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Abstract. On a finite probability space, we consider the problem of indifference pric-

ing of contingent claims, where the preferences of an economic agent are modeled by

an Inada utility stochastic field, the interior of whose effective domain is (a,∞), for

some a ∈ R ∪ {−∞}. This allows for including utilities on both R and R+. We con-

sider arbitrary contingent claims and show that, for replicable ones, the indifference

price equals the initial value of the replicating strategy and thus depends neither on the

agent’s initial wealth, for which the indifference pricing problem is well-posed, nor the

utility stochastic field. This, in particular, shows the consistency of the indifference and

arbitrage-free pricing methodologies for complete models. For non-replicable claims, we

show that the indifference price is equal to the expectation of the discounted payoff un-

der the dual-optimal measure, which is equivalent to the reference probability measure.

In particular, we demonstrate that the indifference price is unique for every choice of a

smooth Inada utility stochastic field and initial wealth in (a,∞). Our proofs rely on the

change of numéraire technique and a reformulation of the indifference pricing problem.

The advantages of the settings of this paper and the approach allow for bypassing the

technicalities issues related to choosing the notion of admissibility and for including a

wide range of utilities, including stochastic ones. We augment the results with examples.

1. Introduction

There are multiple approaches to contingent claims pricing. From statistical to theo-

retical, different approaches usually allow for assigning a unique number - price, or an

interval - the set of prices. In this paper, we focus on indifference pricing, which has

been investigated in the literature under multiple names, including utility-based pricing,

reservation pricing, private valuation, fair pricing, Davis pricing, and so on, and also un-

der varying definitions of such prices leading to different mathematical problems. All of

these notions, however, rely on the preferences of an economic agent that are typically

represented via a utility function. We refer to [HH09] for an overview.
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Our results include representations for the indifference prices in terms of the dual-

optimal state price densities and measures in both undiscounted and discounted formu-

lations. We also show that indifference prices are arbitrage-free prices in both complete

and incomplete markets. Our results are obtained for a wide class of utility stochastic

fields, which naturally generalize the notion of a utility function. In the settings of infi-

nite probability spaces, it is well-known that indifference prices might be non-unique. We

refer to [HKS05] for the discussion. Here, we show that, on a finite probability space, the

indifference prices are unique.

The main novelty compared to the existing literature is that our results apply to stochas-

tic Inada utilities (in the sense of Assumption 2.2) on both R+ and R. Our formulation

and notations, which are consistent with the ones in [Roc70], particularly, extending the

utility stochastic field and the primal value function to R by −∞ outside of their effective

domains, allow bypassing the highly technical notion of admissibility, which goes back to

[HK79], and which is investigated in [BČ11] and [BS12], among others.

The closest existing results, to the best of our knowledge, are the following ones. Indif-

ference pricing with stochastic preferences on R+ is considered in [MS24], whereas indif-

ference pricing for deterministic utilities on R is considered in [MZ04], [SZ05], [Mon08],

[HH09], and [RS18], among others.

An important role in our analysis is played by the dual problem, which we state and

characterize below. In particular, the dual-optimal state price density can be used to

establish indifference prices of Arrow-Debreu securities. Contrary to general formulations

of indifference pricing (as pointed out in [HH09, p. 45]), indifference pricing in the sense

below exhibits linearity; that is, an indifference price of a linear combination of contin-

gent claims is the linear combination of indifference prices of these claims with the same

weights. Besides duality, the proofs rely on a change of numéraire technique, which allows

for the reduction of the indifference pricing problem to the one with zero interest rate by

means of a new stochastic utility.

The remainder of this paper is organized as follows. In Section 2, we present the model

and main results. Section 3 contains proof of the main results in the discounted case.

Section 4 gives the proof in the general case by reducing the indifference pricing problem

to the one in Section 3 via a change of numéraire technique. In Section 5, we show

the consistency of the indifference and arbitrage-free pricing methodology for replicable

contingent claims, and we conclude the paper with positive examples in Section 6.

2. Model and main results

This section aims to introduce the mathematical settings needed to investigate prop-

erties of indifference pricing pricing in a market with multiple stocks. We consider an
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Rd+1-valued stochastic process S :=
(
S0
t , S

1
t , . . . , S

d
t

)
{t∈{0,1,...,T}} on a finite filtered prob-

ability space
(

Ω,F , (Ft){t∈{0,...,T}} ,P
)

, where Ω = {ω1, ..., ωN}, N is finite, and where

T ∈ N is the time horizon. Without loss of generality we assume that P[ωn] > 0, for every

n ∈ {1, . . . , N}, that F0 is trivial, and that FT = F is the power set of Ω.

We suppose that S0 is the price process of a riskless security that is a strictly positive,

i.e., S0
n(ω) > 0 for every n ∈ {0, . . . , T} and ω ∈ Ω. We additionally assume that S0

0 = 1.

Further, we suppose that S is an ((d+1)-dimensional vector-valued) (F){t∈{0,...,T}}-adapted

process, i.e., each St is Ft-measurable, and, for every i ∈ {1, . . . , d}, Si describes the

evolution of the i-th risky asset.

Let H :=
(
H0
t , H

1
t , . . . , H

d
t

)
{t∈{0,...,T}} be a (d+ 1)-dimensional stochastic process repre-

senting a trading strategy, that is, H i
t denotes the number of shares of stock i ∈ {1, . . . , d}

at time t ∈ {0, . . . , T} and H0 is the process specifying the number of shares of the riskless

asset. We restrict the strategies to the ones that are predictable, that is, such that Ht is

Ft−1-measurable for each t ∈ {0, 1, . . . , T}, and we call a strategy H self-financing if

(1) Ht · St = Ht+1 · St, t ∈ {1, . . . , T − 1}.

where, here and below, · represents the scalar product in Rd+1. Condition (1) implies

that the accumulated changes in the value of the wealth process (which is defined in (2)

below) result from the fluctuations of the stock prices and not from an external influx or

withdrawal of money. This notion goes back to [HK79].

Let H be the set of predictable (d + 1)-dimensional processes that correspond to self-

financing strategies in the sense of (1). A portfolio is defined as a pair (x,H), where x is

the initial wealth and H ∈ H. The wealth process X associated with a portfolio (x,H) is

given by

(2) Xt := x+
t∑

j=1

Hj · (Sj − Sj−1) , t ∈ {1, . . . , T}.

Let us denote by X (x), x ∈ R, the set of sefl-financing wealth processes starting from an

initial wealth x, that is

(3) X (x) :=

{
Xt = x+

t∑
k=1

Hk · (Sk − Sk−1) , t ∈ {1, . . . , T} : H ∈ H

}
, x ∈ R.

Remark 2.1. Due to the special nature of our formulation, we can bypass the notion of

admissibility in the formulation of the value function in (4) and Definition 2.6 of indif-

ference prices below. In general probability spaces, the notion of admissibility is delicate,

and the appropriate sets of admissible processes are investigated in [DS97], [BČ11], and

[BS12], among others.
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Next, we specify the preferences of an economic agent as follows. We note that the

motivation behind Assumption 2.2 is outlined in remarks 2.3 and 2.4.

Assumption 2.2. A stochastic utility field is a mapping U = U(ω, x) : Ω×R→ R∪{−∞}
such that for every ω ∈ Ω, U(ω, ·) is an Inada utility function, that is strictly increasing,

strictly concave, continuously differentiable on dom(U)1 function that satisfies the Inada

conditions at a(ω) := inf{x : U(ω, x) ∈ dom(U)}, ω ∈ Ω, and ∞:

lim
x↓a(ω)

U ′(ω, x) =∞ and lim
x↑∞

U ′(ω, x) = 0, ω ∈ Ω,

where, here and below, U ′ denotes the partial derivative of U with respect to the sec-

ond argument. If a(ω) > −∞, at x = a, we suppose by continuity that U(ω, a(ω)) =

lim
x↓a(ω)

U(ω, x), ω ∈ Ω, this value may be −∞, and finally we assume that

U(ω, x) = −∞, x ∈ (−∞, a).

We also suppose that a does not depend on ω to include the two main cases of utility

defined on the positive real line and the whole real line, as pointed out in Remark 2.3

below, and in the spirit of [Sch01, Assumption 1.2].

Remark 2.3. Working with utilities satisfying Assumption 2.2 allows to include in one

formulation standard prominent choices of deterministic utilities on (0,∞), such as

U(x) = lnx, x ∈ (0,∞),

U(x) =
xp

p
, x ∈ (0,∞), p ∈ (−∞, 0) ∪ (0, 1),

and the exponential utilities on R, given by

U(x) = −e−γx, x ∈ R, γ > 0.

Remark 2.4. The main reason why we defined U to be a stochastic utility is to show

the flexibility needed to handle a change of numéraire. It is used below in Section 4,

in particular, to simplify the proofs for the undiscounted case, that is, when the riskless

security is a general strictly positive process (possibly stochastic) and not necessarily a

constant.

2.1. Primal Problem. Let us define

(4) u(x) := sup
X∈X (x)

E [U(XT )] , x ∈ R.

We note that for some values of x, E [U(XT )] might equal to −∞ for every X ∈ X (x).

For such x’s, we set u(x) := −∞, in a way that is consistent with notations in convex

and variational analysis, see, e.g., [Roc70, p. 23].

1By dom(U), we denote the interior of {U > −∞}.
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Remark 2.5. We stress that for some wealth processes X ∈
⋃
x∈R
X (x), where X (x)’s are

defined in (3), and for a utility stochastic field satisfying Assumption 2.2, we may have

that

P [U(XT ) = −∞] > 0,

in which case, we also have

(5) E [U(XT )] = −∞.

Wealth processes, for which (5) holds, are suboptimal for the utility maximization problem

(4). Further, in the context of a finite probability space, having (5) for some wealth

processes allows for bypassing the technical issues related to the notion of admissibility

in many papers on indifference pricing and optimal investment with random endowment,

e.g., in [HK04], [Sio16], and [Sio15], among others.

2.2. Indifference Pricing. By a contingent claim, we mean any random variable on the

probability space. Typical examples include standard call and put options on one of the

traded assets. The following definition goes back to [Dav97]2. Right now, several notions

are used in the literature for the same concept, including fair price, indifference price,

Davis price, and marginal-utility-based price.

Definition 2.6. For a given contingent claim f , an indifference price of f corresponding

to the initial wealth x and a utility stochastic field U is a constant Π = Π(f, x, U), such

that

(6) E [U (XT + qf)] ≤ u(x), q ∈ R, X ∈ X (x− qΠ),

where u(x) is given by (4) (corresponding to the stochastic utility field U). As f and U

will be fixed below, we will denote the indifference price by Π(x).

Remark 2.7. We stress that, in general, the indifference price depends on the initial

wealth x (and the preferences of an economic agent that is given via the utility stochastic

field U).

2.3. Absence of arbitrage and the dual problem. A probability measure Q is called

an equivalent martingale measure for S
S0 , if Q ∼ P and S

S0 =
(

1,
S1
t

S0
t
, . . . ,

Sd
t

S0
t

)
{t∈{0,...,T}}

is

a (d + 1)-dimensional martingale under Q. We denote the set of equivalent martingale

measures for S
S0 byM. In order for (4) to be non-degenerate for every x > a, we need to

impose the no-arbitrage condition on S
S0 . We refer to [Shr04, p. 41] for more details.

Assumption 2.8. We suppose that

M 6= ∅.
2Definition 2.6 actually relaxes the differentiability assumption in [Dav97, Definition 1].
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To specify the properties of (4) and its optimizers, we need to define the dual problem.

Let us denote the convex conjugate of U by

(7) V (ω, y) := sup
x∈R

(U(ω, x)− xy) , (ω, x) ∈ Ω× R.

Let us define the dual value function as

(8) v(y) := inf
Q∈M

E
[
V

(
y

S0
T

dQ
dP

)]
, y > 0.

Following [Shr04, Chapter 3], let us consider the

Θ :=

{
dQ
dP

1

S0
T

}
, Q ∈M,

that is, the set of the state price densities at time T . Via Θ, we can reformulate the dual

problem (8) in an even more concise form as

(9) v(y) = inf
ζ∈Θ

E [V (yζ)] , y > 0.

The following theorem is the main result of this paper. The main novelty compared to

the existing literature is that the following theorem includes stochastic utilities on both

(0,∞) and R, as in Assumption 2.2.

Theorem 2.9. Let us consider a financial market S = (St){t∈{0,...,T}} defined over the

finite filtered probability space
(

Ω,F , (Ft){t∈{0,...,T}} ,P
)

. Assume that Assumptions 2.2

and 2.8 hold, and let x ∈ dom(u)3 be fixed.

Then, for every contingent claim f , the set of indifference prices at x is a singleton,

and, with y = u′(x), we have

(10) Π(x) = E

[
ŶT (y)

y

f

S0
T

]
= EQ̂(y)

[
f

S0
T

]
= E

[
ζ̂(y)f

]
,

where
dQ̂(y)

dP
=
ŶT (y)

y
,

is the density of the dual-optimal equivalent martingale measure in the sense of (8) and

ζ̂(y) =
ŶT (y)

y

1

S0
T

is the optimal state price density, that is, the optimizer to (9).

The proof is divided into two steps: first, we prove Theorem 2.9 in the discounted case

in Section 3, and then we reduce the general case to the discounted one by a change of

numéraire in Section 4.

3By dom(u), we denote the interior of {u > −∞}.
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3. Proof of Theorem 2.9 in the discounted case

This section aims to prove Theorem 2.9 under a simplifying assumption that S0 ≡ 1,

that is

(11) S0
t (ω) = 1, t ∈ {0, . . . , T}, ω ∈ Ω.

We note that many results in mathematical finance are proven under this simlifying

assumption, see [DS97] and [HK04] among others.

The following theorem summarizes the properties of the primal and dual value functions

under (11). We note that for deterministic utilities, these results are presented in [Sch01,

Theorem 2.3]. Settings with a stochastic utility defined on the positive real line are

considered in [Mos15, Theorems 2.3 and 2.4] and, in large markets, in [Mos18, Theorem

2.2]. The proof is omitted for brevity.

Theorem 3.1. Let the financial market S = (St){t∈{0,...,T}} defined over the finite filtered

probability space
(

Ω,F , (Ft){t∈{0,...,T}} ,P
)

. Let us suppose that (11) and Assumptions 2.2

and 2.8 hold.

Then, we have

(i) the value functions u and v, defined in (4) and (8), respectively, are biconjugate in

the sense that

u(x) = inf
y>0

(v(y) + xy) , x ∈ dom(u),

v(y) = sup
x∈dom(u)

(u(x)− xy) , y > 0.

u shares the qualitative properties of U(ω, ·), ω ∈ Ω listed in Assumption 2.2.

(ii) For every x ∈ dom(u), the optimizer X̂(x) to (4) exists and is unique; for every

y > 0, the optimizer to the dual problem Ŷ (y) exists and is unique, ŶT (y)
y

is a density

of an equivalent martingale measure for S.

(iii) For every x ∈ dom(u), with y = u′(x), we have

ŶT (y)(ω) = U ′
(
ω, X̂T (x)(ω)

)
, ω ∈ Ω.

Equivalently, for every y > 0, for x = −v′(y), we have

X̂T (x)(ω) = I
(
ω, ŶT (y)(ω)

)
, ω ∈ Ω,

where I (ω, ·) = (U ′)−1 (ω, ·) = −V ′(ω, ·), ω ∈ Ω, that is I a pointwise (in ω) inverse

of U ′.

(iv) For every x ∈ dom(u), for y = u′(x), we have

E
[
X̂T (x)ŶT (y)

]
= xy.
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The following theorem is the version of the main result of this paper, Theorem 2.9,

under the additional condition (11).

Theorem 3.2. Let us suppose that that the assumptions of Theorem 3.1 and (11) hold

and x ∈ dom(u) is fixed. Then, for every contingent claim f , the set of indifference prices

at x is a singleton, and, with y = u′(x), we have

(12) Π(x) = E

[
ŶT (y)

y
f

]
= EQ̂(y) [f ] ,

where

dQ̂(y)

dP
=
ŶT (y)

y
.

The proof of Theorem 2.9 is given via several steps. First, we establish the convergence

of the dual optimizers in the sense of the next lemma.

Lemma 3.3. Let us suppose that conditions of Theorem 3.2 hold and consider a sequence

of strictly positive numbers (yk)k∈N, that converges to y > 0. Then, the optimizers to (8)

converge is the sense that

lim
k→∞

ŶT (yk)(ω) = ŶT (y)(ω), ω ∈ Ω.

Proof. Let us assume by contradition that

(13)

{
ω ∈ Ω : lim sup

k→∞

∣∣∣ŶT (yk)(ω)− ŶT (y)(ω)
∣∣∣ > 0

}
6= ∅.

It follows from item (ii) of Theorem 3.1 that the dual minimizers ŶT (yk), k ∈ N, and

ŶT (y) are strictly positive numbers that satisfy

E
[
ŶT (yk) + ŶT (y)

]
= yk + y, k ∈ N.

Therefore, using Markov’s inequality, we obtain

P
[
ŶT (yk) + ŶT (y) ≥M

]
≤ yk + y

M
, k ∈ N, M > 0.

Consequently, we get

(14) sup
k∈N

P
[
ŶT (yk) + ŶT (y) ≥M

]
≤ sup

k∈N

yk + y

M
, M > 0.

Since (yk)k∈N converges to y, it follows from (13) and (14) that there exists M > 1, such

that

(15) lim sup
k→∞

P
[∣∣∣ŶT (yk)− ŶT (y)

∣∣∣ ≥ 1

M
and ŶT (yk) + ŶT (y) ≤M

]
≥ 1

M
.
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Next, from the convexity of V (ω, ·), ω ∈ Ω, we get

(16)

V

(
ω,
ŶT (yk)(ω) + ŶT (y)(ω)

2

)
≤ 1

2

(
V
(
ω, ŶT (yk)(ω)

)
+ V

(
ω, ŶT (y)(ω)

))
, ω ∈ Ω, k ∈ N.

Further, from (15) and the strict convexity of V (ω, ·), ω ∈ Ω, we deduce that there exists

ε > 0, such that

(17)

lim sup
k→∞

P

[
V

(
ω,
ŶT (yk)(ω) + ŶT (y)(ω)

2

)
≤ 1

2

(
V
(
ω, ŶT (yk)(ω)

)
+ V

(
ω, ŶT (y)(ω)

))
− ε

]
> ε.

From (16) and (17), we conclude that

lim sup
k→∞

E

[
V

(
ŶT (yk) + ŶT (y)

2

)]
≤ 1

2

(
lim sup
k→∞

E
[
V
(
ŶT (yk)

)]
+ E

[
V
(
ŶT (y)

)])
− ε2,

which, by the optimality of Ŷ (yk), k ∈ N, and Ŷ (y) for (8), implies that

(18) lim sup
k→∞

E

[
V

(
ŶT (yk) + ŶT (y)

2

)]
≤ 1

2

(
lim sup
k→∞

v(yk) + v(y)

)
− ε2.

In the right-hand side of (18), by item (i) of Theorem 3.1 (which, in particular, implies

the continuity of v on (0,∞)), and we get

(19)
1

2

(
lim sup
k→∞

v(yk) + v(y)

)
− ε2 = v(y)− ε2.

For the left-hand side of (18), we first observe that ŶT (yk)+ŶT (y)
yk+y

is a density of an equivalent

martingale measure for S and thus ŶT (yk)+ŶT (y)
2

is admissible for the dual problem (8) at
yk+y

2
, for every k ∈ N. Therefore, we have

E

[
V

(
ŶT (yk) + ŶT (y)

2

)]
≥ v

(
yk + y

2

)
, k ∈ N.

As a consequence, using the continuity of v at y again, we obtain

(20) lim sup
k→∞

E

[
V

(
ŶT (yk) + ŶT (y)

2

)]
≥ lim sup

k→∞
v

(
yk + y

2

)
= v(y).

Combining (18), (19), and (20), we conclude that

v(y) ≤ lim sup
k→∞

E

[
V

(
ŶT (yk) + ŶT (y)

2

)]
≤ 1

2

(
lim sup
k→∞

v(yk) + v(y)

)
− ε2 = v(y)− ε2,

which implies that

v(y) ≤ v(y)− ε2,

and which is impossible, as ε is strictly positive. We obtained a contradiction, and thus

(13) does not hold. This completes the proof of the lemma. �
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A a consequence of Lemma 3.3, we obtain the following corollary.

Corollary 3.4. Let us suppose that conditions of Theorem 3.2 hold and consider a se-

quence (xk)k∈N ⊂ dom(u) that converges to x ∈ dom(u). Then, the maximizers to (4)

converge in the sense that

lim
k→∞

X̂T (xk)(ω) = X̂T (x)(ω), ω ∈ Ω.

Proof. Let us denote yk := u′(xk), k ∈ N, and y := u′(x). Then, by the properties of u

established item (i) of Theorem 3.1 (monotonicity and continuous differentiability), we

deduce that yk > 0, k ∈ N, y > 0, and, as (xk)k∈N converges to x, (by item (i) of Theorem

3.1, again) we have

lim
k→∞

yk = y.

Therefore, by Lemma 3.3, we assert that the associated maximizers to (4) converge in

the sense that

(21) lim
k→∞

ŶT (yk)(ω) = ŶT (y)(ω), ω ∈ Ω.

As for every ω ∈ Ω, I(ω, ·) is continuous in the second variable, we deduce from (21) that

(22) lim
k→∞

I
(
ω, ŶT (yk)(ω)

)
= I

(
ω, ŶT (y)(ω)

)
, ω ∈ Ω.

Consequently, from item (iii) of Theorem 3.1 and (22), we deduce that

lim
k→∞

X̂T (xk)(ω) = lim
k→∞

I
(
ω, ŶT (yk)(ω)

)
= I

(
ω, ŶT (y)(ω)

)
= X̂T (x)(ω), ω ∈ Ω,

which completes the proof of this corollary. �

Proof of Theorem 3.2. For y = u′(x), let Ŷ (y) be the minimizer to (8) at y. Let us recall

that Π(x) is given by (12), that is

Π(x) = E

[
ŶT (y)

y
f

]
.

For a given q ∈ R, let us consider an X ∈ X (x− qΠ(x)). Let us observe that

E
[
XT ŶT (y)

]
= (x− qΠ(x)) y.

Therefore, from the definition of the conjugate stochastic field V , we obtain

E [U (XT + qf)] ≤ E
[
V
(
ŶT (y)

)
+ ŶT (y) (XT + qf)

]
= v(y) + E

[
ŶT (y)XT

]
+ qE

[
ŶT (y)f

]
= v(y) + (x− qΠ(x))y + qyΠ(x)

= u(x),

(23)
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where in the last equality, we have used item (i) of Theorem 3.1, which asserts that

u(x) = v(y) + xy.

We note that, in (23), E [U (XT + qf)] might be equal to −∞, in which case, the argument

in (23) still holds. As q ∈ R and X ∈ X (x − qΠ(x)) are arbitrary, we deduce from (23)

that and Definition 2.6 that Π(x) is an indifference price for f .

Let us now consider a constant π 6= Π(x) and show that this π is not an indifference

price at x, in the sense of Definition 2.6. First, let us suppose that π < Π(x). Let

c := ‖f‖∞, let us consider a sequence of strictly positive numbers decreasing to zero, qk,

k ∈ N, and such that x − qk(c + π) ∈ dom(u) for every k ∈ N. Note that, as dom(u)

denotes the interior of {u > −∞} and thus is an open subset of R, for x ∈ dom(u), such

a sequence qk, k ∈ N, as above, exists. Next, let us define

Xk := X̂ (x− qk(c+ π)) + qkc, k ∈ N,

where X̂(x − qk(c + π)) is the optimizer to (4) at (x − qk(c + π)), k ∈ N. Then, the

sequence Xk, k ∈ N, satisfies

Xk
0 = x− qkπ and Xk ∈ X (x− qkπ) , k ∈ N.

Moreover, by the construction of this sequence, we have

Xk
T (ω) + qkf(ω) ≥ X̂T (x− qk(c+ π)) (ω), ω ∈ Ω, k ∈ N,

and therefore, with U ′(ξ) denoting U ′(ω, ξ(ω)), ω ∈ Ω, for a given random variable ξ,

from the ω-by-ω concavity of U(ω, ·), we deduce that

E
[
U
(
Xk
T + qkf

)]
≥ E

[
U
(
X̂T (x− qk(c+ π))

)]
+ qkE

[
(c+ f)U ′

(
Xk
T + qkf

)]
= u(x− qk(c+ π)) + qkE

[
(c+ f)U ′

(
Xk
T + qkf

)]
, k ∈ N.

Consequently, we get

lim inf
k→∞

E
[
U
(
Xk
T + qf

)]
− u(x− qk(c+ π))

qk
≥ lim inf

k→∞
E
[
(c+ f)U ′

(
Xk
T + qkf

)]
.(24)

Next, let us observe that

lim inf
k→∞

E
[
(c+ f)U ′

(
Xk
T + qkf

)]
= E

[
(c+ f)U ′

(
X̂T (x)

)]
= E

[
(c+ f) ŶT (y)

]
= cy + Π(x)y,

(25)

where Π(x) is given by (12). In (25), in the first equality, we used Corollary 3.4 (as well

as the finiteness of the underlying probability space) and, in the second, item (iii) of

Theorem 3.1. Combining (24) and (25), we get

lim inf
k→∞

E
[
U
(
Xk
T + qf

)]
− u(x− qk(c+ π))

qk
≥ (c+ Π(x))y.(26)
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Since by the chain rule and item (i) of Theorem 3.1, we have

(27) lim inf
k→∞

u(x− qk(c+ π))− u(x)

qk
= −u′(x)(c+ π) = −y(c+ π).

Therefore, from (26) and (27), we deduce that

lim inf
k→∞

E
[
U
(
Xk
T + qf

)]
− u(x)

qk
= lim inf

k→∞

E
[
U
(
Xk
T + qf

)]
− u(x− qk(c+ π))

qk

+ lim inf
k→∞

u(x− qk(c+ π))− u(x)

qk

≥ (c+ Π(x))y − y(c+ π) = (Π(x)− π) y > 0.

We obtained that

lim inf
k→∞

E
[
U
(
Xk
T + qf

)]
− u(x)

qk
= (Π(x)− π) y > 0.

Comparing this with Definition 2.6 and since qk, k ∈ N, is a sequence of strictly positive

numbers, we conclude that π is not an indifference price for f at x.

To show that any constant π > Π(x) is not an indifference price for f at x, we repeat

the argument above for the contingent claim −f . Thus, the unique indifference price for

f at x is given by (12).

�

4. Reformulation of the Indifference Pricing Problem and Proof of

Theorem 2.9 in the general case

4.1. Preliminary notations. In this section, we reformulate problems (4) and (8) in an

equivalent way in terms of the discounted stock price process. That is, we reformulate

(4) and (8) as (32) and (34), respectively. Let us denote the price process of traded assets

under the numéraire S0 by S̃ :=
(

1,
S1
t

S0
t
, . . . ,

Sd
t

S0
t

)
{t∈{0,...,T}}

. We also recall that S0
0 = 1.

For a predictable (d+ 1)-dimensional process H̃, we say that it satisfies the self-financing

condition under the numéraire S0 if

(28) H̃t · S̃t = H̃t+1 · S̃t, t ∈ {1, . . . , T − 1}.

Next we denote the set of self-financing wealth processes measured in the units of S0 and

starting from x by X̃ (x), that is

X̃ (x) := {Xt =x+
t∑

k=1

H̃k ·
(
S̃k − S̃k−1

)
, t ∈ {1, . . . , T} :

H̃ is predictable and satisfies (28)
}
, x ∈ R.

(29)
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4.2. A change of numéraire lemma. The following result is key in the reformulation.

It is based on the change of the numéraire argument. The proof is contained in [BHMP22,

Lemma 3.1, p. 654].

Lemma 4.1. Let S0 be a strictly positive process, such that S0
0 = 1. Then, the sets of

self-financing wealth processes X and X̃ , defined in (3) and (29), respectively, satisfy

X̃ (x) =
X (x)

S0
=

{
X

S0
=

(
Xn

S0
n

)
n∈{0,...,T}

: X ∈ X (x)

}
, x ∈ R.

4.3. Reformulation of problems (4) and (8). Lemma 4.1 allows to reformulate (4) in

terms of X̃ instead of X , that is, in the following form

(30) u(x) := sup
X∈X̃ (x)

E
[
U
(
XTS

0
T

)]
, x ∈ R.

Formulation (30) begs for a change of notation

(31) Ũ (ω, x) := U
(
ω, xS0

T (ω)
)
, (ω, x) ∈ Ω× R,

where, under the strict positivity of S0
T , Ũ satisfies Assumption 2.2 if and only if U does.

Thus, we can reformulate (30) as

(32) u(x) := sup
X∈X̃ (x)

E
[
Ũ (XT )

]
, x ∈ R,

where, we stress that the value functions in (4), (30), and (32) are equal to each other,

and the relationship between the optimizers can be recovered via Lemma 4.1.

Next, to write the dual problem to (32), we introduce the pointwise (in ω) conjugate

of Ũ as

(33) Ṽ (ω, y) := sup
x∈R

(
Ũ(ω, x)− xy

)
, (ω, y) ∈ Ω× (0,∞),

and one can see that V , defined in (7), and Ṽ , defined in (33), are related via

Ṽ (ω, y) = V

(
ω,

y

S0
T (ω)

)
, (ω, y) ∈ Ω× (0,∞).

Now, we can restate the dual problem (8) as

(34) v(y) = inf
Q∈M

E
[
Ṽ

(
y
dQ
dP

)]
, y > 0.
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4.4. A characterization of indifference prices under a change of numéraire. Let

us introduce

(35) f̃ :=
f

S0
T

,

which denotes the payoff of the contingent claim under the numéraire S0. Then, by the

strict positivity of S0
T and (31), for every X ∈

⋃
x∈R
X (x), with X̃ = X

S0 =
(
Xt

S0
t

)
t∈[0,T ]

, in

Definition 2.6, we have

(36) U (XT + qf) = U

(
S0
T

(XT + qf)

S0
T

)
= Ũ

(
X̃T + qf̃

)
,

where, by Lemma 4.1, we have that X̃T is a terminal value of a self-financing wealth

process starting from X0 under the numéraire S0, i.e., in the market, where the traded

assets have the dynamics
(

1, S
1
n

S0
n
, . . . , S

d
n

S0
n

)
{n∈{0,...,T}}

. With the notations of Section 4,

we can state the following equivalent characterization of indifference prices under the

numéraire S0, in terms of X̃ , Ũ , and f̃ defined in (29), (31), and (35), respectively. The

proof of Lemma 4.2 immediately follows from the respective definitions of X̃ , Ũ , and f̃ ,

and (36). It is, therefore, skipped.

Lemma 4.2. Let a utility stochastic field U satisfy Assumption 2.2 and a contingent

claim f be fixed. Then Π(x) is the indifference price of f (in the sense of Definition 2.6)

at x ∈ dom(u), if and only if, Π(x) satisfies

(37) E
[
Ũ
(
X̃T + qf̃

)]
≤ u(x), q ∈ R, X̃ ∈ X̃ (x− qΠ(x)),

where Ũ , f̃ , and X̃ are defined in (31), (35), and (29), respectively.

4.5. Proof of the main result. Now, we can prove the main result of this paper,

Theorem 2.9, in the undiscounted case, that is, without assuming (11).

Proof of Theorem 2.9. First, we observe that Lemma 4.2, particularly (37), characterizes

indifference prices for f (at different x’s) via a discounted model as in Section 3 and

indifference pricing of the contingent claim f̃ given by (35), that is, in the market, where

the traded securities are
(

1,
S1
t

S0
t
, . . . ,

Sd
t

S0
t

)
{t∈{0,...,T}}

, for which the results of Section 3 apply.

Let us recall that an equivalent reformulation in the sense of Lemma 4.2 was achieved

via passing to another stochastic utility Ũ given by (31), which allows for an equivalent

representation of u via (32). In turn, this leads to a reformulation of the dual problem as

in (34) via Ṽ defined in (33). Thus, we reformulated the indifference pricing problem of

f by pricing f̃ defined in (35) in the (discounted) settings of Theorem 3.2.
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Next, applying Theorem 3.2 (for f̃), we deduce from this theorem that, for a given

x ∈ dom(u), the unique indifference price of f̃ , Π(x), is given by

(38) Π(x) = E

[
ŶT (y)

y
f̃

]
,

where Ŷ (y) is the minimizer to (34). By Lemma 4.2, Π(x) is the indifference price for f

in the sense of Definition 2.6.

It remains to show that (10) holds. Here, one can see that ζ(y) := ŶT (y)
y

1
S0
T

is the

dual-optimal state price density, that is, the optimizer to (9) at y = u′(x) > 0, and Q̂(y),

whose Radon-Nikodym derivative is given by dQ̂(y)
dP = ŶT (y)

y
, is the dual-optimal martingale

measure, that is, Q̂(y) is the minimizer to both (8) and (34) at y, and since f̃ = f
S0
T

by

(35), we can further restate (38) as

Π(x) = E

[
ŶT (y)

y

f

S0
T

]
= EQ̂(y)

[
f

S0
T

]
= E

[
ζ̂(y)f

]
,

which is precisely representation (10). This completes the proof of this theorem. �

5. Indifference pricing of replicable claims

In this section, we consider the settings of Section 2 (that is, the undiscounted stock

price process) and investigate a particular case when the contingent claim f is replicable,

that is, f can be replicated by a self-financing wealth process Xr in the sense that

(39) f = Xr
T = Xr

0 +
T∑
j=1

Hr
j · (Sj − Sj−1) , t ∈ {1, . . . , T},

for some Xr
0 ∈ R and Hr ∈ H (that is, Hr is a predictable process associated with a

self-financing strategy).

The main result of this section is that the indifference price in the sense of Definition

2.6, for replicable f , is the initial value of the replicating strategy, that is, Xr
0 . This

number is precisely the arbitrage-free price, and thus, this section demonstrates, in the

settings of the present paper, the consistency of the arbitrage-free and indifference pricing

methodologies for replicable claims. We recall that for replicable claims, the arbitrage-free

price is the initial value of the replicating wealth process. Thus, the arbitrage-free price

for f satisfying (39) is Xr
0 .

Lemma 5.1. Let us suppose that the assumptions of Theorem 2.9 hold and f satisfies

(39) for some Xr
0 ∈ R and Hr ∈ H. Then, for every x ∈ dom(u), the unique indifference

price of f is given by Xr
0 , that is

Π(x) = Xr
0 ,

which is also the unique arbitrage-free price for f .
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Proof. Let us first fix an x ∈ dom(u) and then arbitrary q ∈ R and X ∈ X (x − qXr
0).

Then, from (39), we have

XT + qf = XT + qXr
T .

As X ∈ X (x− qXr
0), we have X + qXr ∈ X (x). Therefore, we deduce that

(40) E [U (XT + qf)] = E [U (XT + qXr
T )] ≤ sup

X′∈X (x)

E [U (X ′T )] = u(x),

where the inequality follows from the definition of u in (4). As q ∈ R and X ∈ X (x−qXr
0)

are arbitrary, we deduce from (40) and Definition 2.6 that Xr
0 is an indifference price for f .

Next, for every π 6= Xr
0 , we show that π is not an indifference price for f at x ∈ dom(u).

Let us set q := sign (Xr
0 − π) , so that

x+ q (Xr
0 − π) > x.

It follows from the definition of u in (4) and the strict monotonicity of U in x for every

ω ∈ Ω in Definition 2.2 that u is strictly increasing. This implies the strict positivity of

(41) ε :=
1

2
(u (x+ q (Xr

0 − π))− u(x)) .

Now, let us consider a process Xε ∈ X (x+ q (Xr
0 − π)), such that

(42) E [U(Xε
T )] ≥ u (x+ q (Xr

0 − π))− ε.

The existence of such a process Xε ∈ X (x+ q (Xr
0 − π)) follows from the definition of

the value function u in (4). Setting X := Xε − qXr ∈ X (x− qπ) and using (39), we can

restate (42) as

(43) u (x+ q (Xr
0 − π))− ε ≤ E [U(Xε

T )] = E [U(XT − qXr
T + qf)] = E [U(XT + qf)] .

Finally, it follows from (41) and (43) that, for X = Xε − qXr ∈ X (x − qπ) and q =

sign (Xr
0 − π) (as above), we have

E [U(XT + qf)] ≥ u (x+ q (Xr
0 − π))− ε > u(x),

and thus, comparing with (6) in Definition 2.6, we conclude that π is not an indifference

price for f at x ∈ dom(u). As π 6= Xr
0 is arbitrary, the argument of this paragraph implies

that every π 6= Xr
0 is not an indifference price for f at x ∈ dom(u). Finally, the fact Xr

0 is

also the unique arbitrage-free price follows from (39) and the definition of arbitrage-free

prices. �

In complete markets every contingent claim f is replicable, that is (39) holds for some

self-financing wealth process Xr. Therefore, the argument of this section, in particular,

Lemma 5.1, implies that in complete models on finite probability spaces the arbitrage-free

and indifference pricing methodologies coincide for stochastic utilities satisfying Assump-

tion 2.2.
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In an incomplete model on a finite probability space, for non-replicable contingent

claims (in the sense that there is no self-financing wealth process such (39) holds),

arbitrage-free prices and indifference prices do not coincide, in general. Here, the unique

indifference price is given by Theorem 2.9 (under assumptions of this theorem) and is

a singleton. On the other hand, the arbitrage-free prices of a contingent claim f is an

interval given by

(44)

(
inf
Q∈M

EQ

[
f

S0
T

]
, sup
Q∈M

EQ

[
f

S0
T

])
,

which follows, e.g., from [DS98, Theorem 5.12] plus a change of numéraire argument from

Section 4. Comparing (10) in Theorem 2.9 with (44), we further conclude that, under

the conditions of Theorem 2.9, the indifference price is an arbitrage-free price for every

contingent claim f , every utility stochastic field U satisfying Assumption 2.2, and every

x ∈ dom(u), where, again, by dom(u) we denote the interior of {u > −∞}.

6. Examples

6.1. One-period Trinomial Model. Consider a one-period trinomial model, that is,

T = 1. Let Ω = {ω1, ω2, ω3} be our probability space. Let us suppose that there are two

traded assets: the riskless asset S0, whose price is equal to 1 at both times and a risky

asset, whose evolution S1 is represented by Figure 1.

S1
0 = 100

S1
1(ω1) = 200

S1
1(ω2) = 100

S1
1(ω3) = 50

Figure 1. One-period trinomial model.

Here S0 is the initial price of the stock, and S1(ω) is the price of the stock at time T = 1

that can take three values. Let us suppose that the probability measure P is given by

(45) p1 := P(ω1) = 0.2, p2 := P(ω2) = 0.3, p3 := P(ω3) = 0.5.

and the utility stochastic field is

(46) U(ω, x) = ln x, (ω, x) ∈ Ω× (0,∞).
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Let us compute indifference prices for the European call and put options with the same

strike K = S1
0 . In this case, their is the respective payoffs, C = C(ω) and P = P (ω),

ω ∈ Ω, at T = 1, are given by

C1(ω1) = (S1(ω1)− 100)+ = 100, P1(ω1) = (100− S1(ω1))+ = 0,

C1(ω2) = (S1(ω2)− 100)+ = 0, P1(ω2) = (100− S1(ω2))+ = 0,

C1(ω3) = (S1(ω3)− 100)+ = 0, P1(ω3) = (100− S1(ω3))+ = 50.

We observe that, in this model, neither the call nor put option is replicable in the sense

of (39), and so the arbitrage-free prices are intervals given by (44) for both options.

Let us now compute their indifference prices. For this, we observe that the set of

equivalent martingale measures M is given by probability measures Q, such that

200Q(ω1) + 100Q(ω2) + 50Q(ω3) = 100,

Q(ω1) + Q(ω2) + Q(ω3) = 1,

where, the first equation is the martingale property of S1 under Q, and the second is

the normalization condition, Q(Ω) = 1. Solving this system of equations and using the

positivity of Q(ω) for every ω ∈ Ω, we can reparametrize the set of equivalent martingale

measures M as follows

(47) M =

{
Q : Q(ω1) = t, Q(ω2) = 1− 3t, Q(ω3) = 2t, t ∈

(
0,

1

3

)}
.

Now, let us compute the dual-optimal measure Q̂ in the sense of (8). Since

(48) V (ω, y) = − ln y − 1, (ω, y) ∈ Ω× (0,∞),

we deduce from (47) and (48) that the dual value function v becomes

v(y) = inf
Q∈M

E
[
V

(
y
dQ
dP

)]
=− ln(y)− 1 + inf

t∈
(

0,
1
3

)
(
−0.2 ln

(
t

0.2

)
− 0.3 ln

(
1− 3t

0.3

)
− 0.5 ln

(
2t

0.5

))
,

and one can see from the latter representation that the dual-optimal equivalent martingale

measure Q̂ does not depend on y. In turn, this implies via (10) that the corresponding

indifference prices do not depend on the initial wealth x > 0, a well-known feature of the

logarithmic utility. The expression under the infimum in the latter formula leads to the

following smooth function

h(t) := −0.2 ln

(
t

0.2

)
− 0.3 ln

(
1− 3t

0.3

)
− 0.5 ln

(
2t

0.5

)
, t ∈

(
0, 1

3

)
,



REPRESENTATION OF INDIFFERENCE PRICES ON A FINITE PROBABILITY SPACE 19

which reaches a unique minimum at t = 7
30

. Therefore, for every y > 0, the dual-optimal

equivalent martingale measure Q̂ is given by

(49) q̂1 := Q̂(ω1) =
7

30
, q̂2 := Q̂(ω2) =

9

30
, Q̂(ω3) =

14

30
.

The representation formula (10) from Theorem 2.9 in the present setting leads to the

following indifference price, at every initial wealth x > 0, for the call and put options

considered above

EQ̂ [C1] =
3∑
i=1

C1(ωi)q̂i = 100 · 7

30
+ 0 · 9

30
+ 0 · 14

30
= 23.33,

EQ̂ [P1] =
3∑
i=1

P1(ωi)q̂i = 0 · 7

30
+ 0 · 9

30
+ 50 · 14

30
= 23.33.

(50)

Remark 6.1. If we suppose that, for the riskless asset, S0
0 = 1, but S0

1 ∈
(

1
2
, 2
)
, then the

dual-optimal equivalent martingale measure Q̂ is given by (49). However, the indifference

prices (50), in this case, need to be divided by S0
1 , in accordance with (10).

6.2. Multiperiod trinomial model. Let us consider a multi-period trinomial model.

Let T ∈ N be the time horizon, and Ω be the set of sequences of T elements, each of these

elements taking one of the three possible values. A generic element of Ω is denoted by

ω = (ω1j1 , . . . , ωTjT ), where each ji ∈ {1, 2, 3} and i ∈ {1, . . . , T}. Let us suppose that

there are two traded assets: riskless S0, whose price equals 1 at all times, and a risky

stock, whose price process has the multiplicative increments u, 1, or d, with the one-step

conditional probabilities under P being given as in (45). Here, ωi1 corresponds to the

stock price going up by a multiplicative factor u = 2 at the i-th experiment, ωi2 - staying

the same, and ωi3 - going down by a multiplicative factor d = 1
2
. This construction is

entirely similar to [Shr04, Section 1.2], however, in trinomial, not binomial settings.

S1
0

uS1
0

S1
0

dS1
0

u2S1
0

uS1
0

S1
0

dS1
0

d2S1
0

Figure 2. Two-period trinomial model.

Let us consider the same logarithmic utility as in the one-period case given by (46).

To obtain the dual minimizer, let Zn, n ∈ {0, . . . , T}, denote the density process of an



20 JASON FREITAS, JOSHUA HUANG, AND OLEKSII MOSTOVYI

element of M. As this process is strictly positive, we can represent it as

(51) Zn =
Z1

Z0

. . .
Zn
Zn−1

, n ∈ {1, . . . , T}.

Therefore, since

V (yZT ) = − ln(yZT )− 1 = − ln y − 1−
T∑
n=1

ln

(
Zn
Zn−1

)
, y > 0,

we deduce that

E [V (yZT )] = − ln y − 1−
T∑
n=1

E
[
ln

(
Zn
Zn−1

)]
, y > 0,

which, in turn, implies that dual problem (8), in the logarithmic utility case, is reduced

to minimizing each of the terms E
[
ln
(

Zn

Zn−1

)]
, n ∈ {1, . . . , T}, separately. This is the

idea behind representation (51). Therefore, as in the one-period trinomial case and, in

particular, (49), each one-step conditional probability under the dual-optimal equivalent

martingale measure is

q̂n(ωn1) :=
7

30
, q̂n(ωn2) :=

9

30
, q̂n(ωn3) :=

14

30
, n ∈ {1, . . . , T},

and, thus, the optimal Q̂ is given by

Q̂ (ω = (ω1j1 , . . . , ωTjT )) =
T∏
n=1

q̂n (ωnjn) , jn ∈ {1, 2, 3}, n ∈ {1, . . . , T}.

With this Q̂, contingent claims in this model can be priced similarly to the one-period

case via (10).
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