

ln (R+ 1)− ln (r + 1)

(r + 1)
2 rdr.

The first term can be computed as

2π

∫ R

0

ln (R+ 1)− ln (r + 1)

(r + 1)
2 rdr

= −2π ln (R+ 1) + 2π

∫ R

0

1

r + 1

(
ln (r + 1) +

1

r + 1

)
dr

= −2π ln (R+ 1) + π ln2 (R+ 1) + 2π − 2π

R+ 1
.

Plugging this into (2.16) we get
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(2.17) 2π ln (R+ 1) ≥ 20π

ln (R+ 1)

∫ R

√
R

ln (R+ 1)− ln (r + 1)

(r + 1)
2 r dr.

However, integration by parts gives

∫ R

√
R

ln (R+ 1)− ln (r + 1)

(r + 1)
2 rdr

= − ln

(
R+ 1√
R+ 1

)(
ln
(√

R+ 1
)

+
1√
R+ 1

)
+

1

2
ln2 (R+ 1)− 1

2
ln2
(√

R+ 1
)

+
1√
R+ 1

− 1

R+ 1

≥ 1

9
ln2 (R+ 1)

for all R > R0 large enough. In view of (2.17), this yields a contradiction. In

conclusion, (2.15) is false. In other words, there exists r0 ∈
[√

R,R
]

such that

L (r0)

r0
≤ 2π

(
1 +

10

ln (R+ 1)

)
.

Now for r <
√
R, by (2.14) we have

L (r)

r
≤ L (r0)

r0

≤ 2π

(
1 +

10

lnR

)
.

This proves the length estimate. The area estimate then follows immediately.
Finally, if Σ is complete, then the length and area estimates are applicable for

all R on the universal cover of Σ. It follows that

L (r) ≤ 2π r

and

A (r) ≤ π r2

for all r > 0. This implies that Σ is flat as KΣ ≤ 0. �

We now turn to the case of more general ambient manifolds.

Theorem 10. Let Bp (R) be a geodesic ball in a stable minimal surface Σ in a
three dimensional manifold M. Assume that Bp (R) does not intersect the boundary
of Σ or the cut locus of p in Σ.

• If the scalar curvature S of M satisfies S ≥ −6, then

A (R) ≤ C1 e
2R

for some absolute constant C1 > 0.
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• If the sectional curvature K of M satisfies K ≥ −1, then

A (R) ≤ C1 e
4√
7
R

for some absolute constant C1 > 0.

Proof. Since the arguments are similar for both cases, we supply details for the
second case and only provide a sketch for the first case.

So we assume K ≥ −1. By (2.5) from Lemma 7, for any Lipschitz continuous,
nonincreasing function φ = φ (r) on [0, t] with φ (t) = 0 we have

(2.18) −4

∫ t

0

φ (r)φ′ (r)L′ (r) dr ≤ 4πφ2 (0) +

∫
Bp(t)

(φ′)
2

+ 4

∫
Bp(t)

φ2

for all 0 < t < R.
For convenience, denote with

(2.19) a =
4√
7
.

Let

φ (r) = e−
a
2 rψ (r) ,

where ψ is a nonincreasing Lipschitz function such that ψ (t) = 0. We have

(φ′)
2

=
a2

4
e−arψ2 + e−ar (ψ′)

2 − ae−arψψ′

−4φφ′ = 2ae−arψ2 − 4e−arψψ′.

Therefore,

−4

∫ t

0

φ (r)φ′ (r)L′ (r) dr = 2a

∫ t

0

e−arψ2 (r)L′ (r) dr

−4

∫ t

0

e−arψ (r)ψ′ (r)L′ (r) dr.

After integration by parts, the first term on the right side becomes

2a

∫ t

0

e−arψ2 (r)L′ (r) dr =

∫ t

0

(
2a2e−arψ2 (r)− 4aψ (r)ψ′ (r)

)
L (r) dr

=

∫
Bp(t)

(
2a2ψ2 − 4aψψ′

)
e−ar.

Plugging these identities into (2.18), we get

−4

∫ t

0

e−arψ (r)ψ′ (r)L′ (r) dr ≤ 4πψ2 (0) +

∫
Bp(t)

(ψ′)
2
e−ar(2.20)

+3a

∫
Bp(t)

ψψ′e−ar.

For arbitrary η with 0 < η < R and η ≤ t, let
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(2.21) ψ (r) =


1
t−r
η

0

for r ≤ t− η
for r ∈ (t− η, t)
for r ≥ t

It follows from (2.20) that

4

η

∫ t

t−η
e−arψ (r)L′ (r) dr ≤ 4π +

1

η2

∫
Bp(t)\Bp(t−η)

e−ar(2.22)

−3a

η

∫
Bp(t)\Bp(t−η)

ψe−ar.

The term on the left hand side, after integrating by parts, becomes

4

η

∫ t

t−η
e−arψ (r)L′ (r) dr = −4

η
L (t− η) e−a(t−η) +

4a

η

∫
Bp(t)\Bp(t−η)

ψe−ar

+
4

η2

∫
Bp(t)\Bp(t−η)

e−ar.

Therefore, combining with (2.22), we have

(2.23)
3

η2

∫
Bp(t)\Bp(t−η)

e−ar+
7a

η

∫
Bp(t)\Bp(t−η)

ψe−ar ≤ 4π+
4

η
L (t− η) e−a(t−η)

for any 0 < η ≤ t < R. In particular, by setting η = t, it follows that

3

t2

∫
Bp(t)

e−ar ≤ 4π.

Clearly, this implies that

(2.24) A (t) ≤ 4π

3
t2 eat

for all t ≤ R.

Claim: There exists an absolute constant Λ > 0 such that for all τ and s satisfying
0 < 2τ ≤ s < R− 3τ ,

(2.25)

∫
Bp(s)\Bp(s−τ)

e−ar ≤ Λτ +
Λ

τ

∫
Bp(s−τ)\Bp(s−2τ)

e−ar.

Indeed, let η = 4τ and T = s− 3τ
2 . Then

η

8
≤ T < R− 9η

8
.

The mean value theorem implies that there exists ξ ∈
(
T − η

8 , T + η
8

)
such that

(2.26)

∫
Bp(T+ η

8 )\Bp(T− η8 )
e−ar =

η

4
L (ξ) e−aξ.
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Denote with

(2.27) t = ξ + η ∈
(
T +

7η

8
, T +

9η

8

)
.

By (2.21) and (2.27) we get that

∫
Bp(t)\Bp(t−η)

ψe−ar ≥ 1

2

∫
Bp(t− η2 )\Bp(t−η)

e−ar

≥ 1

2

∫
Bp(T+ 3η

8 )\Bp(T+ η
8 )
e−ar.

Together with (2.23) and (2.26) we conclude

7a

2η

∫
Bp(T+ 3η

8 )\Bp(T+ η
8 )
e−ar ≤ 7a

η

∫
Bp(t)\Bp(t−η)

ψe−ar

≤ 4π +
4

η
L (t− η) e−a(t−η)

= 4π +
16

η2

∫
Bp(T+ η

8 )\Bp(T− η8 )
e−ar.

Therefore, there exists Λ > 0 such that

(2.28)

∫
Bp(T+ 3η

8 )\Bp(T+ η
8 )
e−ar ≤ Λη +

Λ

η

∫
Bp(T+ η

8 )\Bp(T− η8 )
e−ar.

Substituting η = 4τ and s = T + 3τ
2 in (2.28) implies the claim.

For s ≥ 6Λ, letting τ = 2Λ and iterating (2.25) m times with m =
[
s

2Λ

]
− 2 we

get

∫
Bp(s)\Bp(s−2Λ)

e−ar ≤ 2Λ2
m−1∑
k=0

1

2k
+

1

2m

∫
Bp(6Λ)

e−ar(2.29)

≤ C2

by invoking (2.24) for the last term. This holds for any 6Λ ≤ s ≤ R− 6Λ.
To finish, we apply the mean value theorem to conclude that there exists ξ ∈

(R− 16Λ, R− 14Λ) such that

(2.30)

∫
Bp(R−14Λ)\Bp(R−16Λ)

e−ar = 2ΛL (ξ) e−aξ.

Applying (2.29) with s = R− 14Λ, we get from (2.30) that

L (R− η) e−a(R−η) ≤ C3

for some constant C3, where

η = R− ξ ∈ (14Λ, 16Λ) .

By (2.23),
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3

η2

∫
Bp(R)\Bp(R−η)

e−ar ≤ 4π +
4

η
L (R− η) e−a(R−η)

≤ C4.

This implies that ∫
Bp(R)\Bp(R−η)

dA ≤ C eaR

for some η ∈ (14Λ, 16Λ) . In particular,

(2.31)

∫
Bp(R)\Bp(R−14Λ)

dA ≤ C eaR.

Applying (2.31) with R replaced by R − 14kΛ, k = 1, 2, · · · , n and n =
[
R

14Λ

]
− 1,

we arrive at

A(R) ≤
n∑
k=0

∫
Bp(R−14kΛ)\Bp(R−14(k+1)Λ)

dA+A(14Λ)

≤ C

n∑
k=0

ea (R−14kΛ) + C

≤ C eaR.

This proves the area estimate for the second case.
Let us now sketch the argument for the first case. Assume now that S ≥ −6.

Then by (2.4),

−2

∫ t

0

φ (r)φ′ (r)L′ (r) dr ≤ 2πφ2 (0) +

∫
Bp(t)

(φ′)
2

+ 3

∫
Bp(t)

φ2.

We set
φ (r) = e−rψ (r) ,

for ψ nonincreasing Lipschitz on [0, t] so that ψ(t) = 0, and get that

−2

∫ t

0

ψ (r)ψ′ (r)L′ (r) e−2r ≤ 2π + 2

∫
Bp(t)

ψψ′e−2r +

∫
Bp(t)

(ψ′)
2
e−2r.

Taking ψ as defined in (2.21) and integrating by parts imply that

1

η2

∫
Bp(t)\Bp(t−η)

e−2r +
6

η

∫
Bp(t)\Bp(t−η)

ψe−2r ≤ 2π +
2

η
L (t− η) e−2(t−η)

The rest of the argument follows verbatim. �

We point out that the same proof applies to the general case of Theorem 3 as well,
that is, Theorem 10 continues to hold for arbitrary ball Bp(R) in Σ. Indeed, Lemma
7 is valid for arbitrary ball Bp(R), even if it contains cut locus of p, by invoking
Fiala’s inequality (1.2) established through the work of Fiala [12], Hartman [15], and
Shiohama and Tanaka [27, 28]. A priori, the length function L(r) of the geodesic
circle ∂Bp(r) is only defined for almost all r. Their work implies that the function
L(r) can be extended to all r ≥ 0. So extended function, denoted by L again, may
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not be continuous. But it satisfies L(r+) = L(r) and L(r−) ≥ L(r) for all r > 0.
Moreover, it can be written as L(r) = L1(r) + L2(r), where L1(r) is absolutely
continuous on any finite interval and L2(r) is nonincreasing. At the points where
L(r) is differentiable, its derivative satisfies the Fiala inequality

d

dr
L(r) ≤ 2π −

∫
Bp(r)

KΣ.

Although it is not needed here, we remark that Corollary 8 is also valid on
arbitrary ball Bp(R) for all C2 function φ = φ (r) with φ′(r) ≤ 0, φ′′(r) ≥ 0 for all
r ∈ [0, R] and φ (R) = 0. We refer to [1] for a proof.

3. Bottom spectrum estimates

In this section, we consider upper bounds for the bottom spectrum of com-
plete stable minimal hypersurfaces. The bottom spectrum of the Laplacian on a
complete manifold N, denoted by λ0(N), is an important geometric invariant and
characterized as the optimal Poincaré inequality constant or

λ0 (N) = inf
φ∈C∞

0 (N)

∫
N
|∇φ|2∫
N
φ2

.

According to [18], for any p ∈ N,

λ0 (N) ≤ 1

4

(
lim inf
R→∞

lnVp(R)

R

)2

,

where Vp(R) denotes the volume of the geodesic ball Bp(R) centered at point p of
radius R. As an immediate corollary to the area estimate Corollary 4, one obtains
the following result which is due to Bérard, Castillon and Cavalcante [2].

Theorem 11 (Bérard, Castillon and Cavalcante). Let Σ be a complete noncompact
stable minimal surface in a three dimensional manifold M.

(a) If the scalar curvature S of M satisfies S ≥ −6, then

λ0 (Σ) ≤ 1.

(b) If the sectional curvature K of M satisfies K ≥ −1, then

λ0 (Σ) ≤ 4

7
.

We now provide a different argument for this result. Recall that an n−dimensional
manifold Σ is called nonparabolic if it admits a positive symmetric Green’s func-
tion. It is well-known that this is the case if λ0(Σ) > 0 (see [16]). Let G(p, x) be
the minimal positive Green’s function. Then G (p, x) = G (x, p) > 0,

∆xG (p, x) = −δ (p, x)

and

G (p, x) = lim
i→∞

Gi (p, x) ,

where Gi (p, x) is the Dirichlet Green’s function of a compact exhaustion Ωi of Σ.
For fixed point p, we denote G (x) = G (p, x) . It follows from the construction that
max∂Bp(r)G is a strictly decreasing function in r and that
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(3.1)

∫
Σ\Bp(1)

|∇G|2 <∞.

Since G is harmonic away from the pole p, the Kato inequality implies

|Gij |2 ≥
n

n− 1
|∇ |∇G||2 .

By the Bochner formula we have

(3.2) ∆ |∇G| ≥ 1

n− 1
|∇ |∇G||2 |∇G|−1

+ RicΣ (∇G,∇G) |∇G|−1

on Σ \ {p}. Similarly, for v = lnG, using

∆v = − |∇v|2

and

|∇v| v11 = 〈∇ |∇v| ,∇v〉 ,
where {e1, · · · , en} is a local orthonormal frame on Σ with e1 = ∇

|∇v| , one easily

sees from the Bochner formula together with the standard manipulation that

1

2
∆ |∇v|2 ≥ n

n− 1
|∇ |∇v||2 +

1

n− 1
|∇v|4(3.3)

−n− 2

n− 1

〈
∇ |∇v|2 ,∇v

〉
+ RicΣ (∇v,∇v)

on Σ \ {p}.
Denote with

L (a, b) = {x ∈ Σ : a < G (x) < b}
l (t) = {x ∈ Σ : G (x) = t} .

Then L(α,∞) ⊂ Bp(1) for α = max∂Bp(1)G. According to Lemma 5.1 in [17],∫
l(t)

|∇G| = 1(3.4) ∫
L(a,b)

|∇G|2 f (G) =

∫ b

a

f(t)dt

for any integrable function f provided that λ0(Σ) > 0.
We need the following integral gradient estimate.

Lemma 12. Let M be a three dimensional manifold with scalar curvature bounded
below. For a complete stable minimal surface Σ in M with λ0(Σ) > 0, its minimal
positive Green’s function G satisfies∫

Σ\Bp(1)

|∇G|4

G3 ln2q (1 +G−1)
<∞

for any q > 1
2 .
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Proof. Let v = lnG. Then by (3.3),

1

2
∆ |∇v|2 ≥ |∇v|4 + 2 |∇ |∇v||2 +KΣ |∇v|2 .

on Σ \ {p}. According to (2.3),

KΣ |∇v|2 =
1

2
S |∇v|2 −

(
Ric (ν, ν) +

1

2
|h|2
)
|∇v|2

≥ −C |∇v|2 −
(

Ric (ν, ν) + |h|2
)
|∇v|2 .

Thus, for any cut-off function φ, we have

∫
Σ

|∇v|4 φ2 ≤ 1

2

∫
Σ

φ2 ∆ |∇v|2 + C

∫
Σ

φ2 |∇v|2(3.5)

−2

∫
Σ

φ2 |∇ |∇v||2

+

∫
Σ

(
Ric (ν, ν) + |h|2

)
|∇v|2 φ2.

By the stability inequality (2.1), the last term is estimated as

∫
Σ

(
Ric (ν, ν) + |h|2

)
|∇v|2 φ2

≤
∫

Σ

|∇ (|∇v|φ)|2

=

∫
Σ

|∇φ|2 |∇v|2 −
∫

Σ

φ2 |∇v| ∆ |∇v| .

Hence, (3.5) becomes

∫
Σ

|∇v|4 φ2 ≤
∫

Σ

(
C φ2 + |∇φ|2

)
|∇v|2 .

For 1
2 < q < 1, let φ = ψ f(G), where ψ is a cut-off function such that ψ = 0 on

Bp(1) ∪ (M \Bp(2R)) , ψ = 1 on Bp(R) \Bp(2), and

f (G) =
G

1
2

lnq (AG−1)

with A = e4α, α = max∂Bp(1)G. Direct calculations imply

∫
Σ

|∇φ|2 |∇v|2 ≤ 4

∫
Σ

|∇ψ|2 f2 |∇v|2 +
3

4

∫
Σ

|∇v|4 φ2.

Therefore,



AREA AND SPECTRUM ESTIMATES FOR STABLE MINIMAL SURFACES 19

∫
Σ

|∇v|4 φ2 ≤ C

∫
Σ

(
ψ2 + |∇ψ|2

)
f2 |∇v|2

≤ C

∫
Σ\Bp(1)

|∇G|2

G
(
ln A

G

)2q
≤ C

∫
L(0,α)

|∇G|2

G
(
ln A

G

)2q
= C

∫ α

0

1

t
(
ln A

t

)2q dt
≤ C.

Letting R→∞, we conclude

(3.6)

∫
Σ\Bp(2)

|∇G|4

G3 ln2q (AG−1)
≤ C.

This proves the result. �

Note that by the Cauchy-Schwarz inequality it follows that(∫
Σ\Bp(1)

|∇G|3

G2 ln2q (1 +G−1)

)2

≤

(∫
Σ\Bp(1)

|∇G|4

G3 ln2q (1 +G−1)

)

×

(∫
Σ\Bp(1)

|∇G|2

G ln2q (1 +G−1)

)

≤ C

(∫
Σ\Bp(1)

|∇G|2

G ln2q (1 +G−1)

)
.

Again, the last integral is finite for q > 1
2 by (3.4) and the co-area formula. There-

fore,

(3.7)

∫
Σ\Bp(1)

|∇G|3

G2 ln2q (1 +G−1)
<∞.

We are now ready to prove Theorem 11.

Proof of Theorem 11. Without loss of generality we may assume that λ0 (Σ) > 0.
Then Σ is nonparabolic. Let G (p, x) be the minimal positive Green’s function of
Σ with a pole at p ∈ Σ. For simplicity, we denote this function by G (x) . Note that
G is harmonic on Σ\ {p} .

Let

L (a, b) = {x ∈ Σ : a < G (x) < b} .
For ε > 0 small enough, define function χ by

(3.8) χ (x) =


1

lnG(x)−ln(ε2)
− ln ε

0

on L (ε,∞)
on L

(
ε2, ε

)
on L (0, ε)
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Since G (x) may not converge to zero as x → ∞, the function χ may not have
compact support. So we consider the cut-off function

ϕ = χψ,

where

(3.9) ψ (x) =


0

r(x)− 1
1

R+ 1− r (x)
0

on Bp(1)
on Bp(2) \Bp(1)
on Bp (R) \Bp(2)
on Bp (R+ 1) \Bp (R)
on Σ \Bp (R+ 1)

Setting

φ = |∇G|
1
2 ϕ

in the Poincaré inequality, we have

λ0 (Σ)

∫
Σ

|∇G|ϕ2 ≤
∫

Σ

∣∣∣∇(|∇G| 12 ϕ)∣∣∣2 .
Expanding the right side, we get

λ0 (Σ)

∫
Σ

|∇G|ϕ2 ≤ 1

4

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2(3.10)

+

∫
Σ

|∇G| |∇ϕ|2

+
1

2

∫
Σ

〈
∇ϕ2,∇ |∇G|

〉
≤

(
1

4
+ δ

)∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2

+C(δ)

∫
Σ

|∇G| |∇ϕ|2

for any δ > 0. We now estimate the first term on the right hand side. Note that by
(3.2),

(3.11) ∆ |∇G| ≥ |∇ |∇G||2 |∇G|−1
+KΣ |∇G|

on Σ \ {p} whenever |∇G| 6= 0.
In the case that S ≥ −6, by (2.3) it follows that

KΣ |∇G| ≥ −3 |∇G| −
(

Ric (ν, ν) + |h|2
)
|∇G| .

Hence, (3.11) becomes

∆ |∇G| ≥ |∇ |∇G||2 |∇G|−1 − 3 |∇G|(3.12)

−
(

Ric (ν, ν) + |h|2
)
|∇G| .

Integrating by parts we have∫
Σ

ϕ2∆ |∇G| = −
∫

Σ

〈
∇ |∇G| ,∇ϕ2

〉
.
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Therefore, (3.12) implies

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 3

∫
Σ

|∇G|ϕ2(3.13)

+

∫
Σ

(
Ric (ν, ν) + |h|2

)
|∇G|ϕ2

−
∫

Σ

〈
∇ |∇G| ,∇ϕ2

〉
.

Using the stability inequality (2.1) we have that

∫
Σ

(
Ric (ν, ν) + |h|2

)
|∇G|ϕ2 ≤

∫
Σ

∣∣∣∇(|∇G| 12 ϕ)∣∣∣2
≤ 1

4

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2

+

∫
Σ

|∇G| |∇ϕ|2

+
1

2

∫
Σ

〈
∇ϕ2,∇ |∇G|

〉
.

Combining with (3.13) we obtain that∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 4

∫
Σ

|∇G|ϕ2 +
4

3

∫
Σ

|∇G| |∇ϕ|2

−2

3

∫
Σ

〈
∇ϕ2,∇ |∇G|

〉
≤ 4

∫
Σ

|∇G|ϕ2 + C(δ)

∫
Σ

|∇G| |∇ϕ|2

+δ

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2.

Therefore,∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 4

1− δ

∫
Σ

|∇G|ϕ2 + C(δ)

∫
Σ

|∇G| |∇ϕ|2 .

Plugging into (3.10) then yields that

(3.14)

(
λ0 (Σ)− 1 + 4δ

1− δ

)∫
Σ

|∇G|ϕ2 ≤ C(δ)

∫
Σ

|∇G| |∇ϕ|2 .

We now estimate the right hand side. Obviously,

(3.15)

∫
Σ

|∇G| |∇ϕ|2 ≤ 2

∫
Σ

|∇G| |∇χ|2 ψ2 + 2

∫
Σ

|∇G| |∇ψ|2 χ2.

The first term of the right hand side is bounded by
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∫
Σ

|∇G| |∇χ|2 ψ2 ≤ 1

(ln ε)
2

∫
L(ε2,ε)

|∇G|3

G2

≤ C
1

(ln ε)
2 ln2q

(
1 + ε−2

)
≤ C ln2q−2

(
1 + ε−1

)
,

where we have used (3.7) in the second line. The second term of (3.15) is estimated
as

∫
Σ

|∇G| |∇ψ|2 χ2 ≤

(∫
Bp(R+1)\Bp(R)

|∇G|2
) 1

2
(∫

(Bp(R+1)\Bp(R))∩L(ε2,∞)

χ2

) 1
2

+C.

However, the integral estimate in [17] says that∫
Σ\Bp(R)

G2 ≤ C e−2
√
λ0(Σ)R

and ∫
Σ\Bp(R)

|∇G|2 ≤ C e−2
√
λ0(Σ)R.

In particular, ∫
(Bp(R+1)\Bp(R))∩L(ε2,∞)

χ2 ≤ 1

ε4

∫
Σ\Bp(R)

G2

≤ C

ε4
e−2
√
λ0(Σ)R.

Hence, ∫
Σ

|∇G| |∇ψ|2 χ2 ≤ C

ε2
e−2
√
λ0(Σ)R + C.

In conclusion, (3.15) becomes∫
Σ

|∇G| |∇ϕ|2 ≤ C ln2q−2
(
1 + ε−1

)
+
C

ε2
e−2
√
λ0(Σ)R + C.

Plugging into (3.14), we arrive at(
λ0 (Σ)− 1 + 4δ

1− δ

)∫
Σ

|∇G|ϕ2 ≤ C(δ)
(

ln2q−2
(
1 + ε−1

)
+ ε−2 e−2

√
λ0(Σ)R + C

)
By first letting R→∞ and then ε→ 0, as q < 1, we conclude that

(3.16)

(
λ0 (Σ)− 1 + 4δ

1− δ

)∫
Σ\Bp(2)

|∇G| ≤ C(δ).

However, using ∫
∂Bp(r)

∂G

∂r
= −1,
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we have ∫
Σ\Bp(2)

|∇G| ≥ −
∫ ∞

2

dr

∫
∂Bp(r)

∂G

∂r
=∞.

By (3.16), it follows that

λ0 (Σ) ≤ 1 + 4δ

1− δ
for any δ > 0. Therefore, λ0 (Σ) ≤ 1.

Now we consider the case that K ≥ −1. By (2.2) we have

KΣ |∇G| ≥ − |∇G| −
1

2
|h|2 |∇G| .

Therefore, (3.11) becomes

(3.17) ∆ |∇G| ≥ |∇ |∇G||2 |∇G|−1 − |∇G| − 1

2
|h|2 |∇G| .

However, by the stability inequality (2.1),

∫
Σ

(
|h|2 + Ric (ν, ν)

)
|∇G|ϕ2 ≤ 1

4

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2

+
1

2

∫
Σ

〈
∇ |∇G| ,∇ϕ2

〉
+

∫
Σ

|∇G| |∇ϕ|2 .

Hence, using that Ric (ν, ν) ≥ −2, we conclude

1

2

∫
Σ

|h|2 |∇G|ϕ2 ≤ 1

8

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 +

∫
Σ

|∇G|ϕ2(3.18)

+
1

4

∫
Σ

〈
∇ |∇G| ,∇ϕ2

〉
+

1

2

∫
Σ

|∇G| |∇ϕ|2 .

By (3.17) and (3.18) it follows that for any small δ > 0,

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 1

2

∫
Σ

|h|2 |∇G|ϕ2 +

∫
Σ

|∇G|ϕ2 −
∫

Σ

〈
∇ |∇G| ,∇ϕ2

〉
≤

(
1

8
+ δ

)∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 + 2

∫
Σ

|∇G|ϕ2

+C(δ)

∫
Σ

|∇G| |∇ϕ|2 .

In conclusion,

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 16

7− 8δ

∫
Σ

|∇G|ϕ2 + C(δ)

∫
Σ

|∇G| |∇ϕ|2 .

Plugging into (3.10), we have
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(
λ0 (Σ)− 4 + 16δ

7− 8δ

)∫
Σ

|∇G|ϕ2 ≤ C(δ)

∫
Σ

|∇G| |∇ϕ|2 .

Similarly, we can conclude that

λ0 (Σ) ≤ 4 + 16δ

7− 8δ
.

Now letting δ → 0, we have λ0 (Σ) ≤ 4
7 . �

The preceding argument can be generalized to stable minimal hypersurfaces of
dimension up to five. Let (M, g) be an (n + 1)-dimensional complete Riemannian
manifold with its sectional curvature bounded below by

K ≥ −1.

Let Σ ⊂ M be a stable minimal hypersurface in M. Then the stability inequality
(2.1) implies that

(3.19)

∫
Σ

|h|2 φ2 ≤
∫

Σ

|∇φ|2 + n

∫
Σ

φ2.

For a local orthonormal frame {e1, · · · , en} of Σ, by the Gauss curvature equations,

RΣ
aa =

∑
c

Racac −
∑
c

|hac|2(3.20)

≥ −(n− 1)− n− 1

n
|h|2

for indices 1 ≤ a, c ≤ n, where in the last line we have used that Σ is minimal. The
argument in Lemma 12 can be carried over to prove the following.

Lemma 13. Let M be an (n + 1)-dimensional complete manifold with sectional
curvature bounded below and n ≤ 5. For a complete stable minimal hypersurface
Σ in M with λ0(Σ) > 0, its minimal positive Green’s function G (x) = G (p, x)
satisfies ∫

Σ\Bp(1)

|∇G|4

G3 ln2q (1 +G−1)
<∞

for any q > 1
2 .

Proof. Let v = lnG. Then, according to (3.3),

1

2
∆ |∇v|2 ≥ 1

n− 1
|∇v|4 +

n

n− 1
|∇ |∇v||2

−n− 2

n− 1

〈
∇ |∇v|2 ,∇v

〉
+ RicΣ (∇v,∇v)

on Σ \ {p}. Note that by (3.20),

RicΣ(∇v,∇v) ≥ −C |∇v|2 − n− 1

n

(
Ric (ν, ν) + |h|2

)
|∇v|2

as the sectional curvature of M is bounded from below. Thus, for any cut-off
function φ, noting that
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∫
Σ

(
Ric (ν, ν) + |h|2

)
|∇v|2 φ2 ≤

∫
Σ

|∇ (|∇v|φ)|2

by the stability inequality (2.1), we have

1

n− 1

∫
Σ

|∇v|4 φ2(3.21)

≤ 1

2

∫
Σ

φ2 ∆ |∇v|2 + C

∫
Σ

φ2 |∇v|2 − n

n− 1

∫
Σ

φ2 |∇ |∇v||2

+
n− 2

n− 1

∫
Σ

φ2
〈
∇ |∇v|2 ,∇v

〉
+
n− 1

n

∫
Σ

|∇ (|∇v|φ)|2

= − 1

n

∫
Σ

φ
〈
∇φ,∇ |∇v|2

〉
+ C

∫
Σ

φ2 |∇v|2 − 2n− 1

n(n− 1)

∫
Σ

φ2 |∇ |∇v||2

+
n− 2

n− 1

∫
Σ

φ2
〈
∇ |∇v|2 ,∇v

〉
+
n− 1

n

∫
Σ

|∇v|2 |∇φ|2 .

Let φ = G
1
2 η, where η is a cut-off function on Σ with η = 0 on Bp(1). Note that

for δ > 0,

∫
Σ

|∇v|2 |∇φ|2 ≤ C(δ)

∫
Σ

|∇v|2 |∇η|2 G+
1 + δ

4

∫
Σ

φ2 |∇v|4 .

Therefore, we conclude from (3.21) that

(
1

n− 1
− 1 + δ

4

n− 1

n

)∫
Σ

|∇v|4 φ2(3.22)

≤ C(δ)

∫
Σ

(
η2 + |∇η|2

)
G |∇v|2 − 1

2n

∫
Σ

〈
∇(Gη2),∇ |∇v|2

〉
− 2n− 1

n(n− 1)

∫
Σ

φ2 |∇ |∇v||2 +
n− 2

n− 1

∫
Σ

η2
〈
∇ |∇v|2 ,∇G

〉
= C(δ)

∫
Σ

(
η2 + |∇η|2

)
G |∇v|2 − 1

2n

∫
Σ

〈
∇η2,∇ |∇v|2

〉
G

− 2n− 1

n(n− 1)

∫
Σ

φ2 |∇ |∇v||2 +

(
n− 2

n− 1
− 1

2n

)∫
Σ

η2
〈
∇ |∇v|2 ,∇G

〉
.

However, as G is harmonic on Σ \ {p},

∫
Σ

η2
〈
∇ |∇v|2 ,∇G

〉
= −

∫
Σ

〈
∇η2,∇G

〉
|∇v|2 .

Plugging into (3.22), we get
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(
1

n− 1
− 1 + δ

4

n− 1

n

)∫
Σ

|∇v|4 φ2(3.23)

≤ C(δ)

∫
Σ

(
η2 + |∇η|2

)
G |∇v|2 − 2

n

∫
Σ

〈∇η,∇ |∇v|〉 Gη |∇v|

− 2n− 1

n(n− 1)

∫
Σ

η2G |∇ |∇v||2 −
(
n− 2

n− 1
− 1

2n

)∫
Σ

〈
∇η2,∇G

〉
|∇v|2 .

≤ C(δ)

∫
Σ

(
η2 + |∇η|2

)
G |∇v|2 + δ

∫
Σ

|∇v|4 φ2.

Therefore,(
1

n− 1
− 1 + δ

4

n− 1

n
− δ
)∫

Σ

|∇v|4 φ2 ≤ C(δ)

∫
Σ

(
η2 + |∇η|2

)
G |∇v|2 .

Since n ≤ 5, one may choose δ = δ(n) > 0 such that 1
n−1 −

1+δ
4

n−1
n − δ > 0. In

conclusion, there exists an absolute constant Γ > 0 such that

(3.24)

∫
Σ

|∇v|4 φ2 ≤ Γ

∫
Σ

(
η2 + |∇η|2

)
G |∇v|2

for any cut-off function η satisfying η = 0 on Bp(1).
For 1

2 < q < 1, let η = ψw(G), where ψ is a cut-off function such that ψ = 0 on
Bp(1) ∪ (M \Bp(2R)) , ψ = 1 on Bp(R) \Bp(2), and

w (G) =
1

lnq (AG−1)

with A = e2
√

Γα, α = max∂Bp(1)G. Direct calculations imply∫
Σ

η2G |∇v|2 ≤
∫
L(0,α)

|∇G|2

G ln2q (AG−1)
≤ C

and

∫
Σ

|∇η|2 G |∇v|2 ≤ 2

∫
Σ

|∇ψ|2 |∇G|2

G ln2q (AG−1)

+2

∫
Σ

ψ2 |∇w|2 G |∇v|2

≤ C +
1

2Γ

∫
Σ

φ2 |∇v|4 .

Together with (3.24), we arrive at∫
Σ

|∇v|4 φ2 ≤ C +
1

2

∫
Σ

φ2 |∇v|4 .

In other words, ∫
Σ

|∇v|4 φ2 ≤ C.

Finally, letting R→∞, one concludes that
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∫
Σ\Bp(2)

|∇G|4

G3 ln2q (AG−1)
<∞.

This proves the desired result. �

We are now ready to prove the following spectral estimate.

Theorem 14. Let Σ be a complete stable minimal hypersurface in (n+1)-dimensional
manifold Mwith n ≤ 5. If the sectional curvature of M satisfies K ≥ −κ for some
nonnegative constant κ, then

λ0 (Σ) ≤ 2n(n− 1)2

6n− n2 − 1
κ.

Proof. Without loss of generality we assume that κ = 1 and λ0 (Σ) > 0. In partic-
ular, Σ is nonparabolic. For fixed ε > 0 small enough, define χ and ψ by (3.8) and
(3.9), respectively, and let

ϕ = χψ.

Setting

φ = |∇G|
1
2 ϕ

in the Poincaré inequality and expanding the right side, we get

(3.25) λ0 (Σ)

∫
Σ

|∇G|ϕ2 ≤
(

1

4
+ δ

)∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2+C(δ)

∫
Σ

|∇G| |∇ϕ|2

for any δ > 0. We now estimate the first term on the right hand side. Note that by
(3.2) and (3.20),

∆ |∇G| ≥ 1

n− 1
|∇ |∇G||2 |∇G|−1

+ RicΣ (∇G,∇G) |∇G|−1

≥ 1

n− 1
|∇ |∇G||2 |∇G|−1 −

(
(n− 1) +

n− 1

n
|h|2
)
|∇G| .

Hence,

1

n− 1

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ (n− 1)

∫
Σ

|∇G|ϕ2(3.26)

+
n− 1

n

∫
Σ

|h|2 |∇G|ϕ2

−
∫

Σ

〈
∇ |∇G| ,∇ϕ2

〉
.

Using the stability inequality (3.19) we have that∫
Σ

|h|2 |∇G|ϕ2 ≤
∫

Σ

∣∣∣∇(|∇G| 12 ϕ)∣∣∣2 + n

∫
Σ

|∇G|ϕ2

≤ 1

4

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 +

∫
Σ

|∇G| |∇ϕ|2

+
1

2

∫
Σ

〈
∇ϕ2,∇ |∇G|

〉
+ n

∫
Σ

|∇G|ϕ2.
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Combining with (3.26) we obtain that(
1

n− 1
− n− 1

4n

)∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 2(n− 1)

∫
Σ

|∇G|ϕ2 + C

∫
Σ

|∇G| |∇ϕ|2

+C

∫
Σ

∣∣〈∇ϕ2,∇ |∇G|
〉∣∣

≤ 2(n− 1)

∫
Σ

|∇G|ϕ2 + C(δ)

∫
Σ

|∇G| |∇ϕ|2

+δ

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2.

Therefore,

∫
Σ

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 8n(n− 1)2

6n− n2 − 1− 4n(n− 1)δ

∫
Σ

|∇G|ϕ2

+C(δ)

∫
Σ

|∇G| |∇ϕ|2 .

Plugging into (3.25) then yields that(
λ0 (Σ)−

(
1

4
+ δ

)
8n(n− 1)2

6n− n2 − 1− 4n(n− 1)δ

)∫
Σ

|∇G|ϕ2 ≤ C(δ)

∫
Σ

|∇G| |∇ϕ|2 .

Using Lemma 13, one concludes as before that

λ0 (Σ) ≤ 2n(n− 1)2

6n− n2 − 1
.

This proves the result. �
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