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Abstract. We investigate indifference pricing under perturbations of

preferences in small and large markets. We establish stability results for

small perturbations of preferences, where the latter can be stochastic.

We obtain a sharp condition in terms of the associated concave and

convex envelopes and provide counterexamples demonstrating that, in

general, stability fails. Next, we investigate a class of models where

the indifference price does not depend on the preferences or the initial

wealth. Here, under the existence of an equivalent separating measure,

in the settings of deterministic preferences, we show that the class of

indifference price invariant models is the class of models where the dual

domain is stochastically dominant of the second order. We also provide

a counterexample showing that, in general, this result does not hold

over stochastic preferences; where instead, we show that the indifference

price invariant models are complete models (in both small and large

markets). In the process, we establish a theorem of independent interest

on the stability of the optimal investment problem under perturbations

of preferences. Our results are new in both small and large markets, and

thus, in particular, we introduce large stochastically dominant models,

give examples of such models, and characterize them as the indifference

price invariant ones over deterministic preferences.
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1. Introduction

There are many methodologies for pricing financial instruments, such as

contingent claims, options, and other derivatives. From statistical to sto-

chastic analytic, they try to assign a unique value or an interval to a given

contingent claim. One of the most far-reaching ideas in financial mathe-

matics is the presumption of pricing by no-arbitrage, which, in the case of

complete markets1, states that there is a single price for any financial asset

and where any other price results in arbitrage leading to the infinite supply

or demand. The development of this methodology resulted in the award of

the Nobel prize in economic sciences to Robert C. Merton and Myron S.

Scholes in 1997.

When financial markets are incomplete, wealth processes associated with

dynamically rebalanced portfolios of traded assets cannot span the payoffs

of all bounded contingent claims. The no-arbitrage methodology in incom-

plete markets leads to the concepts of upper and lower hedging prices that

define an open interval of arbitrage-free prices for non-replicable contingent

claims. Thus, uniqueness of no-arbitrage prices does not hold for a wide

class of non-replicable contingent claims. In this case, one can still seek

quantities at which the demand and supply match and call them prices, but

the underlying theory still needs to be fully established, even though this is

an active research area.

One of the mechanisms based on supply and demand that might allow

regaining the uniqueness of prices is related to equilibrium theory. However,

in continuous-time incomplete market settings, this problem turns out to be

too difficult (at least at the current stage of its development) to be handled

in full universality. Even the basic questions of fundamental importance,

such as the existence and uniqueness of equilibria, are not answered yet in

the general settings of incomplete continuous-time markets. The question

of effective computations of the equilibria prices in general settings is even

less studied.

1A financial market is called complete if every bounded contingent claim (bounded

random variable) can be replicated by a wealth processes associated with a dynamic

trading strategy.
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The notion of indifference pricing has naturally arisen in mathemati-

cal economics as a compromise between arbitrage-free pricing (that lacks

uniqueness in the incomplete models) and equilibria pricing (whose exis-

tence is not established in the great generality). Thus, indifference pricing

often (but not always) allows assigning a unique value (price) to a given

contingent claim. This pricing methodology depends on the preferences of

a rational economic agent that are typically specified via the agent’s utility

function.

Mathematically, the concepts of existence and uniqueness are closely as-

sociated with the well-posedness of a problem. Formally, and following

Hadamard, one needs to include the notion of stability, which is of central

importance to a wide range of problems, including the ones in mathematical

finance. This paper focuses on the stability of indifference pricing under

small perturbations of preferences in small and large markets, where by a

small/large market, we mean the one with finitely/infinitely, yet countably

many traded assets. We provide sharp conditions for stability given in terms

of the concave and convex envelopes of the primal and dual stochastic utili-

ties. Furthermore, we provide a counterexample showing the minimality of

the conditions.

While deterministic utility functions are more common in the literature,

we state Theorem 2.4, Proposition 2.5, and Proposition 2.9 below, which

constitute part of our main results, for stochastic utilities. Such a formula-

tion is made, in particular, to possibly include unbounded contingent claims

via a change of numéraire technique, see the discussion in Remark 2.6. Math-

ematically, stochastic utilities allow for more flexibility yet are technically

harder to work with. They arise naturally in many situations, for exam-

ple, the ones related to stochastic interest rates, aforementioned change of

numéraire, and in optimal consumption of multiple goods, see [Mer90], and

so on.

Upon establishing the stability of indifference pricing results, we next

ask a natural question: in what financial models changes in preferences (or

initial wealth) do not affect indifference pricing? Here, for deterministic pref-

erences, we prove that indifference prices invariant models are exactly those
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whose dual domains allow for a maximal element in the sense of the second-

order stochastic dominance. We show that this holds both in small and large

markets. For the large markets, we introduce the notion of large stochas-

tically dominant models and provide positive examples of such models, see

Examples 4.6 and 4.7. We also provide a counterexample, see Example 4.4,

showing that the second-order stochastic dominance does not imply indif-

ference price invariance over stochastic utilities. For stochastic utilities, we

show that the class of the indifference price invariant models is the class of

complete models.

Our results apply to both small and large (post-limit) markets, and they

are new, to the best of our knowledge, in both cases. Abstract theorems,

stated in the measure-theoretic form, are key for handling both cases in one

formulation.

Modeling large post-limit markets is based on stochastic integration the-

ory with respect to infinite-dimensional semimartingales that is less devel-

oped than its finite-dimensional counterpart. We note that semimartingales

constitute the most general class of stochastic processes that allow for no-

arbitrage conditions in models without transaction costs. In particular, the

Optional Decomposition Theorem for stochastic integration in infinite di-

mensions is not proven yet, to the best of our knowledge, for large markets

(however, [Kar19] has a version of the Optional Decomposition Theorem for

continuous stock prices processes), and this theorem is at the core of the

proofs of many characterizations of indifference prices in small markets, see,

e.g., [HK04].

Our results include a theorem of independent interest on the stability of

optimal investment without random endowment with respect to perturba-

tions of preferences. This theorem is stated in stochastic utility settings,

which allow to accommodate a wide range of contingent claims via a change

of numéraire technique (see a discussion on Remark 2.6).

The remainder of this paper is organized as follows. In section 2, we

introduce the model and state the main results. They include the conver-

gence of the value functions and optimizers, a convergence of the indifference

prices result, and a characterization of indifference price invariant models

as stochastically dominant ones (in the deterministic utility case) and as
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complete models (over stochastic utilities). The proofs are given in section

3, and they rely on the abstract versions of the main results also presented

in this section, including their proofs. The final section 4 contains positive

examples of large indifference price invariant models and two counterexam-

ples, which show that without an integrability condition, in general, the

value functions might blow up, making the indifference pricing an ill-posed

problem. Section 4 also contains one more counterexample showing that

indifference price invariance over stochastic preferences is not equivalent to

stochastic dominance of the dual domain and a positive example of the

convergence of indifference prices under perturbations of the relative risk

aversion in exponential Levy models.

2. Model and main results

We consider a complete stochastic basis
(
Ω,F , (Ft)t∈[0,T ],P

)
, where the

filtration (Ft)t∈[0,T ] satisfies the usual conditions, F0 is trivial. We assume

that there is one fixed market consisting of a riskless asses S0 ≡ 1 and

a sequence of risky asset S = (Sn)n∈N, where each Sn, n ∈ N, is a semi-

martingale that gives the price of the nth risky asset. The process S is given

exogenously.

To specify trading strategies in the large market, we proceed as follows.

For a given n ∈ N, an n-elementary strategy is defined to be an Rn-valued

predictable and (Sk)k=1,...,n-integrable process in the sense of vector-valued

stochastic integration as in [JS03]. We say that an n-elementary strategy H

is x-admissible for a given x ≥ 0, if

H·S =

∫ ·
0

n∑
k=1

Hk
t dS

k
t ≥ −x, P-a.s..

Hn denotes the set of n-elementary strategies, which are x-admissible for

some x ≥ 0. An elementary strategy is a strategy that is n-elementary for

some n ∈ N. By H we designate the set of admissible elementary strategies.

To pass to the limit as n→∞, we follow [DDGP05], and recall that RN

is the space of real-valued sequences. An unbounded functional on RN is a

linear functional H ′, whose domain, Dom(H ′) is a subspace of RN. With δk

denoting the Dirac delta at point k, a simple integrand is defined as a finite
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sum of bounded predictable processes of the form
n∑
k=1

hkδk, where each hk

is a one-dimensional bounded and predictable process, k ∈ N.

A process H with values in the set of unbounded functionals on RN is

predictable if there is a sequence of simple integrands (Hn)n∈N, such that

H = lim
n→∞

Hn, pointwise, in the sense that for every x̃ ∈ Dom(H), the

sequence (Hn(x̃))n∈N converges to H(x̃).

A predictable process H with values in the set of unbounded functionals

on RN is integrable with respect to S if there exists a sequence (Hn)n∈N of

simple integrands, such that (Hn)n∈N converges to H pointwise and the se-

quence of semimartingales (Hn·S)n∈N, which converges to a semimartingale

X in the Emery topology. In this case, we set H·S := X.

To specify problems (2.3) below, we also need the context of admissibility.

Thus, for x ≥ 0, we say that a predictable process with values in the set of

unbounded functionals in an x-admissible generalized strategy if H is inte-

grable with respect to S and there is a sequence of x-admissible elementary

strategies, (Hn·S)n∈N, that converges to H·S in the Emery topology.

We suppose that an agent can trade in such a market. A portfolio is

defined as a pair (x,H), where a constant x ≥ 0 is an initial wealth and H

is an x-admissible generalized strategy. The wealth process X = (Xt)t∈[0,T ]

generated by the portfolio (x,H) is given by

Xt = x+H·St, t ∈ [0, T ].

A collection of nonnegative wealth processes generated by x-admissible gen-

eralized strategies is denoted by X (x), that is

(2.1) X (x) := {X ≥ 0 : Xt = x+H·St, t ∈ [0, T ]} , x ≥ 0.

Next, we consider a family of utility functions satisfying the following

assumption. Here and below N∗ := N ∪ {∞}.

Definition 2.1. A stochastic utility field is a mapping U = U(ω, x) : Ω ×
[0,∞) → R ∪ {−∞} such that for every ω ∈ Ω, U(ω, ·) is an Inada utility

function that is strictly increasing, strictly concave, continuously differen-

tiable on (0,∞) function that satisfies the Inada conditions at 0 and ∞; at

x = 0, we suppose by continuity that U(ω, 0) = lim
x↓0

U(ω, x), this value may

be −∞; for every x ≥ 0, U(·, x) is measurable.
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We denote the convex conjugate of U by

(2.2) V (ω, y) := sup
x>0

(U(ω, x)− xy) , (ω, x) ∈ Ω× [0,∞).

Assumption 2.2. Un, n ∈ N∗, is a sequence of stochastic utility fields such

that Un(ω, ·)→ U∞(ω, ·) pointwise on [0,∞), for any ω ∈ Ω.

We consider the following problems

(2.3) un(x) := sup
X∈X (x)

E [Un(XT )] , (x, n) ∈ (0,∞)× N∗,

where we use the convention

(2.4) E[Un(XT )] := −∞ if E[U−n (XT )] =∞,

and where U−n is the negative part of Un.

For (2.3) to be non-degenerate, we need to impose a no-arbitrage type

condition. With

Mn := {Q ∼ P : H·S is aQ−local martingale for every H ∈ Hn}, n ∈ N,

we suppose that

(2.5) M :=
⋂
n∈N
Mn 6= ∅.

This condition is closely related, yet (a little) stronger than the existence of

an equivalent separating measure in the large market, see [CKT16] for more

details and equivalent characterizations. We set the dual domain as follows

Y(y) := {Y ≥ 0 : Y0 = y and XY = (XtYt)t∈[0,T ]

is a supermartingale for every X ∈ X (1)}, y ≥ 0.
(2.6)

We will denote Y(1) by Y for brevity. This construction of the dual do-

main is well-known for small markets and goes back to [KS99] and even to

[KLSX91]. In large markets, and somewhat surprisingly, at least compared

to [DDGP05], the same set Y, whose elements are known as supermartingale

deflators, works. We specify the dual problem as

(2.7) vn(y) := inf
Y ∈Y(y)

E [Vn(YT )] , (y, n) ∈ (0,∞)× N∗,

where we use the convention

(2.8) E[Vn(YT )] :=∞ if E[V +
n (YT )] =∞,
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and V +
n denotes the positive part of Vn.

We also set the lower concave envelopes of (Uk)k≥n, n ∈ N, and the upper

convex envelopes of (Vk)k≥n, n ∈ N, as

(2.9) Ūn(z) := inf
k≥n

Un(z) and V̄n(z) := sup
k≥n

Vn(z), z > 0, n ∈ N,

and impose the following assumption.

Assumption 2.3. Assume that there exists n0 ∈ N, such that for every

n ≥ n0, we have

ūn(x) := sup
X∈X (x)

E
[
Ūn(XT )

]
> −∞, x > 0 and(2.10)

v̄n(y) := inf
Y ∈Y(y)

E
[
V̄n(YT )

]
<∞, y > 0.(2.11)

2.1. Convergence of the value functions and optimizers. We note

that, under the conditions of Theorem 2.4, the existence and uniqueness

of optimizers to (2.3) and (2.7), for every z > 0 and n ≥ n0, follow from

(abstract) [Mos15, Theorem 3.2]. We denote the optimizers by X̂n(z) and

Ŷ n(z), respectively. [Mos15, Theorem 3.2] also provides the differentiability

of the value functions in (2.3) and (2.7), for every z > 0 and n ≥ n0. We

use this in Proposition 2.5 below.

Theorem 2.4. We suppose that S is an RN-valued semimartingale that

satisfies (2.5). Then, under Assumptions 2.2 and 2.3, we have:

(i) for every n ≥ n0, the value functions defined in (2.3) and (2.7) are

finite-valued, and

(2.12) lim
n→∞

un = u∞ and lim
n→∞

vn = v∞,

pointwise and uniformly on compact subsets of (0,∞);

(ii) for every sequence (xn)n∈N of strictly positive numbers converging to

some x > 0, the optimizers to (2.3) and (2.7) converge in L0(Ω,F ,P):

(2.13) X̂∞T (x) = P- lim
n→∞

X̂n
T (xn) and Ŷ∞T (x) = P- lim

n→∞
Ŷ n
T (xn).

2.2. Convergence of the indifference prices. For a bounded contingent

claim f ∈ L∞(Ω,F ,P), we set

(2.14) X (x, q) := {X = x+H·S : XT + qf ≥ 0, P-a.s.} , (x, q) ∈ R2,
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where H can be an x′-admissible generalized strategy for some x′ > 0.

Here x′ can be different from x, and x is allowed to take negative val-

ues. We note that under (2.5), and in view of the boundedness of f , the

acceptability requirement typically imposed in small markets as in [DS97]

on similarly defined elements of X (x, q) is satisfied by every X ∈ X (x, q),

(x, q) ∈ {(x̃, q̃) ∈ R2 : X (x̃, q̃) 6= ∅}.
We recall that for f ∈ L∞(Ω,F ,P), an indifference price of f correspond-

ing to the initial wealth x and a utility stochastic field U is a constant

Π = Π(f, x, U), such that

(2.15) E [U(XT + qf)] ≤ u(x), q ∈ R, X ∈ X (x− qΠ, q),

where u(x) is given by (2.3) (corresponding to the stochastic utility field

U). For characterizations of indifference pricing, we refer to [MZ04], [MS05],

[HKS05], [KS06], [Mon08], [BEK09], and [HH09], where this topic goes back

to [Dav97].

Proposition 2.5. Let the assumptions of Theorem 2.4 hold and lim
n→∞

xn =

x∞ > 0, xn > 0. Let yn := u′n(xn), n ≥ n0, where n0 is given by Assump-

tion 2.3, and suppose that Ŷ n(yn), n ≥ n0, are P-martingales. Then, for

every bounded contingent claim f , the indifference prices {Π(f, xn, Un)}, are

singletons, n ≥ n0, and we have

(2.16) lim
n→∞

Π(f, xn, Un) = Π(f, x∞, U∞),

and we have the representation

(2.17) Π(f, xn, Un) = E

[
Ŷ n
T (yn)

yn
f

]
, n ≥ n0,

Remark 2.6 (On relaxation on the boundedness condition on f in Proposi-

tion 2.5). The stochastic utility settings considered in the paper, in partic-

ular, might allow relaxation of the boundedness condition on the contingent

claim f in Proposition 2.5. While, in our view, the complete analysis of

this question is a topic of a separate investigation, we consider the following

example.

We suppose that f = max(ST −K, 0), which is a call option on a stock

price and is and is generally unbounded. In this case, in a wide class of

models, for example, in the Black-Scholes-Merton stock price model, if the
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strike K is deterministic, option f is replicable. This implies that it admits

a unique arbitrage-free price, and its indifference price equals the arbitrage-

free price (see, e.g., the argument in [MS24, Lemma 6.2]).

However, if K ≥ 0 is random, then, in general, the contingent claim f

is not replicable. If S is strictly positive, as in the Black-Scholes-Merton

model, one can introduce the following auxiliary stochastic utility. Let

(2.18) Ũ(ω, x) := U(ω, ST (ω)x), x ≥ 0,

then we have

Ṽ (ω, y) = V

(
ω,

y

ST (ω)

)
, y ≥ 0,

is the (pointwise in ω) convex conjugate of Ũ(ω, x). Furthermore, we have

U(XT + qf) = Ũ

(
XT

ST
+ q

f

ST

)
,

and by change of numéraire, formulas, we can restate the primal and dual

optimization problems as

u(x) = sup
X∈X (x)

E [U(XT )] = sup
X∈X (x)

E
[
Ũ

(
XT

ST

)]
= sup

X∈X̃ (x)

E
[
Ũ (XT )

]
, x > 0,

where X̃ (x) =
{
X
S : X ∈ X (x)

}
, x > 0. For the dual optimization problem

without random endowment, we get

v(y) = inf
Y ∈Y(y)

E [V (YT )] = inf
Y ∈Y(y)

E
[
Ṽ (YTST )

]
= inf

Y ∈Ỹ(y)
E
[
Ṽ (YT )

]
, y > 0,

where Ỹ(y) = {Y S : Y ∈ Y(y)}, y > 0. The change of numéraire allows

now to specify the utility maximization problem (via (2.18)) with a bounded

contingent claim f̃ := f
ST

, as follows: for every X ∈ X (x, q), the left-hand

side in (2.15) can be rewritten as

E [U(XT + qf)] = E
[
Ũ

(
XT + qf

ST

)]
= E

[
Ũ
(
XS
T + qf̃

)]
,(2.19)

where XS = X
S , and in a small market and strictly positive S, XS is a

wealth process under the numéraire S.

The heuristic argument in this remark needs more precise conditions and

technical estimates to be made rigorous in general settings. In particular,

the acceptability (in the sense of [DS97]) of X above for an unbounded f

under a change of numéraire (especially in large markets) has to be han-

dled adequately. Nevertheless, this argument shows that starting from a
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deterministic utility and an unbounded contingent claim f , by a change of

numéraire and passing to a stochastic utility, one can obtain a problem with

a bounded contingent claim f̃ as in (2.19). Here, superreplicability of |f | by

a wealth process is a common condition in the literature that, by a change

of numéraire, can lead to the settings of this paper considered in Theorem

2.4 and Proposition 2.5 with a bounded contingent claim and stochastic

utility, as for f̃ = f
ST

in this remark above. This, in particular, allows us

to potentially incorporate call options into the modeling framework and is

the reason for stating Theorem 2.4 and Proposition 2.5 in stochastic utility

settings.

2.3. Indifference price invariant models over deterministic utilities.

In this section, working with deterministic utilities, we investigate the indif-

ference price invariant models, that is, the models in which the indifference

price does not depend on the choice of a utility function. The main result of

this section is that the class of indifference price invariant models is exactly

the class of stochastically dominant models, that is, the models, where the

dual domain admits the maximal element in the sense of the second-order

stochastic dominance.

We recall that for two random variables ζ1 ≥ 0 and ζ2 ≥ 0, we say that

ζ1 dominates ζ2 in the sense of second-order stochastic dominance if

(2.20)

∫ z

0
P[ζ1 ≥ t]dt ≥

∫ z

0
P[ζ2 ≥ t]dt, z ≥ 0.

In this case, we write ζ1 �2 ζ2.

We consider the class of deterministic Inada utility functions U , whose

convex conjugate V satisfies

(2.21) v(y) = inf
Y ∈Y(y)

E [V (YT )] <∞, y > 0.

We denote the set of such deterministic Inada utility functions by FD for

finite dual. We note that, under (2.5), FD 6= ∅, as, for every p > 1, it

includes U(x) = x1−p

1−p , x > 0.

Proposition 2.7. We suppose that S is an RN-valued semimartingale that

satisfies (2.5). Then the following conditions are equivalent:

(i) there exists Ŷ ∈ Y such that ŶT �2 YT for every Y ∈ Y,
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(ii) the model is indifference price invariant, that is, for every triple of U ∈
FD, x > 0, and a bounded contingent claim f , the set of indifference

prices {Π(f, x, U)} is a singleton and depends neither on x > 0 nor on

U ∈ FD.

Furthermore, in the case when these equivalent assertions hold, we have the

representation

Π(f, x, U) = EQ̂ [f ] , f ∈ L∞(Ω,F ,P), x > 0, U ∈ FD,

where dQ̂
dP = ŶT , for Ŷ from the item (i), and, in particular, E

[
ŶT

]
= 1.

Remark 2.8. In small markets, the conditions above could be proven to be

equivalent to stochastic dominance of the dual domain of the infinite order.

We refer to [MSZ23] for the definition of stochastic dominance of infinite

order and further details.

Furthermore, relying on the results in [SST09, Proposition 3.9, p. 60],

one can show that, under the assumptions of Proposition 2.7, each of the

assertions is equivalent to the weak completeness of the model (again, see

[SST09] for the precise definition) and to

E
[
YT |σ(ŶT )

]
≤ ŶT , P-a.s., for every Y ∈ Y,

where Ŷ is the dominating element in Y as in item (i) of Proposition 2.7.

Also, in small markets, stochastic dominance of the second order (under

appropriate conditions) is proven in [KS06] to be equivalent to the existence

of the risk-tolerance wealth process, that is, a maximal wealth process R,

such that

RT = −
U ′
(
X̂T (x)

)
U ′′
(
X̂T (x)

) ,
for an initial wealth x > 0 and a given utility function U satisfying some

technical conditions from [KS06], where X̂(x) is the associated optimizer

to (2.3). For the set of equivalent characterizations of the assertions of

Proposition 2.7 in small markets, we refer to [KS06], where we add that the

existence of the risk-tolerance wealth process can be characterized as the

existence of a solution to a backward stochastic differential equation with

jumps, and we refer to [CE12] for this subject.
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2.4. Indifference price invariant models over stochastic utilities.

In this section working with stochastic utilities, we show that indifference

price invariance, under the existence of an equivalent separating measure,

is equivalent to the completeness of the model. The natural extension of

FD class is one given by the class of Inada stochastic utility fields U (in

the sense of Definition 2.1), such that the associated primal and dual value

functions are finite-valued, that is

u(x) = inf
X∈X (x)

E [U(XT )] > −∞, x > 0, and

v(y) = inf
Y ∈Y(y)

E [V (YT )] <∞, y > 0,
(2.22)

where V is given by (2.2). We denote the set of such stochastic utility fields

by FV for finite value functions. We note that, under (2.5), FV 6= ∅, as,

for every p > 1, it includes (deterministic) U(x) = x1−p

1−p , x > 0. Conditions

(2.5) and (2.22) are known to guarantee the standard assertions of the utility

maximization theory in stochastic Inada utility settings.

Proposition 2.9. Let the conditions of Proposition 2.7 hold. Then, the

following are equivalent:

(i) the set M is a singleton,

(ii) the model is indifference price invariant over stochastic utility fields,

that is, for every triple of U ∈ FV, x > 0, and a bounded contingent

claim f , the set of indifference prices {Π(f, x, U)} is a singleton and

depends neither on x > 0 nor on U ∈ FV,

(iii) every bounded contingent claim f is replicable, that is there exists x′ ≥
0 and X ∈

⋃
x>0
X (x), such that

XT − x′ = f, P-a.s.,

that is, the model is complete.

Furthermore, in the case when these equivalent assertions hold, we have the

representation

(2.23) Π(f, x, U) = EQ [f ] , f ∈ L∞(Ω,F ,P), x > 0, U ∈ FV,

where Q is the unique element of M.
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3. Abstract version of the main results and proofs

3.1. Preliminaries. We set

C(x) :=
{
ξ ∈ L0

+(Ω,F ,P) : 0 ≤ ξ ≤ XT for some X ∈ X (x)
}
, x ≥ 0,

(3.1)

D(y) :=
{
η ∈ L0

+(Ω,F ,P) : 0 ≤ η ≤ YT for some Y ∈ Y(y)
}
, y ≥ 0.

(3.2)

C(1) and D(1) will be denoted by C and D, respectively, and we have C(z) =

zC, D(z) = zD, z ≥ 0. We show below that sets C and D satisfy the following

proposition, which is very similar to [KS99, Proposition 3.1], and this also

holds for the large market.

Proposition 3.1. We suppose that S is an RN-valued semimartingale that

satisfies (2.5). Then, the sets C and D defined in (3.1) and (3.2) satisfy the

following conditions:

(1) C and D are subsets of L0
+(Ω,F ,P) that are convex, solid, and closed

in L0(Ω,F ,P),

(2) C and D satisfy the bipolar relations, that is

ξ ∈ C if and only if E[ξη] ≤ 1 for every η ∈ D,

η ∈ D if and only if E[ξη] ≤ 1 for every ξ ∈ C,

(3) C is bounded in L0(Ω,F ,P) and contains the constant function 1.

With Un, n ∈ N∗, as above, we can set the abstract versions of primal

and dual optimization problems as

un(x) := sup
ξ∈C(x)

E [U(ξ)] (x, n) ∈ (0,∞)× N∗,(3.3)

vn(y) := inf
η∈D(y)

E [Vn(η)] , (y, n) ∈ (0,∞)× N∗,(3.4)

and we have conventions similar to (2.4) and (2.8). Next, we can state the

abstract version of Assumption 2.3 as follows.
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Assumption 3.2. We suppose that there exists n0 ∈ N, such that

ūn(x) := sup
ξ∈C(x)

E
[
Ūn(ξ)

]
> −∞, x > 0 and

v̄n(y) := inf
η∈D(y)

E
[
V̄n(η)

]
<∞, y > 0.

3.2. Abstract version of Theorem 2.4. We denote the optimizers to

(3.3) and (3.4), provided that they exist, by ξ̂n(z), and η̂n(z), (z, n) ∈
(0,∞)×N∗. Under the conditions of Theorem 3.3 below, the existence and

uniqueness of optimizers to (3.3) and (3.4) for every z > 0 and n ≥ n0

follows from [Mos15, Theorem 3.2].

Theorem 3.3. We consider sets C and D satisfying the assertions of Propo-

sition 3.12. Then, under Assumptions 2.2 and 3.2, we have:

(i) for every n ≥ n0, the value functions defined in (3.3) and (3.4) are

finite-valued and

(3.5) lim
n→∞

un = u∞ and lim
n→∞

vn = v∞

pointwise and uniformly on compact subsets of (0,∞);

(ii) for every sequence (xn)n∈N of strictly positive numbers converging to

some x > 0,the optimizers to (3.3) and (3.4) converge in L0(Ω,F ,P):

(3.6) ξ̂∞(x) = P- lim
n→∞

ξ̂n(xn) and η̂∞(x) = P- lim
n→∞

η̂n(xn).

3.3. Convergence of the value functions.

Lemma 3.4. Under the conditions of Theorem 3.3, we have

(3.7) lim
n→∞

un(z) = u∞(z) and lim
n→∞

vn(z) = v∞(z), z > 0.

The proof of Lemma 3.4 is given via the following lemmas.

Lemma 3.5. Under the conditions of Theorem 3.3, we have

(3.8) lim sup
n→∞

vn(y) ≤ v∞(y), y > 0.

Proof. We fix z > 0 and δ ∈ (0, z), and consider η := η̂∞(z − δ) ∈ D(z − δ),
the minimizer to (3.4) at (y, n) = (z − δ,∞). We consider ηδ ∈ D(δ), such

that

E[V̄n(ηδ)] <∞, n ≥ n0,

2And not necessarily defined by (3.1) and (3.2) above.
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where n0 is given by Assumption 3.2. We note that the existence of such ηδ

follows from Assumption 3.2.

Next, we observe that from the monotonicity of every V +
n , n ∈ N, and

V̄ +
n ’s in n, we get

V +
n (η + ηδ) ≤ V +

n (ηδ) ≤ V̄ +
n (ηδ) ≤ V̄ +

n0
(ηδ) ∈ L1(Ω,F ,P), n ≥ n0.

Therefore, by the Dominated Convergence Theorem, we have

(3.9) lim
n→∞

E
[
V +
n

(
η + ηδ

)]
= E

[
V +
∞

(
η + ηδ

)]
.

Now, by the monotonicity of V +
∞ and the construction of η, we have

V +
∞

(
η + ηδ

)
≤ V +

∞ (η) ∈ L1(Ω,F ,P).

Combining this inequality with (3.9), we get

(3.10) lim
n→∞

E
[
V +
n

(
η + ηδ

)]
≤ E

[
V +
∞ (η)

]
<∞.

In turn, by Fatou’s lemma and the monotonicity of V −∞ , we get

lim inf
n→∞

E
[
V −n

(
η + ηδ

)]
≥ E

[
V −∞

(
η + ηδ

)]
≥ E

[
V −∞ (η)

]
.

Combining this with (3.10), we deduce that

lim sup
n→∞

E
[
Vn

(
η + ηδ

)]
≤ E [V∞ (η)] .

Therefore, as
(
η + ηδ

)
∈ D(z), we obtain

lim sup
n→∞

vn(z) ≤ lim sup
n→∞

E
[
Vn

(
η + ηδ

)]
≤ E [V∞ (η)] = v∞(z − δ).

Since v∞ is continuous by its convexity and finiteness, and since δ ∈ (0, z)

is arbitrary, taking the limit as δ ↓ 0, we deduce that

lim sup
n→∞

vn(z) ≤ v(z).

As z > 0 is arbitrary, (3.8) follows. �

Similarly to Lemma 3.5, we can prove the following lemma. The proof is

omitted for brevity.

Lemma 3.6. Under the conditions of Theorem 3.3, we have

lim inf
n→∞

un(x) ≥ u∞(x), x > 0.
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Proof of Lemma 3.4. For n = ∞, we fix x > 0 and let y = u′∞(x). Here,

we note that the differentiability of u∞ follows from [Mos15, Theorem 3.2].

Then, we have

u∞(x) ≤ lim inf
n→∞

un(x) ≤ lim sup
n→∞

vn(y) + xy ≤ v∞(y) + xy = u∞(x),(3.11)

where, in the first inequality, we used Lemma 3.6; in the second - conju-

gacy relations; in the third - Lemma 3.5; and in the last equality - [Mos15,

Theorem 3.2]. Therefore, all inequalities in (3.11) are, in fact, equalities.

Moreover, as x > 0 is arbitrary and, by [Mos15, Theorem 3.2], u′∞ satisfies

the Inada conditions, y in (3.11) can take any value in (0,∞), we deduce

that (3.7) holds. �

3.4. Convergence of the optimizers.

Lemma 3.7. Let (xn)n∈N be a sequence of strictly positive numbers con-

verging to x > 0. Then, under the conditions of Theorem 3.3, we have

(3.12) ξ̂∞(x) = P- lim
n→∞

ξ̂n(xn) and η̂∞(x) = P- lim
n→∞

η̂n(xn).

Proof. We fix n ∈ N∗ and observe that for every y > x > 0, we have

Un

(
x+ y

2

)
− 1

2
(Un(x) + Un(y))

=
1

2

(
Un

(
x+ y

2

)
− Un(x)

)
− 1

2

(
Un(y)− Un

(
x+ y

2

))
=

1

2

(∫ x+y
2

x
U ′n(z)dz −

∫ y

x+y
2

U ′n(z)dz

)

=
1

2

∫ x+y
2

x

(
U ′n(z)− U ′n

(
z +

y − x
2

))
dz

=
1

2

∫ ∞
0

(
U ′n(z)− U ′n

(
z +

y − x
2

))
1{y>x}(z)1[x,x+y

2 ](z)dz.

(3.13)

Therefore, for any strictly positive x and y, we obtain

Γn(x, y) :=Un

(
x+ y

2

)
− 1

2
(Un(x) + U(y))

=

∫ ∞
0

1

2

((
U ′n(z)− U ′n

(
z +

y − x
2

))
1{y>x}(z)1[x,x+y

2 ](z)

+

(
U ′n(z)− U ′n

(
z +

x− y
2

))
1{x>y}(z)1[y,x+y

2 ](z)

)
dz, n ∈ N∗,

(3.14)
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where, the integrand is nonnegative and is strictly positive on (x ∧ y, x ∨ y]

for x 6= y, by the strict monotonicity of U ′n(ω, ·), ω ∈ Ω.

Next, without loss of generality, we suppose that n0 = 1 in Assumption

3.2, and denote

gn := ξ̂n(xn), n ≥ n0.

Then, for every ζ ∈ L0
+(Ω,F ,P), such that Ū−n0

(ζ) ∈ L1(Ω,F ,P), we have

U−n (g∞+ζ) ≤ Ū−n (g∞+ζ) ≤ Ū−n0
(g∞+ζ) ≤ Ū−n0

(ζ) ∈ L1(Ω,F ,P), n ≥ n0,

and thus, by Fatou’s lemma, we get

lim inf
n→∞

E [Un(g∞ + ζ)] ≥ E [U∞(g∞ + ζ)] ≥ u∞(x).(3.15)

Assume by contradiction that gn, n ∈ N, does not converge in probability

to g∞. There, there exists ε > 0, such that

(3.16) lim sup
n→∞

P [|gn − g∞| > ε] > ε.

We fix a constant δ ∈ (0, ε2) and let δm := δ
2m , m ∈ N. We consider ζm > 0,

m ∈ N, a sequence of elements in C(δm), m ∈ N, such that

Ū−n0
(ζm) ∈ L1(Ω,F ,P), m ∈ N.

The existence of such a sequence follows from Assumption 3.2. We set

hm := g∞ + ζm and g̃n,m := gn + ζm, m ∈ N, n ∈ N.

As, by the assumption of Theorem 3.3, C satisfies item (3) of Proposition

3.1, we have that (g̃n,m)(n,m)∈N2 is bounded in L0(Ω,F ,P), as a subset of

C(x̄), for an appropriate x̄ ∈ (0,∞). Together with (3.16), this implies that

there exist strictly positive constants α, M , and ε′, such that

(3.17)

lim sup
n→∞

P

|(gn + ζm)− (g∞ + ζm)| > α, gn + g∞ +
∑
k≥1

ζk < M

 > ε′,

which does not depend on m ∈ N and implies that

(3.18) lim sup
n→∞

P [|g̃n,m − hm| > α, g̃n,m + hm < M ] > ε′, m ∈ N.

From (3.14), we obtain

Un

(
g̃n,m + hm

2

)
=

1

2
(Un(g̃n,m) + Un(hm)) + Γn(g̃n,m, hm),
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Therefore, we get

E
[
Un

(
g̃n,m + hm

2

)]
=

1

2
(un(xn) + E [Un(hm)]) + E [Γn(g̃n,m, hm)] .

As a consequence, from (3.15), Lemma 3.4, and [Roc70, Theorem 25.7, p.

248], we obtain

lim sup
n→∞

E
[
Un

(
g̃n,m + hm

2

)]
≥ u∞(x) + lim sup

n→∞
E [Γn(g̃n,m, hm)] .

and thus, using Lemma 3.4 again, we get

u∞ (x+ δm) = lim sup
n→∞

un

(
xn + x

2
+ δm

)
≥ lim sup

n→∞
E
[
Un

(
g̃n,m + hm

2

)]
≥ u∞(x) + lim sup

n→∞
E [Γn(g̃n,m, hm)] .

We deduce that

lim sup
n→∞

E [Γn(g̃n,m, hm)] ≤ u∞ (x+ δm)− u∞(x),

and therefore, by taking the limit as m→∞, we obtain

(3.19)

lim sup
m→∞

lim sup
n→∞

E [Γn(g̃n,m, hm)] ≤ lim sup
m→∞

(u∞ (x+ δm)− u∞(x)) = 0,

where the last equality follows from the convexity and finiteness of u∞ on

(0,∞), where the latter is ensured by Assumption 3.2.

Next, we consider lim sup
m→∞

lim sup
n→∞

E [Γn(g̃n,m, hm)]. We denote

An :=

|(gn + ζm)− (g∞ + ζm)| > α, gn + g∞ +
∑
k≥1

ζk < M

 , n ∈ N.

This allows rewriting (3.17) as

(3.20) lim sup
n→∞

P [An] > ε′,

It follows from Assumption 2.2 via [Roc70, Theorem 25.7, p. 248] that

U ′n(ω, ·) converges to U ′∞(ω, ·) uniformly on compact subsets of (0,∞) (and

this was the idea behind introducing ζm’s), for every ω ∈ Ω. This allows to

deduce that

(3.21)

lim sup
n→∞

E [1 ∧ Γn(g̃n,m, hm)] = lim sup
n→∞

E [1 ∧ Γ∞(g̃n,m, hm)] , m ∈ N.
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Denoting by φ := 1 ∧ α
2 inf
x∈(0,M ]

(U ′∞(x)− U ′∞(x+ α/2)) , where M and α

are given in (3.17), we observe that φ is a strictly positive random variable.

We conclude from (3.14), (3.20), and (3.21) that

lim sup
n→∞

E [1 ∧ Γn(g̃n,m, hm)] ≥ lim sup
n→∞

E [φ1An ] > 0,

where the middle term, lim sup
n→∞

E [φ1An ], does not depend on m ∈ N, and

thus

lim sup
m→∞

lim sup
n→∞

E [Γn(g̃n,m, hm)] ≥ lim sup
n→∞

E [φ1An ] > 0,

which contradicts to (3.19). We conclude that P- lim
n→∞

ξ̂n(xn) = ξ̂∞(x).

Similarly, we can show that P- lim
n→∞

η̂n(xn) = η̂∞(x). �

Proof of Theorem 3.3. The assertions of the item (i), (3.5), follow from

Lemma 3.4 and [Roc70, Theorem 10.8, p. 90]. The conclusions of the

item (ii), (3.6), follow from Lemma 3.7. �

3.5. Abstract version of Proposition 2.5. To give the abstract version

of the indifference pricing characterizations, for a fixed f ∈ L∞(Ω,F ,P), we

set

(3.22)

C(x, q) :=
{
ξ ∈ L0

+ (Ω,F ,P) : ξ ≤ XT + qf for some X ∈ X (x, q)
}
, (x, q) ∈ R2.

We note that the set C(x, q) might be empty for certain (x, q) ∈ R2.

An abstract indifference price of f corresponding to the initial wealth x

and a stochastic utility function U is a constant Π = Π(f, x, U), such that

(3.23) E [U(ξ)] ≤ u(x), q ∈ R, ξ ∈ C(x− qΠ, q), (x, q) ∈ R2,

where u(x) is given by (3.3).

Proposition 3.8. Let the assumptions of Theorem 3.3 hold, and consider

a sequence of strictly positive numbers xn converging to x∞ > 0. Let yn :=

u′n(xn), n ≥ n03, and suppose that

(3.24) E [η̂n(yn)] = yn, n ≥ n0.

3Here, by [Mos15, Theorem 3.2], yn’s are well-defined and strictly positive for every

n ≥ n0 and n0 is given by Assumption 3.2.
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Then, for every bounded contingent claim f , the indifference prices {Π(f, xn, Un)},
are singletons, n ≥ n0, and we have

(3.25) lim
n→∞

Π(f, xn, Un) = Π(f, x∞, U∞),

and the following representation holds

(3.26) Π(f, xn, Un) = E
[
η̂n(yn)

yn
f

]
, n ≥ n0.

Proof. We observe that by Theorem 3.3, item (i), and [Roc70, Theorem 25.7,

p. 248], the sequence yn, n ≥ n0, converges to y∞, whereas by Theorem 3.3,

item (ii), the terminal values of the dual minimizers converge in probability.

That is

P- lim
n→∞

η̂n(yn) = η̂∞(y∞).

Therefore, we obtain

(3.27) P- lim
n→∞

η̂n(yn)

yn
=
η̂∞(y∞)

y∞
.

Next, from (3.24), along the lines of [MS24, Theorem 4.2] (see also [HKS05,

Theorem 3.1] for the case of the deterministic utilities) that the representa-

tion (2.17) holds.

As (3.24) implies that

1 = lim
n→∞

E
[
η̂n(yn)

yn

]
= E

[
η̂∞(y∞)

y∞

]
,

and therefore, in view of (3.27) and Scheffe’s lemma, we deduce that the

sequence η̂n(yn)
yn

, n ≥ n0, is uniformly integrable and the convergence in

(3.27) also holds in L1(Ω,F ,P). Therefore, for every bounded contingent

claim f , the sequence η̂n(yn)
yn

f , n ≥ n0, is uniformly integrable, and converges

to η̂∞(y∞)
y∞

f in probability P, and consequently also in L1(Ω,F ,P). Together

with earlier established (3.26), this implies (3.25). �

3.6. Abstract version of the stochastic dominance characterization.

We denote by FD the class of (deterministic) Inada utility functions U ,

whose convex conjugate V satisfies

(3.28) v(y) = inf
η∈D(y)

E [V (η)] <∞, y > 0.
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Proposition 3.9. We consider the sets C and D satisfying the assertions

of Proposition 3.1 and assume that there exists η̃ ∈ D with η̃ > 0, P-a.s.,

and E[η̃] = 1. Then the following conditions are equivalent:

(i) D admits a maximal element η̂ in the sense of the second-order sto-

chastic dominance, (2.20),

(ii) the model is indifference price invariant over deterministic utilities,

that is, for every U ∈ FD, x > 0, and every bounded contingent claim

f , the set of indifference prices {Π(f, x, U)} is a singleton and depends

neither on x > 0 nor on U ∈ FD.

Furthermore, in the case when these equivalent assertions hold, we have the

representation

Π(f, x, U) = EQ̂ [f ] , f ∈ L∞(Ω,F ,P), x > 0, U ∈ FD,

where dQ̂
dP = η̂ from the item (i), and, in particular, E[η̂] = 1.

Proof of Proposition 3.9. (i) ⇒ (ii). Let η̂ denote the maximal element in

D in the sense of the second-order stochastic dominance. Next, one can

show that (i) is equivalent to

(3.29) E [η|σ(η̂)] ≤ η̂, P-a.s., for every η ∈ D,

which can be proven similarly to [SST09, Proposition 3.9, p. 60]. As there

exists η̃ ∈ D, such that η̃ > 0, P-a.s. and E[η̃] = 1, by taking an expectation

in (3.29) for η = η̃, we deduce that

(3.30) E[η̂] = 1.

In particular, the probability measure Q̂, whose density with respect to P is

η̂, is well-defined. Further, the strict positivity of η̃ and (3.29) imply that

η̂ > 0, P-a.s.. Next, from the characterization of the second-order stochastic

dominance via convex functions (as in (3.31) below), one can see that η̂ is

the minimizer to (3.28) for every U ∈ FD and every y > 0. This and (3.30)

(along the lines of the proof of [HKS05, Theorem 3.1]) imply that, for every

bounded contingent claim f , the indifference price has the representation

Π(f, x, U) = E [η̂f ] = EQ̂[f ],

which depends neither on x > 0 nor on U ∈ FD. That is (2) holds.
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(ii) ⇒ (i). First, it is well known, see, e.g., [KS06], that for random

variables ζi, i = 1, 2, ζ1 �2 ζ2 in the sense of (2.20) if and only if

(3.31) E
[
Ṽ (ζ1)

]
≤ E

[
Ṽ (ζ2)

]
,

for every convex decreasing function Ṽ on [0,∞), such that the expectations

in (3.31) are well-defined. Using an approximation argument, one can show

that (2.20) is equivalent to (3.31) for every convex conjugate of an element

of FD, that is, for every

(3.32) Ṽ ∈
{
V : V (y) = sup

x>0
(U(x)− xy) , y > 0, U ∈ FD

}
.

Next, we assume by contradiction that (ii) holds, but the model is not

stochastically dominant. Then, there exist two utility functions U1 and U2

in FD, and x1, x2, such that the dual minimizers for yi := u′i(xi), i = 1, 2, are

not equal to each other. Here we note that u′i, i = 1, 2, are well-defined and

strictly positive, e.g., by (the abstract) [Mos15, Theorem 3.2]. We denote

these minimizers by η̂i(yi) ∈ D(yi), i = 1, 2, and set ηi := η̂i(yi)
yi

, i = 1, 2.

That is

(3.33) P
[
η1 6= η2

]
> 0.

We consider the primal optimizers ξi, such that ξi = −V ′i (yiη
i), i = 1, 2.

By the [Mos15, Theorem 3.2], we have that E
[
ξiηi

]
= xi, and that ξi are

maximal in C, i = 1, 2. We consider a contingent claim

f := min(1, ξ1, ξ2)1{η1>η2}.

Then, f is nonnegative and bounded, and, on
{
η1 > η2

}
, f is strictly pos-

itive. Furthermore, as |f | ≤ ξi, i = 1, 2, following [HKS05, Theorem 3.1],

one can show that

Π(f, xi, U i) = E
[
ηif
]
, i = 1, 2.

Note that we do not suppose that E[ηi] = 1 for either i ∈ {1, 2}. On the

other hand, by (ii), we have

Π(f, x1, U1) = Π(f, x2, U2),

and thus

0 = E
[(
η1 − η2

)
f
]

= E
[(
η1 − η2

)
min(1, ξ1, ξ2)1{η1>η2}

]
.(3.34)
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As on
{
η1 > η2

}
, we have

(3.35)(
η1 − η2

)
min(1, ξ1, ξ2) =

(
η1 − η2

)
min(1,−V ′1(y1η

1),−V ′2(y2η
2)) > 0, P-a.s.,

we conclude from (3.34) and (3.35) that

P
[
η1 > η2

]
= 0.

Similarly, we can show that

P
[
η1 < η2

]
= 0.

We assert that the elements of D, ηi, i = 1, 2, are equal, P-a.s., which

contradicts (3.33). �

3.7. Abstract version of Proposition 2.9. We denote by FV the class

of Inada utility stochastic fields U (in the sense of Definition 2.1), such that

u(x) = sup
ξ∈C(x)

E [U(ξ)] > −∞, x > 0, and

v(y) = inf
η∈D(y)

E [V (η)] <∞, y > 0,
(3.36)

where V is given by (2.2).

Proposition 3.10. Under the conditions of Proposition 3.9, the following

conditions are equivalent:

(i) η̃ is the unique maximal element of D, in the sense that

η̃ ≥ η, P-a.s., for every η ∈ D,

(ii) the model is indifference price invariant over stochastic utilities, that

is, for every U ∈ FV, x > 0, and every bounded contingent claim f ,

the set of indifference prices {Π(f, x, U)} is a singleton and depends

neither on x > 0 nor on U ∈ FV.

Furthermore, in the case when these equivalent assertions hold, we have the

representation

(3.37) Π(f, x, U) = EQ̂ [f ] , f ∈ L∞(Ω,F ,P), x > 0, U ∈ FV,

where dQ̂
dP = η̃.
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Proof. (i)⇒ (ii). From (i), it follows that η̃ is the dual minimizer for every

(convex conjugate of) U ∈ FV. As E [η̃] = 1, similarly to [MS24, Theorem

4.2], one can show that for every f ∈ L∞(Ω,F ,P), x > 0, and U ∈ FV, we

have

Π(f, x, U) = E [η̃f ] .

(ii)⇒ (i). Assume by contradiction that (ii) holds, but (i) does not, that

is the set of maximal elements in D is not a singleton.

We consider a bounded from above deterministic Ṽ , such that −Ṽ is an

Inada utility function (that is a deterministic function satisfying Definition

2.1), and Ũ(x) = inf
y<0

(
Ṽ (y) + xy

)
, x > 0. Then, one can see that Ũ ∈ FV.

Therefore, by [Mos15, Theorem 3.2], there exists a unique optimizer η̂ to

the dual problem corresponding to y = 1 and the utility function Ũ . As the

set of maximal elements in D is not a singleton, there exists η ∈ D, such

that A := {η > η̂} satisfies P[A] > 0. We set

(3.38) α :=
1

2

E
[(
Ṽ (η̂)− Ṽ (η)

)
1A

]
E
[(
Ṽ (η)− Ṽ (η̂)

)
1Ac

] .
One can see that α > 0 and that E

[(
Ṽ (η)− Ṽ (η̂)

)
1Ac

]
> 0, where the

inequality is strict, by the maximality of the optimizer η̂ in D.

With these preparations, we set

U(ω, x) := Ũ(x)1A + αŨ(x)1Ac , (ω, x) ∈ Ω× [0,∞).

Then its convex conjugate is

V (ω, y) := Ṽ (y)1A + αṼ (y)1Ac , (ω, y) ∈ Ω× [0,∞),

and, using (3.38) and since 1
2E
[(
Ṽ (η̂)− Ṽ (η)

)
1A

]
> 0, we get

E [V (η̂)] = E
[(
Ṽ (η̂)− Ṽ (η)

)
1A

]
+ αE

[(
Ṽ (η̂)− Ṽ (η)

)
1Ac

]
+ E [V (η)]

=
1

2
E
[(
Ṽ (η̂)− Ṽ (η)

)
1A

]
+ E [V (η)] > E [V (η)] > −∞,

(3.39)

where, the last inequality holds, as U is bounded from below by a deter-

ministic function. We deduce from (3.39) that η̂ is not the maximizer to

the dual problem associated with the stochastic utility U at y = 1. As, by

the construction of U , it is bounded from below by a deterministic function,
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and V is bounded from above by |Ṽ (0)|(α+ 1) <∞, we have that U ∈ FV.

As a result, by [Mos15, Theorem 3.2], there exists a unique optimizer to

the dual problem corresponding to the utility U (whose convex conjugate

is V ) at y = 1. We denote this optimizer by ζ. It follows from (3.39) that

P [η̂ 6= ζ] > 0 and from the maximality of the optimizer ζ in D that

(3.40) P[ζ > η̂] > 0.

We consider a bounded contingent claim

f = min
(

1,−V ′(ζ),−Ṽ ′(η̂)
)

1{ζ>η̂}.

As, on {ζ > η̂}, f is strictly positive, P-a.s., in view of (3.40), we get

(3.41) 0 < E [f(ζ − η̂)] = Π(f,−v′(1), U)−Π(f,−ṽ′(1), Ũ),

where the last equality can be shown along the lines of [HKS05, Theorem 3.1]

(and the representation formula (3.26) established in Proposition 3.8), v and

ṽ denote the dual value functions corresponding to V and Ṽ , respectively.

As both U and Ũ are in FV, we conclude from (3.41) that indifference price

invariance fails over FV, which is a contradiction. Therefore (ii) implies (i).

Finally, under the equivalent assertions (i) and (ii) one can show (3.37)

from E[η̃] = 1 and by the optimality of η̃ via Proposition 3.8, representation

(3.26). �

3.8. Proof of the main results.

Proof of Proposition 3.1. The proof of this proposition in small markets is

established in [KS99]. In the large market case, the only part that needs

work is closedness in L0(Ω,F ,P) of the set D. This, however, holds, as

the proof from [KS99] applies line by line, specifically the proofs of [KS99,

Lemmas 4.1 and 4.2] via the argument based on the Fatou convergence for

stochastic processes. �

Proof of Theorem 2.4. The connection between Theorem 2.4 and its ab-

stract counterpart, Theorem 3.3, is Proposition 3.1, which is proven above.

Therefore, the assertions of Theorem 2.4 follow from Theorem 3.3.

�
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Proof of Proposition 2.5. The assertions of Proposition 2.5 follows from Propo-

sition 3.8, once we observe that the martingale assumption on Ŷ n(yn),

n ∈ N∗, implies that the terminal values of this sequence satisfy (3.24). �

Proof of Proposition 2.7. We observe that (2.5) implies the existence of a

separating measure Q ∼ P, whose Radon-Nikodym derivative, dQdP , is strictly

positive P-a.s. and satisfies E
[
dQ
dP

]
= 1. Now, assertions of Proposition 2.7

follows from Proposition 3.9. �

Proof of Proposition 2.9. The equivalence of (i) and (iii) is a well-known

characterization of completeness. We outline the main steps.

(i) ⇒ (iii). This direction follows from the dual representation of sup-

pereplicable claims (underM = {Q}) as in [DDGP05, Theorem 3.1] (see also

[DS98, 5.12 Theorem] for the case of small markets) and the Q-supermartingale

property of the wealth processes associated with x-admissible generalized

strategies, for every x > 0.

(iii)⇒ (i). We consider an arbitrary event A ∈ Ω, and set f := 1A. From

the (replicability and) boundedness of f , one can show that the replicating

process for f is a Q-martingale for every Q ∈ M, where M 6= ∅ by (2.5).

Next, one can see that Q[A] is the initial value of the replicating strategy

for f , which does not depend on the choice of Q ∈ M. As A is arbitrary,

we conclude that M contains only one probability measure.

The remaining assertions of Proposition 2.9 follow from the (abstract)

Proposition 3.10.

�

4. Examples

4.1. Counterexamples. The following two examples show the necessity of

Assumption 2.3 for the assertions of Theorem 2.4 to hold.

Example 4.1. In this example, we construct a model where Assumption 2.3

does not hold, specifically (2.21) fails, and the assertions of Theorem 2.4

also fail to hold.

We consider a probability space (Ω,F ,P), and let B be a one-dimensional

Brownian motion on this space. Let (Ft)t∈[0,T ] be the augmentation under

P of the filtration generated by B. Also, we suppose that the time horizon
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T = 1. With

gn(x) :=

(
1

2
− 1

n

)
x2, x ∈ R, n ∈ N,

αn :=
1

2nE
[
egn(B1)

] = 2−n
√

2

n
, n ∈ N,

we consider a nonnegative random variable defined as

(4.1) φ := 1 +
∑
n≥1

αne
gn(B1) > 1.

One can see that

(4.2) E [φ] = 1 +
∑
n≥1

1

2n
= 2 <∞,

and, for every µ > 1 and k > µ
2(µ−1) , we obtain

E [φµ] ≥ E

∑
n≥1

αne
gn(B1)

µ ≥ E
[(
αke

gk(B1)
)µ]

=∞.

To recapitulate, we have

(4.3) E [φµ] =∞, µ > 1.

For p∞ ∈ (0, 1), we consider a power utility U∞(x) = x1−p∞
1−p∞ , x > 0.

We note that the convex conjugate of U∞ is V∞(y) = y−q∞

q∞
, y > 0, where

q∞ = 1−p∞
p∞

> 0. With c := E
[
φ
− 1

q∞

]
, where c <∞ by (4.1), we consider a

martingale

Zt :=
1

c
E
[
φ
− 1

q∞ |Ft
]
, t ∈ [0, 1].

As φ
− 1

q∞ takes values in (0, 1), P-a.s., Zt, takes values in
(
0, 1c
)
, t ∈ [0, 1].

In particular, by [JS03, Theorem II.8.3, p. 134], a strictly positive bounded

and continuous martingale Z can be written in the form

Z = E (M) , where M =
1

Z−
·Z.

One can see, e.g., using [Pro04, Theorem III. 29, p. 128], that M is a con-

tinuous local martingale. Therefore, the martingale representation theorem

[KS98, Theorem 3.4.15, p. 182] and localization M can be represented as

M = −λ·B,
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for some progressively measurable process λ, such that
∫ ·
0 λ

2
sds is locally

integrable.

Next, we consider a stock market with two traded securities: one riskless,

whose price process is equal to 1 at all times, and one risky stock, whose

return is given by

R =

∫ ·
0
λsds+B.

This market admits a unique equivalent local martingale measure, whose

density process is Z.

For a sequence pn ∈ (0, 1), n ∈ N, such that lim
n→∞

pn = p∞ and pn < p∞

for infinitely many n ∈ N, we consider a family of deterministic utilities

given by Un(x) = x1−pn

1−pn , x > 0, n ∈ N. We define qn := 1−pn
pn

, n ∈ N, and

we consider Vn(y) = y−qn

qn
, y > 0. We observe that −qn ≥ −q∞ for infinitely

many n ∈ N, and

µn :=
qn
q∞

> 1,

for infinitely many n ∈ N. Then, for every µn > 1, as V̄n ≥ Vn by the

definition of V̄n’s in (2.9), we have

v̄n(y) = E
[
V̄n(yZ1)

]
≥ E [Vn(yZ1)] = E

[
(yZ1)

−qn

qn

]
=

1

qn
E
[(

(yZ1)
−q)µn] =

1

qn

(
c

y

)qn
E [φµn ] =∞, y > 0,

(4.4)

where, in the last equality, we have used (4.3). Therefore, Assumption 2.21

does not hold for this model.

Next, for every n, such that µn > 1, by similar computations, we get

vn(y) = E [Vn(yZ1)] = E
[

(yZ1)
−qn

qn

]
=

1

qn
E
[(

(yZ1)
−q)µn] =

1

qn

(
c

y

)qn
E [(φ)µn ] =∞, y > 0,

(4.5)

On the other hand, for the limiting dual value function, we have

(4.6) v∞(y) = E [V∞(yZ1)] =
y−q∞

q∞
E
[
Z−q∞1

]
=

1

q∞

(
c

y

)q∞
E [φ] <∞,

where, in the last inequality, we have used (4.2). From (4.5) and (4.6), we

conclude that the dual value functions do not converge for every y > 0.

That is, the assertion of Theorem 2.4, item (i), fails.
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Example 4.2. In this example, we construct a model where Assumption 2.3

does not hold, specifically (2.10) fails, and the assertions of Theorem 2.4

also fail to hold.

We consider a negative-valued deterministic Inada utility function U∞,

e.g., of the form U∞(x) = x1−p

1−p , x > 0, where p > 1, and let

(4.7) Un(ω, x) = U∞(x)− 1

n
φ(ω), (ω, x) ∈ Ω× (0,∞),

where φ is a nonnegative random variable with E[φ] = ∞ on an infinite

probability space (Ω,F ,P), which supports any reasonable model of the

stock price, e.g, Black-Scholes, binomial, or trinomial model with one stock,

the exponential Levy models in Example 4.5, or even a large market as

the ones in Examples 4.6 and 4.7, so that u∞ is a finite-valued function.

Observer that (4.7) implies that Un, n ∈ N, converge to U∞ for every ω ∈ Ω,

and thus, Assumption 2.2 is satisfied.

On the other hand, for every admissible wealth process X starting from

any x > 0, as U∞ is negative-valued, we get

E
[
Ū−n (XT )

]
= E

[
1

n
φ− U∞(XT )

]
≥ 1

n
E [φ] =∞, n ∈ N.

Therefore, in view of the convention (2.4), we deduce that

ūn(x) = −∞, (x, n) ∈ (0,∞)× N,

so Assumption 2.3 fails. Specifically, (2.10) does not hold. Similarly, we

have

un(x) = −∞, (x, n) ∈ (0,∞)× N,

and there is no convergence of the value functions un, n ∈ N, to u∞. Thus,

the assertion of Theorem 2.4 in item (i) does not hold.

Remark 4.3. The lack of convergence of the utility functions in Example

4.2 cannot occur with deterministic utility functions, and Assumption 2.2

for deterministic Un’s will lead to (2.10) in Assumption 2.21 being valid.

Namely, in this case, we have

ūn(x) := sup
X∈X (x)

E
[
Ūn(XT )

]
≥ Ūn(x) > −∞, (x, n) ∈ (0,∞)× N.(4.8)
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This happens because the wealth process taking a constant value x is an

element of X (x) for every x > 0, and thus, pointwise convergence of Un’s in

Assumption 2.2 implies (4.8).

Example 4.4. Here we show that the assertions of Proposition 2.7 fail for

stochastic utility fields, in general. We consider the following stochastically

dominant in the sense of Proposition 2.7, item (i), market. Let (Bt)t∈[0,T ]

and (Wt)t∈[0,T ] be independent Brownian motions on a probability space

(Ω,F ,P). We suppose that these two Brownian motions generate the filtra-

tion. We suppose that there are two traded securities on this market. The

price process of the riskless traded asset is equal to 1 at all times, and the

evolution of the risky traded asset is given by

dSt = St(µdt+ σdB),

where µ and σ > 0 are constants. Let Ŷ = E
(
−µ
σB
)

denotes the density

process of the minimal martingale measure. One can show that ŶT domi-

nates the terminal value of every element of the dual domain in the sense of

(2.20). Let Z := Ŷ E(W ) and Ṽ be a bounded from the above deterministic

function that is a convex conjugate, is the sense of (2.2), of a deterministic

Inada utility function Ũ . Let

A := {ZT > ŶT },

and we see that P[A] = P[E(W )T > 1] ∈ (0, 1). We define

(4.9) α :=
1

2

E
[(
Ṽ (ŶT )− Ṽ (ZT )

)
1A

]
E
[(
Ṽ (ZT )− Ṽ (ŶT )

)
1Ac

] ,
and observe that α > 0. Now, we set the stochastic utility as

U(ω, y) := Ũ(x)1A + αŨ(x)1Ac , (ω, x) ∈ Ω× [0,∞).

Then, the convex conjugate of U in the sense of (2.2) is

V (ω, y) := Ṽ (y)1A + αṼ (y)1Ac , (ω, y) ∈ Ω× [0,∞).

Then, in view of (4.9), we have

E[V (ŶT )] = E[Ṽ (ŶT )1A+αṼ (ŶT )1Ac ] > E[Ṽ (ZT )1A+αṼ (ZT )1Ac ] = E[V (ZT )].

Therefore, Ŷ is not the dual minimizer, with the utility stochastic field U ,

whose convex conjugate is V , for y = 1. As V is bounded from above and
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U is bounded from below by a deterministic function, where we note that

U ≥ min(1, α)Ũ , which is deterministic, using [Mos15, Theorem 2.3], one

can show that the optimal solution to this dual problem (with V ) exists for

every y > 0. For y = 1, we denote its optimizer by Ẑ. Next, we consider a

bounded contingent claim

f := 1 ∧ (−V ′(ẐT ))1{ŶT>ẐT }.

Then, as 1 ∧ (−V ′(ẐT )) > 0 on {ŶT > ẐT }, we obtain

E
[(
ŶT − ẐT

)
f
]
> 0,

and thus, in particular, we have

(4.10) E
[
ŶT f

]
6= E

[
ẐT f

]
.

On the other hand, one can show that E
[
ŶT f

]
= Π(f,−ṽ′(1), Ũ) and

E
[
ẐT f

]
= Π(f,−v′(1), U), where ṽ and v denote the dual value functions

corresponding to Ṽ and V , respectively. Therefore, (4.10) yields

Π(f,−ṽ′(1), Ũ) 6= Π(f,−v′(1), U).

We conclude that this stochastically dominant model, in the sense of Propo-

sition 2.7, item (i), does not possess indifference price invariance over sto-

chastic utilities.

4.2. Exponential Levy models and perturbations of the relative

risk aversion.

Example 4.5. The following positive example illustrates the assertions of

Proposition 2.5. We consider the settings of [Kal00]. The discounted stock

price process is assumed to be a d-dimensional semimartingale of the form

Si = Si0E(Li), i = 1, . . . , d,

where L = (Li)i=1,...,d, is an Rd-valued Levy process with a characteristic

triplet (b, c, F ) relative to some truncation function h : Rd → Rd.
We suppose that the element of the sequence pn, n ∈ N, take values in

(0, 1) ∪ (1,∞), and that this sequence converges to p∞ ∈ (0, 1) ∪ (1,∞).
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These pn’s specify the relative risk aversions of Un(x) = x1−pn

1−pn , x > 0,

n ∈ N∗. Further, we suppose that (b, c, F ) is such that

b− pncγn +

∫
Rd

(
x

(1 + γ>n x)pn
− h(x)

)
F (dx) = 0,

admits a unique solution γn for every n ∈ N∗, and we have

F
(
{x ∈ Rd : 1 + γ>n x ≤ 0}

)
= 0,

∫
Rd

∣∣∣∣ x

(1 + γ>n x)pn
− h(x)

∣∣∣∣F (dx) <∞,

lim
n→∞

γn = γ∞.

With Lc denoting the continuous martingale part of L, µL denoting the

random measure associated with the jumps of L and with νL(dx, dt) =

F (dx)dt denoting the predictable P-compensator of µL, we consider

(4.11) Zn := E
(
−pnγ>n Lc +

(
(1 + γ>n x)−p − 1

)
∗ (µL − νL)

)
, n ∈ N∗.

Then the results in [Kal00, proof of Theorem 3.2, Third step] ensure that

Zn, n ∈ N∗, is the sequence of dual minimizers to (2.7) corresponding to

y = 1. By [Kal00, Lemmas 4.2 and 4.4] (see also [Kal00, proof of Theorem

3.2, Fourth step]), Zn is a martingale for every n ∈ N∗. Therefore, the

assumptions of Proposition 2.5 are satisfied. Therefore, for every bounded

contingent claim f , we have

lim
n→∞

Π(f, xn, Un) = lim
n→∞

E [ZnT f ] = E [Z∞T f ] = Π(f, x∞, U∞),

where, in this case, xn, n ∈ N∗, can be any sequence of strictly positive

numbers. That is, the convergence of the indifference prices holds under

perturbations of relative risk aversion. In view of (4.11), one can also see that

the exponential Levy models, in general, are not indifference price invariant

(and not stochastically dominant). We note that a characterization of Zn’s

in (4.11) in terms of a solution to a deterministic problem in Rd is obtained

in [JKM07].

We also note that risk aversion asymptotics for power utility maximization

is investigated in [Nut12]. Also, [Kal00] covers logarithmic and exponential

preferences, where indifference prices can be characterized similarly.
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4.3. Examples of large incomplete stochastically dominant mar-

kets. Specific examples of large markets in various settings are considered

in [ET05], [DDP05], [DDGP05], [HK17], and [HK20], among others. Be-

low we give examples of large stochastically dominant markets in the sense

above. Possibly the simplest example can be built from Bernoulli random

variables.

Example 4.6. [Large incomplete stochastically dominant Bernoulli-driven

market]

Let sn, n ∈ N, be a sequence of positive numbers taking values in (1, 2)

and converging to 2 sufficiently fast, so that

(4.12) sn ∈

(
2

2− e−
1
n2

, 2

)
, n ∈ N.

We consider a sequence of independent Bernoulli random variables Sn1 , n ∈
N, such that P[Sn1 = 0] = P[Sn1 = sn] = 1

2 . We further suppose that Sn0 = 1,

n ∈ N, and consider a market model, where the evolution of risky assets is

modeled by Sn and the riskless asset is given by S0 ≡ 1. We assume that

F0 is trivial and F = F1 = σ(Sn1 , n ∈ N, and φ), where φ is a non-constant-

valued random variable independent of Sn1 , n ∈ N. One can see that the

model is incomplete, and an example of a nonreplicable contingent claim is

f = φ.

Next, we define

ηn :=
2

sn
1{Sn

1 =sn} +

(
2− 2

sn

)
1{Sn

1 =0}, n ∈ N.

Then

(4.13)
dQ̂
dP

:=

∞∏
n=1

ηn,

is a density of an equivalent separating measure Q̂, where (4.12) ensures

that dQ̂
dP above is well-defined and bounded away from 0 and∞, P-a.s.. Here

we note that in (4.12), we have

sn >
2

2− e−
1
n2

= max

(
2e−

1
n2 ,

2

2− e−
1
n2

)
, n ∈ N.

Using this, one can show that dQ̂
dP defined in (4.13) is bounded away from 0

and ∞.
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Further, one can show that dQ̂
dP stochastically dominates every element of

the dual domain, {YT : Y ∈ Y}, in the sense of (2.20). In particular, the set

of equivalent separating measures is non-empty, and (2.5) holds. Next, for

every bounded contingent claim, initial wealth x > 0, and (a deterministic)

U ∈ FD that is, for every U whose convex conjugate V satisfies

(4.14) E

[
V

(
y
dQ̂
dP

)]
<∞, y > 0,

for dQ̂
dP given by (4.13), by Proposition 2.7, we have

(4.15) Π(f, x, U) = EQ̂[f ].

Thus, this model is indifference price invariant over deterministic Inada util-

ity functions (and incomplete). We note that, as dQ̂
dP given by (4.13), is

bounded away from 0, the set FD in this market equals to the set of all

deterministic Inada utility functions U , since for every such U , (4.14) will

hold for its convex conjugate V in the sense of (2.2).

The construction in the following example (with some variations) is quite

common in the literature. Below, we show that it also gives an incomplete

market that satisfies the assertions of Proposition 2.7.

Example 4.7. [Large incomplete stochastically dominant Brownian market]

We consider a filtered probability space
(
Ω,F , (Ft)t∈[0,T ],P

)
supporting a

sequence of one-dimensional independent Brownian motions Wn, n ∈ N∗,
F = FT is generated by Wn, n ∈ N∗. Let the riskless asset S0 ≡ 1, whereas

the dynamics of risky assets is given by

Sn = E (µnI + σnWn) , n ∈ N,

where It = t, t ∈ [0, T ], and the constants µn and σn > 0, n ∈ N, are and

such that

(4.16)

∞∑
n=1

(
µn

σn

)2

<∞.

One can see that this model is incomplete. An example of a non-replicable

claim is 1{W∞T >0}.
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Next, by (4.16),
∞∑
n=1

µn

σnWn
T is a limit of a uniformly integrable sequence

of terminal values of martingales
m∑
n=1

µn

σnWn, m ∈ N, and thus
∞∑
n=1

µn

σnWn
T is

well-defined and, by (4.16) and [CE15, Theorem 15.4.2, p. 384], we have

E

[
E

(
−
∞∑
n=1

µn

σn
Wn

)
T

]
= 1.

Therefore, we can define a probability measure Q̂ via its density as follows

dQ̂
dP

:= E

(
−
∞∑
n=1

µn

σn
Wn

)
T

.

Thus, Q̂ is a probability measure, which is equivalent to P and is separating,

that is, Q ∈M, and where we recall thatM is defined in (2.5). In particular,

the set of equivalent separating measures is non-empty, and (2.5) holds.

Next, one can show that dQ̂
dP stochastically dominates every element of the

dual domain, {YT : Y ∈ Y}, in the sense of (2.20). For every deterministic

Inada utility U ∈ FD, that is, for every U , whose convex conjugate V , in

the sense (2.2), satisfies

E

[
V

(
y
dQ̂
dP

)]
<∞, y > 0,

and for every bounded contingent claim f and every x > 0, by Proposition

2.7, we have

(4.17) Π(f, x, U) = EQ̂ [f ] , x > 0, U ∈ FD.

We note that (4.17), in particular, applies to non-replicable contingent

claims, including 1{W∞T >0}. In view of (4.17), the model considered in this

example is indifference price invariant with respect to the choice of both

U ∈ FD and the initial wealth x > 0.
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