AN APPROACH TO THE GREEKS FOR INDIFFERENCE PRICING

OLEKSII MOSTOVYI

ABSTRACT. We consider the problem of sensitivity of indifference pricing to the dynamics of the
underlying assets. In the context of arbitrage-free pricing (AFP), such sensitivities are known as the
Greeks. Here, in multidimensional semimartingale settings of incomplete models, we obtain the Greeks
and corrections to the associated trading strategies for indifference pricing in the sense of [Dav97] and
[KK21]. Unlike the traditional AFP, e.g., in the Black-Scholes model, where the Greeks represent the
sensitivity of a linear pricing problem to perturbations of the stock price dynamics, as indifference prices
are given via solutions to non-linear stochastic control problems, their sensitivities to perturbations of
model parameters, that is the Greeks, are also represented by value functions of auxiliary quadratic
stochastic control problems, which we introduce too. The proposed approach also allows for the hedging
of nonreplicable contingent claims. This contrasts with the hedging based on the Greeks for AFPs in
incomplete markets, where the AFPs for nonreplicable claims form intervals, and their derivatives are
not defined in the usual sense. The proposed framework allows us to consider the sensitivity to the
perturbations of the jump part of the stock price process - these are the settings where the AFPs
are usually intervals. In turn, multidimensional settings are needed, in particular, to characterize the

indifference p, the sensitivity to perturbations of the interest rate.
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1. INTRODUCTION

In the questions of pricing and hedging of contingent claims, the Greeks play an important role as
they allow quantifying how one should adjust the portfolio under small perturbations of the model
parameters. In the context of arbitrage-free pricing, this methodology has been known for decades
and is used by both theoretical researchers and practitioners. Even the efficient computation of the
Greeks, relying on Malliavin calculus, has been developed; see [FLLT99] and [FLLLO1].

One of the main limitations of the Greeks for the arbitrage-free pricing approach is the replicability
assumption of a contingent claim (or even the completeness of the market model). As many of the stock
price models, such as stochastic volatility models and models with jumps, exhibit incompleteness, most
of the contingent claims become non-replicable, and therefore, their arbitrage-free prices are intervals.
The derivatives of such prices with respect to model parameters, therefore, are not defined in the usual
sense, and so the methodology of using the Greeks for hedging becomes inapplicable.

In order to remedy the restrictive replicability assumption, this paper proposes a methodology of
computing the Greeks for indifference prices. As the analysis below shows, such indifference prices
are not only differentiable in the usual sense (in fairly general settings below), making such Greeks
well-defined, but also allow for the specification of corrections to hedging strategies. Moreover, for
the replicable contingent claims, the proposed methodology of computation of the Greeks agrees with
the one for arbitrage-free prices, as both pricing methodologies agree, see, e.g., [MS24al, Section 6].
The corrections to the hedging strategy are obtained below without Malliavin calculus, which requires
stringent model assumptions.

The proposed parametrization of perturbations permits us to consider the distortions of the finite
variation part, continuous martingale part, and the purely discontinuous martingale parts of the stock

price return. If the dynamics of the risky assets allow for jumps of random size, typically, the Greeks
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for arbitrage-free pricing are not applicable in view of the non-replicability of the contingent claim in
most of the jump models, see [Shr04, Chapter 11]. The class of nonreplicable claims, in such settings,
typically includes even the most vanilla instruments, such as European put options. With the proposed
approach below, it is possible to construct the indifference-price-based hedging strategies associated
with small perturbations of the parameter governing the jumps.

In the process, we also establish results of independent interest on the stability and asymptotic
analysis of optimal investment without random endowment with respect to model perturbations.
Here, we consider the framework of [Sch01] for the base or unperturbed model, which ensures that the
dual optimizer for the base model is a true martingale under the physical measure. The martingale
property of the dual minimizer allows for the uniqueness and representation formula of the indifference
prices in terms of the expectation of the discounted payoff under the dual-optimal measure, provided
that the discount factor is deterministic.

Mathematically, the proofs are based on the simultaneous primal-dual expansions of the value func-
tions. One of the main technical difficulties stemmed from the fact that, under the perturbations
below, the primal and dual value functions are neither convex nor concave in the perturbation param-
eter . This, in particular, complicates the proof of Lemma [5.5] which is central in the analysis, and
its proof relies on a number of preceding characterizations to bypass the lack of the joint concavity of
u in x and €.

In order to handle the jumps of the risky asset, we need to invoke the elements of the change of
numéraire calculus and the implicit differentiation formulas related to the ones in [MS24b|. However,
in contrast to [MS24b|, the settings below allow the relaxation of the quasi-left continuity of the
driving martingale M assumed in [MS24b]. This is done via identifying the appropriate natural
processes as in [DMS82], Section VI.61] at the core of the proofs and using their properties to complete
the analysis. To the best of our knowledge, natural processes have not been used even in the context
of asymptotic analysis of optimal investment, let alone the stability and asymptotic analysis of the
indifference pricing.

The remainder of this paper is organized as follows. In Section [2] we introduce the model, and
in Section [3] we present the asymptotic expansion of indifference prices under small perturbations of
the dynamics of driving risky assets; Section [4] contains the stability and sensitivity of the optimal
investment to perturbations of the dynamics of the risky asset. Section [f| contains the proofs of
the results of Section In Section [ characterizations of the optimizers to auxiliary minimization
problems as projections are given when the risk tolerance wealth process exists. Section [7] contains
the explicit representations of the particular Greeks, such as Vega, Rho, and Delta.

We conclude this section by commenting on the notations used below. For an R?valued semi-
martingale X = (X ")Z-:L,,_,d and predictable d-by-d matrix-valued process with uniformly bounded in

t and w components ¢, i =1,...,d,j =1,...,d, we use the row-by-column rule
. d .. .
(6-X) =Y ¢"-XI, i=1,...d
j=1

For the stochastic integration of a predictable R%-valued and componentwise bounded process H with

respect to X, we follow [JS03]. As a consequence, and in a consistent way, we introduce the following
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notation

H-¢-X:=(pH) -X=H-(¢-X).

2. MODEL

Let us consider a complete stochastic basis (Q,]—" , <]:t)te[0,T] ,IP’), where T € (0,7) is the time
horizon, the filtration (]:t)te[o,T] satisfies the usual conditions, and Fy is trivia. We suppose that there
are (d+ 1) traded assets, one riskless whose price process equals 1 at all times, and d risky securities.
To characterize the sensitivity of the indifference pricing to small perturbations of the dynamics of
the risky assets, we need to consider the base and perturbed models. For the base model, we assume

the following dynamics of the return process
R=M+ / d(M)aNe, Ro=0,
0

where M is an R%valued locally P-square-integrable martingale and A is an R%valued predictable

process, such that
T
(1) / A d(M) N < 00, P-as..
0
2.1. Parametrization of perturbations. In order to incorporate models with jumps, such as the
ones in [Mer76] and [Kou02], in our analysis, following [JS03], let us further consider a decomposition

of the martingale part M into the continuous part and the purely discontinuous part, that is, we write
M = M¢+ M¢,
and we suppose that the process driving perturbations is

(2) R:¢'MC+1/J'Md+/d<M)SCS, Ry =0,
0
for componentwise bounded predictable R4*?-valued processes ¢ and v, and an R%valued predictable

process (, such that

(3) G| < C'|\N|, te0,T], P-as.

We parametrize perturbations by e, and suppose that
RE=R+¢R, €€ (—cp,¢0),

for some constant €5 > 0. With such a parametrization, the dynamics of the return of the stock price
dynamics
(4) RE=({[I+¢ep) - M+ (I +¢ev) - Md+/ d(M)(AN+eC), R;=0, € (—¢o,¢0),

0
for some g9 > 0, where I is the d-by-d identity matrix, ¢ and 1) are predictable R¥*%(matrix)-valued
process, whose components are uniformly bounded, M is a d-dimensional locally P-square-intergrable

martingale, A and ¢ are predictable d-dimensional processes, such that

T T
(5) /OAjd<M>SAS+/O Cld(M) (s < 00, P-as..
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We note that condition ensures that, for every e sufficiently close to 0, R® in satisfies the
structure condition from [FS10].

Let us fix a utility function U: R — R satisfying the following assumption.

Assumption 2.1. U: R — R, is a strictly increasing, strictly concave, two times continuously
differentiable on R, and its absolute risk aversion
U (x)
U'(z)’

is bounded away from 0 and oo, that is, there exist constants ¢; > 0 and ¢o < 0o, such that

A(z) =

r €R,

g <Ax)<ecy, weR.
d . - -
Following [MS24b], let us set x := > (M"), we have that (M) = A - k for some process A.
i=1

Assumption 2.2. We suppose that A4, is invertible for every t € [0,T], P-a.s..

Next, we can look for XA%¢ in the form
XATE = (z + Azx) + (H +eH® + Aa:HA’”) - R°.

Commonly in the literature (see, e.g., [DS06]), wealth processes that are bounded from below by a

constant are called admissible, and, for every (z,e) € R x (—¢¢,&p), we set

X(z,e):={X =2+ H-R°: for some R°-integrable H,
(6)

and such that X is bounded from below by a constant} .

2.2. Primal problem.

(P) u(xz,e):= sup E[UXrp)], (x,&)€R X (—ep,€0),
XeX(x,e)

where we use the convention
(7) EU(Xr)] := —o0, if E [U_(XT)] = 0.

By a contingent claim we mean any bounded random variable. As its payoff might depend on the
dynamics of the traded assets, as in European put options, for example, thus the payoff depend on ¢,
we will consider a family of contingent claims f¢, ¢ € (—eg,e0). Following [KK21, Section 3.4, page

157], we adapt the definition of indifference prices as follows.

Definition 2.3. A number p is call an indifference price for f¢ corresponding to the initial wealth

x € R and ¢ € (—&g, gp), if we have
ElU(X1+q¢f°)] <u(z,e), g€R and X € X(x—qp,e).

Let us define

V@%Zﬂﬁ@%@—xw, y > 0.

Then V is two times continuously differentiable function, therefore

(8) B(y) :=V"(y)y, y>0,
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is well-defined. Next, we observe that, as V"(U'(x)) = —U%(x), x € R, we have
BU'(2) = ——, w€R
z)) = A x

Therefore, Assumption [2.1] implies that

1 1
9 - <B(y)=V"(yy < - > 0.
(9) o, SBW=Viy=<_ . vy

Absence of arbitrage. Following [Sch01], we suppose that
(10) Q°(0) # 0,

where Q°(e) (Q%(e)) is a set of equivalent (absolutely continuous) local martingale measures for R°,

e € (—ep,€0)-

2.3. Dual problem.

: [ dQ
(D) v(y,e) = Qelrglf(s)E _V (ydIP’)} ,  (y,e) € (0,00) X (—¢0,€0),

where we use the convention

() o 2] (42)]

As usual, we denote

V(y,e) :={ Y)og<ier = 0: Yo =y and (XiY2)geperp @5 a P-supermartingale
(12) - T
for every X € X(1,¢)}, (y,e) € (0,00) x (—€0,¢€0),

so that every element of Q¢(¢) can be represented as a terminal value of an element of )(1,¢).

2.4. Existence and uniqueness results for (P and @ As demonstrated in [Sch01], the opti-
mizers (associated with different z € R) to are not necessarily bounded from below, and thus,
they are not the elements of X (x,¢)’s, in general. These sets have to be enlarged properly.

Thus, following [Sch01], we define the following sets.
Definition 2.4. For (z,¢) € R x (—&g, &), define the set C’(z, ) by
CY(v,e) ={Tr € L°: Tr < Xr for some X € X(v,¢) and E[|U(I'r)[] < oo},
and let Cy(x,e) denote the set
Cy(z,e) = {CDT e L0 : U(®r) is in the L} (P)-closure of {U(I'p):T'p € C[bj(:v,e)}} .

For the existence and uniqueness results for the base model, we suppose that the assumptions of

[Sch01, Theorem 2.2] hold. The following theorem is proven in [Sch01, Theorem 2.2], namely,

locally bounded d-dimensional semimartingale S,

the Inada conditions, they follow from Assumption [2.1

reasonable asymptotic elasticity, also seem to follow from Assumption [2.1
NFLVR for the base model - .
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Assumption 2.5. There exists x € R, such that
u(z,0) < 0.

We note that Assumption implies that u(z,0) < oo for every z € R. By [SchO1],

finiteness of v on (0, c0) will follow.

First, we observe that under u(x,0) < oo, for some = € R, we have

(13)  u(w,0)= swp E[U(Xp)]= sw E[UT)]= swp E[U@)], zek
XeX(z,0) Irecy (z,0) PreCy(z,¢)

We remark that, under these conditions, [Sch01, Theorem 2.2] implies that

e u(-,0) and v(-,0) are finite-valued, strictly concave (resp. convex), differentiable functions on
R (resp. R, ), they are conjugate and satisfy the Inada conditions.

e For y > 0, the optimal solution Q(y, 0) € Q%(0) to the dual problem (D) exists, is unique and
the map y — Q(y,0) is continuous in the variation norm.

e For z € R, the optimal solution @T(a:, 0) € Cy(x,0) to the primal problem exists, is unique

Br(e.0) = —V (yd@(y, 0)) |

and is given by

dP

where y = u,(x,0).
o If @(uz(x, 0),0) € Q¢(0), then ci’T(:):, 0) equals the terminal value XT(:B, 0) for a process of the
form X(x,O) =z + H - R, where H is predictable and R-integrable, such that X(a:,O) is a

uniformly integrable martingale under Q(u,(z,0),0).

Lemma 2.6. Let x € R be fized, M € H2 _(P), and suppose that , , , and Assumptz’on

loc

hold true. Then, NFLVR holds for every e € (—£;,£) for some &y > 0.
Without loss of generality, below we suppose that &) = €.

Corollary 2.7. As a corollary to Lemma we obtain that the assertions of [Sch01, Theorem 2.2]
hold for every e € (—egp,¢€p).

2.5. Key representation formula.

Lemma 2.8. Let us fit v € R and € € (—¢eqg,e0). Then, under the conditions of [Sch01l, Theorem 2.2],
with y = ug(x,€), where y is well-defined by [Sch01, Theorem 2.2], for a bounded f¢, we have

(14) p(z,e) = EQ(UZ(%E)@) L]
where p(z,€) is specified in Definition [2.5

Proof. The proof follows from the adaptation of the argument in [MS24al proof of Theorem 4.2] to
the present settings. [l

Assumption 2.9. The processes R and R are locally bounded.
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Assumption 2.10. There exists a predictable symmetric positive semidefinite matrix-valued pro-
cesses vV and ¥ with bounded components, exactly one of which is the identity matrixﬂ (dk x P)-a.e.,
such that

(M) =77 (M),

Assumption 2.11. Let us suppose that Q(ug(z,0),0) € Q°¢(0) and we haV

dQ(ya 0) _ YT(y’O) _
= T e ().

where

H=-X-M+8-(—" M+ MY+ 1L,
where L € M7 (P) is orthogonal to both M¢ and M9, B is (—+°- M°+ 0. Md)—integrable and
5 (=0 A+ 00 M) € HE, (B,

loc
3. ASYMPTOTIC EXPANSIONS OF THE INDIFFERENCE PRICES

Let us denote by 7—[(2)(@) the set of square-integrable martingales under the probability measure Q

with the initial value 0. Next, we define
(15) M?:={M e H3(Q): M =H -R, for some R-integrable H}.
The complement of M? in HZ(Q) is denoted by N2, that is

N%:={N c H3(Q): MN is a Q martingale for every M € M?}.

~

3.1. Transformation /. Let H be the stochastic logarithm of %, that is Y = y&(H). For a

semimartingale K, we set

AH
16 K=K - [K° H)-) AK,—— "
(16) K% = MK A
which is also a semimartingale. One can see that, if H + K is non-vanishing, K satisfies
E(K+H)
E(KTy ="/
="

that is K is the excessive return of K under the dual numéraire £(H). We also observe that -H is

linear in the sense that for semimartingales K' and K? and a constant & we have

With

AS =10 (1 + Vot)flzzltl{y =+ I+ fyot)ilfitl{uotzl}v

A=A (T +4°) A o=y + (T +0°) T Al go,=py, €0,
let us set
7 g = ¢ = (A) o AiA: — (A) ' 9 Ain s,

g = ¢ — (AH I AIN + (AD) 1 AL By, t € (0,7,

IThis allows to include both the situation with no jumps, in which case 4° = 0, and the discrete-time case, when
0 _
v =0.

2We will denote below Q(u,(z,0),0) by Q and Y (ux(z,0),0) by Y.
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and
(18) Fi=—g¢ MH" —gd. M 4pnd G:=H-R.
In the one-dimensional case, that is, if only one risky asset is available, we have

9 =C—A—"8 and g =(— YA+ 0B
Assumption 3.1. There exists a constant ¢ > 0, such that

Eq |exp (c|Gr]|) + exp (¢ (|Fr| + [F7)) (1 + X%) + YT:| < 00,

and the jumps of F' are bounded, where processes F' and G are defined in .

3.2. Quadratic minimization problems. Let us consider auxiliary minimization problems

(19) Ugz = —y _inf Eg [A (XT> <1 + MT>2} ,
MeM?
) . - 2 -
(20) Uge = —Y ~1nf ]EQ [A (XT) (MT + GT) + 2MTFT:| R
MeM?
. 1~ \?
21 v =y inf Eg | B(Y; -+ N ,
@ w =y inf Bo |B(7) (5 + )
~ ~ 2 ~
(22) Vge =y inf Eq |:B(YT) (FT + NT) +2 (FT + NT> GT] .
NeN?

Under the conditions of Theorem via the direct method in the calculus of variations, see [FLO7],
and Komlos’ lemma, one can show that there exist unique minimizers to , , , and .

Let us denote these minimizers by M®, M¢, NY, and N¢, respectively. Next, let us set
(23) Uge = —yEg [A (XT) (1+ M) (M5 + Gr) + M%FT} ,

. 1 1
(24) vye = yEq [B(YT> (y + N%) (Fr+ N%) + Gr (y + N%)] .

3.3. Conditions on f¢. The following assumption imposes sufficient integrability for the proofs below
to hold, and it allows to include the perturbations of the payoffs, e.g., of the put options under

perturbations of the stock price dynamics, particularly in the Black-Scholes model.
Assumption 3.2. There exists a constant C' > 0 such that
|f€| < C Pfaws'v €€ (_80550)3

and such that

LiQ)-tim I —

e—0 £

.
We also denote f° by f for brevity.

Remark 3.3. If we consider the following perturbations of the dynamics of the volatility in the
Black-Scholes model

R§:Mt+(a+€)Wta te [OaT]a
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for the put option on S¢ = so&(R®), that if for (K — S)*, we have that f¢ = (K — S¢)", and

afe
Oe

— ceViWwe 4 C,
e=0

where W€ is a Brownian motion under the minimal martingale measure for R?, Q. so

af¢
‘ Oe

<O+ eV e LYQ).
e=0

One can also see that Assumption [3.2) holds.

Let us set
(25) Pz = UeeBg [NYf],  pe:=Eq [{(uecNY + Ni 4+ Fr}f + f'] .
Remark 3.4. In view of Theorem below, p. in can be represented as
Pe = vyepe + B [(NF + Fr) f + ']

Theorem 3.5. Let x € R be fized, M € HlQOC(IP), and suppose that , , and Assumptions
and [3.9 hold, and denote y = uy(x,0), which is well-defined by [Sch01l,

Theorem 2.2]. Then, we have

|Az|+e|—0 |Az| + ¢

=0,
where p; and p. are given in (25)).

The corrections of trading strategies are given in Theorem [£.7] below.

4. ASYMPTOTIC ANALYSIS OF AND (D)

4.1. First-order analysis. We start from the first-order expansion theorem.

Theorem 4.1. Let x € R be fized, M € H3, (P), and suppose that (10), (I), and Assumptions

loc

hold, and denote y = uy(x,0). Then, there exists £y > 0, such that for

every € € (—&p,€0), we have
u(z,e) €R, xz€R, and wv(y,e) eR, y>0.

Further, u and v are jointly differentiable (thus, continuous) at (x,0) and (y,0), respectively, and we

have

27 Vu(z,0) = Y and Vou(y,0)= 7 ,
( ) ( ) <u5($70)> (y ) <U6(970)>
where

(28) ue(@,0) = yEq [G7] = ve(y,0) = —yEg [XTFT} :

where G and F' are defined in .
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4.2. Second-order analysis. Here we establish second-order expansions of the value functions ap-

pearing and @, as well as the first-order expansions of the optimizers for these problems.

Theorem 4.2. Let x € R be fixed, suppose that the assumptions of Theorem hold, and denote
y = ug(x,0). Then, we have

(29) Ugy O Vyy 0 _ 1 0 ’
Uge 1 Vye —1 01
and

(30) Uge — Vee = UgeVye.

Furthermore, with M™, M¢®, NY, and N¢ denoting the optimizers to , , , and , re-

spectively, we have

. 1+ ME wx 0\ [ L+ N
(31) AGey (T ) = (" T
G + MY‘E« Uge 1 Fr+ N,I‘i
equivalently,
1 Y T
(32) By | v tNp) _ (v O L+ Mf .
Fr 4+ N vye —1 Gr + M7

Theorem 4.3. Let x € R be fixed, suppose that the assumptions of Theorem hold, and denote
y = uz(x,0). With

(33) H, = Ugy Uge ’
Uge Uee

we have

u(x 4+ Ax,e) = u(z,0) + (Az &)Vu(z,0) + %(Al’ e)H, <A:) + o(Az? + £%),

where Vu is given by . Similarly, with

(34) Hy = v e
v o b
Uye  VUee
we have

Ay

v(y + Ay, e) = v(y,0) + (Ay €)Vo(y,0) + %(Ay e)H, ( .

) + o(Ay® +€7),

where Vu(y,0) is given by .
Remark 4.4. In view of the concavity of u in the z-variable, Theorem implies that wu,, given by
is the second-order partial derivative of u with respect to z. Moreover, implies that

_um(az, 0)
T ug(x,0)

that is, the absolute risk aversion of the indirect utility u at (z,0) is bounded by the same constants

C1 S C2,

as in Assumption [2.1]
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Moreover, considering only perturbations of the initial wealth, under the assumptions of Theorem
similarly to the proof below, one can show that the quadratic expansion of » in x holds at every
(z,e) € R x (—¢0,0), that is, similarly to , we have
(35)

~ ~ 2
_U:m:(x + Ax’ 5) = Uy ($ =+ AJ}, 5) MGM;&&A%&) EQ(ux(x—i-Am,s),a) [A (XT($ =+ A.CI}, 5)) (1 + MT) ] )

where Q(ugtj (r + Az, ¢),¢) is the dual optimal measure at (x + Az, ¢), and M?(x + Ax, €) is the space

of square-integrable martingales starting from 0 under @(uz (x4 Az, e),¢e) that are stochastic integrals

with respect to R, that is M?(x + Az, ¢) is defined entirely similarly to , but at (z + Az, ). By

the concavity of u in x, implies the two times differentiability of v in x at (z + Ax,¢). Finally,

from , we can obtain the following bounds for the absolute risk aversion of u

 Ugg(z,€)
Ug(, €)

where ¢; and ¢y are given by Assumption [2.1] These bounds will be used in the proof of Lemma [5.4]

¢l <c, (x,6) € R X (—ep,¢0),

below.

Theorem 4.5. Let x € R be fized, suppose that the assumptions of Theorem hold, and denote
y = uz(x,0). With M7 and M¢® denoting the optimizers to and , respectively, we have

(36) !

\Ar\l—li-1|lsl|—>0 |Az] + ] ‘XT(x + Az, e) — {XT(CU, 0) + Ax(1+ M%) +e(Gr + MT)H =0,

where the convergence takes place in P-probability. Likewise, with NY. and N¢ denoting the optimizers

to and , respectively, we have
|+ Ay - Yr(,0) (1+ Ay (3 + NB) + 2 (Fr+ Np)|
- lim
|Ayl+|el -0 |Ay| + [e]
Corollary 4.6. Let x € R be fized, suppose that the assumptions of Theorem hold, and denote
Yy = uz(x,0). With N% and N% denoting the optimizers to and , respectively, we have

dQ(y + Ay,e)  dQ(y,0
dP dP

(37)  LYP) = 0.

1

38 LY (P)-lim
(38) (B)-him TR

=0.

) {1+ AyN} +e(Fr + N§)}

4.3. Corrections to optimal strategies. With M? and M¢ be the optimizers to and that
are the elements of M2, respectively, let us approximate them by bounded Q-martingales M and
Ma’n, such that

lim M7" =M% and lim M7" = M5, P—a.s.

n— 00 n—0o0
By the local boundedness of R (which implies the o-boundedness of R), we can further approximate
M"™s and Me’n’s, so that that there exist sequences of bounded predictable processes H*™ and H",

n € N, such that H*" - R, H®" . R, H&™ .- R, HS™ . R are bounded, and we have
(39) lim HA*". Rp = M% and lim H®" Ry =M%, P—a.s.
n—oo n—oo
Let us consider

(40) XATEN — (z + Azx) + (H + AcHA™" + cH*") - R*,  (Az,e,n) € R x (—ep,£0) x N.

We note that X € X(z + Ax,¢), for every (z + Az, e,n) € R x (—&g, ) x N.
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Theorem 4.7. Let x € R be fized, and suppose that the assumptions of Theorem hold. Then,
there exists a function n = n(Ax,e): R x (—ep,e0) — N, such that

E [U (XTAQCS")} =u(z + Az,e) — o(Ax? + £2).
The process XA%™ has the following positions in the risky assets
(41) H + AzHA™™ 4 e o™,
and HA%"’s and H*™’s satisfy .
4.4. Technical estimates.

Lemma 4.8. Let us suppose that Assumption [2.1] holds. Then, we have

(42) Ux)e™* <U'(x+2) <U'(z)e”**, for every (z,2) € R x (—0o0,0).
and
(43) Ulw+2) <U'(2) (L+e%%), for every (z,2) € R%.

Proof. Let h(Z) :=log (U'(%)), & € R. Then, we have
U/I(.%)
h (%) =
® = Ty
Therefore, for every x € R and z < 0, using Assumption [2.1] we obtain

er(—2) g/x (—h’(t))dt:h(a:—i—z)—h(a:):/x (—H/(1))dt < ca(—2).

“+x “+x

r € R.

Next, from the definition of h, we get

log(U'(x)) + c1(—2) < log(U'(z + x)) < log(U'(x)) + c2(—2).
Exponentiating both sides, we obtain . In turn, as U’ is decreasing, from , we deduce (43). O
Lemma 4.9. Let U: R — R satisfies Assumption|2.1. Then, we have

1 1
(44) V'(y) + . logz > V'(z2y) > V'(y) + . logz, forevery y>0 and z>0.
1 2

Proof. Let us fix y > 0 and z > 0. Then, with for x = —V’(y), we recall that U"(z) = _V%(y)’ and
@ gives

1 1
- < Bly)=V'yy<-, y>0.
c2 c1
As a consequence, by direct computations, we get
! ! v " v " dt 1
(45) Vizy) = V'(y) = V7(t)dt = V' (t)t— > —log z.
y y t C2
Similarly, we can show that
1
(46) Vi(zy) = V'(y) < —log 2.

C1

As and hold for every y > 0 and z > 0, follows. O
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Proof of Lemmal[2.6 As in the proof of Lemma [£.20] one can show that

~

)y/g (Jo=H) e Y(1,e),

where J%¢’s are defined in . As %5 (JO’E’H ) is a positive local martingale, thus supermartingale

under P, it is enough to show that, for every e sufficiently close to 0, we have

’;Ts (Jo’s’H)T] 1.

Let us consider the left-hand side in and rewrite it as

(47) E

19 e (1070, | =male (774,

Now, & (JO’E’H ) is a nonnegative local martingale under Q, thus supermartingale. It follows from
Assumption that there exists &) > 0 such that

Eg [ (£ (1°%7),)"] <00, € (~5,&).

Therefore, € € (—£, ), € (JO“E’H ) is a square-integrable martingale under Q, and so, using , we
get

Y:

Te (Jo,s,H)T 7
Y

which implies , thus %5 (JO’E’H) is a true P martingale, and so

Q°(e) #0, &€ (—&p,E&p)-

1=Eg[€ (J**"), ] =E

7]

4.5. Results needed for reformulations of the auxiliary minimization problems.

Lemma 4.10. Let x € R be fized and assumptions of Theorem [{.1] hold. Then, with

(49) MNo=A+()T8 and M :=X-("T5,

and

(50) R¢ := MC+/ d(M)\S and RY:= Md+/ d(M4Y N
0 0

the processes R¢ and R® satisfy
(51) R = R°+ R%,
and form a decomposition of a Q-local martingale R into a continuous and purely discontinuous parts.

Proof. First, using Assumption we obtain . Next, let us consider a bounded predictable
d-dimensional process a. Then, from [Pro04, Theorem I1.38|, we have
E(@-RYEH)=E(a-R°+H+[a- R HJ),

where H is given by Assumption is a P-local martingale. By [JS03l, Proposition 1.4.49(c)], we have
that Uo al d(Me) ), H] is a local martingale. The local martingale property of (a - R + H + [a - R¢, H])
follows, which implies, via [Pro04, Theorem III.29], that £ (a - R¢) € (H) is a local martingale under
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P. Therefore, by [JS03, Proposition II1.3.8], we deduce that £ (a - R) is a continuous local martingale
under Q. Consequently, a - R¢ is a local martingale under Q, as a stochastic logarithm of a continuous
local martingale. Since a is an arbitrary bounded and predictable process, we deduce that R® is a
local martingale under Q.

Now, having the local martingale property of R¢ under Q, using the local boundedness of R,
similarly to the argument above, by taking a bounded predictable a, such that the jumps of a - RY
are strictly greater than —1, we can show that local martingale property of R%. To show that R? is
a purely discontinuous locally bounded martingale under Q, let us consider an arbitrary continuous

local martingale K under Q. Furthermore, in
(52) K(a R =(a-RY_-K+(K_a) R + [K,a-Rd},

by [Pro04, Theorem I11.29], (a - R?)_ - K is a local martingale under Q and, by [Pro04, Theorem
IV.29], (K_a) - R% is a local martingale under Q. Therefore, in , to show that L(a - RY) is a local

martingale under Q, it is enough to show that [K ,a - Rd] is a local martingale under Q. We have
[K,a-Rd} - [K,a : Md} n [K/ aSTd(Md>s)\d] :
0

where, by [IS03, Proposition 1.4.49(c)], [K, [, aJ d(M%);\] is a local martingale under Q. So, we are
left to show that [K ,a- M d] is a local martingale under Q, which via [JS03| Proposition III.3.8], holds
if

£ ([K,a-Md]) E(H) =& ([Ka - Md} Y H A+ HK,a-Md] HD
is a P-local martingale. Since K is continuous, so is [K ,a- M d], therefore, by and [JS03l, Proposition
1.4.49(c)], HK ,a- M d] S H ] is a P-local martingale. Decomposing K into a continuous local martingale
under P and a predictable finite variation part, using [JS03, Proposition 1.4.49(c)] and the purely

discontinuous martingale property of M¢ under P, we can show that [K ,a- M d] is a local martingale.
O

Lemma 4.11. Let x € R be fized, and the assumptions of Theorem hold. Then, there exists € > (ﬂ

such that for every e € (—&,£), the families of vector-valued processes A€ and A% given implicitly via

/ CAMEYs (s +2C,) = / (I 4 26) d(ME) A",

(53) 0 0
/d(Md>s (/\s—i—ecs):/ (I + etps) (MY N,
0 0

are well-defined. Furthermore, the matriz-valued processes ¥¢ and v° given via

Vo= +ep) 0 T +eg), v =1 if =1,

(54) € -1.0 € ; 0
vii=(I+eg) v (I+ey), =1, ify =1,
satisfy
/ VS A(MOYAE = / dMHNA, if =1,
(55) 0 0

/ d(MOY AT = / Ve d(MHYANY,if A=

0 0

3Below, we suppose that & = g, without loss of generality.
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Proof. By the uniform boundedness of the components of ¢ and v, we deduce that there exists & > 0,
such that for every e € (—£,&), (I +e¢)~! and (I +e¢)~! exist and are bounded. Using the matrix-
valued version of the Radon-Nikodym Theorem (see, e.g., [RR68]), we deduce that for every e € (—£,¢),
the vector-valued processes A€ and A>¢ given as solutions to are well-defined. Now, follows

from and . O
4.6. Implicit differentiation.

Lemma 4.12 (First-order implicit differentiation). Let = € R be fized, and the assumptions of The-
orem hold. Then, for every predictable process H and f3, such that H is R integrable and 3 is
M -integrable and the integrals in are well-defined and finite-valued P—a.s., we have

[ Taan.c [ dnyToane, (o 6078) - [ vt (- 02)7A)

0
. /OT(FIS)Td<MC>S <(Ag,c)f (7Y 5;) - () Tar, ((AS’d)'— ((,/g)T)'BS>,

where the derivatives above are given by

(56)

- Y = C— (A Madih, () = - (D) 0udin®)
O = ¢ (A weAin, 08) = — (A Mwdd®) , telo.T)

Moreover, for a predictable and R-integrable H, such that the integrals in are well-defined and
finite-valued P-a.s., we have

T L T L T -
/(HS)Td<M>S(S—/ (HS)Tgbsd(Mc)s)\g—/ (Hy) " psd(MPy N
(58) 0 0 0

T T
= [ @A+ [ )T
0 0
Remark 4.13. Lemma allows to characterize ¢g¢ and g% defined in as
T d T
g =) + () B and g =N = ()) B te0,T],
where (A"), (AX?Y 49y and (1) are given by in Lemma

Proof of Lemmal[{.13 With A*¢ and A\*“ being given by and 7¢ and v© given by (54), using [Pro04,
Theorem I1.38], one can see that for every predictable process H and [3, such that the integrals in

are well-defined and finite-valued P-a.s., the process
&(f-R)E (=2 Mo =Xt M4 § (—9F - MO+ w7 M) )
is a local martingale. The local martingale property of this process implies that

/o. H] d(M)s(Xs + £C) :/0. H] (I +¢e¢)d(M°), <>\?c n (’VE)TBS>
(59) .
+/0 A (I+ep)d(M), (/\i’d = (VE)T55> .
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Let us consider a sequence ¢,, n € N, converging to 0. From , we have
[ aann.c == ([ A7 o aor, (364 09)7A)
- [ A, (x5 + 0975
2 ([ A e ann, (36— 0575)
- [T, (- 087A) ).
Taking the limit as n — 0, we obtain . can be proven similarly. O

Similarly to the proof of the previous lemma, we can establish the second-order implicit differenti-

ation formulas.

Lemma 4.14 (Second-order implicit differentiation). Let x € R be fized, and the assumptions of
Theorem hold. Then, for every predictable process H® and /5’, such that the integral below are

well-defined and finite-valued P—a.s., we have

(60)
Q/OT(HE)T¢Sd<MC>s <(>\270)'+ <(705)T>/Bs> +2/0 () Ty d (M), <(}\g,d)/ B ((VS)T>’B~S>
== /OT<H§>Td<MC>s (089" (020)7)"5.) - | (T, ()= (e07)"5.).

4.7. Characterization of key Q-martingales.

T

Lemma 4.15. Let x € R be fized, and the assumptions of Theorem[{.1] hold. Let H® be a predictable

process, such that
(61) H®-Re H%OC(Q)7

and ¢&¢ and ¢>¢ be predictable processes, such that g;—;cl{gc;éo} and %1{gd¢0} are locally bounded
and g°¢ = 0 on {g¢ = 0} as well as g% = 0 on {g? = 0}. Then, the following processes are local

martingales under Q:

(62) (H® - R) (g - MM 4 g5% - MH) — [T HS (d<MC>sg§’c + d<Md>sg§’d) ;
(63) (H® - Re) (g7 - MeH) — [§ HEd(M®)sg5;

(64) (H® - RY) (¢° - MH) — [C HEA(M®) g5

If additionally

H®-R and ¢o¢ M" 4 g5 M are in H?(Q),
then the processes in , , and are true martingales under Q.
Proof. First, in view of Assumption we have

K =g MeH 4 g‘s’d M g locally bounded.



18 OLEKSITI MOSTOVYI

As % is left-continuous, by [Pro04, Theorem III.29], we have that

)A/v_ . .
(65) — - </ He'd [Md} g —/ HSSTCKMd)sg?d) is a P — local martingale.
Y 0 s 0

Let 7/, n € N, be the localizing sequence of this local martingale, 7,,, n € N, be a sequence of stopping
times such that ftAT" HeTd(M?) g5 € LYQ) t € [0,T], n € N. Note that such as sequence 7, n € N,
exists as every component of M € H%OC(IP’), and every component of R is locally bounded, so every
component of f0<M )sAs is locally square-integrable under P; therefore, by Assumption and the

Cauchy-Schwartz inequality, we have

Eg [ /O%nH§d<M>s>\s} < [ / HEd D Eg [YT}1<OO

Also, let 7,,, n € N, be a sequence of stopping times, such that ¢=¢ - M&H  g=d . pdH [g5€ - MC’H],
and [¢g5¢ - M%H] are bounded on [0,7,], n € N. The existence of such a sequence 7, n € N follows
from Assumption m It follows from [Pro04, Theorem 3.11] that fO'AF"/\%” HETd(M)s)s is natural.

Therefore, in view of the definition of the natural processes as in [Pro04l page 111], we have

[/ H§Td<M)S)\S,K} ] =0, neN.
0 Tn/\Tn

Let 7/, n € N, be a localizing sequence for H® - R. Let us fix n € N, consider an arbitrary stopping

time o and set 7 := o A7), A Ty ATy A T,. Then we have

E@ [(HE : RT) (KT)]

' AH
=Eq | | H®- <M+/ d<M>sAs> K — (g7 MO H) = got AM——
(66) ¢ 0 Z 1+ AH,
AH
= HS MK — £,C | MC HC _ 67dAMS s
“ ’ 9 ] ng 1+ AH, '

L L - T
where, in the second equality, we used the (true) martingale property of [ JoH STA(M)Y A, K ] on [0, 7].

Further, by direct computations, we can rewrite the last expression in as

AM,

.
T g
Eg /OH d(M) g5 + > HIAM === s TN

s<T

Let us denote

AM,

Ty :=Eq [/ H;Td(MC>Sg§’C] and Ty :=Eg ZHEAM g5’ AR
0

s<T
It follows from the assumption of the lemma that both Tl and Tt 5 are well-defined and finite-valued,

and using integration by parts, one can rewrite 75 as

(67) T=E|Y LN INTA (g?dAMs)

s<t
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By [Pro04, Theorem I1.28, page 75], we have

(68) /O HTd [MdL god = [HE M ged Md} = Y (H:AM,) (gg’dAMs) .

s<-

In view of , allows to further rewrite T} in as

- Y,
(69) T, =FE / H§Td<Md>sg§’d] .
o Yy

Further, using localization, [JS03, Theorem 1.4.49], we can rewrite T, as

-
Ty = Eg U Hde<Md)sg§’d} :
0
We recapitulate that can be rewritten as

Eq [(Ha - Rr) (98’0 M 4 g Mf’H)] =T+ T

(70) - .

—Eq [ / H;‘W(MC)Sggvd} +Eg [ / H§Td(Md>sg§’d] .
0 0

As 7 is an arbitrary stopping time on [0,7,] and 7,, n € N, is a localizing sequence, we conclude
that fOT HeT (d(Mc>sg§’C + d(Md>sg§’d> is the predictable quadratic covariation under Q of the pair

(Hs . R, ge,c i Mc,H + gs,d . Md’H).
If additionally both H-R and ¢5¢- M®H 4 g&4. M4H are in H?(Q), we deduce from [JS03, Theorem
1.4.2, p. 38] that

(HE - R MO gt = [ ()5 + A )
0

is a true martingale under Q, and so (70| implies . and can be proven similarly. Il
4.8. Bound for u.

Lemma 4.16. Let x € R be fixred. Under the conditions of Theorem with y = ug(x,0), let HA®
and H*® be bounded predictable processes such that

o (o (e [omng)) aoe (o (w0 [artad)),
e (o (b [ar)).mee (v (0 [artag)).

HA*. R, H°-R, H”"-R, and H®-R are bounded.
Let XA be given by for (xz,e) € R x (—ep,e0) and let us define
w(Az,e) :=E [U (X?‘“)} , (m,6) € R x (—¢€q,80)-

Then, w admits the following expansion
1 Azx 9 o

w(Az,e) = w(0,0) + (Az  ¢)Vw(z,0) + i(Am e)Hy +o(Azx* +¢€7),

€

where

waz(0,0) = uz(x,0), w(z,0)=Eq[Gr],
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WAxAx WAze
H, = ,
WAze Wee

where, with processes F' and G defined in , we have

and

wazaz = —yEqg [A (XT) (1+HA" . RT)2] ;
waze = —yEq [A (XT) (14 HA" . Ry) (H® - Ry + Gr) + (HA® - RT)FT] :
wee = —yEq [A (XT) (H® - Ry + Gp)2 + 2(H* - RT)FT} :

Lemma 4.17. Let x € R be fized. Under the conditions of Theorem with y = ux(x,0), let and H®
be bounded predictable processes such that satisfying the assumptions of Lemmal[{.16. Then, we have

Eg [H : RT} ~ Eqg [(Hf - Ry) <gc CMEH 4 gt M )} = —Eo[(H* - Ry) Fr),
where g¢ and g% are defined in and F is defined in .

Proof. Let us recall that, in [9), A°> =X+ (7°)73, A? = X — (1°) T B. Next, one can see that

H* - <¢ (MC+/0'<MC>S>\§)> and H° - (w <Md+/0.<Md)s)\§)> are Q-martingales.

Completing R to a local martingale under Q, we get

Eq [H€~RT] — Eg [HE. <¢.MC+¢-Md+/O' d<M>sCs>T:|

—tg [ (o (3o [0 ) - (304 [ arthnd)

_/0' ¢sd<Mc>s/\§—/0. ¢sd<Md>s)‘g+/0. d<M>sCs>T].

Now, using the martingale property of H®- (¢ - (M€ + [;(M¢)AS)) and HE - (1) - (M4 + IN (M4 AD))

under Q, we can rewrite the latter expression as

o [H <— /0 | Bad(MEY A — /0 e d(MA N+ /0 'd<M>scs>T]
T
— Eg UO (HS)T <d(MC)sg§ + d<Md>sg§l)] :

where, in the last equality, we have used Lemma and the definition of g¢ and ¢? in (17)). Now, the
assertion of the lemma follows from Lemma (particularly from and (64))) and the definition
of process F in ([18]). O

Proof of Lemma[{.16 Let us first fix § > 0, then fix (Az,e) € Bs(0,0), where Bs(0,0) is a ball of

radius § in R? centered at (0,0). Let us consider

XzAa:,za _ (.1‘—|—ZAZC) + (ﬁ—l—zAl‘HAx —i—ZEHa) 'RZ‘E, = (—1,1).
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By direct computations, we get

XzAm,zs “ ~
862 = Az + (A:cHAx + 5H5) -R°+ (H + 2AzHA® + 2¢H®) - R,
(71)
82X,2Aac,zs ~
g =2 (AsH +eH) - R

Next, we set
W(z):=U (X;A”’Za> . ze(—1,1).

By direct computations, we get

8X2Ax,z6
W/(Z) _ U/ (X;Aa:,za) gz 7
(72) A 2 A
A L) Gl A 92 x 2A.ze
= () (P o ) P

With process G being defined in , let us introduce
J:=1+ |GT’ .

From , via , Assumption and Lemma we deduce that there exists a constant b > 0,
which does not depend on ¢, such that

(73) sup |[W/(z)|+ sup |W'(2)| <bU'(X7)exp (b3J) (J + J?).
ze(—1,1) ze(—1,1)

As 1 < J < J?, we deduce from that, for every z; and 29 in (—1,1), we have
W(z1) — W(z2)

21 — 22

(74) < 2bU'(X7) exp (b0.J) J2.

N ’W’(zl) — W'(z2)

21 — 22

Now, by choosing a sufficiently small §, we obtain from Assumption via Holder’s inequality that
the right-hand side of is integrable. Now, the assertion of the lemma follows from the dominated
convergence theorem and Lemma O

Lemma 4.18. Let x € R be fized, suppose that the assumptions of Theorem hold, and denote
y = ug(x,0). Then, we have

u(z + Azx,e) > u(z,0) + (Az €)Vu(z,0) + %(Aaz e)H, <A:> + o(Az? + £%),

Proof. Assumption and [KS06a, Lemma 7 and Lemma 8] implies, in the terminology of [KS06al,
the sigma-boundedness of R. Therefore, [KS06a, Lemma 6] asserts that we can approximate elements
of M? by bounded martingales in M?. Now, the assertion of the lemma follows from Lemmal4.16, O

4.9. Preliminary results for the bound for v.
Lemma 4.19. Let x € R be fized and Assumptions of Theorem[{.1] hold. Then, we have

“Eq [X'TFT} = Eg [XT (gc CMET gt )] = Eg [H : RT} — Eg [G1].
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Proof. Let us recall R® and R? defined in and consider
Eq A - fr| = Eq [H (¢ Me+y- M4+ / d<M>sCs) }
T
(75) =Eg [H ( / Dsd(ME) XE

+¢-Rd—/0 wsd<Md>s)\§—|—/0.d<M>sCs>T]-

We observe that, by Assumption we have the square-integrability of both H- R% and H- R‘%.
Therefore, in view of the uniform componentwise boundedness of ¢ and ), (qﬁTﬁ ) -(R°) and (1/1Tfl ) .
R? are in H?(Q). Therefore, we can rewrite the latter expression in as

o[- (- [ s - [wavryai+ [aon.c) |
= Eg [/OT ol <d(MC)Sg§ + d<Md>sg§)] :

where, in the last equality, we have used the first-order implicit differentiation Lemma Next,

from Lemma [4.15] we have

g [ [ 7 (@0 o)~ (- ) (5035 + 1252

=Eq (x +H- RT> (gc . M;H +g?- M%Hﬂ

i s 0 )]
which, in view of definitions of processes F' and G in , completes the proof of this lemma. O

Lemma 4.20. Let x € R be fixed and conditions of Theorem hold, y = uy(z,0). Let L and L
be locally square-integrable P-martingales that are orthogonal to both M¢ and M®. Let B2Y and B¢ be

bounded predictable processes. Let us denote

(76) NAY .= gAY (A0 ppetl )0 ppdHy L T gnd N# o= 5 (=40 MeH 40 Ay 4 [H

and suppose that the following processes are bounded:

(1) T, L, (L"), and [L7);

(2) ﬂAy . Mc,H and ,85 X MC’H,'

(3) BAy . Md,H and ,85 X Md’H;

(4) (6% - M"] and [6= - M"];

(5) [F,N2Y] and [F, N¢];

(6) (g*- M) Np¥ and (g°- MeMT)_ - Np¥;

A A o e <A

(1) (Jfy AT a(v), )7-NT?/ and (J; AT d(M%),65) - NV

(8) (F+ Ns) . Ne.
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Then, with
JAE i (7 = ) M= (A=) - M
(77) + 8- ((—75+7°) -MC+(u€—u0)-Md)
+ (AyBRY + ef°) - (—75 M+ 5 Md) + AyL + €L,

there exists 6 > 0, such that for every (Ay,e) € Bs(0,0), we have

Y
—& (JAv=H) € Y(1,e).
Yy
Remark 4.21. For %Y and $° as in Lemma with A>¢ and \*? being given by and +° and

V¢ by , (AyBAY + £6°) - (—’y6 - M€+ v Md) is orthogonal to A\&¢ - M¢ + \&% . M4,

Lemma 4.22. Let x € R be fized, assumptions of Theorem hold, and let us denote y = uy(x,0).
With L and B2 satisfying the assumptions of Lemma and K = B2 . (=4 - M¢+ 19 M%) + L,
we have

2

R 1 e AHAK,
vy | B(Vr) | o+ K - [HK} -y AA

T 1+ AH

A 2 2

. (1 . e AH,AK |1 AK
—Xr *—l—KT—[H,K] = A X | 5 KA (7)2
Yy T 1+ AH, Yy <7 (1+AHS)
. 2

. 1 N AH,AK
= yEq | B(¥Y7) f—i—KT—[H,Kr_ZSiAS
Y T s<T1+AH5

Proof. Let us recall the transformation - in . As K is a bounded martingale under Q that is
orthogonal to X, we deduce that

2

(1 .7 AH,AK |1 AK,)?
Eq |- X1 —+KT—[H,K} —Y =t X | S+ K (7)2
Yy T 1+ AH, Yy <7 <1+Aﬁs>

s<T

/1 2. /1
=5q | S () K (yﬁ[KH]T)]
2 .
= Eg —QXTKﬁ + X7 ([KH]T — (K{!)Qﬂ

o [r ([~ (k2)7)].

Now, by the boundedness of K and [K¥] and Assumption and the orthogonality of K to X
under Q we have that X ([K H ] — (K H )2) is a uniformly integrable Q-martingale, we conclude that

B [Xr ([K7], - (§)*)] =0,

and the assertion of the lemma follows. O
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Lemma 4.23. Let x € R be fized, assumptions of Theorem hold, and let us denote y = uy(x,0).
Let B2Y, B¢, L, L, N®Y and N¢ be as in Lemma . Then, we have

5 1 - - 1 - .
Eg [—XT { (y + NTAy> (FT + N;) — [y + N2 F + Nf]
T

+857 - (=) - M+ 0y - M) L] = Eg [GT (; + Nﬁyﬂ ,

where processes F' and G are defined in .

(78)

Proof. First, to match the terms containing i in , we need to check that

(79) Eg [H : RT} ~ Eg [—XT (—gc M g NT>] :

which follows from Lemma and the orthogonality of X and N¢ and which implies that
B [~ Xr (—g° Mg" = g* MP" + N7 )| = Bq |-Xp (=g M - g% MEM)]

With A¢ and A? defined in (49)), R and R? are defined in (50), as H - R € H?*(Q) by Assumption
from Lemma we deduce that both H - R® and H - R% are in H2(Q) and are orthogonal. Using

Lemma we can rewrite the right-hand side of as
Eq |H - (¢ M€t p- M4 / d(M}SCS> Nﬁy}
L 0 T

(80) . . .
—Eq |A- (¢ R RO [ g | d<Md>sg§) gy

L 0 0 T 1
Now, using Lemma we can rewrite the right-hand side of as

Eg |H - (¢-RC+¢-Rd+/ d<MC>sg§+/ d<Md>sgf) Np?
0 0 T i

: T . T ~
(81) =Eg /0 H] pod(MC), (—WOS)T@A@/ + /O H]od(M®) (yg)TﬁsAy
T T
ATd CSC ATd dsd ~Ay:|‘
+</0 Hs <M> gs+/0 Hs <M > gs> NT

Now, let us consider the term Eg [—XT (BAY - ((—°) - M 4 (W0 Md’H)T)] in the left-hand side
of (78). Using the martingale property of 82V - ((—°)" - M 4 (10) - M%H) under Q and Lemma

we can rewrite it as follows.

EQ __XT (lBAy . ((_,YO>/ . MC,H + (I/O)/ . Md7H>T)}

(82) =Eq |-H - Ry (BAZ" ((*70)’ MO (0 Md’H)Tﬂ
(T AT 0T pA Tt d 0T pay]

“Eq | [ Alawre) (60 g+ [ ATawr (<)) 82|,

Now, applying Lemma we can rewrite the latter term in as

iy , _
Bo | [ ATd0r. (09 820+ [ ATd0rh, (08T 6
(83) - - :
=Eq / ﬁIsT¢sd<Mc>s (_VS)T/BSAy +/ I:IsTwsd<Md>s (Vg)TﬁsAy )
LJO 0 i
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which up to

T T
4 o [( [ ATau g+ [ ATa0%.g0) 577
0 0
term coincides with the right-hand side of .

Now, in the left-hand side of , let us consider the term
(85)

Eq [~ Xr {(NRY) (=g M = g% ME - N7 ) — [N29, =7 Mo — gl T NE]TH .
As (NAy) (—gc M —gd ppH N5> — [NAy, —g¢- MSH — gd. Mt NE] is a Q-martingale
and since both N¥ and N¢ are orthogonal to H- R, we deduce that can be rewritten as
(86)

Eg [_f] : RT{<N$1/> (_gc MEH gt +N§) B [NAy’_gc M gt +N5}T}]
= Eg {_ﬁ . RT{<N$9) (_gc MET gt MZ%H) _ {NAy,_gc CMOH gl Md,H}TH _
Let us observe that

(Nzéy> (_gc ) M;H _ 4t M;EH) B [NAy’_gc CMOH gl Mdﬂ]T
<A H ~ A <A 0 A

= —(N_ygc) . ch,, — (gc . MC,H)_ . NTy _ (N_ygd) . MT, _ (gd . Md’H)_ . NTy'
Consequently, we can rewrite the right-hand side of as

(57) Bo [~8 - Ry {~(W3%%) - Mg — (g - 2aoH)_ N
87

—(N2Vgh) . Mgt~ (gt M) Npv ]

By the assumption of the lemma (g¢ - M%H)_ . NTAy and (g¢- MeH)_ . NTAy are bounded. Therefore,
taking into account the orthogonality of N2% and H - R under Q, and lemma we can rewrite

"
T T
(58) Eq [ | a2+ [ AT d<Md>s<Nﬁygs>} .
0 0

Now, as fOT H] d(M9),g¢is integrable (in view of Lemma and Assumption and [ HI d(M9y,q¢
is predictable, by [Pro04, Theorem IIL11], [ H] d(M%),g¢ is natural. Therefore, by the definition of

natural processes as in [Pro04, page 111], we have

(89) E H/;ﬁ;d(Md)sgg,NAy] T} = 0.

Next, using [JS03, Theorem 1.4.49], we deduce that
T ~ T )
[ a2 = ([T ane.e) 58
0 0
([ aTaortgt) o wpre | [ AT am.g 55
0 - 0

As a result, from and the assumptions of the lemma, which imply that

e |( [ ATaor.g) <527 <o

T
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we obtain

B[ [ AT (v

Similarly, we get

T
E [ | a2y
0

We conclude that, we can rewrite as
T T
(90) Eq K /0 A d(M°)og5 + /0 H{ d<Md>sg§> NTAy} ,

which is precisely the term. The assertion of the lemma follows from combining the estimates

above.

e [([ ) 5]

| =e|(/ iy 4015 ) 53

O

Lemma 4.24. Let © € R be fized, assumptions of Theorem hold. Let 55, L, and N¢ be as in

Lemma[{.20. Then, we have

—Eq |:XT { (FT + N%>2 - [F + NS}T +26°- ((—’YO)/ MO (0) - Md’H>

T

9 _ o\ ageH i o rd,H (A0 A, 1"oard,
(91) (0" MM — 0y M 5 (=) M 4 00y )

= 2Eq [(FT + N;,) GT} :

where processes F' and G are defined in .

Proof. Using Lemma one can show that, on the right-hand side of , we have

Bq [(—g° - M — g« ME™)(H - )]

(92)

—=Eq |(—g° - My — g M) (AT d(MO) g5 + H] d(M ) gt + H - 6 R+ -y - RY)|

—Bq |(~g°- My — g MP") (BT a(ME)og5 + 1] d(M7) og7)

_ﬁg¢sd<Mc>sg§ - ﬁ;¢sd<Md>sgg] >

where, in the last equality, we used Lemma

4.15

. Next, using the martingale property of (—gc CMeH — g ppbH

[—gc CMeH —gd ppBH NE} under Q and the integration by parts formula, we can rewrite the

. ~ \2 -
_EQ [XT{(_QCM;,H _ng$,H+N1€> N |:_gc‘Mc,H —gd'Md7H+NE:|T}:|

term in the left-hand side of as

(93)

—2Eq [_ﬁ[ . RT{(—gC CMEH g b Na)

N ~ \2 ~
_EQ |:XT{<—QC'M%H—gd'ng’H%—N%) - [—gC-MC’H—gd~Md’H+N€}TH

' (_gc Mo — gt A +N6)T}] '

In turn, using the orthogonality of N and H - R under Q, we can rewrite the right-hand side of

as

9Eg |:_I:I‘RT {(_gc_Mc,H _gd'Md,H_i_Ne)_ . (_gc.Mc,H _gd_Md,H)TH 7
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which, in turn, via Lemma can be restated as
T N
00 2| [ AT (a0 + ar ) (—gt Mo - gt a5 ]
0 5=

Using Lemma and Assumption we deduce that [ H (M¢)g¢ + [ H] (M%) 92 is the pre-
dictable quadratic covariation of the pair (I:[ “R,¢¢ - MH 4 gd . pdH ). Via Assumption
Doob’s maximal inequality (see [KS98, Theorem I1.3.8(iv)]) and the Burkholder-Davis-Gundy inequal-
ity (see [CEL5, Theorem 11.5.5 and Remark 11.5.8]), we deduce that there exists 6 > 0, such that
IN H] (M®),g¢ + IN I:I§<Md>sgg’1+6 is of class D in the sense of [KS98, Definition 1.4.8]. Therefore,

in view of Assumption [3.1] and Hélder’s inequality, we have

(_gc LMot gd CMBH Ns) is of class D.

/ T (M®)og + / T (M) g
0 0

Now, via localization, integration by parts and [JS03, Proposition 1.4.49(c)], we can rewrite as

T
e {(—gc gt Mg ) [T (a0 ¢ d<Md>sg?)] |
0
We recapitulate that

- Egp [XT{(—QC MG — gt M +N%)2 B |:_gc CMOH g Nah}]
(95)
=2 [(_gc Mz - gt My + N%) /OT H/ (d<MC>59§ + d<Md>sg§l)} .

Next, similarly to the proof of Lemma (and to the proof of [MS24b, Lemma 5.19]), we can show
that

Eg [~XrB° - ((=10) - MoH 4 () - M) ]
—mo [(%9) (11 )]~ o [(0) ([ A7 ()i + atarf) )|

Now, in the left-hand side of , let us consider

(96)

*EQ [XT {7()\0,(:)// . M;H I ()\O,d)// . M%’H
(97)
+6' ((_,YO)// . Mc,H + (VO)// . Md,H>T}] )
Using Assumption |3.1| and [Pro04, Corollary I11.3|, we can show that

g y
_()\O,C)// CMeH ()\O,d)// MY 3. ((—VO)" CMeH 4 (1/0)” ] Md,H) c H%(Q).

Therefore, using Lemma we can rewrite as
(98)
B [(— - Re) {0 Mg — 0y 227 4 (=) o 1 Py at) Y]

—mo [ [ AT (20 () 8e) - [ AT (-89 + (080 5.
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Next, using Lemma we can rewrite the right-hand side of as
T 7T 0,c\/ 0 \/ T T AT d 0.dr/ N T
2Eq [/0 1] 9ud(MC) (=22 + (—1°)) " 55) +/0 I psd(M%, (=23 + (02)') 53)]

T T
=—2Eq [/ H{ ¢sd(M) g5 +/ H§¢Sd<Md>sg§l] :
0 0

We recapitulate that

~Eg [XT {_()\O,C)/l MOH 0y H g <(_70)u MEH L (0 Md’H) H
(99) T T
= —2Eq U H§¢sd<MC>sg§+/ H;rwsd(Md>sg§l] :

0 0

Now, from , , and , we conclude that holds.

4.10. Bound for v.

Lemma 4.25. Let x € R be fixed and conditions of Theorem hold, y = uz(x,0). Let f2Y, 5%, L,
and L as in Lemma|4. 20| and consider
Ay

U(Ay,e) = (1 + y

) £ (JAuSH) | (Ay.<) € Bs(0,0),

where JAYE is given in , 0 € (0,y) is sufficiently small, so that the jumps of JAvEH take values
in [—1/2,1/2], for every (Ay,e) € Bs(0,0). Let us define

@(Ay,e) = E[V (YrU(Ay, )], (Ay,e) € Bs(0,0).

Then w admits the following expansion at (0,0):

w(Ay,e) = w(0,0) + (Ay ¢)Va(y,0) + %(Ay e)Hy (Ay) + o(Ay? + €2),

€
where
5(0,0) = ~vy (5, 0),  @(y,0) = ~yEq |XrFr]
and
(100) H <7I)~AyAy w~Aye> ’
WAye Wee

where, with processes F' and G being given by and N2V and N¢ by , respectively, the compo-

nents of Hy,, are given by
. 1 a2
rlI}AyAy = ZJEQ B(YT) < + Ty ] )

[ - 1 - - 1 -
waye = yEq | B(Yr) ( + $y> (FT + N;) + (y + NTAy> GT} :

- 2 ~
Wee = y]EQ B(YT) <FT + 5’;) + 2(FT + N%)GT:| .
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Proof. The proof follows [MS24bl proof of Lemma 5.16]. Let us consider

(01) & (7205), =exp M L[] 1S (log(1 + AJRUSH) - gt
s<T

As
3]

1
2
we obtain that, in (101)), the series > (log(l + AJAYE H — AJRYE ) converges absolutely for every
s<T
(Ay,e) € Bs(0,0), P-a.s., and we have

log(1+z) — x| <a?, for every =€ [—

D flog(1 + Ag2vety — AJpveH| < [JAveH]

s<T
With ¢¢ and g% being given by (I7)), next, we observe that for every (Ay,e) € Bs(0,0), there exists
C > 0, which does not depend on (Ay, ), such that

(102) £ (78ve), < Fw(Ay,e) < Cexp (Cle| (Frl + [Fly).
Furthermore, the series of term-by-term partial derivatives of
3 [log(L + AJAVSH)  AgAu| < [jAvet]

s<T

converges uniformly in (Ay,e) € Bs(0,0), P-a.s., where additionally the term-by-term derivatives

of <log(1 + AJRYSy AJSAy’E’H> are continuous in (Ay,e) € Bs(0,0), P-a.s.. Therefore, we
s<T
obtain

72(1 (1+AJA9757H)—AJAZ/’S’H) __ZW(<( 5 )TﬁAy> AMd7H—|—AZH)
8Ay s<T Og ) ’ - s<T 1 —'I' AJsAy:‘EvH Vs 5 s B ’
0 Ay.e, H Ay,e,H Az

o v, Hy veHY _ _=es

5 Z (log(l + AJS ) — AJg ) Z 1+ AJSAy’E’H

s<T s<T
X (S AMI 4+ (7)) T (B, + Ay +282) ) AMBH 4 ()T 52) AMBH 4 ALFT).

For a fixed Ay and ¢, let us denote I := J2%SH By direct computations, we get

OAI
Vay(Ay,e) 1 N O [, 0I° oy Gag AL
U(Ay,e) y+ Ay  0Ay " OAy = 1+ AL T’
Ve(Ay,e) _ (O [, 0I°] = 25RAL
U(Ay,e)  \de | e —~ 1+ Al
Therefore, we obtain
‘PAy(AyaS) — 4 N[ﬁy’
U(Ay,¢) (Ay,e)=(0,0) Y
\IJE(A:U,S) — FT +N§:“
V(&Y€) laye)=00)
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Similarly, we can show that the series of term-by-term second-order partial derivatives of

> (log(1+ AJpw=Hy — AgpveH)
s<T
converges uniformly in (Ay,e) € Bs(0,0), where moreover the term-by-term second-order partial
drivatives of ) (log(l + AgRvey AJSAy’a’H) are continuous in (Ay,e) € Bs(0,0). Therefore, we

s<T
get

2

LAVEOICVE B (S SN T PTG [ o - e
U(A.€) y+Ay  0Ay | T9Ay 1+ Al

s<- T

- 1 N Iy [, P17 oI
(y+ Ay)?  0Ay? T0AY? ], [0AY]

2
82A15AI+<8AIS> AL\ 2
O0Ay? & 0A
S Doy (7B ) an
s<T s<T

1+ AI 1+ AI

Consequently, we obtain

\I/AyAy(Aya 5)
U(Ay,e)

1\ 1 Jore AL\
o) 2] 5
(Ay.c)=(0.0) <y ! y> L0Ay]p ; 9Ay

Similarly, we deduce that

OAI
Uaye(Ay,€) _ 1 N or Iz arc | Z ong Dl
U(Ay,e) y+Ay  0Ay "0Ay — 1+ AL
S5 T
ol oI° 98I AT &It I oI ore
X _ IC _ _Oe TS + _ c _- - == ——
Oe " Oe —~ 1+ AL ., OAyOe T OAYOE | e OAy | 1
9%AIL OAILs OAI, OAI; OAI
B Z oagos As + G0 %o: +Z a0 AL
T
= 14 Al = (1+ Al)
As a result, we get
WA ye (A, 1 - - 1 - -
YayelBy, o) — < +N$y) (Pr+N7) - [ +NAy,F+NE]
V(Ay,e) (Ay,e)=(0,0) ) Y T
+ BAy . ((_,YO)/ Mot + (1/0)/ . Md’H>
T
Likewise, we obtain
2
VeelAyoe) _((OF_ [ 01 g~ T50AL ) ) O [y 1) (oI
U(Ay,e) Oe " Oe — 1+ Al Oe? P02 | L0 g
S T

92AI, Al + (8AIS)2

9e? 3 5 2
_ 3 € 0 Al..
2 1+ AIL +Z<1+Ms) )

s<T s<T
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and thus

U . (Ay,e)

U(Ay,e) = (Pre M) = [P 8] 2 () A ) )

(Ay,)=(0,0) T

_ ()\O,c)// . M%,H o ()\O,d)// . M%’H + 8- <(_70)// . MeH + (VO)// . Md’H>T'
Next, let us fix (Ay,e) € Bs(0,0), and consider
W(z):=V (YT\II(sz, zs)) , ze€(—1,1).
Then, we have
/ 1 (v ~ 0
W' (z)=V <YT\I/(sz, z€)> YT&\I'(sz, Z€)
=V’ (?T\ll(sz, za)) Yy (Uay (2Ay, 26) Ay 4+ U (2Ay, z¢)e) .
Using Lemma we get
. 1 .
W'(2)] < <|V'(YT)\ + o [log (W(Ay,e))]) Y7 |Uay(2Ay, ze) Ay + V. (2Ay, ze)e| .
With
J =1+ |F|+[F]p,

from ([102]), can see that there exists a constant by > 0, such that, for every z € (=1, 1), we have
(103)
1
U(zAy,ze) < brexp (b16J), —log(¥(zAy,ze)) <bidJ, and |V (2Ay, ze)| < byJ exp (b16.]),
1

so that

(104) sup  |[W'(2)| < Yr (\XT| + b1<5J> exp (b16.7) by J.
ze(—1,1)
Similarly, we get
W"(z)=V" (?T\I/(sz zs)) Y2 <8\I/(2Ay ze))2 +V’ (YT\I’(sz ze)) YTa—Q\II(sz ze).
’ 0z ’ ’ 022 ’

Using Assumption [2.1) and Lemma [4.9] we deduce that

2

R . 1 0
+Yr <|V’(YT)| + C—| log (¥(zAy, z¢)) ) '822\1’(sz, z€)
1

& (%\I/(sz,ze))Q

(105) W) < -~ G Ay 2]

As
82

2
522

2Ay, ze) = WU ayay(2Ay, ze)Ay? + 2U Ay (2Ay, ze) Aye + V.o (2Ay, 2e)e”,
using (102), we deduce that there exists a constant b > 0, such that, for every z € (—1,1), we have

82
(106) ‘a

Z2\Il(sz,za) < bexp (55,]) J2.

From ((105)), using (103) and ([106)), we deduce that there exists a constant by > 0, such that

(107) sup  [W”(2)] < bo Vi exp (b28J) J% + Y (|XT| + bléj) by exp (b28.7) J2.
ze(—1,1)
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Now, from ((104)) and (107]), we obtain that there exists a constant b > 0, such that, for every z; and
z9 in (—1,1), we have

W(z1) — W(z2)

108
(108) po——

N ‘W’(Zl) — W'(22)
zZ1 — k9

<V (yXT\ + b5J) exp (b3.J) bJ.

By passing to a smaller 4, if necessary, and by using Hoéllder’s inequality, we deduce from Assumption
that the right-hand side of is integrable. Furthermore, as the bound given by the right-hand
side in is uniform in (Ay, €) € Bs(0,0), we deduce the assertion of the lemma from the dominated
convergence theorem and Lemmas [4.22] [£.23] and [4.24] O

Similarly to Lemma as a consequence of Lemma and [KS06al, Lemma 6], we can establish

the following bound for the dual value function.

Lemma 4.26. Let x € R be fized, suppose that the assumptions of Theorem hold, and denote
y = ug(x,0). Then, we have

v(y + Ay,e) < o(y,0) + (Ay £)Vo(y,0) + %(Ay e)H, (A;,) +o(Ay? + ),

where Vu(y,0) is given by (27).
4.11. Proofs of Theorems and

Proof of Theorem [{.2. First, using the optimality conditions for the optimizers to and , we

get
N 1
B(¥r) (y n N%) — uyy (14 M),
(109)
R 1
A(X7) (1 + MF) = —ugy <y + Né’i) .

Multiplying these two equations and taking the expectation under QQ, we deduce that
(110) Uz (2, 0)vyy(y,0) = —1.

Next, using the standard techniques of calculus of variations, for some M € M? and N € N2, we get

B(Y7) (N5 + Fr)+ Gp =d (1 + Mp),

111 -
( ) A(XT) (quﬂ + GT) +Fr=c (; + NT> .

Multiplying the first equation by (% + N%) and the second by (1 + MF) and taking the expectation
under QQ, we deduce that

d=vye and c= —Uge.
So, we can rewrite (111]) as

B(Yr) (N§ + Fr) = vy (1+ My) — Gr,

112 -
( ) A(X7) (M7 + Gr) = —uge <; + NT> — Fp.
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B(Yr) (N§ + Fr) = vye (1 + M§ + My — M$) — Gr,
(113) R .
A(XT) (M% + GT) = —Uge (y + Nij + Np — N%) — Frp,

which, using (109)), we can rewrite as

N N 1
B(Yr) (N5 + Fr) = —£ B(Yr) ( + Ni%) + vye (M1 — M7) — G,
(114) Zyy Yy

A(X7) (M5 + Gr) = u“ A(X7) (1 + M§) — uze (Np — NY) — Fr,

rx

Multiplying the first equation by A(X7) and the second by B(Y7), respectively, further deduce that

v 1 N

(NF + Fr) = 22 (54 N2 ) + A(Kr) (0 (M = M) = ).
vy

Uge

(quﬂ + GT) = (1 + M%:) — B(?T) (U,xa (NT — Nij) + FT) .

Uz

Next, by rearranging terms, we obtain

N - (1
A7) (vye (MF — My) + Gr) + Fr = 22 ( + N;a> N
(115) Zyy y

B(Yr) (uge (N7 — N) + Fr) + Gp = —= (1 + M§) — M5.

rxr

Using characterizations of the unique minimizers to (20) and , respectively, in (111]), we get

M = vye (M™ — M), —uge = 22,
Vyy
(116) o
N® =uze (Np = NY),  vye =

Ugy

Now, (110) and (116 imply . Next, plugging characterizations in (116)) formulas into (115]), we

get
5 1
A(Kr) (M + Gr) = —te ( ; N%) (NE+ Fr),
(117) Yy
B(Yr) (N7 + Fr) = vy (1+ Mf) — (M7 + Gr) .

Now, (109) and (117) imply and . It remains to show . Plugging the representations
from ([L17]) into and , respectively, we conclude that

et B [vge (1 4+ ME) (N5 + Fr) — (M5 + Gr) (NG + Fr) + 2Gr Nz + 2Eq [FrGyl

(118)

1
—% = EQ [—um (y + N%) (Mjaw + GT) — (NQE« + FT) (Mr_;:ﬂ + GT) + QM%FT] .

Adding these equations, we get

v — U
T =Eq [vye (1 + MF) (N§ + Fr) — (M§ + Gr) (N + Fr) 4+ 2GpN5] + 2Eq [FrGr]

(119)
1
+Eq [ux (y + N%) (M§ + Gr) — (N5 + Fr) (M§ + Gr) + QM;,FT] .

Canceling the Eq [2M5.Fr] and Eq [2G7 N5 terms and using the orthogonality of M¢ and N¢, we can
rewrite the right-hand side of (119) as

1
Eq [vyg (1+ MF)(Ny+ Fr) — QGTFT] + 2Eq [FTGT} + Eq [—um <y + N7y~> (M%7 + GT):| .
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Next, cancelling the Eq [2G7Fr| terms and using the orthogonality of M and N¢ again, we can

rewrite the latter expression as
1
EQ |:Uy5 (1 + M%) Fr — ug, <y + N%) GT:| .
We recapitulate that

— 1
(120) % —Eg [vya (1+ ME) Fr — ug. <y + N§£> GT} .
On the other hand, by multiplying the equations in (117)) and taking the expectation under Q, we
obtain ) )

gumvya =[Eq {um <y + N%) Gr — vye (1 4+ M7) FT] )

Comparing this to (120)), we get

Vee — Uge 1
= — —UgeUye,
Yy Yy

which implies . U

Proof of Theorem[{.3. With Theorem and Lemmas and proven, the remaining steps
parallel [MS24bl proof of Theorem 4.15]. O

Proof of Theorem[{.5. Let (", Ay™), n € N, be a sequence convergent to (0, 0) and such that ["] < o,
where ¢ is given by Lemma Let us set

A= Yr(y + Ay, e"), neN,

and observe that, by Lemma f/(y + Ay™, e")’s are nonnegative P-martingales.
Next, let us fix bounded predictable processes 52Y and 3¢ and locally square-integrable P-martingales
L and L satisfying the assumptions of Lemma and with J2¥"=" be given by , let us define

N

(121) "= 53 (y+Ay™) € (JAV=H) o= (JAEH) L neN,

T )
Similarly to the proof of Lemma [2.6] one can show that there exists ng € N, such that
(122) e LYP) and 6" € LYQ), n > ng.

Let us fix n > ng and consider a correspondence (in the sense of [AB06, Definition 17.1]) ¢ : @ — R
defined as

" (@), 7" (W)], if " (w) <9"(w),
Pw) = W), W), if 2Mw) <n"(w),
{0}, if  0Mw)=n"w).

Then, the distance function associated with 9 is given by
S(w,y) = ((y = 7"W)" + 0"(w) = 9) ") Lypr @) <ir @)
+ (=" (W) + (7"w) = 1)) L @) <im @)}
Yl @)= @y (W y) € XxR.

One can see that ¢ is continuous for every w €  and is measurable for every y € R, that is, J is a

Caratheodory function in the sense of [AB06), Definition 4.50]. Therefore, by [AB06, Theorem 18.5], ¢
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is weakly measurable in the sense of [ABOG, Definition 18.1]. Additionally, ¥ has nonempty compact

values by its construction and

gwy) = 5 (V") (@) = "@)P, (@,9) €2 x (0,00),

is also a Caratheodory function by the continuity of V”, which, in turn, follows from Assumption
Consequently, we deduce from the Measurable Maximum Theorem, [AB06, Theorem 18.19], that

there exists a random variable " taking values in [ A 7™, n™ V 7], such that

(123) " (w) € argmaxg(w,y), w € Q.
yEp(w)

That is, £” is a measurable selector of the arg max correspondence. Therefore, we have
(124) V) = V) 2 VG =)+ V€ 0 — i 0z e,
As —V'(1™) are optimizers to the primal problem, by [Sch01, Theorem 2.2], we get
(125) E[V/@)i"] = (u+ Ay")oy(y + Ay™.e"), 0> no.

For every n > ng, as E[V'(7")n"] = —E [X%n"}, following the definition of the admissible wealth
processes in [Sch01, Theorem 2.2] and its consequence, , let us consider an approximating sequence
of bounded from below wealth processes with the initial wealth at most x + Az™, and denote this
sequence X™™ m € N, such that U (X;fm) converges to U (X%) in L!(P). By Fatou’s lemma, we
get

(126) Eq [ X1 tp50)0" | < liminfBq | K7™ 1 gnms)0"] . 0> no.

From Lemma [42] we deduce that there exist constants ¢y > 1, ¢, > 0, and ¢ > 0, such that

(127) (—z)1% <& (U™ (x))+ &, z<0.

Therefore, we obtain

- éo - 280 -
(128)  2Eg [(—X;’"ﬁ ey ] < Eg [(—Xj”:% (xmm<op) ] +Eq (0",
Next, from Assumption similarly to the proof of Lemma [2.6] one can show that there exists ng >
N - 26
ng, such that, for every n > n, the term the Eg [(9”)260} < 00. Let us bound Eq [(—X;’ml{j(;,m@}) O]
term in ((128) as follows.

- 280 Yo

=n.m 2¢o
y <_XT 1{X;7m<0})

i)

(129)

. N 4
Here Eg [YT] < oo by Assumption and E [(—X;’ml X <0}> 0} is bounded uniformly in m

by (127) and the boundedness in L!(P) of U (X;m>, m € N. (128) and (129) imply the uniform
integrability of (—X';’ml{j(;,m@})m, m € N, under Q, for every n > fig.
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Therefore, by the construction of n" in (121]), we deduce that, (—X;m) 1, g <" m €N, is
uniformly integrable under P, for every n > 7, which together with (126)) imply that

Eq {X%H"] < li&g}fE [X';i’m’“n”} < —vy(y+ Ay"™,e"), n>np.

and thus

(130) —E V@M < —(y+ Ay")uy(y + Ay",e"), neN
Now, from and , we conclude that

(131) E V') (0" = 4™)] >0, n> .

Therefore, from and , we obtain

(132) E[LV(€n) 0 = i")?] S BV - oly+ Ay, e"), 0> o,

With H,(y,0) given by in Theorem and H, given by (100) in Lemma from Theorem
and Lemma we get

E[V(n")] —v(y + Ay",e")

1
133 li <-|Hy,—H 0)]|.
(133) 1712ri>solip (A2 + ()2 < 2| w (Y, 0)]
Combining (132]) and (133]), we deduce that
. o E[venor -] I
e Ayt (emE T2l el

We remark that, by the choice of 2Y, 8¢, L, L, such that 82Y - (_,YD CMOH 4 0. Md’H) + 7 and
Be - (=0 Mot 40 MaH) 4 L7 are close in H2(Q) to the optimizers to and (22), NY and
N¢, respectively, we can make the right-hand side of arbitrarily small. Such an approximation
of elements of N2 by the bounded ones is possible by [KS06al, Lemma 6.

Next, via Holder’s inequality, we deduce that
1 1
S nieny (on _ sn)2| 2 1
Elln — i) _ ((Ay")*+(e")?)2 E [EV € (" =) } E[ 2 ]2
n n| — n n 1 I"N(en '
|Ay™| + [en] |Ay™| + [en] ((Ayn)2 + (e7)2)2 vrEr)

As Assumption implies @D, by taking into account that " is given by by (123]) and takes values
in [n" A 9", ™ VA", from (9), we obtain

(135)

2 . .
Vi(En) < 206" <2c0 (" +0"), n>ng.
Furthermore, since ™ and 7™ are terminal values of P-martingales, we get
2 . -
(136) E [V”({")] < E[2¢o (0" +10")] =4ca(y + [€"]), n > no.

From ((135)) and (136)), we deduce that, there exists a constant ¢ > 0, which does not depend on the
choice of BAY, B¢, I, and L, such that

Elln™ — pm
(137) lim sup M < ¢lim sup
n—oo  |AY"| + |7 n—00 ((Ay™)2 + (e7)?)
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Combining (134)) and (138]), we obtain that

Ellp™ — pm ~
(138) tim sup - — 1"l g\Hw—Hv(y,0)|.

n—oo |Ay"| +len] T

Next, we have

E[|i" = % (v + Aym(1+ yNY) + " (N5 + yPr))|
lim sup
n-so0 |Ay"| + [e"]
E[|7™ —n"
(139) < lim sup M

n—oo |Ay"| + [en]

E | = % (v + Aym(1+ yNY) + " (N5 + yPr))|
+ lim sup '
n—s00 |Ay"| + [e”]

If we choose 82Y, 8¢, L, and L, such that gAY - (—'yo CMOH 40 Mde) +ZH and

5° - (—70 M 40 Md’H) + L are sufficiently close in 2 (Q) to N¥ and N°¢, respectively, we can
make the right-hand side of arbitrarily small, as the first term in the right-hand side can be
made arbitrarily small by and the second by the construction of n™’s in , which ensures
that

limsup ———FE
nooe | Ay F €]

can be made arbitrarily small by the choice of 82Y, 3¢, L, and L. Thus, via (139)), we deduce that

1 [ )%
U ?T (y+Ay"(1+yNy) +€" (yNf + yFr)) ‘

1 Y.
1 T ~n T n Y n € —
L (P) nlg]go TNIFNED 7 , (y + Ay"(1+yN7) + " (yN7 + yFT))‘ 0.
This shows . can be proven similarly. O

Proof of Corollary[4.6, By direct computations, we have

1 {YT(y +Ay,e)  Yr(y,0)

(1+ AyNY. +e(Fr+ N%))}

|Ay| + [e] y+ Ay
(140) :11{? y+ Ay,e) — Yr(y,0 <1+Ay<1+Ny>+z—:F + N7 >}
y‘Ay’+|€’ T( ) T( ) y T ( T T)

1 . 1 1 1
PR £ +A,5< _> YA},
IAy+|€{ W+ A8s.e) y+Ay oy =y

where, in the right-hand side, the first term
1 1
y Ayl + e
by Theorem and the second term can be rewritten as

N 1 1 - 1
Yy + Ay, ) Y, 0)=A
{Fo+ane (S - 1) + 1.0 58

{?T(y + Ay, e) — Yr(y,0) (1 + Ay (; - N%) +e(Fr + N;)) } — 0 in LY(P),

Ayl + [e]

Ay { 1 ~ ~ } Ay2 YT(:U,O)
= Yr(y,0) — Yr(y + Ay, e + .
ST e sy (@0 = Vel Ave)) g+ ot e

. A 1 Y ¥
In the latter expression, the first term, IAy\-le-lal {y(erAy) (YT(y, 0) — Yr(y + Ay, 5)) }, converges to 0

YfT (y70)
2(y+Ay)

2
in L' (PP) as a consequence of Theorem and the second term, | Aﬁﬁﬂd ” , also converges to 0
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also in L1(PP), as Y7(y,0) € L'(P). Combining these estimates, we conclude that the left-hand side in

(140)) converges to 0 in L' (PP), and so, holds.

O

Proof of Theorem[[.7. The proof is very similar to the proof of [MSI9, Theorem 3.1]; see also the

proof of [Mos20, Theorem 4.2]. It is omitted for the brevity of the presentation.

5. PROOFS OF THE ASYMPTOTIC EXPANSION OF THE INDIFFERENCE PRICES

0

Lemma 5.1. Let x € R be fized, suppose that the assumptions of Theorem hold, and denote

y = ug(x,0). Then, we have
(141)
- 1 |dQy+Ay,e) .. dQ(y,0)
L'(P)-1 e _
(F)-in |Ay| + [e| dP f dP
Proof. Let us consider
1 d(@(y + Ay’ 8) fs _ d@(yv 0)
|Ay| + [e] dP dP
(142) —_ 1! dQ(y + Ay, ¢) £ dQ(y, 0)
|Ay| + e dP dP
1 d@( + Ay,e) [ ..
+ I _
LT R O

{1+ AyN} +e(Pr+N5)} 2 -

{1+ AyNY +e(FPr+ Ni)} 0 —

{1+ AyNY +e(Fr + N5) }fo}

e dQ(y,0)

!
Ayl e ap T

L 40(y,0)

dpP

_40(y,0)

dP

fl

=0.

/|

The first term in the right-hand side converges to 0 in L' (IP) by Corollary and boundedness of f°,

which together imply that

1 {d@<y+Ay,e> dQ(y, 0)

dP

0 JE—
ISl ®

is uniformly integrable for some § > 0. Therefore, as from Corollary we also have

fO

dQ(y,0)

P i 1 dQ(y + Ay,¢)
|Ayl+lel—0 [Ay| + ¢ dP

dp

by the uniform integrability of this sequence, the convergence also holds in L*(P).
Let us consider the other term on the right-hand side of (142). We can rewrite it as

1 dQ(y + Ay, )

e dQ(y,0)

. Ayl +]e|  dP - }_!Aylﬂel ® !
- 1 dQ(y + Ay, ) dQ( y, e 40 1 dQ(y, 0) e _ g0 _
‘rAy|+\s|{ &P }{f AT EE I

{1+ AyNY + e(Fr + N5) }fo}

{1+ AyNY +e(Fr + N7)} fo} . (Ay,¢e) € Bs(0,0),

ef’).

By Corollary and Assumption which implies that ‘ fe— fo‘ is bounded uniformly in (Ay,e) €
B;(0,0), for some 6 > 0, we deduce that, in the right-hand side of (143)), we have

LYP)- lim
®) |Ay|+Hel—0 |Ay| + [e]

1 dQ(y + Ay,e)
P

d@ ya } {fs fO} =0.
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As for the remaining term on the right-hand side of ([143)), by Assumption we have

1 : 1 dOW.0) e 0
- (P)_Iﬁy\lflrsllﬁo Ayl +|e| dP (fe=f"—eff)y=0.

We conclude that every term in the right-hand side of (142)) converges to 0 in L}(P) as (|Ay| + |e|) —
0. (Il

Lemma 5.2. Let © € R be fized and suppose that the assumptions of Theorem hold. Then, we

have

144 li o+ Az, g) = ug(x,0).
(144) (Amérg(o’o)u (x + Az, e) = uz(x,0)

Proof. By [Sch01 Theorem 2.2] and Lemma [2.6{ we have
(145) Yr(ug(z + Az,e),e) = U'(Xp(z + Az, e)), (Ay,e) € B, (0,0).
Since XT(x + Az, x) — XT(x, 0) in probability by Theorem we deduce from ((145) that

(146) lim  Yp(ug(z + Az, e),e) = Yo(ug(x,0),0), in probability.
(Az,e)—(0,0)

As, by [Sch0I, Theorem 2.2], we have Y7 (uy(z 4+ Az, ¢), &) = ug(z + Aw,s)w, that is,
every dual minimizer in B, (0,0) does not lose mass, we deduce from (146]), the nonnegativity of the

dual minimizers and Fatou’s lemma that

liminf wuy(z+ Az,e) = liminf E [YT(ux(x + Am,s),s)}

(147) (Az,e)—(0,0) (Az,e)—(0,0)
> B [V (u,(2,0),0)] = wa(2,0).

Next, let us observe that
E [V (YT(um(m + Az, e), 8))] = v(uz(x + Az,¢e),e), (Az,e) € B (0,0).
Therefore, from ((146)) and boundedness from below of V', using Fatou’s lemma, we get

limsup (—v(uz(x + Ax,e),e)) = — liminf E [V (}A/T(uz(x + Am,a),a))}
(148) (Az,e)—(0,0) (Az,e)—(0,0)

<-E [V (YT(ux(a:,O),O)ﬂ = —v(uz(x,0),0),
whereas, from Theorem we obtain

149 li Az, e) = u(z,0).
(149) (Am%rg(oﬂ)U(er x,¢€) = u(z,0)

Furthermore, from [SchO1l Theorem 2.2], we get
(x + Az)ug(x + Az, e) = u(z + Ax,e) — v(uz(x + Az, €),e), (Az,e) € B, (0,0).

Therefore, using ([148) and ((149)), we deduce that

limsup (z+ Az)ug(z+ Az,e) = limsup (u(z+ Az,e) — v(ug(z + Az, e),¢))
(Az,e)—(0,0) (Az,e)—(0,0)

= lim w(x + Az,e) + limsup (—v(uz(x+ Az, e),¢e
(Az,)—(0,0) ( ) (Ax,a)—>(0,0)( (u ):€))

< u(z,0) — v(ug(z,0),0)

= zuy(z,0),
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combining which with (147, we conclude that (144} holds.
[l

Lemma 5.3. Let x € R be fized, suppose that the assumptions of Theorem hold, and y = u,(x,0).

Then, we have
(150) liran_jonf (—vy(y,€)) = —vy(y,0) = z.

Proof. Let €, € (—€0,€0), n € N, be a sequence convergent to 0. For some bounded and predictable
B¢ and bounded L satisfying the assumptions of Lemma and for J defined in , similarly to
the proof of Theorem let us consider

A~

~

Y, n
N =Yr(y,en) and n" = ?Té’ (JO’6 ’H) n € N.

T?
Then, we have
(151) VAT =0t (=VIET) =t (VM) 0t (=V(), neN.

Using Assumption one can show that

(152) L!(P)- lim ™ (=V'(9")) = Yr(=V'(Y7))
and
(153) LI(IP’)-nILn;lO 0" = Yr.

Therefore, using the mean value theorem for random variables, we get
(154) At (=VIEm) =" (V") = =VIEE (0" —n") = VI(E) (0" —n"), neN,
for some random variables £” taking values between 7" and n™. As by @D, we have

1 1
— < V//(én)gn < P
(&) C1

we deduce from Theorem and ((153]) that

. N\ ¢n (AN 7 : 1 N n
(155) L'(B)- lim [V(€)¢" (0" = n")| <L'(P)- lim =" - "] = 0.
For the V'(&") (7™ — ™) term in (154]), by the monotonicity of V', we have
(156) VIE @™ —n") < (V@) @ =am) v (V0 6" =)

Next, using the mean value theorem for random variables, we have
AN (AT n ~n n 1 ENY (AT n
(157) VI @ =) = V) = V") + VI E @ =)

for some £" taking values between 7" and 7.
Since V(") — V(Y7) and V(™) — V(Y7) in probability and

(158) E[V(i")] = E[V(Y7)] and E[V(n")] = E[V(Y7)],

as V is bounded from below, by Schaffe’s lemma, the convergence in probability and (158]) imply
that V(7") — V(Y7) in LY(P) and V(n") — V(Y7) in L*(P). As for %V”(E") (A" — n™)? term in the
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right-hand side of (157), it can also be proven to converge to 0 in LL!(IP), similarly to the proof of
Theorem We deduce that, in the left-hand side of (157)), we have

lim E [V/(") (7" — ™)] = 0.

n—oo

Let us denote A, := {V'(n™) (7™ —n™) > 0}. Using the convexity of V', we have
(159) V(@") = V() 1a, = V(") (7" —n°) 1a, > 0.
Therefore, as V(") — V(") — 0 in L!(P), we obtain from (I59)) that V'(n?) (7" — n") 14, — 0 in

L'(P). As a result, by Fatou’s lemma, we deduce that

limsup E [V'(1n") (" —n")] <0,

n—oo

which via (156)) implies that
limsup E [V'(¢") (7™ — n™)] < 0.

n—oo
Combining this with ((154) and (155]), we get
(160) limnf E [ (<V' (") + 77 (~V' ()] > 0.

As, from Theorem we have that
P- lim 7" (=V'(7")) = Yr(=V'(Y7)),

we conclude from ([151)), (152)), (160)), and Fatou’s lemma that (150 holds. O

Lemma 5.4. Let © € R be fized and suppose that the assumptions of Theorem hold. Then, we

have

(161) lim sup [us(e + A, €) = uz (2, 0) < 0.
| Az|+He|—0 |Az| + ||

Proof. First, following Remark we observe that u,,(x + Az, ¢) is a second-order derivative of u
with respect to x exists for every (x,¢) € R x (—&9p,£0), and the absolute risk aversion of the indirect
utility u satisfies the bounds of Assumption that is

< ———F—T=<cg, (Aze)€R X (—¢ep,e0).
Next, for every e € (—eq,e0) let us set
Z(e) := —vy(uz(2,0),€), €€ (—eo,€0),
and observe that by Lemma [5.3] we have
lign_)iglfi’(a) > —vy(uz(z,0),0) = .

Therefore, by the mean-value theorem, there exists £(¢) € [(z+ Az) AZ(¢e), (z+ Azx) V Z(g)], such that

lug(z + Ax,€) — ug(T,6)| = —uge(€(€), )| Azx| < couqz(€(e), )| Ax| < couy((x + Azx) A Z(e),€)| Az,
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where, in the inequality, we have used . Therefore, we have

|uz(z + Az, 2) — ug(2,0)] _ |ua(z + Az, 2) — ug(E(e), )| + ua((e), ) — ua(z, 0)]
|Ax] + le] - |Az] + [e]

couz((x + Azx) A Z(e),e)|Az| + ‘E [YT(ux(x, 0),e) — ?T(uw(a:, 0), 0)] ’
|Az| + |e]
As a result, using Lemma Lemma [5.3] and Theorem we get
Jimn sup lug(z + Az, ) — uz(z,0)|

|Az|+]e[—0 |Az| + [e]

coug((z + Az) A T(e),e)|Ax| + ’E [YT(ux(a:, 0),e) — Yr(uz(,0), 0)} ‘

<

< limsup
|Az|+]e|—0 |Az| + |e]
<caug(r,0) + Eq [|G + M7,
which implies (161]). O
Lemma 5.5. Let © € R be fized and suppose that the assumptions of Theorem hold. Then, we
have
(162) lim |uz(z + Az, ) — ugy(z,0) — Az, (2,0) — cuge(x,0)] _0

|Aal+[e| -0 |Az| + el
Proof. Let €9 be as in Lemma [2.6] and let us denote
Ay = Ay(Ax,€) := Uy AT + ugee,
(163) -
Ay = Ay(Ax,e) := uy(z + Az, e) — uz(x,0), (Ax,e) € Be,(0,0).

and observe that, by Lemma [5.2] we have

lim Ay(Az,e) =0,
| Az|+He| -0 ul )

and by Lemma [5.4] we have a stronger assertion

. |Ay(Az,e)|
imsup ————"— )
|Az|+le|—0 |Az] +[e]

Next, by Lemma and [Sch01l, Theorem 2.2], we have the conjugacy relations between the value
functions, that is

v(y + Ay(Az,e),e) + (z + Az)(y + Ay) = u(z + Az,e),  (Az,e) € B, (0,0),
which implies that
(164) v(y + Ay,e) —v(y,0) + (x + Ax)Ay = u(z + Az, e) — u(x,0) — yAz, (Az,e) € B.,(0,0),
and, similarly, we get
(165) v(y + Ay,e) —v(y,0) + (z + Az)Ay = u(z + Az,¢) — u(z,0) — yAz, (Az,e) € B, (0,0).
From and , we obtain

v(y + Ay, e) —v(y,0) + (z + Az)Ay = v(y + Ay, &) — v(y,0) + (v + Ax)Ay,

(Az,e) € B;,(0,0).

(166)
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Using Theorem and Lemma we deduce from (166 that

(Ay £)Vu(y,0)+ 3(Ay e)H, (iy> + (z + Ax)Ay

=(Ay £)Vo(y,0)+ 3(Ay e)H, (A ) + (z + Az)Ay + o(Az? + £7),

which simplifies to

_ - A
1Ay e)H, < > + AzAy = 3(Ay e)H, ( y) + AzAy + o(Az? + %),
€
that is
vyy (Ay(Az, £))? — Ay?) + 20y (Ay(Az, ) — Ay)e + 2Az(Ay(Az,€) — Ay) = o(Ax? + £2),
which implies that
(Ay(Az,e) — Ay) (vyy (Ay(Az,e) + Ay) + 2vyee + 2Az) = o(Az? + £2).

Using Theorem we get

(167) (Ay(Az,e) — Ay) ((Ay(Az,e) + Ay) — 2 (ugee + ugeA)) = o(Az? + £2).
Since uzee + Uz Axr = Ay, we can rewrite as

(168) (Ay(Az,e) — Ay)? = o(Az? + £2),

that is

|Ay(Az,e) — Ay| = o(|Az| + ¢]),
which, in view of (163, implies that (162) holds. O

Lemma 5.6. Let x € R be fized, suppose that the assumptions of Theorem [{.1] hold and ey is as in
Lemma[2.6. Let us denote y(x + Az, &) = ug(x + Az, e), (Az,e) € Be,(0,0). Then, we have

1 dQ (y(z + Az, e),¢)

LY(P)- i
(P) Azl tiel-0 [Az] + [¢] dP
(169) -
d
_W {1+ Nf (uge Az + ugee) + (Fr + Np)e}| = 0.

Proof. For every (Ax,e) € B,(0,0), let us denote
(170) Ay = Ay(Ax,e) == uz(x + Az, e) — ugz(z,0).
To show ([169)), let us first observe that

’dQ(y(w‘gﬁsz)rs) _ dQ(ygﬁP;O)’O) {1 + Né{ ('UJ;L-;L-AJJ + Uxeg) + (FT + N{?)E}’

|Az| + [e]
d0Q z+AzE), d0 z,0),0
(171) <(|Ay[—|—|5])‘ Weppesa) _ QWEOO 1 1 NYAY + (Fr + N5)e)|
~ (|Az| + fe]) (1Ay[ + |e])
dQ (y(z,0),0 Ay — Azugy — eug
L AO(.01,0) v 1Ay~ Avuss — cusd

dP |Az| + ¢
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As Az — 0, it follows from (170)) and Lemma that Ay — 0, so the first term on the right-hand
side of (171]) converges to 0 in L' (P) by Corollary and since, by Lemma we have

A A _
lim sup [8y| + el = limsu |us(z + Az, €) — ug(2,0)] + ] < g+ e +1 < o0
Azl +el—0 [AZ] el Azl =0 |Az|+ [¢]
It remains to show that
- dQ (y(x,0),0) -y Ay — Az, — cug|
Ll P)- 1 s V) Ny _ 07
(P) |Aa:|f|lel|—>o dP [N |Ax| + |e]

which, in view of (170)) and the square-integrability of N7, under Q, follows from

|Ay — Azugy — g ) lug(z + Az, e) — ug(x,0) — AxUpy — EUge|
im = =0,
|Az|+[e] 50 |Az| + [e] |Az|+e|—0 |Az| + ||
that is established in Lemma [5.5] O
Proof of Theorem[3.5 Let €y be as in Lemma [2.6] and let us set
y(x + Az, e) = ug(z + Azx,e), Ay =uz(z+ Ax,e) —ugy(z,0), (Ax,e) € B (0,0).
Next, let us consider
1 d@(ux(m + Az, e),¢) It
|Ax| + |e] dP
dQ(y, 0 dQ(y, 0
—% {1+ N¥(ugeAz + ugee) + e(Pr + N5) } f° — s%f’)
(172)
/0 dQ(uz(x + Az, e),e)  dQ(y,0)
- - 1 Ny ch xEe F NE
|Az| + |e] dP g Lt V(e Aa + teee) + e(Fr + Np)}
L = 1) Qo+ Ar2).0) _d0(w.0)
|Az| + |¢] dP dP '

On the first term on the right-hand side of (172]), from Lemma and the boundedness of f° by
Assumption [3.2] we have

. 1 dQ(uy(z + Az, €),¢€)
LY(P®)- 1 —
(P) |A$|—1$-I|I81|—>O‘Al'| + |e| ( dP
(173) .
(ﬁQl(ii’;O) {1+ N¥(uza Az + ugee) + e(Fr + N;?)}) ol =o.
For the remaining term on the right-hand side of , we can rewrite it as
(fa _ fO) d@(ux@ + Az, e),¢) _ 5d@(y, 0) £
|Az| + || dp dpP
) | (A0t Arc)e)  dD(y,0) 40(y,0)
o Uxfﬂ-f— r,g),€ _ Y, e ¢0 Y, e 0 /
_|A:c\+ye\< dP dP >(f P+ =g ===,

where L (PP)-

: Q T A <) Q ) 3
\AazllJlrllrall—m |Az‘1+‘€| (dQ(u (IC;IFP, ze)e) dQC(l% 0)> (f¢ = f°) = 0 by Theorem [4.5 and the uni-

form in € boundedness of f¢ that together imply, for some § > 0, the uniform integrability of the
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family

1 dQ(us(x + Az,e),e)  dQy,0)\ e L0
— — (A Bs(0,0) ¢ .
{‘Ai{}’—l—|€’ ( dP dP (f f) ( ZE,€)E 5( ; )
As for the remaining term in the right-hand side of ((174]), % (fs . —— 5f'), it converges to 0
in L!(P), by Assumption Thus, the left-hand side of (174) converges to 0 as |Ax| + |e] — 0 in

L'(P), which together with (172)) and (173) imply that the left-hand side of (172]) converges to 0 as
|Az| + |e| — 0 in L}(P), and so follows, where p, and p, are given by (25). O

6. LINK TO THE RISK TOLERANCE WEALTH PROCESS

In this section, we will characterize the solutions to quadratic minimization problems (20)) and (22))
through a Kunita-Watanabe decomposition under a change of measure and numéraire, provided that

there exists a maximal wealth process R, such that

U'(Xr)
U( XT) ’
In the context of the utility defined on the positive real line, this process was introduced in [KS06b].

If the risk-tolerance wealth process R exists, let us change the measure and numéraire to

dR _RrYr . or_ (%’ROE(Rl)W"ROE(Rd))'
dP ~ Ro y R’ R R

This leads to the sets of orthogonal martingales under the measure R and numéraire R
M2 = {MG”H%(R): M:H-SR},
N2 is the orthogonal complement of M? in H2(R).
Similarly to [MSI9, Lemma 9.1], we can establish the following characterization of M? and N2

Lemma 6.1. Let us suppose R is locally bounded d-dimensional semimartingale satisfying , As-
sumptions and holdl Let us also fir an © € R and assume that the risk tolerance wealth

processes R exists (for the base model at x). Then we have
-9 M2 (M

M? = .:{R: MGMQ} and N?= N2

Similarly to [MS24bl Proposition 6.2], we can establish the following lemma.

Lemma 6.2. Let us suppose that x € R is fized and assume that the conditions of Lemma hold.
Then, the minimizers to an are given by

R
MI:R—O—l and NY=0.

If additionally Assumption hold. Then the following procesaﬂ

G
Pt = —E@ |:<FT+,R;:) |.Ft:| 5 tG[O,T],

4These conditions imply the assertions of [Sch01l, Theorem 2.2].
SWe recall that processes F' and G are defined in .
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1s well-defined and in 7—[2(]@) The Kunita-Watanabe decomposition of P under R
P =Py+ M+ N%, where M® € M?> and N°e N2
1s related to the optimizers to and via

M® = M°R, and N°¢ = N°¢.

7. EXAMPLES OF THE INDIFFERENCE GREEKS

7.1. Indifference Delta. In arbitrage-free pricing, e.g., in the Black-Scholes settings, Delta denotes
the sensitivity of the arbitrage-free price with respect to the perturbations of the stock price, which
is a state variable, that is, this price can be represented as a function of the stock price (and other
parameters). For indifference pricing, the role of Delta is played by the initial wealth, that is, the state
variable in is x. Therefore, we call indifference Delta the sensitivity of the indifference prices to
small perturbations of the initial wealth. For its representation, from Theorem [3.5] we get

Pe = 00 Az

—Eg [ V9]
For the hedging strategy, from Theorem [4.7, we get the following
XAs0n — (x4 Az) + (H + AxHM»”) "RY,
where
HA*n RO = MA*" peN,

where M;" — MZ, P-as.. MA%" e N, is a sequence of bounded processes converging to M7, the
solution to , it is characterized in Theorem 4.7

We conclude this part by noting that, for the exponential utility function, as the absolute risk
aversion A(z) does not depend on z € R, the minimizer to is M* = 0. Therefore, we have

2" =0 and X207 = (z+ Az)+H - R°,
where the later is the optimizer to at x + Ax.

7.2. Indifference Vega. The derivative of the option price with respect to volatility is called Vega.
To compute indifference Vega, in we have a possibility to only perturb the continuous martingale
part of the stock price or the martingale part of the stock price. Let us consider the first scenario. In
this case, in , we need to take

¢#0, (=0, and 1 =0.
In the case of only one risky asset, in , we obtain
9 =—0(A+7"8) and ¢'=0,

sobecomes
F=—¢-M" and G=H R=

S

(¢ M°).
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With these of processes F' and G, the optimizers to and , NY and N¢ govern the sensitivity of
the indifference prices to small perturbations of the volatility, which is represented by p. in Theorem
B.5 It is given by

pe = Eq [{(uae N2+ (N7 + Fr)}f + f'] = vyeps + E@ [(N: + Fr) f + ]

where p, = uz:Eq [N%f] , and, in turn, gz, Uze, and vy are given by , , and , respectively.
The corrections to the optimal wealth process are given by H*™’s in Theorem see and also

(39)-

7.3. Sensitivity to perturbations of the jump part M?. First, to the best of the author’s knowl-
edge, there is no special Greek letter denoting such a sensitivity for the arbitrage-free prices, as when
the dynamics of the stock price process includes a nontrivial pure jump martingale, the model is
(typically) incomplete, and the class of replicable contingent claims is very narrow. Each of such
nonreplicable contingent claims allows for an interval of arbitrage-free prices. Therefore, the differen-
tiability in the usual sense of such prices is not possible, and so the Greeks for arbitrage-free prices are
not defined (in the usual sense for such nonreplicable contingent claims). We refer to [Shr04, Chapter
11] and [CT04, Chapter 10] for more details.

Perturbations of the pure jump martingale M9 are exactly the settings where the approach of this
paper works when the traditional Greeks for the arbitrage-free pricing is not applicable except for
some very particular contingent claims that are replicable for every € in some neighborhood of 0 and
some very particular models of the jumps, where the jump sizes are allowed to take very particular
values, as elaborated in [Shr04, Chapter 11]. In the literature, however, models admitting jumps are
quite widespread, and they are typically parametrized by more than one constant, see, e.g., [Mer76],
[Kou02], [CT04], and [CK11]. The setup of the present paper uses one process ¢ in (2)) to describe the
perturbations of M?, and one can also use perturbations of (M) to parametrize perturbations of the
jumps. We leave the sensitivity of various parameters governing jumps considered in the literature for
future research and illustrate the case for which the framework of this paper allows.

To compute the sensitivities of the indifference prices to small perturbations of the pure jump
martingale part of M, in , we take

=0, (=0, and v #NO.
In the case of only one risky asset, in , we get
g°=0 and g% =—-1p(A—1"B),
so that in , we have
F=—gt M and G=H-R=H-(¢-M?).

With these specifications of processes G and F', the optimizers to and , NY and N¢ govern
the sensitivity of the indifference prices to small perturbations of the pure discontinuous martingale

part of the stock price in the sense that

pe = Eg [{(uae N 4+ (N7 + Fp)}f + f'] = vyepe + Eq [(N7 + Fr) f + f']
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where p, = uzEq [N%f] , and, in turn, uz;, Uze, and vy are given by , , and , respectively,
and as a consequence of Theorem H®"’sin Theorem see and also , give the corrections
to the optimal wealth process under perturbations of the pure discontinuous martingale part of the

risky asset.

7.4. Sensitivity to small perturbations of the finite variation part of R. These sensitivities
correspond to the following choices in of ¢, ¢, and ¥

(#0, and ¢=0=1.
In the case of only one risky asset, in , we have
g =C=4g"
and becomes
F=-¢-M" and G:ﬁ-R:/'HJd<M>SgS.
Theorem again, for a given contingent claim f satisfying 0Assumptiom produces the following
sensitivity

pe = Eq [{(uge N% 4+ (NF + Fr)}f + f'] = vyeps + Eq [(NF + Fr) f + f'],

where p; = uzEq [Ng,if] , Ugz, Ugze, and vy e are given by , , and , respectively, and NY
and N¢ are the optimizers to (21f) and . H®™s in Theorem see and also (39)), give the

corrections to optimal strategies.

7.5. Indifference p. The framework of this paper allows us to compute the indifference p, the sensi-
tivity to small perturbations of the interest rate in the settings, where the latter is deterministic. For
simplicity of the presentation, let us consider the following model of the evolution of undiscounted
traded assets, where R is the d-dimensional process representing the returns of the risky assets, and

Eo’a is the return of the riskless assets

Rsz/usds+E-W+Md,
0

—0,e ’
R = / réds,
0

where 4 and X are predictable and sufficiently integrable processes, W is a d-dimensional Brownian
motion, and M¢ is a d-dimensional pure jump martingale, whose quadratic covariation is absolutely

continuous with respect to time, that is of the form
(175) (M%) = / | mdds,
0
for some predictable process m?, taking values in symmetric positive definite d-by-d matrices.
Remark 7.1. If we suppose that there is only one risky asset present on the market, that is, if R is

Ny
one-dimensional, by supposing that M? is a compound Poisson process of the form Mtd =>Y —ct,
i=1

t € [0,T], where N is a Poisson process with intensity A > 0, and Y; are IID random variables with

particular properties, we can include the framework of [Mer76] by taking Y; to be normal (and constant
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¢ can be chosen appropriately to preserve the martingale structure), and the framework in [Kou02],
if Y; > —1 and log(Y; + 1) has an asymmetric double exponential distribution, and the framework in
[CK11] by taking Y; to be mixed-exponential random variables. In each of these cases, in , we
have m? = Var(Y1)A.

For the 7€, ¢ € (—¢€q,£0), we suppose that this is a family of deterministic nonnegative functions on
[0, 7] of the form
re =1 fery, te[0,T],

where both r¥ and 7 are uniformly bounded on [0,7T]. We denote

T T
(176) r = 9 </ rids) :/ Tsds.
86 0 e=0 0

Remark 7.2. Extending the assertions of this example to stochastic interest rates would likely require

extending the results in [Sch01l Theorem 2.2] to stochastic utilities.

Let X (z,¢) be the set of self-financing wealth processes obtained by trading in R® and R"¢ starting
from the initial wealth = € R and that are bounded from below. us formulate the utility maximization

problem in undiscounted terms as

(177) u(T,e)= sup E[U(X7)], (7,¢)€ R x (—e0,e0)
XeX(ze)

We remark that this formulation is closely related to , yet (177) is an extension of to undis-

counted traded assets.

Definition 7.3. Let T € R and ¢ € (—&p,20) be fixed. For a bounded contingent claim f¢, its

indifference price p = p(T, €) is defined as a constant p € R such that
(178) E[U(Xt +qf%)] <u(z,e), forevery geR andevery X € X(T — qp,e).

Let us us a change of numéraire and, for every ¢ € (—ep,€p), let us use the riskless asset as a
numéraire. Thus, the evolution of the discounted traded assets is

Rﬂz/U%—@m&+zwv+Mﬂ
(179) 0

R%¢ =0,

Let us denote by X(z,¢) the set of bounded from below self-financing discounted wealth processes,

that is, measured in the units of the riskless asset. The associate value function is

(180) u(z,e) = sup E[U(Xp)], (x,e)€ R x (—ep,¢e0),
XeX(xe)

which is the formulation in (]ED, for which the results of the previous sections apply.

Let us denote
(181) B® = exp (/ rids) , €€ (—e0,¢0).
0

A change of numéraire approach gives

(182) X(Z,e) = X(Z,e)B%, (T,e) € R x (—ep,e0).
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Since B7 is deterministic, we can further obtain from that

(183) {Xr: XeX(@e)}={Xr: X € X(@Bf,e)}, (T,¢) €Rx(—¢0,¢0),
which results in

(184) u(z,e) = u(xBF,e), (T,e) € R x (—¢o,¢€0),

where @ and u are defined in (177)) and (180)), respectively. Further, (183]) and (184)) imply that (178)

can be rewritten as
(185) E[U(X7 + qf°)] <u(@B%,e), for every q € R and every X € X(TB7 — qp,€).

Comparing ([185)) to Definition we conclude that p is an indifference price in the sense of Definition
at (7,¢), if an only is p is an indifference price in the sense of Deﬁnition at (zB%,e). We deduce
that

(186) p(Z,e) = p(TBF,e), (T,e) € R x (—ep,¢0),

where P’s are given by Definition and p’s by Definition
Next, let us fix T € R and set z := TB%. Supposing that the conditions of Theorem hold at x,
we deduce from this theorem and (186 that

. p(T,e) —p(z,0
(187) p. = lim p(,e) . p(z,0)
where p, and p. are given by and r’ by . The constant p, is the sensitivity of the indifference
price to small perturbations of the interest rate, that is, p, is the indifference p. It corresponds to
taking ¢; = —(m¢ + ;3] )17, t € [0,T], in (2)), where m? is given by , and considering the
joint perturbations of the finite-variation part of the return of the risky assets as described in

and (perturbations) of the initial wealth of a particular form Az = Ax(e) = T(B5 — BY), where B%’s

= pgar’ + pe,

are given by (181). Finally, the corrections to the optimal strategies for e sufficiently close to 0 are
given by Theorem [4.7| with Az = Az(e) = Z(B% — BY.).
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