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Abstract. We propose indifference pricing to estimate the value of the

weak information. Our framework allows for tractability, quantifying

the amount of additional information, and permits the description of

the smallness and the stability with respect to small perturbations of

the weak information. We provide sharp conditions for the stability with

counterexamples. The results rely on a theorem of independent interest,

where stability and asymptotics of the optimal investment problem with

respect to small changes of the physical probability measure. We also

investigate contingent claims that are indifference price invariant with

respect to changes in weak information. We show that, in incomplete

models, the class of information-invariant claims includes the replicable

claims, and it can be strictly bigger. In particular, in complete models,

all contingent claims are information invariant. We augment the results

with examples and counterexamples.

1. Introduction

Asymmetry of information is a very active area of mathematical finance

and related areas. Going back to [Mar59], [Arr72], [Gou74], [Kyl85], and
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[Bac92], among others, the topic resulted in numerous results on the asym-

metry of information and related subjects. One of the mainstream ap-

proaches relies on enlargements of filtrations, where the mathematical foun-

dations have been largely developed by the French school of probability.

The financial applications of this theory, known as strong information mod-

eling in the terminology of [Bau03], have propagated to a range of top-

ics in mathematical finance, including arbitrage theory, pricing and hedg-

ing, characterizations equilibria, optimal investment, and others. We re-

fer to [KP96], [ABS03], [KH04], [AI05], [Cam05], [ADI06],[CÇ07], [Kar10],

[DMN10], [ÇX13], [CJA15], [ÇD16], [AFK16], [AJ17], [ACDJ17], [ERZ17],

[ACDJ18],[ACDJ19], [BG20], [ER20], [CCF20], [DRR20], [ÇD21], and [DRR22]

for an incomplete list of references on these subjects.

In the present work, we propose to use

(i) indifference pricing in the context of

(ii) the weak information approach from [Bau03]

to quantify the value of information. For (i), in contrast, e.g., to the changes

in the value function with and without extra information that is used in

a [AIS98], [Bau03], [AI05], [ERZ17], [CCF20], and [ER20], among others,

using indifference pricing allows to assign different value of information be-

tween different securities. In particular, there are some contingent claims

that are not affected by the additional information.

For (ii), in contrast to the strong information modeling, the weak infor-

mation approach does not require changing the filtration but relies on alter-

ations of the physical probability measure. It permits the recovery of many

results from the initial enlargements of filtrations and beyond, see [Bau02]

and [Bau03], and allows for multiple desired features of the value of infor-

mation problem. For example, smallness or even continuity with respect to

changes in the information can be naturally discussed in the context of our

framework. This is in contrast to the approach based on the enlargement of

filtrations, see, e.g., deep yet technically involved [Kar10], where continuity

with respect to small changes in the filtration is analyzed. Here, we note

that continuous behavior with respect to small changes in the initial data is

a part of the well-posedness of a problem in the sense of Hadamard.
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In addition to proposing the framework via (i) and (ii), our contributions

also include

(iii) sharp stability results (with counterexamples in Section 5) with

respect to small perturbations of the physical measure,

(iv) characterizations of indifference price invariant contingent claims

under changes of the weak information.

The results in (iii) are of independent interest, and they are based on techni-

cal proofs of the convergence of the value function, optimizers, and indiffer-

ence prices under small perturbations of the physical probability measure.

Here, we introduce the integrability conditions and, under these conditions,

prove convergence of the value functions, their optimizers, and indifference

prices under small perturbations of physical probability measure. We aug-

ment this analysis with counterexamples.

For (iv), we show that the class of indifference price invariant contingent

claims includes all bounded claims in complete markets. In incomplete mar-

kets, we prove that the set of indifference prices invariant claims includes

all bounded replicable contingent claims. Depending on a particular mode,

this set can equal the set of replicable claims, or it can be strictly bigger

and might include even all bounded contingent claims. We illustrate these

assertions with positive examples.

The remainder of this paper is organized as follows: in Section 2, we

formulate the model and state the stability results, whose proofs are given

in Section 3. In Section 4, we discuss the price invariant contingent claims

in both complete and incomplete markets, establish a connection to the

framework in [Bau03], and provide positive examples. We conclude the

paper with Section 5, which contains counterexamples.

2. The model and the stability results

Let us consider a probability space (Ω,F ,P), equipped with the filtration

(Ft)t∈[0,T ], where T ∈ (0,∞) is the time horizon, F satisfies the usual condi-

tions, and F0 is a trivial σ-algebra. Let S be a d-dimensional semimartingale

denoting the price process of the risky assets. We suppose that there is also

a riskless asset whose price process equals 1 at all times. Let us define the
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family of nonnegative self-financing wealth processes as

X (x) := {X ≥ 0 : X = x+H · S, where H is predictable

and S-integrable} , x ≥ 0.
(2.1)

We remark that the wealth processes of the form X +x0, where x0 ∈ R and

X ∈
⋃
x≥0
X (x), are called admissible1.

A stochastic utility field is a mapping U = U(ω, x) : Ω × [0,∞) →
R ∪ {−∞} satisfying the following assumption.

Assumption 2.1. For every ω ∈ Ω, U(ω, ·) is a strictly increasing, strictly

concave, continuously differentiable on (0,∞) function that satisfies the In-

ada conditions at 0 and ∞; for every x ≥ 0, U(·, x) is measurable. At 0, we

suppose by continuity that U(·, 0) = lim
x↓0

U(·, x); this value might be −∞.

2.1. Weak anticipation. Let P be a Polish space, e.g., P = Rn, P =

C (R+,Rn), for some n ∈ N, etc., endowed with its Borel σ-algebra B(P).

Next, let Y : Ω → P be an F-measurable random element. In the simplest

case, Y can be the value of the stock price at time T .

Let us consider an insider who is weakly informed of Y, that is, he or

she has knowledge of the filtration (Ft)t∈[0,T ] and of the law of Y. So,

we associate a probability measure ν on (P,B(P)). We assume that ν is

equivalent to P and note that in [Bau03], more conditions are imposed.

Following [Bau03, Definition 7], one can set a probability measure Pν on

(Ω,F) via

Pν(A) =

∫
P
P[A|Y = y]ν(dy), A ∈ F ,

which is called, in [Bau03], the minimal probability measure associated with

the weak information (Y, ν).

Multiple results for the initial enlargement of filtration can be recovered

from the weak anticipation approach. These include the semimartingale

decomposition in the Jacod theorem and results on stochastic differential

equations, among others. We refer to [Bau02] and [Bau03] for more details,

where additionally dynamic conditioning, modeling weak information flow,

1This notion is used, in particular, in Definition 4.3 below to describe bounded repli-

cable contingent claims.
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and even connections to the theory of Schrödinger processes are developed.

2.2. Our formulation. The weak anticipation approach allows us to con-

sider small perturbations of information by supposing that Pν is close in

some sense to P. In turn, this leads to the concepts of continuity and sta-

bility of various problems with respect to small changes in information that

can be modeled via alterations of the physical probability measure.

Therefore, we can consider a sequence of equivalent probability measures

on one fixed probability space, converging to a physical probability measure

P, and see how various problems related to indifference pricing respond.

For the notion of convergence of probability measures on a fixed space, we

propose the total variation norm. These considerations are represented by

the following assumption.

Assumption 2.2. Let us consider a sequence of probability measures Pn,

n ∈ N, equivalent to P, and let ZnT := dPn
dP , n ∈ N, be the sequence of the

corresponding Radon-Nikodym derivatives. We suppose that

P- lim
n→∞

ZnT = 1 =: Z∞T .

Remark 2.3. Assumption 2.2 by means of Scheffe’s lemma implies that

L1(P)- lim
n→∞

ZnT = 1.

We refer to [JS03, Section V.4] for characterizations of such a convergence.

Let us denote N∗ := N ∪ {∞}, P∞ := P, and consider the following

problems.

(2.2) un(x) := sup
X∈X (x)

EPn [U(XT )] , (x, n) ∈ (0,∞)× N∗.

Here, we use the convention

(2.3) EPn [U(XT )] := −∞ if EPn
[
U−(XT )

]
=∞.

Let us further set

Yn(y) := {Y ≥ 0 : Y0 ≤ y and XY = (XtYt)t∈[0,T ] is a

Pn-supermartingale for every X ∈ X (1)} , (y, n) ∈ [0,∞)× N∗,

(2.4)
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where, for every y ≥ 0, below we denote Y∞(y) by Y(y) for brevity.

V (ω, y) := sup
x>0

(U(ω, x)− xy) , (ω, y) ∈ Ω× [0,∞),

and

(2.5) vn(y) := inf
Y ∈Yn(y)

EPn [V (YT )] , (y, n) ∈ (0,∞)× N∗,

where we use the convention

(2.6) EPn [V (YT )] =∞ if EPn
[
V +(YT )

]
=∞.

To ensure that the base dual problem, that is, the one corresponding to

n =∞, is non-degenerate, let us suppose that

(noArb) Y(1) contains a strictly positive element.

This is the celebrated condition of no-unbounded profit with bounded risk

(NUBPR). Further, let us impose the following assumptions.

Assumption 2.4. For every x > 0, there exists X ∈ X (x), such that

ZnTU
−(XT ), n ∈ N, is uniformly integrable.

Remark 2.5. If U is deterministic, Assumption 2.4 holds trivially under

Assumption 2.2.

Assumption 2.6. For every y > 0, there exists Y ∈ Y(y), such that

ZnTV
+
(
YT
ZnT

)
, n ∈ N, is uniformly integrable.

Remark 2.7. Let us consider the following condition

(2.7) un(z) > −∞ and vn(z) <∞, z > 0, n ∈ N∗,

which implies that for every y > 0, there exists Y n ∈ Y(y), n ∈ N, such that

ZnTV
+
(
Y nT
ZnT

)
, n ∈ N∗, is a subset of L1(P). Assumption 2.6 is closely related

yet stronger.

Next, we state our convergence results.
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2.3. Convergence of the value functions.

Proposition 2.8. Let us consider problems (2.2) and (2.5) under Assump-

tions 2.1, 2.2, 2.4, 2.6, and (noArb). Then, we have

(1) condition (2.7) holds, and for every n ∈ N∗, un and vn are finite-

valued on (0,∞).

(2) the value functions converge pointwise, that is

(2.8) lim
n→∞

un(z) = u∞(z) and lim
n→∞

vn(z) = v∞(z), z > 0.

2.4. Convergence of the optimizers.

Proposition 2.9. Let (zn)n∈N be a sequence of strictly positive numbers

converging to z∞ > 0. Then, under the conditions of Proposition 2.8, for

every (zn, n), n ∈ N∗, the optimizers to (2.2), denoted by X̂n(zn), and (2.5),

denoted by Ŷ n(zn), exist, are unique, and satisfy

(2.9) X̂∞T (z∞) = P- lim
n→∞

X̂n
T (zn) and Ŷ∞T (z∞) = P- lim

n→∞
Ŷ n
T (zn).

2.5. Convergence of the indifference prices. Let us recall the definition

of indifference prices. Fix f ∈ L∞ (Ω,F ,P). Then, for every (x, q) ∈ R2, let

us denote

X (x, q) :=
{
X = x+H · S : X ≥ −x′(X) and XT + qf ≥ 0

}
,(2.10)

where x′(X) is some non-negative constant, which can be different from x

and which can depend on X.

Definition 2.10. Following [KK21, page 157]2, we define the indifference

price of f corresponding to the initial wealth x, a utility stochastic field U ,

and a probability measure Q is a constant Π = Π (f, x, U,Q), such that

(2.11) EQ [U(XT + qf)] ≤ u(x), q ∈ R, X ∈ X (x− qΠ, q),

where u(x) is given by (2.2) corresponding to the stochastic utility field U

and the probability measure Q, that is u(x) = sup
X∈X (x)

EQ [U(XT )], x > 0.

To focus on probability measures and utility stochastic fields that lead to

well-posed problems of computing the indifference prices, we introduce the

class of utility stochastic fields that have finite both primal and dual value

2This definition, in a different form, goes back to [Dav97].
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functions under a given probability measure Q, satisfy (2.7) for one fixed n,

that is

(2.12) sup
X∈X (x)

EQ [U(XT )] > −∞, x > 0,

(2.13) inf
Y ∈YQ(y)

EQ [V (YT )] <∞, y > 0,

where YQ’s are given by (2.4), with one fixed Q being used instead of Pn’s.

Definition 2.11. Let a given probability measure Q be fixed. We define

the class of utility stochastic fields satisfying (2.12) and whose conjugate

satisfies (2.13) by FV(Q).

One can see that FV(Q) 6= ∅ for every Q ∼ P, as FV(Q) includes all

deterministic Inada utility functions, whose convex conjugates are bounded

from above.

Proposition 2.12. Let the assumptions of Proposition 2.8, and let us con-

sider a sequence of strictly positive numbers xn converging to x∞ > 0. Let

yn := u′n(xn), n ∈ N∗, and suppose that Ŷ n(yn) is a Pn-martingale, n ∈ N∗.
Then, for every bounded contingent claim f , x > 0, probability measure Pn
and Un ∈ FV(Pn), the indifference prices {pn} = {Π(f, xn, Un,Pn)} are

singletons, n ∈ N∗, and we have

(2.14) lim
n→∞

pn = p∞,

where each pn has the representation

(2.15) pn = EPn

[
Ŷ n
T (yn)

yn
f

]
= E

[
ZnT

Ŷ n
T (yn)

yn
f

]
, n ∈ N∗.

2.6. On sufficient conditions for the martingale property of the

dual minimizer. Sufficient conditions for the martingale property of the

dual minimizer are obtained in the following works. If the returns of risky as-

sets are modeled with Levy processes and with power deterministic utilities,

the martingale property is established in [Kal00]; if the returns are driven

by the processes with independent increments (PII) in the sense of [JS03,

Chapter II], and in power utility settings, the martingale property of the

dual minimizer is obtained in [KMK10]; characterizations of the martingale

property via the reverse Hölder inequality are obtained in [Nut10]. Beyond
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the power/logarithmic utilities, [MSZ24] connects the martingale property

to the stochastic dominance of the dual domain of any order from second

and higher up to and including the infinite order.

2.7. On relaxation on the boundedness condition on f in Proposi-

tion 2.12. The stochastic utility settings considered in the paper, in par-

ticular, allow the relaxation of the boundedness condition on the contingent

claim f in Proposition 2.12. While, in our view, the complete analysis of

this question is a topic of a separate investigation, we consider the following

example.

Let us suppose that f = max(S1
T − K, 0), which is a payoff of a call

option on a risky asset. In this case, in a wide class of models, for example,

in the classical Black-Scholes model of the stock price, if the strike K is

deterministic, the option f is replicable. This implies that it admits a unique

arbitrage-free price, and its indifference price equals the arbitrage-free price

(see, e.g., the argument in [MS24, Lemma 6.2]).

However, if the dynamic of risky assets admits jumps, as in [Mer76],

[Kou02], [CK11], and [CT04], or if the strike K ≥ 0 is random, the payoff of

the European call option is nonreplicable, see [Shr04, Chapter 11]. Let S1 be

strictly positive and maximal in X (S1
0), where by the maximality we mean

that S1
T cannot be dominated by the terminal value of any other element of

X (S1
0), as in the Black-Scholes model, and let us suppose, without loss of

generality, that S1
0 = 1.

Next, starting from a stochastic utility field U satisfying Assumption 2.1,

we introduce the following auxiliary stochastic utility field

(2.16) Ũ(ω, x) := U(ω, S1
T (ω)x), (ω, x) ∈ Ω× [0,∞),

and observe that Ũ also satisfies Assumption 2.1. Then, we have that

Ṽ (ω, y) := V

(
ω,

y

S1
T (ω)

)
, (ω, y) ∈ Ω× [0,∞),

is the (pointwise in ω) convex conjugate of Ũ(ω, x). Next, in (2.10), we have

to replace the admissibility, that is, boundedness from below by a constant

by the acceptability in the sense of [DS97], where we say a wealth process

X is acceptable if it can be written as X ′ −X ′′, where X ′ is a nonnegative

wealth process, and X ′′ is maximal. Now, for the unbounded f as above,
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we replace (2.10) with

(2.17)

X (x, q) := {acceptable X : X0 = x and XT + qf ≥ 0} , (x, q) ∈ R2.

Next, for every X ∈ X (x, q), (x, q) ∈ R2, such that X (x, q) 6= ∅, from (2.16),

we obtain

U(XT + qf) = Ũ

(
XT

S1
T

+ q
f

S1
T

)
.

Setting

X̃ (x) :=

{
X

S1
: X ∈ X (x)

}
, x > 0,

we can restate the primal optimization problem as

u(x) = sup
X∈X (x)

E [U(XT )]

= sup
X∈X (x)

E
[
Ũ

(
XT

S1
T

)]
= sup

X∈X̃ (x)

E
[
Ũ (XT )

]
, x > 0.

(2.18)

For the dual optimization problem (without random endowment), with

Ỹ(y) :=
{
Y S1 : Y ∈ Y(y)

}
, y > 0,

we set

v(y) = inf
Y ∈Y(y)

E [V (YT )] = inf
Y ∈Y(y)

E
[
Ṽ (YTS

1
T )
]

= inf
Y ∈Ỹ(y)

E
[
Ṽ (YT )

]
, y > 0.

The change of numéraire allows us to specify the utility maximization prob-

lem (via (2.16)) with a bounded contingent claim

(2.19) f̃ :=
f

S1
T

,

as follows. With X (x, q)’s being defined in (2.17), we set

(2.20) X̃ (x, q) =

{
X

S1
: X ∈ X (x, q)

}
,

where, by the maximality of S1 in X (1) = X (1, 0), we note that maximal

elements of X (1, 0) are exactly the maximal elements of X̃ (1, 0) multiplied

by S1. Finally, for every X ∈ X (x, q), (x, q) ∈ R2, with X̃ := X
S1 , we have

E [U(XT + qf)] = E
[
Ũ

(
XT + qf

S1
T

)]
= E

[
Ũ
(
X̃T + qf̃

)]
,

where the latter expression is given in terms of a bounded f̃ . This allows us

to start from unbounded contingent claim f = max(S1
T −K, 0) by changing



THE INDIFFERENCE VALUE OF THE WEAK INFORMATION 11

numéraire to S1 and via introducing another Inada utility stochastic field in

(2.16) to reformulate the notion of an indifference price in Definition 2.10,

particularly (2.11), in terms of a bounded contingent claim f̃ given in (2.19)

and stochastic Inada utility field defined in (2.16).

In more detail, extending Definition 2.10 to unbounded contingent claims

in the context of this section, particularly to f = max(S1
T −K, 0), we can

define an indifference price of f corresponding to the initial wealth x, a

utility stochastic field U , and a probability measure Q, to be a constant

Π = Π (f, x, U,Q), such that

(2.21) EQ [U(XT + qf)] ≤ u(x), q ∈ R, X ∈ X (x− qΠ, q),

where u(x) is given by (2.18). This constant Π is also given by Π
(
f̃ , x, Ũ ,Q

)
in the sense of Definition 2.10, see (2.11), that is Π satisfies (2.21) if and

only if Π satisfies

(2.22) EQ

[
Ũ(XT + qf̃)

]
≤ u(x), q ∈ R, X ∈ X̃ (x− qΠ, q),

where Ũ is set in (2.16), u(x) is still given by (2.18), f̃ is defined in (2.19),

and X̃ (x, q)’s are specified in (2.20).

We conclude that (2.16), (2.19), (2.20), and (2.22) allow us to characterize

the indifference price of unbounded f via the results of the remainder of this

paper obtained for bounded contingent claims.

3. Proofs

The proof of Proposition 2.8 is given via the following lemmas. We begin

with a structural lemma that establishes a relationship between the domains

of the dual problems.

Lemma 3.1. Let us suppose that Assumption 2.2 and (noArb) hold and

consider sets Yn, n ∈ N∗, defined in (2.4). Then, we have

Yn(y) =

{
Y

Zn
=

(
Yt
Znt

)
t∈[0,T ]

: Y ∈ Y(y)

}
6= ∅ and

Y(y) =
{
Y nZn = (YtZ

n
t )t∈[0,T ] : Y n ∈ Yn(y)

}
, (y, n) ∈ (0,∞)× N∗,

that is

Y n ∈ Yn(y) ⇔ Y nZn ∈ Y(y), (y, n) ∈ (0,∞)× N∗,
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as well as

Y ∈ Y(y) ⇔ Y

Zn
∈ Yn(y), (y, n) ∈ (0,∞)× N∗.

Proof. The assertions immediately follow from (2.4) and Assumption 2.2 via

[KS98, Lemma 3.5.2]. �

Lemma 3.2. Under the assumptions of Proposition 2.8, we have that con-

dition (2.7) holds, and furthermore, for every n ∈ N∗, un and vn are finite-

valued on (0,∞).

Proof. Let us fix n ∈ N∗ and z > 0. From conjugacy between U and V , we

get

U(x) ≤ V (y) + xy, (x, y) ∈ R2,

and thus for X ∈ X (z) and Y ∈ Y(z) as in Assumptions 2.4 and 2.6,

respectively, using Lemma 3.1, we get

(3.1) ZnTU(XT ) ≤ ZnTV
(
YT
ZnT

)
+XTYT , P-a.s..

Let us consider ZnTU(XT ). Taking the expectation, we get

(3.2) un(z) ≥ E [ZnTU(XT )] ≥ E
[
ZnT
(
−U−(XT )

)]
> −∞,

where, in the last inequality, we have used Assumption 2.4. Likewise, in the

right-hand side of (3.1), taking the expectation, we obtain

(3.3) vn(z) ≤ E
[
ZnTV

(
YT
ZnT

)]
≤ E

[
ZnTV

+

(
YT
ZnT

)]
<∞,

where the last inequality follows from Assumption 2.6. As z > 0 and n ∈ N∗

are arbitrary, (3.2) and (3.3) imply (2.7). Furthermore, one can show that

(3.4) un(z) ≤ vn(z) + z2, z > 0, n ∈ N∗.

Then, (3.2) and (3.3) together with (3.4) imply that un and vn are finite-

valued on (0,∞). �

Lemma 3.3. Under the conditions of Proposition 2.8, we have

(3.5) lim inf
n→∞

un(x) ≥ u∞(x), x > 0.
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Proof. Let us fix x > 0 and ε ∈ (0, x), and consider X ∈ X (ε), such that

ZnTU
−(XT ), n ∈ N, is uniformly integrable. The existence of such X follows

from Assumption 2.4. With X∞T (x − ε) denoting the optimizer associated

with u∞ at (x− ε), we have

(3.6) un(x) ≥ E
[
ZnTU(XT + X̂∞T (x− ε))

]
, n ∈ N∗.

Next, from the monotonicity of U , we get

ZnTU
−(XT + X̂∞T (x− ε)) ≤ ZnTU−(XT ), n ∈ N∗,

and therefore, using Assumption 2.4, we get

(3.7) ZnTU
−(XT + X̂∞T (x− ε)), n ∈ N∗, is uniformly integrable under P.

Consequently, from (3.6) and (3.7), using Fatou’s lemma, we get

lim inf
n→∞

un(x) ≥ lim inf
n→∞

E
[
ZnTU(XT + X̂∞T (x− ε))

]
≥ E

[
U(XT + X̂∞T (x− ε))

]
≥ E

[
U(X̂∞T (x− ε))

]
= u∞(x− ε).

As ε > 0 is arbitrary, by taking the limit as ε ↓ 0, and using continuity of

u∞ at x (by the finiteness of u∞ established in Lemma 3.2, and concavity),

we conclude that (3.5) holds.

�

Lemma 3.4. Under the conditions of Proposition 2.8, we have

(3.8) lim sup
n→∞

vn(y) ≤ v∞(y), y > 0.

Proof. Let us fix y > 0 and ε ∈ (0, y) and denote Ŷ∞(y − ε) the dual

minimizer corresponding associated with v∞ at (y−ε). Then, using Lemma

3.1, for every Ỹ ∈ Y, we get

(3.9) vn(y) ≤ E

[
ZnTV

(
εỸT + Ŷ∞T (y − ε)

ZnT

)]
, n ∈ N∗.

By the monotonicity of V , we get

(3.10) ZnTV
+

(
εỸT + Ŷ∞T (y − ε)

ZnT

)
≤ ZnTV +

(
εỸT
ZnT

)
, n ∈ N∗.
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With Y being as in Assumption 2.6 for y = ε, let us consider Ỹ = Y
ε . Then it

follows, from (3.10) and Assumption 2.6, that the sequence ZnTV
+

(
εỸT+Ŷ∞T (y−ε)

ZnT

)
,

n ∈ N∗, is uniformly integrable. Therefore, using Fatou’s lemma, we obtain

lim sup
n→∞

vn(y) ≤ lim sup
n→∞

E

[
ZnTV

(
εỸT + Ŷ∞T (y − ε)

ZnT

)]
≤ E

[
V
(
εỸT + Ŷ∞T (y − ε)

)]
≤ E

[
V
(
Ŷ∞T (y − ε)

)]
= v∞(y − ε).

(3.11)

As ε > 0 in (3.11) is arbitrary, taking the limit as ε ↓ 0 and using the conti-

nuity of v∞ at y, by its finiteness, established in Lemma 3.2, and convexity,

we get (3.8).

�

Proof of Proposition 2.8. For n = ∞, let us fix x > 0 and let y = u′∞(x).

We notice that the differentiability of u∞ follows from [Mos15, Theorem 3.2]

Then, we have

u∞(x) ≤ lim inf
n→∞

un(x) ≤ lim sup
n→∞

vn(y) + xy ≤ v∞(y) + xy = u∞(x),(3.12)

where, in the first inequality, we used Lemma 3.3; in the second - conjugacy

relations; in the third - Lemma 3.4; and in the (last) equality - [Mos15,

Theorem 3.2]. As x > 0 is arbitrary and, by [Mos15, Theorem 3.2], u′∞

satisfies the Inada conditions, by the choice of x > 0, y in (3.12) can take

any value in (0,∞), we deduce that (2.8) holds. �

Proof of Proposition 2.9. First, for every (zn, n), n ∈ N∗, the existence and

uniqueness of optimizers to (2.2) and (2.5) follows from Proposition 2.8 and

[Mos15, Theorem 3.2]. Next, for strictly positive x and y, let us denote

Γ(x, y) :=
1

2
(V (x) + V (y))− V

(
x+ y

2

)
=

∫ ∞
0

1

2

{(
V ′
(
z +

y − x
2

)
− V ′(z)

)
1{y>x}(z)1[x,x+y2 ](z)

+

(
V ′
(
z +

x− y
2

)
− V ′(z)

)
1{x>y}(z)1[y,x+y2 ](z)

}
dz,

(3.13)

then, by the convexity of V , Γ ≥ 0, and, for x 6= y, by the strict convexity

of V , Γ > 0. Next, let us define

(3.14) ζδ := 1 ∧ δ
2

inf
z≤ 1

δ
+ δ

2

(
V ′
(
z +

δ

2

)
− V ′(z)

)
, δ > 0,
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Then, from the strict monotonicity of V ′ and the Inada conditions, one can

show that ζδ > 0, P-a.s., for every δ > 0.

Let ε > 0 be fixed and let Y m ∈ Y
(
ε

2m

)
be such that Y m satisfies As-

sumption 2.6, m ∈ N, and we also set Y∞ = 0 and recall from Assumption

2.2 that Z∞T = 1. Next, let us define

(3.15) hn,m := Ŷ n
T (zn) +

Y m
T

ZnT
, (n,m) ∈ (N∗)2,

where, we recall that Ŷ n
T (zn) are the (dual) minimizers to (2.5) corresponding

to n and zn; that is, in (2.5), we have

vn(zn) = EPn
[
V
(
Ŷ n
T (zn)

)]
, n ∈ N∗.

Assume by contradiction that Ŷ n
T (zn) does not converge in probability to

Ŷ∞T (z∞). Then, in view of Assumption 2.2, there exists δ > 0, such that

lim sup
n→∞

P

[∣∣∣∣∣Ŷ n
T (zn)−

Ŷ∞T (z∞)

ZnT

∣∣∣∣∣ > δ

]
> δ,

which, in view of the construction in (3.15), we can rewrite as

(3.16) lim sup
n→∞

P
[∣∣∣∣hn,m − h∞,m

ZnT

∣∣∣∣ > δ

]
> δ, for every m ∈ N.

Here we stress that hn,m − h∞,m

ZnT
does not depend on m ∈ N∗. Next, by

passing, if necessary, to a smaller δ > 0, from (3.16) and Lemma 3.1, we get

(3.17)

lim sup
n→∞

P

[∣∣∣∣hn,m − h∞,m 1

ZnT

∣∣∣∣ > δ, Ŷ n
T (zn) +

Ŷ∞T (z∞)

ZnT
+ 2

∑
m∈N

Y m
T

ZnT
<

1

δ

]
> δ.

Let us denote

(3.18)

An :=

{∣∣∣∣hn,m − h∞,m 1

ZnT

∣∣∣∣ > δ, Ŷ n
T (zn) +

Ŷ∞T (z∞)

ZnT
+ 2

∑
m∈N

Y m
T

ZnT
<

1

δ

}
, n ∈ N.

Then, we can rewrite (3.17) as

(3.19) lim sup
n→∞

P[An] > δ > 0.
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Using Assumption 2.2 and since ζδ, defined in (3.14), takes values in (0, 1],

from (3.19), we get3

(3.22) lim sup
n→∞

E[ζδZnT 1An ] > 0.

Recalling that An’s are defined in (3.18), ζδ - in (3.14), and Γ’s in (3.13),

one can see that, on An, Γ
(
hn,m, h∞,m 1

ZnT

)
≥ ζδ, m ∈ N. Therefore, we

obtain

(3.23)

lim sup
n→∞

EPn

[
Γ

(
hn,m, h∞,m

1

ZnT

)]
≥ lim sup

n→∞
E[ζδZnT 1An ] > 0, m ∈ N,

where, in the last inequality, we have used (3.22). As lim sup
n→∞

E[ζδZnT 1An ]

does not depend on m ∈ N, we further obtain from (3.23) that

(3.24) lim sup
m→∞

lim sup
n→∞

EPn

[
Γ

(
hn,m, h∞,m

1

ZnT

)]
> 0,

Next, from the definition of Γ in (3.13), we get

1

2

(
V (hn,m) + V

(
h∞,m

1

ZnT

))
= V

(
hn,m + h∞,m 1

ZnT

2

)
+ Γ

(
hn,m, h∞,m

1

ZnT

)
,

(n,m) ∈ N2, P-a.s..

Taking the expectations under the respective Pn’s, we obtain

1

2

(
EPn [V (hn,m)] + EPn

[
V

(
h∞,m

1

ZnT

)])

≥ EPn

[
V

(
hn,m + h∞,m 1

ZnT

2

)]
+ EPn

[
Γ

(
hn,m, h∞,m

1

ZnT

)]
, (n,m) ∈ N2.

(3.25)

3The short proof of (3.22) is given in this paragraph: if, by contradiction, we suppose

that

(3.20) lim sup
n→∞

E[ζδZnT 1An ] = 0,

then, in particular, we have

(3.21) P- lim
n→∞

ζδZnT 1An = 0.

As ζδZnT , n ∈ N, are strictly positive and converge to ζδ in probability P, we have

P- lim
n→∞

1

ζδZnT
=

1

ζδ
> 0.

Therefore, we deduce from (3.21) that 1An , n ∈ N, converge to 0 in probability P, and, by

the Dominated Convergence Theorem, also in L1(P). This contradicts to (3.19).
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Next, for every n ∈ N∗, since via Lemma 3.1 we have that h∞,m 1
ZnT

is a

terminal value of an element of Yn
(
z∞ + ε

2m

)
that is feasible element for

(2.5) at
(
n, z∞ + ε

2m

)
, we can bound the right-hand side of (3.25) from below

by vn
(
zn+z∞

2 + ε
2m

)
+ EPn

[
Γ
(
hn,m, h∞,m 1

ZnT

)]
, to obtain

1

2

(
EPn [V (hn,m)] + EPn

[
V

(
h∞,m

1

ZnT

)])
≥ vn

(
zn + z∞

2
+

ε

2m

)
+ EPn

[
Γ

(
hn,m, h∞,m

1

ZnT

)]
, (n,m) ∈ N2.

(3.26)

From Proposition 2.8 (see (2.8)) and [Roc70, Theorem 10.8], we get

(3.27) lim
n→∞

vn(zn) = v∞(z∞).

Let us fix m ∈ N. Then, from (3.27), (3.15), and the monotonicity of V , we

obtain

v∞(z∞) = lim
n→∞

vn(zn) = lim
n→∞

EPn
[
V
(
Ŷ n
T (zn)

)]
≥ lim sup

n→∞
EPn

[
V

(
Ŷ n
T (zn) +

Y m
T

ZnT

)]
= lim sup

n→∞
EPn [V (hn,m)] .

(3.28)

We note that the upper bound in (3.28), v∞(z∞), does not depend on m ∈
N and that (3.28) gives an asymptotic bound for the first term in (3.26),

lim sup
n→∞

EPn [V (hn,m)].

For the same fixed m ∈ N, let us establish an upper asymptotic bound for

the second term in (3.26), lim sup
n→∞

EPn
[
V
(
h∞,m 1

ZnT

)]
. Using Assumption

2.6 and Fatou’s lemma, similarly to the proof of Lemma 3.4, we get

lim sup
n→∞

EPn

[
V

(
h∞,m

1

ZnT

)]
≤ E [V (h∞,m)]

= E
[
V
(
Ŷ∞T (z∞) + Y m

T

)]
≤ E

[
V
(
Ŷ∞T (z∞)

)]
= v∞(z∞),

(3.29)

where, in the last inequality, we also used the monotonicity of V . Let us

observe that the terminal upper bound in (3.29), v∞(z∞), does not depend

on m ∈ N.
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From (3.26), (3.28), and (3.29), we get

v∞(z∞) ≥ 1

2
lim sup
n→∞

(
EPn [V (hn,m)] + EPn

[
V

(
h∞,m

1

ZnT

)])
≥ lim sup

n→∞

(
vn

(
zn + z∞

2
+

ε

2m

)
+ EPn

[
Γ

(
hn,m, h∞,m

1

ZnT

)])
= v∞

(
z∞ +

ε

2m

)
+ lim sup

n→∞
EPn

[
Γ

(
hn,m, h∞,m

1

ZnT

)]
, m ∈ N.

(3.30)

Therefore, rearranging terms in in (3.30), taking lim sup
m→∞

, and using (3.24),

we conclude that

0 < lim sup
m→∞

lim sup
n→∞

EPn

[
Γ

(
hn,m, h∞,m

1

ZnT

)]
≤ lim sup

m→∞

(
v∞(z)− v∞

(
z∞ +

ε

2m

))
,

which, however, contradicts the continuity of v∞ at z∞ that follows from

the finiteness of v∞, established in Proposition 2.8, and convexity of v∞.

We obtain that

(3.31) P- lim
n→∞

Ŷ n
T (zn) = Ŷ∞T (z∞).

Now, let yn = u′n(zn), n ∈ N∗. We note that yn’s are well-defined by the

differentiability of un’s, which follows from Proposition 2.8, item (1), and

[Mos15, Theorem 3.2]. Then, by Lemma 2.8, item (2), and [Roc70, Theorem

25.7], we deduce that the sequence yn, n ∈ N, converges to y∞. Replacing

zn’s with yn’s in the argument above, similarly to (3.31), we get

(3.32) P- lim
n→∞

Ŷ n
T (yn) = Ŷ∞T (y∞).

Since, by [Mos15, Theorem 3.2] we have

X̂n(zn) = −V ′(Ŷ n
T (yn)), n ∈ N∗,

we deduce from the continuity of −V ′(ω, ·), ω ∈ Ω, and (3.32) that

P- lim
n→∞

X̂n
T (zn) = X̂∞T (z∞).

�

Proof of Proposition 2.12. Let us observe that by Lemma 2.9, the sequence

yn, n ∈ N, converges to y∞, and the terminal values of the dual minimizers

converge in probability, that is

P- lim
n→∞

Ŷ n
T (yn) = Ŷ∞T (y∞).



THE INDIFFERENCE VALUE OF THE WEAK INFORMATION 19

This, together with Assumption 2.2, implies that

(3.33) P- lim
n→∞

ZnT
Ŷ n
T (yn)

yn
= Z∞T

Ŷ∞T (y∞)

y∞
.

Now, from the martingale property of the dual minimizers, following [MS24,

Theorem 4.2] one can show that the representation (2.15) holds.

Next, applying the martingale property of dual minimizers again, we de-

duce that

1 = lim
n→∞

EPn

[
Ŷ n
T (yn)

yn

]
= E

[
Ŷ∞T (y∞)

y∞

]
,

and therefore, in view of (3.33) and Scheffe’s lemma, we deduce that the

sequence ZnT
Ŷ nT (yn)
yn

, n ∈ N, is uniformly integrable under P and the conver-

gence in (3.33) also holds in L1(P). Therefore, for every bounded contingent

claim f , the sequence ZnT
Ŷ nT (yn)
yn

f , n ∈ N, is also uniformly integrable under

P and since, by (3.33), it converges to Z∞T
Ŷ∞T (y∞)
y∞

f in probability P, the con-

vergence also takes place in L1(P). Together with earlier established (2.15),

this implies (2.14).

�

4. Indifference price invariance

In this section, we take a closer look at the contingent claims whose

indifference price does not depend on the choice of the probability measure.

4.1. Complete Models. Let work under P, and denote by M the set of

equivalent to P separating measures for S, and suppose that

(4.1) M 6= ∅,

which is equivalent to assuming (noArb) and additionally requiring that

Y(1) contains a strictly positive martingale. Here we show that in complete

models, the indifference price of every bounded contingent claim is unique

and coincides with the arbitrage-free price. In fact, the converse is also true.

This is the subject of the following proposition.

Proposition 4.1. Let us suppose that S satisfies (4.1) and consider a prob-

ability measure Q ∼ P. Then, the following conditions are equivalent:

(i) the model is complete,
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(ii) for every bounded contingent claim f , the indifference price depends

neither on x > 0, U ∈ FV(Q), Q, nor on x̃ > 0, Ũ ∈ FV(P), P, and

we have

(4.2) Π(f, x, U,Q) = EQ̂ [f ] = Π(f, x̃, Ũ ,P),

where Q̂ is the unique separating measure for S and Π is defined in

Definition 2.10.

Proof. Let us introduce

DQ :=

{
η ∈ L0

+(Ω,F ,P) : η ≤ dQ̃
dQ

, for some Q̃ ∈M

}
.

(i) ⇒ (ii). One can see that DQ is a convex and solid hull of the set of

the Radon-Nykodim derivatives of the elements of M with respect to P. It

follows from the argument in [KS99]; see the proofs of Lemmas 4.1 and 4.2,

that DQ is also closed in L0(Ω,F ,P). We observe that the completeness

of the model implies that DQ has a unique P-a.s. maximal element. Let

us denote this element η̂. As M 6= ∅, it follows that EQ[η̂] = 1 and that

η̂ > 0, Q-a.s.. Therefore, we can define a probability measure Q̂ ∼ P via its

Radon-Nykodim derivative that satisfies dQ̂
dQ = η̂. One can see that Q̂ is a

separating measure for S that is unique by the completeness assumption.

Now, let us fix f ∈ L∞(Ω,F ,P). Then, for every y > 0 and U ∈ FV(Q),

where FV(Q) is defined in Definition 2.11, by the maximality of η̂ in DQ,

we obtain that yη̂ is the dual minimizer at y. As EQ [η̂] = 1, we deduce that

the indifference price of f at x > 0 associated with U ∈ FV(Q) and Q is

given by

Π(f, x, U,Q) = EQ̂ [f ] , x > 0, U ∈ FV(Q).

As a similar argument can be carried out under the probability measure P,

we conclude that (ii) holds.

(ii) ⇒ (i). Let (ii) holds. Assume by contradiction that the model is

incomplete. Let Ṽ be a bounded from the above deterministic function

on [0,∞), such that −Ṽ satisfies Assumption 2.1, and let Ũ its convex

conjugate. As Ũ is non-random and Ṽ is bounded from above, one can

show that Ũ ∈ FV(Q)∩FV(P). Let us work under the probability measure

Q and consider the utility maximization problem and its dual under Q, that
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is

(4.3) sup
X∈X (x)

EQ

[
Ũ(XT )

]
, x > 0,

and

(4.4) inf
Y ∈YQ(y)

EQ

[
Ṽ (YT )

]
, y > 0.

As Ũ ∈ FV(Q) ∩ FV(P), from [Mos15, Theorem 3.2], we deduce that there

exists a unique solution to (4.4) at y = 1, Ŷ Q ∈ YQ(1). By the incomplete-

ness of the model assumption, there exists an element Y ∈ YQ(1) such that

A :=
{
YT > Ŷ Q

T

}
has Q [A] > 0. Let us set

α :=
1

2

EQ

[(
Ṽ
(
Ŷ Q
T

)
− Ṽ (YT )

)
1A

]
EQ

[(
Ṽ (YT )− Ṽ

(
Ŷ Q
T

))
1Ac
] .

As both the numerator and denominator are strictly positive and finite-

valued (by the boundedness of Ṽ ), we have that α > 0. Next, we define

U(ω, x) := Ũ(x)1A + αŨ(x)1Ac , (ω, x) ∈ Ω× [0,∞).

Then, U satisfies Assumption 2.1, and its convex conjugate V is given by

V (ω, y) = Ṽ (y)1A + αṼ (y)1Ac , (ω, y) ∈ Ω× [0,∞).

Therefore, we have

EQ

[
V
(
Ŷ Q
T

)]
=EQ

[(
Ṽ
(
Ŷ Q
T

)
− Ṽ (YT )

)
1A

]
+ αEQ

[(
Ṽ
(
Ŷ Q
T

)
− Ṽ (YT )

)
1Ac
]

+ EQ

[
Ṽ (YT )

]
=EQ

[
Ṽ (YT )

]
+ 1

2EQ

[(
Ṽ
(
Ŷ Q
T

)
− Ṽ (YT )

)
1A

]
> EQ

[
Ṽ (YT )

]
.

where, in the inequality, we have used the definition of α. Therefore, Ŷ Q is

not a minimizer to the dual problem with the value function V under the

probability measure Q at y = 1, that is to

(4.5) inf
Ỹ ∈YQ(1)

EQ

[
V (ỸT )

]
.

The construction of V implies that V ∈ FV(Q). Therefore, by [Mos15,

Theorem 3.2], there exists a unique minimizer to (4.5). Let us denote it
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by Ȳ . Then, from the respective optimality of Ȳ and Ŷ Q to minimization

problems associated with the value functions V and Ṽ , accordingly, we have

Q
[
Ŷ Q
T > ȲT

]
> 0 and Q

[
ȲT > Ŷ Q

T

]
> 0.

Let us consider a bounded contingent claim f given by

f := min
(

1,−Ṽ ′(Ŷ Q
T ),−V ′(ȲT )

)
1{ŶT>ȲT }.

Under the measure Q, let us consider the primal problems with the utilities

Ũ and U , respectively. The construction of Ũ and U implies that (2.12)

holds for both primal value functions. Then, with conjugates stochastic

fields Ṽ and V , let us consider the dual problems and denote the dual value

functions by ṽ and v, respectively. One can see that (2.13) holds for both

dual value functions. In view of (2.12) and (2.13), the results of [Mos15,

Theorem 3.2] apply, and therefore ṽ and v are differentiable. and the initial

wealth −ṽ′(1) and −v′(1). Then, 0 ≤ f ≤ −Ṽ ′(Ŷ Q
T ) and 0 ≤ f ≤ −V ′(ȲT ),

where −Ṽ ′(Ŷ Q
T ) and −V ′(ȲT ) are the terminal values of the optimal wealth

processes, which are maximal in X (−ṽ′(1)) and X (−v′(1)), respectively.

Therefore, one can show that the indifference prices of f associated with Ũ

and U are given by

Π(f,−ṽ′(1), Ũ ,Q) = EQ

[
Ŷ Q
T f
]

and Π(f,−v′(1), U,Q) = EQ
[
ȲT f

]
.

Furthermore, from the construction of f , we get

0 < EQ

[
(Ŷ Q
T − ȲT )f

]
= Π(f,−ṽ′(1), Ũ ,Q)−Π(f,−v′(1), U,Q).

Therefore, the indifference price invariance fails in the sense that (4.2) does

not hold. This is a contradiction. We conclude that the model is complete.

�

4.2. Connection to the results in [Bau03]. A large class of examples

where our results apply and are relevant is given by the financial markets

for weakly informed insiders, as in [Bau03]. We first recall the framework of

[Bau03].

Let T > 0 be a constant finite time horizon. In this section, we work on a

continuous-time, arbitrage-free financial market. Namely, let (Ω, (Ft)0≤t≤T ,P)
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be a filtered probability space that satisfies the usual conditions (i.e., the fil-

tration F is complete and right-continuous) and such that, moreover, the fil-

tration F is quasi-left-continuous. We assume that there are d basic tradable

assets, the price process of which is am F-adapted positive local martingale

(St)0≤t≤T . In addition, we assume that S is square-integrable and that F0 is

trivial, which implies that S0 is constant. We assume that (Ω, (Ft)0≤t≤T ,P)

is complete in the sense that (St)0≤t≤T enjoys the predictable representation

property.

Let us consider an FT -measurable random variable Y taking values in a

Polish space P, where P is endowed with its Borel σ-algebra B(P). Given

a probability measure ν on (P,B(P)), we consider the set Eν of probability

measures on (Ω,FT ) such that:

(1) Q is equivalent to P;

(2) The distribution of Y under Q is ν.

We assume that Eν is not empty, which reduces to the assumption that ν

is equivalent to the distribution of Y under P. We recall that the space

AF (S) of admissible strategies is the space of Rd-valued and F-predictable

processes Θ integrable with respect to the price process S such that Θ ·S is

a (P,F) martingale.

Let us consider a deterministic Inada utility function U , that is, the one

satisfying Assumption 2.1 and which does not depend on ω. The value of

the information (Y, ν) for an insider with initial wealth x > 0 was defined

in [Bau03] as:

u(x, ν) = inf
Q∈Eν

sup
Θ∈AF (S)

EQ [U (x+ Θ · ST )] ,

that is u(x, ν) is the minimal gain in the utility associated with the antici-

pation (Y, ν).

We have the following result.

Proposition 4.2. Let νn, n ∈ N, be a sequence of probability measures on

(P,B(P)) equivalent to ν and such that

ν- lim
n→∞

dνn
dν

= 1.

Let Pn := dνn
dν (Y ) ·Pν , n ∈ N, P∞ := Pν , the assumptions of Proposition 2.8

hold, and the financial market above is complete. Then, for every x > 0, we
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have

lim
n→∞

u(x, νn) = u(x, ν).

Therefore, the value of the weak information in the sense of [Bau03] is con-

tinuous in the topology of the total variation distance.

Proof. It follows from Proposition 1 and Theorem 1 in [BNN04] that

u(x, νn) = sup
Θ∈AF (S)

EPn [U (x+ Θ · ST )] .

Now, the assertions follow from Proposition 2.8. �

4.3. Incomplete models. We begin with the definition of replicability.

Definition 4.3. A bounded random variable f is replicable if there exists an

admissible wealth process X, such that −X is also admissible and XT = f .

Next, we show that in incomplete markets, bounded replicable contingent

claims are indifference price invariant.

Lemma 4.4. Let us suppose that a separating measure exists for S. Then,

for every Q ∼ P, x > 0, and U ∈ FV(Q), the indifference price for every

bounded replicable contingent claim f satisfies

Π(f, x, U,Q) = x0,

where x0 is the initial value of the replicating strategy for f .

Proof. Let us fix a bounded and replicable at the initial price x0 contingent

claim f . Recalling the definition of sets X (x, q)’s in (2.10), let us set

u(x, q) := sup
X∈X (x,q)

EQ [U(XT + qf)] , (x, q) ∈ R2,

where we use the convention as in (2.3), and here, if for some (x, q) ∈ R2,

X (x, q) = ∅, we set u(x, q) := −∞.

Next, for every x̃ 6= x0, let us consider q = sign(x0 − x̃), and we have

(4.6) u(x− qx̃, q) = u(x− qx̃+ qx0, 0) > u(x, 0), x > 0,

as u(·, 0) is strictly increasing by [Mos15, Theorem 3.2]. We deduce from

Definition 2.10 and (4.6) that x̃ is not an indifference price. In turn, for

x̃ = x0, we have

u(x− qx̃, q) = u(x− qx̃+ x0q, 0) = u(x, 0), q ∈ R,
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and so, by Definition 2.10, x0 is an indifference price for f . �

The following example gives an incomplete model, where the set of con-

tingent claims, whose indifference price does not depend on the reference

probability measure, is exactly the set of replicable contingent claims.

Example 4.5. Let us consider a one-period trinomial model on a probability

space, where Ω = {ωi}3i=1, F0 is trivial, and F1 is the discrete σ-field on

Ω. Let us suppose that there is a risky asset S that satisfies S0 = 1 and

S1(ωi) = si, i = 1, 2, 3, where s1 > s2 > s3 > 0 are constants. Let us

suppose that there is also a riskless security whose price is equal to 1 at

both times 0 and 1. Supposing that P(ωi) > 0, i = 1, 2, 3, results in a very

simple example of an incomplete model.

Let us fix any utility function or stochastic field satisfying Assumption

2.1, and let its convex conjugate be denoted by V . Let us introduce the con-

straints that every absolutely continuous martingale measure for S satisfies.

3∑
i=1

Q(ωi) = 1, Q(ωj) ≥ 0, j = 1, 2, 3, and EQ [S1] = S0 = 1.(4.7)

Then, for every y > 0, the dual minimization problem amounts to solv-

ing the following constrained minimization problem over vectors describing

probability measures Q as in (4.7).

minE
[
V

(
y
dQ
dP

)]
,

subject to (4.7).

(4.8)

Then, one can show that the minimizer exists and is unique for every y > 0.

Let us denote it by Q̂(y), y > 0.

Next, let us consider a different probability measure P̃ ∼ P and possibly a

different utility stochastic field satisfying Assumption 2.1, whose convex con-

jugate is denoted by Ṽ . Then, for every y > 0, the dual problem analogous

to (4.8) can be written as

min Ẽ
[
Ṽ

(
y
dQ
dP̃

)]
,

subject to (4.7).

(4.9)

Let us denote the unique minimizer to (4.9) by Q̃(y), y > 0.
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Let us consider a contingent claim f on this probability space. The indif-

ference price invariance amounts to verifying whether the following equality

holds or not.

(4.10) EQ̂(y1) [f ] = EQ̃(y2) [f ] ,

where y1 and y2 are positive constants, which are the derivatives of the

corresponding primal value functions at some x1 > 0 and x2 > 0. Let us

suppose that these xi’s and, therefore, yi’s are fixed and drop yi’s in (4.10)

for simplicity of notations. One can see that the constraints (4.7) for (4.8)

and (4.9) lead to

Q̂(ω3) =
s2 − 1 + Q̂(ω1) (s1 − s2)

s2 − s3
and Q̂(ω2) =

s3 − 1 + Q̂(ω1) (s1 − s3)

s3 − s2
,

as well as to

Q̃(ω3) =
s2 − 1 + Q̃(ω1) (s1 − s2)

s2 − s3
and Q̃(ω2) =

s3 − 1 + Q̃(ω1) (s1 − s3)

s3 − s2
.

Therefore, (4.10) leads to the following description of the indifference price

invariant f = f(ωi), i = 1, 2, 3.

(4.11) (s3 − s2)f(ω1) + (s1 − s3)f(ω2) + (s2 − s1)f(ω3) = 0,

which are represented by the set of vectors in R3 that are orthogonal to

(s3 − s2, s1 − s3, s2 − s1)>. In turn, the replicable claims in this model are

the ones given by

(4.12) f = αS1 + β, (α, β) ∈ R2.

One can see that (4.11) and (4.12) specify the same class of random variables.

Thus, the class of contingent claims whose indifference price depends neither

on the physical probability measure nor the initial wealth nor the utility

stochastic field in the class FV (under the associated physical measure) is

precisely the class of replicable claims.

In the previous example, indifference price invariant claims are exactly

the replicable ones. In general, the class of indifference price invariant (with

respect to changes in the physical probability measure) claims can be strictly

bigger than the class of replicable ones.
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The next example gives an incomplete model, where every bounded con-

tingent claim is indifference price invariant if we restrict ourselves to deter-

ministic utilities, with respect to a particular class of changes of the physical

probability measure P.

Example 4.6. Let us suppose that B and W are independent Brownian

motions on the complete stochastic basis
(
Ω,F , (Ft)t∈[0,T ],P

)
, where the

filtration (Ft)t∈[0,T ] is generated by B and W and made right-continuous

and complete, T ∈ (0,∞) is a time horizon. Let us suppose that there is a

riskless asset with a price process equal to 1 at all times, and there is one

risky traded asset whose price process is given by

dSt
St

= µdt+ σdW, t ∈ (0, T ], S0 = 1,

where µ and σ > 0 are constants. Let us introduce the minimal martingale

measure Q, whose Radon-Nikodym derivative with respect to P is given by

(4.13)
dQ
dP

= E
(
−µ
σ
W
)
T
.

Let us consider a deterministic Inada utility function (that is, the one sat-

isfying Assumption 2.1 and which does not depend on ω), whose convex

conjugate V satisfies

(4.14) E
[
V

(
y
dQ
dP

)]
<∞, y > 0.

Following [MSZ24, Example 4.4], one can show that the density of Q is the

dual minimizer for every y > 0.

Next, let us change the probability measure P to P̃ in a way that the

dynamics of S under P̃ is given by

dSt
St

= µ̃dt+ σdW P̃, t ∈ (0, T ], S0 = 1,

where µ̃ ∈ R and W P̃
t = Wt + µ−µ̃

σ t, t ∈ [0, T ], is a Brownian motion under

P̃. Then, for every deterministic Inada utility function Ũ , whose convex

conjugate Ṽ satisfies

(4.15) Ẽ
[
Ṽ

(
y
dQ
dP̃

)]
<∞, y > 0,

one can show that the density of Q (defined via (4.13)) with respect to P̃ is

the dual minimizer.
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Now, for every f ∈ L∞(Ω,F ,P), replicable or not, where an example of

a bounded nonreplicable contingent claim is f = 1{BT>0}, we have

(4.16) Π (f, x, U,P) = EQ [f ] = Π(f, x̃, Ũ , P̃),

where U and Ũ are arbitrary deterministic Inada utility functions, whose

convex conjugates V and Ṽ satisfy (4.14) and (4.15), respectively, x and x̃

are positive constants, Q defined via (4.13), and P and P̃ are the probability

measures specified in this example above. We note that (4.14) and (4.15)

are adaptations of condition (2.7) to the present setting of two probability

measures in the case of deterministic utilities U and Ũ .

We conclude that every f ∈ L∞(Ω,F ,P) is indifference price invariant, in

the sense (4.16), with respect to a change of probability measure from P to

P̃ that is specified in this example above.

5. Counterexamples

Example 5.1. This example shows that without Assumption 2.4, stability

may fail, in particular, the assertions of Proposition 2.8 might not necessarily

hold.

Let us fix a probability space (Ω,F ,P), where the filtration (Ft)t∈[0,1] is

the usual augmentation of the filtration generated by a Brownian motion W

and 1 is the time horizon. Let us suppose that there are two traded assets

one riskless with price process equal to 1 at all times and one risky, whose

dynamics is given by

dSt
St

= µdt+ σdWt, t ∈ (0, T ], S0 = 1,

where µ and σ > 0 are constants. Let us set

(5.1) φ :=
∞∑
n=1

1

2n

√
2

n
exp

((
1

2
− 1

n

)
W 2

1

)
.

Then, one can see that φ ∈ L1(P). Now, let us consider a utility stochastic

field

U(ω, x) = Ũ(x)− φ(ω), (ω, x) ∈ Ω× [0,∞),

where Ũ is an Inada deterministic utility function. We suppose that Ũ is

negative-valued, e.g., Ũ(x) = xp

p , p < 0. One can see that the base model
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satisfies (2.12) and (2.13), as the convex conjugate of U , V , is non-positive-

valued.

Next, let us consider perturbations of the probability measure P, such

that the Radon-Nikodym derivatives of the new probability measures with

respect to P are given by

Zn1 =
√

n
n+2 exp

(
1

n+2W
2
1

)
, n ∈ N.

Then, one can see that E[Zn1 ] = 1, n ∈ N, and P- lim
n→∞

Zn1 = 1, and so

Assumption 2.2 holds.

On the other hand, by direct computations, we have

E[Zn1 φ] =∞, n ∈ N,

and so, for every n ∈ N and every wealth process X ∈
⋃
x≥0
X (x), we have

E
[
ZnTU

−(XT )
]

= −E [ZnTU(XT )]

= E
[
ZnT

(
Ũ(XT ) + φ

)]
≥ E [ZnTφ] =∞.

(5.2)

Therefore, Assumption 2.4 does not hold and, in view of the convention

(2.3), from (5.2), we have

(5.3) un(x) = −∞, x > 0, n ∈ N.

On the other hand, as φ ∈ L1(P), we have that u∞(x) ∈ (−∞, 0), x > 0,

which together with (5.3) implies that the convergence of the primal value

functions in the sense of Proposition 2.8, item (2), fails. Moreover, (5.3)

shows that the finiteness of un, n ∈ N, as in Proposition 2.8, item (1), fails

too.

As pointed out in Remark 2.5, Assumption 2.4 holds under Assumption

2.2 if U is deterministic. The next example shows that without Assumption

2.6, the assertions of Proposition 2.8 may fail.

Example 5.2. Let us consider the probability space and the financial model

consisting of two assets, as in the previous example. Let us suppose that

the preferences of an economic agent are modeled by a deterministic utility

function U(x) = xp

p , x > 0, where p ∈
(

1
2 , 1
)
. Then, the convex conjugate

of U , V , is given by V (y) = y−q

q , y > 0, where q = p
1−p > 1. Under the
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probability measure P, the unique minimizer to the dual problem, for every

y > 0, is given by y dQdP , where

dQ
dP

= E
(
−µ
σ
W
)

1
.

In particular, the dual value function for the base model is finite-valued, as

exp
(
q µσW1

)
∈ L1(P), that is

(5.4) v∞(y) <∞, y > 0.

Now, with

cn := E
[
exp

(
− 1

n
W 3

1 1{W1≥0}

)]
, n ∈ N,

let us consider

Zn1 =
1

cn
exp

(
− 1

n
W 3

1 1{W1≥0}

)
, n ∈ N.

Then, one can see that Assumption 2.2 holds. However, we get

E

[
Zn1 V

+

(
y dQdP
Zn1

)]
= E

[
Zn1 V

(
y dQdP
Zn1

)]
= E

[
Zn1

1

q

(
y dQdP
Zn1

)−q]

=
exp

(
µ2q
2σ2

)
y−q

q
E
[
(Zn1 )1−q exp

(
q
µ

σ
W1

)]
=

exp
(
µ2q
2σ2

)
y−q

qc1−q
n

E
[
exp

(
q − 1

n
W 3

1 1{W1≥0} + q
µ

σ
W1

)]
=∞.

(5.5)

This implies that Assumption 2.6 does not hold. Therefore, in view of the

convention (2.6), using (5.5), we deduce that

(5.6) vn(y) =∞, y > 0, n ∈ N,

which implies that the finiteness of the dual value functions, as in Propo-

sition 2.8, item (1), does not hold. Furthermore, from (5.4) and (5.6), we

conclude that the convergence of the dual value functions in Proposition 2.8,

item (2), also does not hold.
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