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Abstract. We investigate a pricing rule that is applicable for streams of income or contingent claim

liabilities and study how this rule changes under additional insider-type information that an investor

might obtain. Considering a model where the risky asset might have jumps, we obtain an explicit form

of the associated state price density for the three different types of agents considered in [ER20]: one

who has no information about the jumps, one who knows in advance exactly when the each jump will

occur, and one who has no information about the size of the jumps but has partial information about

the size of each jump. For each of these agents, we provide characterizations of the pricing rule and

establish a representation formula, allowing us to quantify the value of partial information for streams

of labor income or contingent claim liabilities. Our work is motivated by finding and characterizing

a pricing rule that, both with or without partial information about jumps, assigns different values of

information for different income streams or contingent claim liabilities.

1. Introduction

Insider trading is a very active area of financial mathematics and related fields. This topic has

influenced virtually every subfield of mathematical finance, including arbitrage theory, pricing and

hedging, characterizations of equilibria, optimal investment, etc. For references on these topics, we re-

fer the reader to [KP96], [EJ99], [ABS03], [Bau03], [KH04], [AI05], [Cam05], [ADI06], [CÇ07], [Kar10],

[DMN10], [ÇX13], [CJA15], [ÇD16], [AFK16], [AJ17], [ACDJ17], [ER20], [ACDJ18], [ACDJ19], [BG20],

[ERZ17], [CCF20], [DRR20], [ÇD21], [DRR22], [CH23], [JS24], and [Rob24].

The present paper is in part motivated by the recent work of [ER20]. There, an approach for

modeling insider information is proposed which allows for the incorporation of jumps in the underlying

stock price process, without sacrificing analytic tractability. The value of the signal in [ER20] is

represented via a change in the value function of the rational investor with and without insider

information. In particular, the value of the signal in [ER20] does not dependon a stream of labor

income or contingent claim liabilities.

The present paper fills this aforementioned void by considering the problem of pricing streams of

liabilities or labor income for two types of partially informed insider traders, which is then compared

with a pricing rule associated with an uninformed trader. As in [ER20], the first type of insider trader,
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who we call the insider of the “first kind,” knows the times of the next jump of the risky asset but does

not know the size of the next jump. The second type of the inside trader, who we call an insider of the

“second kind,” does not know the size of the next jump but has partial information about the size of

the next jump; that is, he observes the signal η = ξ + ε, where ξ is the jump of the cumulative return

of the risky asset, and ε is a random variable representing noise, assumed Gaussian and independent

of everything else.

It is well-known that such unbounded (from above and below) streams of labor income/contingent

claim liabilities are more challenging to work with, in particular because the notion of admissible wealth

processes has to be adjusted accordingly. Following [DS97], we incorporate the notion of acceptability,

and we show that under no-arbitrage-type and a version of the super-replicability conditions, the

pricing problems (both with and without additional information about the signal) admit a unique

solution, for which we identify a representation formula.

The present paper’s key contributions are threefold. Firstly, we identify and characterize a pricing

rule which depends on a particular stream of labor income or contingent claim liabilities and which

assigns different values of partial information to different streams. Secondly, we develop a framework

which allows for an infinite time horizon such that no arbitrage or other technical issues arise in

the presence of extra information, which is indeed a very delicate topic in general (see [AFK16] and

[AJ17]). Our framework allows for streams of liabilities or labor income to be unbounded from either

above or below, enabling greater generality. Thirdly, we present examples of special interest that

contain explicit computations for intricate streams and show the existence of information-invariant

ones.

The remainder of this paper is organized as follows. In Section 2, we describe the model and provide

existence and uniqueness results for the pricing rule developed. In Section 3, we provide an explicit

formula for the state price density associated with the pricing rule in the case where the investor has no

information about the jumps of the risky asset. Section 4 contains the derivation and representation

of the pricing rule in the case where the investor knows the time of the next jump of the risky asset.

In Section 5, we derive the corresponding state price density for the investor who does not know the

times of the jumps, but has some partial information about the size of the next jump. We conclude

with Section 6, which discusses explicit forms of the pricing rules.

2. Problem formulation and characterizations of the pricing rule

We consider an infinite horizon continuous-time problem of investment and consumption. For

this, we assume a complete stochastic basis (Ω,F , (Ft)t≥0,P), where the filtration satisfies the usual

conditions and where F0 is trivial. We suppose that there are two traded assets: a risk-free bank

account with a constant interest rate r > 0 and a risky asset whose returns are given by

(1) dRt = µdt+ σdWt +

∫
(ex − 1)n(dt, dx), t > 0, R0 = 0,

where W is a standard one-dimensional Brownian motion, σ > 0 is the constant-valued volatility, µ is

the constant-valued drift, and n is a Poisson random measure independent of W , such that

E[n(dt, dx)] = λdtp(x)dx,
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where λ is the rate at which jumps occur and p is the density of the jump of the cumulative return

process. We suppose that, for some constants m ∈ R and v > 0, p(x) = 1√
2πv

e−
(x−m)2

2v , x ∈ R, which is

the normal density with parameters (m, v). We remark that the above model dates back to [Mer76].

The evolution of the wealth of the agent is given by

(2) dwt = (rwt − ct)dt+ θt

(
(µ− r)dt+ σdWt +

∫
(ex − 1)n(dt, dx)

)
, t > 0, w0 = x,

where x is an initial wealth, θ is a predictable and R-integrable process specifying the amount of

wealth invested in the risky asset, and c is a consumption rate, which we assume to be optional. An

optional consumption rate c ≥ 0 is admissible from the initial wealth x if there exists a predictable

and R-integrable process θ such that the associated wealth process given in (2) is nonnegative. We

denote the set of admissible consumption streams from the initial wealth x by A(x), x ≥ 0, and the set

of nonnegative wealth processes w given by (2) starting from the initial wealth x ≥ 0 and associated

with c ≡ 0 by X (x), x ≥ 0. We also fix a power utility of the form

(3) U(x) :=
x1−R

1−R
, x > 0,

with relative risk aversion R > 0 and R 6= 1. With these preliminaries in hand, we can now specify

the value function

(4) u(x) = sup
c∈A(x)

E
[∫ ∞

0
e−ρtU(ct)dt|w0 = x

]
, x > 0,

where ρ is the time discounting factor.

As noted in the introductory section, the purpose of the present paper is to price a stream of labor

income/random endowment for the three different types of agents considered by [ER20]:

(1) The agent has no prior knowledge about when the jumps occur nor of their magnitudes;

(2) The agent knows precisely the time of the next jump, but not the magnitude;

(3) The agent knows nothing about the time of the next jump but sees the signal

η = ξ + ε,

where ξ is the jump in the cumulative return at the next jump, and ε is an independent

N(0, vε) random variable.

We shall assume that the labor income is an optional process e. If the agent has q ∈ R units of e,

the evolution of his wealth is given by

(5)

dwt = (rwt − ct + qet)dt+ θt

(
(µ− r)dt+ σdWt +

∫
(ex − 1)n(dt, dx)

)
, t > 0, w0 = x, q ∈ R.

Similarly, for a pair (x, q) ∈ (0,∞)×R, we say that an optional consumption stream c ≥ 0 is admissible

from the initial wealth x and the number of units of income process q if there exists a predictable and

R-integrable process θ, such that (i) the associated wealth process given by (5) is nonnegative at all

times P–a.s. and (ii) the self-financing wealth process X = w +
∫ ·
0(cs − qes)ds is “acceptable” in the

sense of [DS97]. This means that it can be written as a difference of two nonnegative self-financing

wealth processes X ′−X ′′, where X ′′ is maximal in X (X ′′0 ). We remark that the notion of acceptability

introduced in [DS97] has played an important role in optimal investment problems with labor income
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or random endowment, see [HK04], [Sio15], [Mos17], and [MS20].

Some further notation is now in order. We denote the set of admissible consumption streams from

the initial wealth x and with the number of units of income process q by A(x, q), (x, q) ∈ (0,∞)×R.

Note that A(x, q) may be empty for some (x, q) ∈ R2. Following [KK21, Definition on page 157], we

recall the definition of an indifference value.

Definition 2.1. Let x > 0 be fixed. A number p is an indifference value for e at x, if

E
[∫ ∞

0
e−ρtU(ct)dt|w0 = x

]
≤ u(x), for every q ∈ R and c ∈ A(x− qp, q).

Remark 2.2. In view of U defined in (3) having a power form, one can see that the indifference price

does not depend on x > 0.

Let X (x) be the set of nonnegative wealth processes of the form (2) associated with c ≡ 0. With

Bt = ert, t ≥ 0, we define the set of local martingale deflators for the discounted risky asset E(R)
B by

Z(y) =

{
Z > 0 : Z

X

B
is a P-local martingale for every X ∈ X (1)

}
, y ≥ 0.

In view of (1), particularly when σ > 0, we observe that

(6) Z(1) 6= ∅.

The condition in (6) is equivalent to the no unbounded profit with bounded risk (NUPBR) condition

introduced in [KK07] (via the results in [ST14] and [KKS16]).

Remark 2.3. Without the condition in (6), the optimization problem in (4) is not well-posed. In

the context of optimal investment from terminal wealth, illuminating examples are given in [KK07,

Proposition 4.19]. Furthermore, we need to suppose that (6) holds in the present paper. An example

of the model where (6) fails is given by the riskless asset in (1) as above and the risky asset having

the return

rt+Nt, t ≥ 0,

where N is a Poisson process with intensity 1.

We proceed to denote the set of state price density processes

Y(y) =

{
Y =

Z

B
: Z ∈ Z(y)

}
, y ≥ 0,

and consider an income stream e = (et)t≥0 such that

(7) sup
Y ∈Y(1)

E
[∫ ∞

0
Yt|et|dt

]
<∞.

Remark 2.4. One can see that (7) holds if there exist constants C > 0 and r′ ∈ [0, r), such that

|et(ω)| ≤ Cer′t, (dt× P)-a.e.

For q := 1−R
R , we introduce V (y) := sup

x>0
(U(x)− xy) = yq

−q , y > 0, and set the dual value function

as

(8) v(y) := inf
Y ∈Y(y)

E
[∫ ∞

0
e−

ρ
R
tV (Yt)dt

]
, y > 0.
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Now, suppose that

(9) u(z) > −∞ and v(z) <∞, z > 0.

Remark 2.5. If R ∈ (0, 1), U is positive-valued and therefore u(x) > −∞ for all x > 0. If R > 1, a

sufficient condition for u(x) > −∞, x > 0, is

(10) ρ ≥ (1−R)r.

This result follows from [Mos15, Lemma 4.2]. Namely, for every constant δ ∈ (0, r), ct := δe(r−δ)t,

t ≥ 0, is an element of A(1), and

E
[∫ ∞

0
e−ρtU(ct)dt

]
=

δ1−R

1−R

∫ ∞
0

e−ρte(1−R)(r−δ)tdt > −∞,

where the inequality follows from (10). Such a c will give a finite lower bound for u.

The condition v(z) <∞, z > 0, when R > 1 holds under (6) since the objective in (8) is negative-

valued. If R ∈ (0, 1), a necessary and sufficient condition for v(z) < ∞, z > 0, is the existence of

one-state price density Y ∈ Y(1) such that

E
[∫ ∞

0
e−

ρ
R
tV (Yt)dt

]
<∞.

To obtain uniqueness of the indifference price, we shall need Assumption 2.6 below.

Assumption 2.6. Suppose there exists an optional process c̃, such that

c̃ ≥ |e|, (dt× P)-a.e.,

and, for the the minimizer to (8) at y = 1, Ŷ ∈ Y(1). Further,

(11) E
[∫ ∞

0
Ŷtc̃tdt

]
= sup

Y ∈Y(1)
E
[∫ ∞

0
Ytc̃tdt

]
<∞.

Remark 2.7. Condition Ŷ ∈ Y(1) is included in Assumption 2.6. It will be used in (27) below.

Remark 2.8. [On the sufficient conditions for Assumption 2.6] For the uniqueness of the indifference

price represented by (12), Assumption 2.6 holds if

(a) there exists a deterministic consumption stream c̃t, t ≥ 0, such that

c̃t ≥ |et|, (dt× P)-a.e.,

(b) which satisfies ∫ ∞
0

c̃t
Bt
dt <∞,

(c) and the minimizer to (8) at y = 1, Ŷ , is such that Ŷ B = (ŶtBt)t≥0 is a P-martingale.

Then, under the remaining assumptions of Theorem 2.9, the proof goes through, where the key step

follows via Tonelli’s theorem,

E
[∫ ∞

0
c̃tŶtdt

]
=

∫ ∞
0

c̃tE[Ŷt]dt =

∫ ∞
0

c̃t
Bt
dt <∞.

The inequality holds by condition (b), and for every Y ∈ Y(1), we have

E
[∫ ∞

0
c̃tYtdt

]
=

∫ ∞
0

c̃tE[Yt]dt ≤
∫ ∞
0

c̃t
Bt
dt = E

[∫ ∞
0

c̃tŶtdt

]
.
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We now proceed to state Theorem 2.9. Its proof shall follow the proof of Lemma 2.12.

Theorem 2.9. Let us consider the market given as above, where there is a riskless security with a

constant interest rate and a risky asset, whose return R is given by (1) with σ > 01. Suppose that (7)

and (9) hold. Then, for every x > 0, the indifference value p(x) of the income stream e exists and

does not depend on x > 0. Further,

(12) p(x) = E
[∫ ∞

0
Ŷtetdt

]
, x > 0,

is an indifference price of e, where Ŷ is the minimizer to (8) at y = 1. If Assumption 2.6 also holds,

then the indifference price of e is unique and is given by (12).

Remark 2.10. Theorem 2.9 can be extended to the case when F0 is not trivial but is a sigma-algebra

generated by a random variable such that the conditional independence of increments denoted in

[JS03, Section II.6] holds. Then, the indifference value is an F0-measurable random variable that is

given via a conditional expectation with respect to F0, that is

(13) p = E
[∫ ∞

0
Ŷtetdt|F0

]
.

As in the unconditional case, p does not depend on the initial wealth, which, in this case, is a

nonnegative F0-measurable random variable. Ŷ is the dual optimizer with the initial value 1, that

is, starting from the dual problem, where the initial values can be the nonnegative F0-measurable

random variable Y0. Adopting the standard notation 0
0 := 0, and denoting the optimizer by Y , we

can represent p in (13) via Ŷ = Y
Y0

.

The proof of Theorem 2.9 requires Lemma 2.11 and Lemma 2.12 below. We proceed with Lemma

2.11.

Lemma 2.11. Under the conditions of Theorem 2.9, the set

(14) K := {(x, q) ∈ R2 : A(x, q) 6= ∅}

is a nonempty convex cone in R2 such that

(15) {(x, 0) : x > 0} ∈ intK.

Proof. The fact that K is a convex cone follows from its definition and the definition of the sets A(x, q).

In view of (7), using localization and employing the construction of [Mos15, proof of Lemma 4.2] with

x̃ := sup
Y ∈Y(1)

E
[∫∞

0 Yt|et|dt
]
, one can show that there exists X ∈ X (x̃) such that (5) holds for c ≡ 0,

every q ∈ [−1, 1], and

w = X − q
∫ ·
0
etdt.

Next, we observe that by [HKS05, Remark 3.4] that the assertions of [DS97] (in particular, [DS97,

Corollary 2.6]) hold without the assumption of local boundedness of the risky asset. Instead, it is

enough to suppose that there exists a “separating measure” ([DS98]) for the risky asset. This assump-

tion holds in the present setting. Thus, from [DS97, Corollary 2.6], we deduce that X constructed

1This ensures that there is no arbitrage.



THE VALUE OF PARTIAL INFORMATION 7

above can be chosen to be maximal. Consequently, K 6= ∅ and (x̃, q) ∈ K, q ∈ [−1, 1]. Moreover, (5)

implies that, for every α ≥ 0, we have

(αx̃, αq) ∈ K, q ∈ [−1, 1],

which in turn implies (15). This completes the proof of the lemma.

�

Lemma 2.12. Under the conditions of Theorem 2.9, let (x, q) ∈ R2 be such that A(x, q) 6= ∅. Then,

for the income stream e and for every consumption process c ∈ A(x, q),

(16) E
[∫ ∞

0
Ŷtctdt

]
≤ x+ qE

[∫ ∞
0

Ŷtetdt

]
,

where Ŷ is the minimizer to (8) at y = 1.

Remark 2.13. Under the continuity of the stock price process assumption, a closely related result is

contained in [KK21, Exercise 3.55, page 156].

Proof of Lemma 2.12. For a given (x, q) ∈ K, where K is defined in (14), and for A(x, q) 6= ∅, let us

fix an arbitrary c ∈ A(x, q). Let X be a self-financing acceptable wealth process starting from x such

that

(17) Xt + q

∫ t

0
esds ≥

∫ t

0
csds, t ≥ 0, P-a.s.

Let

x̃ := sup
Y ∈Y(1)

E
[∫ ∞

0
Yt|et|dt

]
= sup

Z∈Z(1)
E
[∫ ∞

0
Zt
|et|
Bt

dt

]
.

Then, from (7), using[CCFM15, Lemma 1], we deduce that there exists a self-financing nonnegative

wealth process X̃ ∈ X (x̃) such that

(18)
X̃t

Bt
≥
∫ t

0

|es|
Bt

ds, t ≥ 0, P-a.s.

We proceed by denoting

E ′ :=
∫ ·
0

|et|
Bt

dt, E :=

∫ ·
0

et
Bt
dt and C :=

∫ ·
0

ct
Bt
dt,

Employing the integration by parts formula in [JS03, Proposition I.4.49(a)] and a change of numéraire

argument, we deduce from (17) that there exists a self-financing wealth process X starting from x

such that

(19)
Xt

Bt
+ qE t ≥ Ct, t ≥ 0, P-a.s.

Therefore, via (18) and (19), we obtain

0 ≤ Ct ≤
Xt

Bt
+ qE t ≤

Xt

Bt
+ |q|E ′t ≤

Xt + |q|X̃t

Bt
, t ≥ 0, P-a.s.

Here, we see that X + |q|X̃ is a nonnegative self-financing wealth process starting from x+ |q|x̃, that

is

X̃ ′ := X + |q|X̃ ∈ X (x+ |q|x̃).
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It now follows from [Pro04, Theorem III.29, page 128] that

(20) E− · (Ŷ B) and C− · (Ŷ B) are P-local martingales.

Furthermore, it follows from the definition of Y(1) and from Assumption 2.6 (which, in particular,

requires Ŷ to be an element of Y(1)), that X̃Y and (X + |q|X̃)Ŷ = X̃ ′Ŷ are local martingales as

X̃ ′ ∈ X (x + |q|x̃) and X̃ ∈ X (x̃). Therefore, there exists a localizing sequence of stopping times τn,

n ≥ 1, for

X̃Ŷ , X̃ ′Ŷ , E− · (Ŷ B), and C− · (Ŷ B).

As a consequence, we obtain

(21) E
[
X̃τn Ŷτn

]
= x̃, n ≥ 1,

and

(22) E
[
X̃ ′τn Ŷτn

]
= E

[
(Xτn + |q|X̃τn)Ŷτn

]
= x+ |q|x̃, n ≥ 1.

From (21) and (22), we deduce that

(23) E
[
Xτn Ŷτn

]
= x, n ≥ 1.

From (19), we obtain

(24)

(
Xτn

Bτn
+ qEτn

)(
ŶτnBτn

)
≥ Cτn

(
ŶτnBτn

)
, n ≥ 1, P-a.s.

Using the integration by parts formula in [JS03, Proposition I.4.49(a)], we restate (24) as

(25) Xτn Ŷτn + qE− ·
(
Ŷ B

)
τn

+ q

∫ τn

0
Ŷsesds ≥ C− ·

(
Ŷ B

)
τn

+

∫ τn

0
Ŷscsds, n ≥ 1, P-a.s.

Taking expectations and using (23) and the martingale property of E− · Ŷ·∧τn and C− · Ŷ·∧τn , we deduce

from (25) that

(26) x+ qE
[∫ τn

0
Ŷsesds

]
≥ E

[∫ τn

0
Ŷscsds

]
, n ≥ 1.

Finally, taking the limit as n → ∞, and (i) invoking dominated convergence (in view of (7)) on

the left-hand side of (26) and (ii) applying monotone convergence on the right-hand side of (26), we

conclude that

x+ qE
[∫ ∞

0
Ŷsesds

]
≥ E

[∫ ∞
0

Ŷscsds

]
,

which is (16). This completes the proof.

�

With the proofs of Lemma 2.11 and Lemma 2.12 in hand, we proceed to prove Theorem 2.9.

Proof of Theorem 2.9. Let us fix x = −v′(1) and consider an arbitrary q ∈ R, such that A(x −
qp(x), q) 6= ∅, with p(x) given in (12). Next, let us fix an arbitrary c ∈ A(x− qp(x), q). Using Lemma

2.12, we deduce that

(27) E
[∫ ∞

0
Ŷtctdt

]
≤ x− qp(x) + qE

[∫ ∞
0

Ŷtetdt

]
= x.
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Further, [Mos15, Theorem 3.2] enables us to conclude that

(28) u(x)− x = v(1).

The conjugacy between U and V , in conjunction with (27) and (28), allow us to obtain

E
[∫ ∞

0
e−ρtU (ct) dt

]
≤ E

[∫ ∞
0

e−ρtV (Ŷte
ρt)dt

]
+ E

[∫ ∞
0

Ŷtctdt

]
= v(1) + E

[∫ ∞
0

Ŷtctdt

]
= u(x)− x+ E

[∫ ∞
0

Ŷtctdt

]
≤ u(x)− x+ x = u(x).

Since q and c are arbitrary, we deduce from Definition 2.1 that p(x) as given in (12) is an indifference

price for the stream of income e. The scaling argument (as in Remark 2.2) implies that (12) holds for

every x > 0.

To prove the uniqueness of the indifference price for e given by (12), we consider π < p(x). Suppose

that there is a consumption stream c̃ ≥ |e|, (dt× P)-a.e., satisfying Assumption 2.6. Then, it follows

from (7) and [Mos15, Lemma 4.2] that c̃ ∈
⋃
x≥0
A(x). We proceed to denote

(29) x̃ := E
[∫ ∞

0
c̃tŶtdt

]
,

which is finite by Assumption 2.6, and which additionally asserts that x̃ = sup
Y ∈Y(1)

E
[∫∞

0 c̃tŶtdt
]
.

Therefore, via [Mos15, Lemma 4.2] (and localization), we deduce that c̃ ∈ A(x̃). As a consequence,

c̃+ e ∈ A(x̃, 1).

Let qn, n ∈ N, be a sequence of strictly positive numbers decreasing to 0 and such that qn ≤ x
x̃+|π| ,

n ∈ N, where x = −v′(1), which is the same strictly positive constant as in the previous paragraph.

With ĉ(x− qn(x̃+ π)) denoting the optimizers to (4) at x− qn(x̃+ π) > 0, n ∈ N, we set

(30) cn := ĉ(x− qn(x̃+ π)) + qn(c̃+ e), n ∈ N.

In view of Assumption 2.6, we have that cn ∈ A(x − qnπ, qn), n ∈ N. Employing the concavity of U ,

we obtain

E
[∫ ∞

0
e−ρtU(cnt )dt

]
≥ E

[∫ ∞
0

e−ρtU(ĉt(x− qn(x̃+ π)))dt

]
+ qnE

[∫ ∞
0

e−ρt(c̃t + et)U
′(cnt )dt

]
= u(x− qn(x̃+ π)) + qnE

[∫ ∞
0

e−ρt(c̃t + et)U
′(cnt )dt

]
, n ∈ N.

Consequently, for y = u′(x) = 1, we get

(31)

lim inf
n→∞

E
[∫∞

0 e−ρtU(cnt )dt
]
− u(x)

qn
≥ −y(x̃+ π) + lim inf

n→∞
E
[∫ ∞

0
e−ρt(c̃t + et)U

′(cnt )dt

]
= −(x̃+ π) + lim inf

n→∞
E
[∫ ∞

0
e−ρt(c̃t + et)U

′(cnt )dt

]
.
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In view of the power utility structure in the objective of (4), one can see that the optimizers to (4)

associated with different initial wealths satisfy ĉ(x) = xĉ(1), (dt×P)-a.e., x > 0. Therefore, using the

(dt×P)-a.e. non-negativity of (c̃t(ω) + et(ω))U ′(cnt (ω) + qnet(ω)) for all n ∈ N, and employing Fatou’s

lemma, we can further bound the right-hand side of (31) from below by

(32) lim inf
n→∞

E
[∫ ∞

0
e−ρt(c̃t + et)U

′(cnt )dt

]
≥ E

[∫ ∞
0

e−ρt(c̃t + et)U
′(ĉt(x))dt

]
.

Now, using [Mos15, Theorem 3.2], we deduce that for y = u′(x) = 1,

(33) E
[∫ ∞

0
e−ρt(c̃t + et)U

′(ĉt(x))dt

]
= E

[∫ ∞
0

(c̃t + et)yŶtdt

]
= E

[∫ ∞
0

(c̃t + et)Ŷtdt

]
.

Furthermore, from (12) and (29), we obtain

(34) E
[∫ ∞

0
(c̃t + et)Ŷtdt

]
= x̃+ p(x),

with p(x) given in (12). Combining (31), (32), (33), and (34), we deduce that

(35) lim inf
n→∞

E
[∫∞

0 e−ρtU(cnt )dt
]
− u(x)

qn
≥ p(x)− π > 0,

where the strict positivity follows from the assumption that π < p(x). As cn ∈ A(x− qnπ, qn), n ∈ N,

via Definition 2.1, (35) implies that π is not an indifference price for e. By considering an income

stream ẽ = −e, and applying the argument above, we deduce that every π > p(x) is not an indifference

price for e. �

3. The case where the agent has no prior knowledge about when the jumps occur,

nor of their magnitudes

This section considers the investor who has no information about the jumps. We proceed to recall

the characterizations of the value function and the optimal consumption in [ER20, Theorem 1]. With

(36) g(q) :=

∫
{1 + q(ex − 1)}1−Rp(x)dx, q ∈ [0, 1],

and

(37) g1(q) := r + q(µ− r)− 1

2
σ2Rq2 +

λ{g(q)− 1}
1−R

, q ∈ [0, 1],

we denote a maximizer to g1 over [0, 1] by q1, that is

(38) q1 ∈ arg max
q∈[0,1]

g1(q),

and suppose that q1 ∈ (0, 1).

Remark 3.1. The condition q1 ∈ (0, 1) is needed to ensure that the dual minimizer is a local martin-

gale. This is in the same spirit as [Kal00, Theorem 3.2], where a very similar assumption is imposed,

ensuring that the candidate solution obtained from the first-order conditions is admissible.

We shall also denote

(39) A1 :=

(
R

ρ+ (R− 1)g1(q)

)R
.
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With these preliminaries, it is shown in [ER20, Theorem 1] that, for q = 0 and x > 0 being fixed, if

ρ+ (R− 1)g1(q1) > 0, the optimal solution to (4) has controls

ct = A
− 1
R

1 wt, θt = q1wt−,

where q1 is given by (38), A1 is given by (39), and the wealth process w is given via

(40) wt = w0+

∫ t

0
(rws−cs)ds+

∫ t

0
θs

(
(µ− r)ds+ σdWs +

∫
(ex − 1)n(ds, dx)

)
, t > 0, w0 > 0.

Further, the value function u defined in (4) is given by

(41) u(x) = A1U(x), x > 0,

with U given in (3). Now, (41) implies that

u(x) > −∞, x > 0.

In view of the power structure of the utility U represented by (3) and since for every w0 > 0, we have(
e−ρtU ′(ct)

)
t≥0 ∈

⋃
y>0

Y(y),

one can show that

v(y) <∞, y > 0.

Therefore, (9) holds. With

w0 =
R

ρ+ (R− 1)g1(q)
,

and for w given by (40), one can apply [Mos15, Theorem 3.2] to show that the optimal solution to (8)

at y = 1 is given by

(42) Ŷt = e−ρtU ′(ct) = A1e
−ρtw−Rt , t ≥ 0, y > 0.

This Ŷ is the dual-optimal state price density. Theorem 2.9 asserts that, for every income stream e

satisfying (7), its indifference value does not depend on x > 0 and is given by

(43) p(x) = A1E
[∫ ∞

0
e−ρtw−Rt etdt

]
, x > 0.

Invoking Itô’s lemma, one can show that Ŷ satisfies the following stochastic differential equation

dŶt = Ŷt−

(
−ρdt+R{−r − q1(µ− r) +A

− 1
R

1 +
1

2
(R+ 1)σ2q21}dt

−Rq1σdWt +

∫
{(1 + q1(e

x − 1))−R − 1}n(dt, dx)

)
, t > 0, Ŷ0 = 1.

Thus, in view of [KMK10, Lemma A.1], Ŷ B is a true martingale. The sufficient conditions given by

Remark 2.8 thus apply.
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4. The case where the agent knows precisely the time of the next jump, but not the

magnitude

In this setting, the (first type of) insider knows the time T1 of the first jump of the stock, but not

the magnitude, and immediately after the jump T1, he knows the time of the next jump, but not the

magnitude. This pattern continues; immediately after the jump Tn, the insider of this kind knows the

time of the jump Tn+1 but not its magnitude. We consider the value function

(44) ua(t, w;T1) = sup
c∈A(w)

E′
[
e−ρ(t−s)U(cs)ds|T1, wt = w

]
, t ∈ [0, T ),

where E′ is the expectation for the insider of the first kind (here, P′ is the associate probability measure

on a filtered probability space, where the filtration supports the knowledge of jump Ti+1 immediately

after the jump Ti). Following [ER20] and using the scaling argument, one can show that the value

function up to T1 has the form

ua(t, w;T1) = f(T1 − t)U(w), t ∈ [0, T1),

for some function f to be yet characterized. Since T1 ∼ Exp(λ), we can represent ua(0, w) as

ua(0, w) =

∫
λe−λsf(s)dsU(w) =: A2U(w),

where the constant A2 is yet to be determined. At the jump time T1, if the wealth of the insider of

the first kind will jump from

wT1− to wT1−

(
1 + a(eξ − 1)

)
,

where a is the proportion of the investor’s wealth invested in the risky asset at T1− and ξ ∼ N(m, v),

the utility of his wealth will get scaled by a factor
(
1 + a(eξ − 1)

)1−R
. Thus we choose

a∗ ∈ argmaxa∈[0,1]
g(a)

1−R
.

Similar to the case of the investor without insider information, in order to ensure that the candidate

dual minimizer Ŷ b is such that ertŶ b
t , t ≥ 0, is a local martingale and not a supermartingale, we

suppose that there exists a unique

(45) a∗ ∈ argmaxa∈[0,1]
g(a)

1−R
⋂

(0, 1).

The authors of [ER20] show that with

γM :=
ρ+ (R− 1)

(
r + (µ−r)2

2Rσ2

)
R

,

(46) f(t) =

(
1− e−γM t

γM
+ e−γM tf(0)

1
R

)R
, t ≥ 0,

where f(0) is the unique fixed point of

(47) x→ ϕ(x) := g(a∗)

∫ ∞
0

λe−λs
(

1− e−γMs

γM
+ e−γMsx

1
R

)R
ds,
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which, by [ER20, Theorem 2], exists if R > 1 or if R < 1 and λg(a∗)
λ+RγM

< 1. Denoting T0 := 0, between

the jumps, it is optimal to have

θat =
µ− r
σ2R

wat−, cat = f(Ti − t)−
1
Rwat , t ∈ (Ti−1, Ti), i ∈ N,

The constant A2 is given by

A2 =

∫
λe−λsf(s)ds.

Note that the problem (4) is ill-posed if R ∈ (0, 1) and

λg(a∗)

λ+RγM
≥ 1,

which is consistent with [Rog13, Proposition 1.3]. Otherwise, (that is, if R > 1 or if R ∈ (0, 1) and
λg(a∗)
λ+RγM

< 1), on [0, T1], using the convention that wa0− = wa0 , the optimal controls are given by

θat =
µ− r
σ2R

wat−, t ∈ [0, T1), θaT1 = a∗waT1−, cat = f(T1 − t)−
1
Rwat−, t ∈ [0, T1],

where the time T1 is the renewal time. The solution after T1 conforms with the solution stated above

for [0, T1] throughout the interval [T1, T2] and recursively thereafter. That is, we have, respectively,

the following optimal strategy and consumption.

θat = wat−

∞∑
i=1

(
µ− r
σ2R

1(Ti−1,Ti)(t) + a∗1[Ti](t)

)
, cat = wat−

∞∑
i=1

f(Ti − t)−
1
R 1[Ti−1,Ti)(t), t ≥ 0,

(48)

wat = wa0 +

∫ t

0
(rwas − cas)ds+

∫ t

0
θas

(
(µ− r)ds+ σdWs +

∫
(ex − 1)n(ds, dx)

)
, t > 0, wa0 > 0.

If we consider the initial wealth wa0 = (f(T1))
1
R , and, e.g., by invoking [Mos15, Theorem 3.2] and

[ER20, Appendix A.2], one may show that

(49) Ŷ a
t =

∞∑
j=1

f(Tj − t) (wat )−R e−ρt1[Tj−1,Tj)(t), t ≥ 0,

is the optimizer to (8) at y = 1 for the insider of the first kind. That is, Ŷ a is the dual-optimal state

price density, which satisfies

Ŷ a
t = e−ρtU ′(cat ), t ≥ 0, (dt× P′)-a.e.,

and where ca is the optimizer to (4) for the insider of the first kind at wa0 = (f(T1))
1
R .

Therefore, to compute the indifference value of an income stream e for an insider of this kind,

we need to invoke the representation formula given by (12) in Theorem 2.9, with the dual optimizer

corresponding to y = 1 being given by (49).
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5. The case where the agent knows nothing about the time of the next jump but

sees the signal η = ξ + ε

The insider of the second kind has some advance information about the size of the first jump of the

Poisson random measure n that comes at time T1, but knows nothing about the time of this jump.

This insider receives a signal

η = ξ + ε,

where ξ ∼ N(0, vε) is independent of everything else. One can compute the conditional distribution

of ξ given η as

(50) (ξ|η) ∼ N
(
vη + vεm

v + vε
,
vvε
v + vε

)
.

At time T1, immediately after the jump, the investor receives the next jump similar to the one above.

With E′′ denoting the expectation for this kind of insider, we consider

ub(w; η) := sup
c∈A(w)

E′′
[∫ ∞

0
e−ρtU(ct)dt|η, w0 = w

]
.

Using the scaling argument, one can show that

ub(w; η) = h(η)U(w),

for a function h yet to be characterized. If at T1, ξ is the size of the jump in the log price and q is

the fraction of wealth invested in the risky asset, the wealth of the insider of the second kind changes

by the multiplicative factor 1 + q(eξ − 1), so that the indirect utility of the insider changes at T1 from

h(η)U(w) to (
1 + q(eξ − 1)

)1−R
U(w)h(η′),

where η′ is the new signal about the size of the jump at time T2. With P0 denoting the N(m, v + vε)

distribution and P denoting the distribution in (50), the expected value of the indirect utility at T1+

is

U(w)

∫
(1 + q(ex − 1))1−R P(dx|η)

∫
h(y)P0(dy).

Denoting

A3 :=

∫
h(y)P0(dy),

the expected value in the indirect utility can be written as

A3U(w)

∫
(1 + q(ex − 1))1−R P(dx|η).

Thus, determining A3 and h is key for finding the dual-optimal state price density for this insider of

the second kind. With P(dx|m′, v′) denoting the N(m′, v′) distribution, we introduce

(51)

ϕ1(q) := r + q(µ− r)− 1

2
σ2q2R− ρ+ λ

1−R
,

ϕ2(q;m
′, v′) :=

∫
U(1 + q(ex − 1))P(dx|m′, v′), q ∈ [0, 1].
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If R > 1 and µ−r
σ2R
∈ (0, 1), it is shown in [ER20, Theorem 3] that the pair (h,A3) is given by a maximal

solution to the system

(52)

h(η)1−
1
R

1− 1
R

= sup
0≤q≤1

(
h(η)ϕ1(q) + λA3ϕ2(q;m

′(η), v′)
)
,

A3 =

∫
h(y)P0(dy),

subject to A3 ≤ A1. Then, the value function ub(w; η) = h(η)U(w), and the optimal q denoted by

q(η), maximizes the function

(53) q → h(η)ψ1(q) + λA3ϕ2

(
q;
vη + vεm

v + vε
,
vvε
v + vε

)
, q ∈ [0, 1].

With w0− := w0, the optimal controls are given by

cbt = (h(ηt))
− 1
Rwbt−, θbt = q(ηt)w

b
t−, t ≥ 0,

where ηt is the signal known at time t about the next jump after t. The optimal wealth process is

given by

(54) wbt = wb0+

∫ t

0
(rwbs−cbs)ds+

∫ t

0
θbs

(
(µ− r)ds+ σdWs +

∫
(ex − 1)n(ds, dx)

)
, t > 0, wb0 > 0.

Now, using [ER20, Theorem 3] and [Mos15, Theorem 3.2], with wb0 = (h(η0))
1
R , one can show that the

dual optimal state price density is given by

Ŷ b
t = e−ρth(ηt)

(
wbt

)−R
, t ≥ 0,

where, again, ηt is the signal known at time t about the next jump after t.

6. Discussion

We begin by considering the case of the investor who has no information about the jumps. If the

return of the risky asset is given by

R = µt+ σW,

and the riskless asset gives a constant return rt as in the previous sections, as in the Black-Scholes-

Merton case, one can find the value functions in (4) and (8) and the optimizers to these problems.

Here, we have that

uM (w) = AMU(w),

where

AM =
RR(

ρ+ (R− 1)
(
r + (µ−r)2

2σ2R

))R .
Following [Rog13, Chapter 1.2], with

κ :=
µ− r
σ

and γM := A
− 1
R

M ,

we have the following optimal wealth process

wMt = wM0 exp

(
R−1κ ·Wt + (r +

1

2
R−2|κ|2(2R− 1)− γM )t

)
, t ≥ 0.
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The optimal consumption rate is cM := γMw
M , and therefore, for wM0 = 1

γM
, the dual-optimal state

price density is

ŶM
t = e−ρtU ′(cMt ) = e−ρt

(
wMt

)−R
, t ≥ 0,

and the value function in (4) is uM (w) = AMU(w). Observe that (9) holds. We now compare the

optimal state-price densities in previous sections:

Ŷt = e−ρtA1w
−R
t , u(w) = A1U(w),

Ŷ a
t = e−ρt

∑
i≥1

f(Ti − t) (wat )−Rt 1[Ti−1,Ti)(t), ua(w) = A2U(w),

Ŷ b = e−ρth(ηt)
(
wbt

)−R
, ub(w) = A3U(w).

Example 6.1. For a deterministic income stream, for example, et = 1, t ≥ 0, the indifference value

does not change under extra information. Its indifference value is 1
r under both the choice of parameters

in Section 4 and under the choice of parameters in Section 5.

Example 6.2. Let us consider a deterministic yet randomly terminating income stream et = exp(rt)1[0,T1)(t),

t ≥ 0. It is easiest to compute the indifference value of this stream for the insider of the first kind.

Here, the value of the stream given T1 is

E′
[∫ ∞

0
etŶ

a
t dt|T1

]
= E′

[∫ T1

0
ertŶ a

t dt|T1
]

= T1,

and therefore, on average, the value of such a stream is 1
λ .

Next, for the investor who has no information about the jumps, with A1 given in (39) and q1 the

unique maximizer in (38), where we suppose that q1 ∈ (0, 1), set

(55) α := r − ρ+R

{
−r − q1(µ− r) +A

− 1
R

1 +
1

2
(R+ 1)σ2q21

}
.

The value of the stream is given by

E
[∫ ∞

0
etŶtdt

]
= E

[∫ ∞
0

ertŶt1[0,T1)(t)dt

]
= E

[∫ ∞
0

exp

(
αt−Rq1σWt −

1

2
(Rq1σ)2 t

)
1[0,T1)(t)dt

]
=

∫ ∞
0

E
[
exp

(
αt−Rq1σWt −

1

2
(Rq1σ)2 t

)
1[0,T1)(t)

]
dt

=

∫ ∞
0

E
[
exp

(
αt−Rq1σWt −

1

2
(Rq1σ)2 t

)]
P[T1 > t]dt

=

∫ ∞
0

E
[
exp

(
αt−Rq1σWt −

1

2
(Rq1σ)2 t

)]
exp(−λt)dt

=

∫ ∞
0

E
[
exp

(
−Rq1σWt −

1

2
(Rq1σ)2 t

)]
exp ({α− λ}t) dt

=

∫ ∞
0

exp ({α− λ}t) dt =
1

λ− α
,

which, if α > 0, is greater than 1
λ (here, 1

λ is the average value of the insider of the first kind) and is

smaller than 1
λ if α < 0.
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For the insider of the second kind, similar to the computations for the investor who has no infor-

mation about the jumps, with η0 being the initial signal about the first jump (at T1) given to this

insider, q(η0) being the ω-by-ω maximizer to (53) associated with η0, and h being given through a

pair (h,A3) as a maximal solution to (53), set

(56) β(η0) := r − ρ+R

{
−r − q(η0)(µ− r) + h(η0)

− 1
R +

1

2
(R+ 1)σ2 (q(η0))

2

}
.

We compute

E′′
[∫ ∞

0
etŶ

b
t dt|η0

]
= E′′

[∫ ∞
0

ertŶ b
t 1[0,T1)(t)dt|η0

]
=

∫ ∞
0

E′′
[
exp

(
−q(η0)RσWt −

1

2
(q(η0)Rσ)2t

)
|η0
]

exp (β(η0)t)P [T1 > t] dt

=

∫ ∞
0

exp ({β(η0)− λ}t) dt =
1

λ− β(η0)
.

Example 6.3. Consider an income stream et = e(r−1)t1[T1,∞)(t)Ψ(η0), t ≥ 0, where Ψ is a bounded

function. That is, the income stream is set at T1; it depends on both T1 and the signal that the

investor of the second kind receives at time 0 about the first jump of the risky asset, η0. After T1, the

income stream is received indefinitely by a predetermined formula at T1.

For the investor who has no information about the jumps, with the clock κt := 1 − e−t, t ≥ 0, we

obtain

E
[∫ ∞

0
etŶtdt

]
= E

[∫ ∞
T1

(
ertŶt

)
Ψ(η0)e

−tdt

]
= E

[∫ ∞
T1

(
ertŶt

)
Ψ(η0)dκt

]
= E

[
E
[∫ ∞

T1

(
ertŶt

)
Ψ(η0)dκt|FT1

]]
,

which, using localization and integration by parts, we can rewrite as

E
[
Ψ(η0)

(
erT1 ŶT1

)
e−T1

]
.

Recalling that η0 = ξ + ε, where ξ ∼ N(m, v) and ε ∼ N(0, vε) are independent (from each other and

the Brownian motion W ), we can rewrite the latter expression as

(57) E
[
Ψ(ξ + ε)

(
erT1−ŶT1−

)(
1 + q1

(
eξ − 1

))−R
e−T1

]
.

where q1 is the unique maximizer in (38), where we suppose that q1 ∈ (0, 1). Finally, with α defined

in (55), and assuming that α < 1 + λ, we restate the value of the income stream given by (57) below∫ ∞
0

e−(1−α)tλe−λtdt

∫
R2

1

2π
√
vve

Ψ(x1 + x2) (1 + q1 (ex1 − 1))−R e−
(x1−m)2

2v
− x22

2ve dx1dx2

=
λ

(λ+ 1− α)

1

2π
√
vve

∫
R2

Ψ(x1 + x2) (1 + q1 (ex1 − 1))−R e−
(x1−m)2

2v
− x22

2ve dx1dx2.

Now, let us consider an insider of the second kind who knows the time of every jump. Similar to the

computations above (particularly (57)), with πM := µ−r
σ2R

, with f being given through (46) and (47),
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and

φ(T1) := r − ρ+R

(
−r − πM (µ− r) + 1{T1>0}

1

T1

∫ T1

0
f(T1 − t)−

1
R dt+

1

2
π2Mσ

2(1 +R)

)
,

we obtain the following value of the income stream for the insider of the first kind

E′
[
Ψ(ξ + ε)

(
erT1−Ŷ a

T1−

)
e−T1

(
1 + a∗

(
eξ − 1

))−R
|T1
]

=e−T1E′
[(
erT1−Ŷ a

T1−

)
Ψ(ξ + ε)

(
1 + a∗

(
eξ − 1

))−R
|T1
]

=e−T1E′
[(
erT1−Ŷ a

T1−

)
|T1
] 1

2π
√
vve

∫
R2

Ψ(x1 + x2) (1 + a∗ (ex1 − 1))−R e−
(x1−m)2

2v
− x22

2ve dx1dx2

=e−T1
f(0)

f(T1−)
eφ(T1)T1

1

2π
√
vve

∫
R2

Ψ(x1 + x2) (1 + a∗ (ex1 − 1))−R e−
(x1−m)2

2v
− x22

2ve dx1dx2.

Finally, consider the insider of the second kind, who receives the signal about the jump at T1,

η0 = ξ+ ε, where ξ is the actual size of the jump of the cumulative return of the risky asset at T1, and

where ε is an independent N(0, vε) random variable assumed to be independent of everything else.

Proceeding similarly to the computations for the investor who has no information about the jumps,

we obtain the following value of the income stream

E′′
[
Ψ(η0)

(
erT1 ŶT1

)
e−T1 |η0

]
= Ψ(η0)E′′

[(
erT1 ŶT1

)
e−T1 |η0

]
= Ψ(ξ + ε)E′′

[(
erT1 ŶT1−

)
e−T1

(
1 + q(η0)(e

ξ − 1)
)−R

|η0
]
.

Recall that β(η0) is defined in (56). Assuming that β(η0) < 1 + λ, and observing that the conditional

distribution of ξ given η0 is N
(
vη0+vεm
v+vε

, vvε
v+vε

)
, we can simplify the latter expression as

Ψ(η0)E′′
[
e(β(η0)−1)T1e

(
−q(η0)RσWT1

−1
2 (q(η0)Rσ)

2T1
) (

1 + q(η0)(e
ξ − 1)

)−R
|η0
]

=Ψ(η0)

∫ ∞
0

λe−λte(β(η0)−1)tE′′
[
e

(
−q(η0)RσWt−1

2 (q(η0)Rσ)
2t
) (

1 + q(η0)(e
ξ − 1)

)−R
|η0
]
dt

=Ψ(η0)
λ

λ+ 1− β(η0)

√
vvε√

2π(v + vε)

∫
R
e−

(x− vη0+vεmv+vε )
2
(v+vε)

2vvε (1 + q(η0)(e
x − 1))−R dx.
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[ÇD16] Umut Çetin and Albina Danilova. Markovian Nash equilibrium in financial markets with asymmetric infor-

mation and related forward-backward systems. Ann. Appl. Probab., 26(4):1996–2029, 2016.
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