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Abstract. We consider the problem of sensitivity of indifference pricing to the dynamics of the

underlying assets. In the context of arbitrage-free pricing (AFP), such sensitivities are known as the

Greeks. Here, in multidimensional semimartingale settings of incomplete models, we obtain the Greeks

and corrections to the associated trading strategies for indifference pricing in the sense of [Dav97] and

[KK21]. Unlike the traditional AFP, e.g., in the Black-Scholes model, where the Greeks represent the

sensitivity of a linear pricing problem to perturbations of the stock price dynamics, as indifference prices

are given via solutions to non-linear stochastic control problems, their sensitivities to perturbations of

model parameters, that is the Greeks, are also represented by value functions of auxiliary quadratic

stochastic control problems, which we introduce too. The proposed approach also allows for the hedging

of nonreplicable contingent claims. This contrasts with the hedging based on the Greeks for AFPs in

incomplete markets, where the AFPs for nonreplicable claims form intervals, and their derivatives are

not defined in the usual sense. The proposed framework allows us to consider the sensitivity to the

perturbations of the jump part of the stock price process - these are the settings where the AFPs

are usually intervals. In turn, multidimensional settings are needed, in particular, to characterize the

indifference ρ, the sensitivity to perturbations of the interest rate.
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1. Introduction

In the questions of pricing and hedging of contingent claims, the Greeks play an important role as

they allow quantifying how one should adjust the portfolio under small perturbations of the model

parameters. In the context of arbitrage-free pricing, this methodology has been known for decades

and is used by both theoretical researchers and practitioners. Even the efficient computation of the

Greeks, relying on Malliavin calculus, has been developed; see [FLL+99] and [FLLL01].

One of the main limitations of the Greeks for the arbitrage-free pricing approach is the replicability

assumption of a contingent claim (or even the completeness of the market model). As many of the stock

price models, such as stochastic volatility models and models with jumps, exhibit incompleteness, most

of the contingent claims become non-replicable, and therefore, their arbitrage-free prices are intervals.

The derivatives of such prices with respect to model parameters, therefore, are not defined in the usual

sense, and so the methodology of using the Greeks for hedging becomes inapplicable.

In order to remedy the restrictive replicability assumption, this paper proposes a methodology of

computing the Greeks for indifference prices. As the analysis below shows, such indifference prices

are not only differentiable in the usual sense (in fairly general settings below), making such Greeks

well-defined, but also allow for the specification of corrections to hedging strategies. Moreover, for

the replicable contingent claims, the proposed methodology of computation of the Greeks agrees with

the one for arbitrage-free prices, as both pricing methodologies agree, see, e.g., [MS24a, Section 6].

The corrections to the hedging strategy are obtained below without Malliavin calculus, which requires

stringent model assumptions.

The proposed parametrization of perturbations permits us to consider the distortions of the finite

variation part, continuous martingale part, and the purely discontinuous martingale parts of the stock

price return. If the dynamics of the risky assets allow for jumps of random size, typically, the Greeks
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for arbitrage-free pricing are not applicable in view of the non-replicability of the contingent claim in

most of the jump models, see [Shr04, Chapter 11]. The class of nonreplicable claims, in such settings,

typically includes even the most vanilla instruments, such as European put options. With the proposed

approach below, it is possible to construct the indifference-price-based hedging strategies associated

with small perturbations of the parameter governing the jumps.

In the process, we also establish results of independent interest on the stability and asymptotic

analysis of optimal investment without random endowment with respect to model perturbations.

Here, we consider the framework of [Sch01] for the base or unperturbed model, which ensures that the

dual optimizer for the base model is a true martingale under the physical measure. The martingale

property of the dual minimizer allows for the uniqueness and representation formula of the indifference

prices in terms of the expectation of the discounted payoff under the dual-optimal measure, provided

that the discount factor is deterministic.

Mathematically, the proofs are based on the simultaneous primal-dual expansions of the value func-

tions. One of the main technical difficulties stemmed from the fact that, under the perturbations

below, the primal and dual value functions are neither convex nor concave in the perturbation param-

eter ε. This, in particular, complicates the proof of Lemma 5.5, which is central in the analysis, and

its proof relies on a number of preceding characterizations to bypass the lack of the joint concavity of

u in x and ε.

In order to handle the jumps of the risky asset, we need to invoke the elements of the change of

numéraire calculus and the implicit differentiation formulas related to the ones in [MS24b]. However,

in contrast to [MS24b], the settings below allow the relaxation of the quasi-left continuity of the

driving martingale M assumed in [MS24b]. This is done via identifying the appropriate natural

processes as in [DM82, Section VI.61] at the core of the proofs and using their properties to complete

the analysis. To the best of our knowledge, natural processes have not been used even in the context

of asymptotic analysis of optimal investment, let alone the stability and asymptotic analysis of the

indifference pricing.

The remainder of this paper is organized as follows. In Section 2, we introduce the model, and

in Section 3, we present the asymptotic expansion of indifference prices under small perturbations of

the dynamics of driving risky assets; Section 4 contains the stability and sensitivity of the optimal

investment to perturbations of the dynamics of the risky asset. Section 5 contains the proofs of

the results of Section 3. In Section 6, characterizations of the optimizers to auxiliary minimization

problems as projections are given when the risk tolerance wealth process exists. Section 7 contains

the explicit representations of the particular Greeks, such as Vega, Rho, and Delta.

We conclude this section by commenting on the notations used below. For an Rd-valued semi-

martingale X = (Xi)i=1,...,d and predictable d-by-d matrix-valued process with uniformly bounded in

t and ω components φi,j , i = 1, . . . , d, j = 1, . . . , d, we use the row-by-column rule

(φ ·X)i =

d∑
j=1

φi,j ·Xj , i = 1, . . . , d.

For the stochastic integration of a predictable Rd-valued and componentwise bounded process H with

respect to X, we follow [JS03]. As a consequence, and in a consistent way, we introduce the following
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notation

H · φ ·X := (φ>H) ·X = H · (φ ·X).

2. Model

Let us consider a complete stochastic basis
(

Ω,F , (Ft)t∈[0,T ] ,P
)

, where T ∈ (0, T ) is the time

horizon, the filtration (Ft)t∈[0,T ] satisfies the usual conditions, and F0 is trivia. We suppose that there

are (d+ 1) traded assets, one riskless whose price process equals 1 at all times, and d risky securities.

To characterize the sensitivity of the indifference pricing to small perturbations of the dynamics of

the risky assets, we need to consider the base and perturbed models. For the base model, we assume

the following dynamics of the return process

R = M +

∫ ·
0
d〈M〉sλs, R0 = 0,

where M is an Rd-valued locally P-square-integrable martingale and λ is an Rd-valued predictable

process, such that

(1)

∫ T

0
λ>s d〈M〉sλs <∞, P–a.s..

2.1. Parametrization of perturbations. In order to incorporate models with jumps, such as the

ones in [Mer76] and [Kou02], in our analysis, following [JS03], let us further consider a decomposition

of the martingale part M into the continuous part and the purely discontinuous part, that is, we write

M = M c +Md,

and we suppose that the process driving perturbations is

(2) R̃ = φ ·M c + ψ ·Md +

∫ ·
0
d〈M〉sζs, R̃0 = 0,

for componentwise bounded predictable Rd×d-valued processes φ and ψ, and an Rd-valued predictable

process ζ, such that

(3) |ζt| ≤ C ′|λt|, t ∈ [0, T ], P–a.s..

We parametrize perturbations by ε, and suppose that

Rε = R+ εR̃, ε ∈ (−ε0, ε0),

for some constant ε0 > 0. With such a parametrization, the dynamics of the return of the stock price

dynamics

(4) Rε = (I + εφ) ·M c + (I + εψ) ·Md +

∫ ·
0
d〈M〉 (λ+ εζ) , Rε0 = 0, ε ∈ (−ε0, ε0),

for some ε0 > 0, where I is the d-by-d identity matrix, φ and ψ are predictable Rd×d-(matrix)-valued

process, whose components are uniformly bounded, M is a d-dimensional locally P-square-intergrable

martingale, λ and ζ are predictable d-dimensional processes, such that

(5)

∫ T

0
λ>s d〈M〉sλs +

∫ T

0
ζ>s d〈M〉sζs <∞, P–a.s..
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We note that condition (5) ensures that, for every ε sufficiently close to 0, Rε in (4) satisfies the

structure condition from [FS10].

Let us fix a utility function U : R→ R satisfying the following assumption.

Assumption 2.1. U : R → R, is a strictly increasing, strictly concave, two times continuously

differentiable on R, and its absolute risk aversion

A(x) := −U
′′(x)

U ′(x)
, x ∈ R,

is bounded away from 0 and ∞, that is, there exist constants c1 > 0 and c2 <∞, such that

c1 ≤ A(x) ≤ c2, x ∈ R.

Following [MS24b], let us set κ :=
d∑
i=1
〈M i〉, we have that 〈M〉 = Ã · κ for some process Ã.

Assumption 2.2. We suppose that Ãt is invertible for every t ∈ [0, T ], P–a.s..

Next, we can look for X∆x,ε in the form

X∆x,ε = (x+ ∆x) +
(
Ĥ + εHε + ∆xH∆x

)
·Rε.

Commonly in the literature (see, e.g., [DS06]), wealth processes that are bounded from below by a

constant are called admissible, and, for every (x, ε) ∈ R× (−ε0, ε0), we set

X (x, ε) := {X = x+H ·Rε : for some Rε-integrable H,

and such that X is bounded from below by a constant} .
(6)

2.2. Primal problem.

(P) u(x, ε) := sup
X∈X (x,ε)

E [U(XT )] , (x, ε) ∈ R× (−ε0, ε0) ,

where we use the convention

(7) E [U(XT )] := −∞, if E
[
U−(XT )

]
=∞.

By a contingent claim we mean any bounded random variable. As its payoff might depend on the

dynamics of the traded assets, as in European put options, for example, thus the payoff depend on ε,

we will consider a family of contingent claims f ε, ε ∈ (−ε0, ε0). Following [KK21, Section 3.4, page

157], we adapt the definition of indifference prices as follows.

Definition 2.3. A number p is call an indifference price for f ε corresponding to the initial wealth

x ∈ R and ε ∈ (−ε0, ε0), if we have

E[U(XT + qf ε)] ≤ u(x, ε), q ∈ R and X ∈ X (x− qp, ε).

Let us define

V (y) := sup
x∈R

(U(x)− xy) , y > 0.

Then V is two times continuously differentiable function, therefore

(8) B(y) := V ′′(y)y, y > 0,
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is well-defined. Next, we observe that, as V ′′(U ′(x)) = − 1
U ′′(x) , x ∈ R, we have

B(U ′(x)) =
1

A(x)
, x ∈ R.

Therefore, Assumption 2.1 implies that

(9)
1

c 2
≤ B(y) = V ′′(y)y ≤ 1

c 1
, y > 0.

Absence of arbitrage. Following [Sch01], we suppose that

(10) Qe(0) 6= ∅,

where Qe(ε) (Qa(ε)) is a set of equivalent (absolutely continuous) local martingale measures for Rε,

ε ∈ (−ε0, ε0).

2.3. Dual problem.

(D) v(y, ε) = inf
Q∈Qe(ε)

E
[
V

(
y
dQ
dP

)]
, (y, ε) ∈ (0,∞)× (−ε0, ε0),

where we use the convention

(11) E
[
V

(
y
dQ
dP

)]
:=∞, if E

[
V +

(
y
dQ
dP

)]
=∞.

As usual, we denote

(12)
Y(y, ε) := { (Yt)0≤t≤T ≥ 0 : Y0 = y and (XtYt)0≤t≤T is a P-supermartingale

for every X ∈ X (1, ε)} , (y, ε) ∈ (0,∞)× (−ε0, ε0),

so that every element of Qe(ε) can be represented as a terminal value of an element of Y(1, ε).

2.4. Existence and uniqueness results for (P) and (D). As demonstrated in [Sch01], the opti-

mizers (associated with different x ∈ R) to (P) are not necessarily bounded from below, and thus,

they are not the elements of X (x, ε)’s, in general. These sets have to be enlarged properly.

Thus, following [Sch01], we define the following sets.

Definition 2.4. For (x, ε) ∈ R× (−ε0, ε0), define the set Cb(x, ε) by

CbU (x, ε) =
{

ΓT ∈ L0 : ΓT ≤ XT for some X ∈ X (x, ε) and E [|U(ΓT )|] <∞
}
,

and let CU (x, ε) denote the set

CU (x, ε) =
{

ΦT ∈ L0 : U(ΦT ) is in the L1(P)-closure of {U(ΓT ) : ΓT ∈ CbU (x, ε)}
}
.

For the existence and uniqueness results for the base model, we suppose that the assumptions of

[Sch01, Theorem 2.2] hold. The following theorem is proven in [Sch01, Theorem 2.2], namely,

• locally bounded d-dimensional semimartingale S,

• the Inada conditions, they follow from Assumption 2.1,

• reasonable asymptotic elasticity, also seem to follow from Assumption 2.1,

• NFLVR for the base model - (10).
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Assumption 2.5. There exists x ∈ R, such that

u(x, 0) <∞.

We note that Assumption 2.5 implies that u(x, 0) < ∞ for every x ∈ R. By [Sch01],

finiteness of v on (0,∞) will follow.

First, we observe that under u(x, 0) <∞, for some x ∈ R, we have

(13) u(x, 0) = sup
X∈X (x,0)

E [U(XT )] = sup
ΓT∈CbU (x,0)

E [U(ΓT )] = sup
ΦT∈CU (x,ε)

E [U(ΦT )] , x ∈ R.

We remark that, under these conditions, [Sch01, Theorem 2.2] implies that

• u(·, 0) and v(·, 0) are finite-valued, strictly concave (resp. convex), differentiable functions on

R (resp. R+), they are conjugate and satisfy the Inada conditions.

• For y > 0, the optimal solution Q̂(y, 0) ∈ Qa(0) to the dual problem (D) exists, is unique and

the map y → Q̂(y, 0) is continuous in the variation norm.

• For x ∈ R, the optimal solution Φ̂T (x, 0) ∈ CU (x, 0) to the primal problem (P) exists, is unique

and is given by

Φ̂T (x, 0) = −V ′
(
y
dQ̂(y, 0)

dP

)
,

where y = ux(x, 0).

• If Q̂(ux(x, 0), 0) ∈ Qe(0), then Φ̂T (x, 0) equals the terminal value X̂T (x, 0) for a process of the

form X̂(x, 0) = x + H · R, where H is predictable and R-integrable, such that X̂(x, 0) is a

uniformly integrable martingale under Q̂(ux(x, 0), 0).

Lemma 2.6. Let x ∈ R be fixed, M ∈ H2
loc(P), and suppose that (1), (3), (10), and Assumption 3.1

hold true. Then, NFLVR holds for every ε ∈ (−ε̃′0, ε̃′0) for some ε̃′0 > 0.

Without loss of generality, below we suppose that ε̃′0 = ε0.

Corollary 2.7. As a corollary to Lemma 2.6, we obtain that the assertions of [Sch01, Theorem 2.2]

hold for every ε ∈ (−ε0, ε0).

2.5. Key representation formula.

Lemma 2.8. Let us fix x ∈ R and ε ∈ (−ε0, ε0). Then, under the conditions of [Sch01, Theorem 2.2],

with y = ux(x, ε), where y is well-defined by [Sch01, Theorem 2.2], for a bounded f ε, we have

(14) p(x, ε) = EQ̂(ux(x,ε),ε) [f ε] ,

where p(x, ε) is specified in Definition 2.3.

Proof. The proof follows from the adaptation of the argument in [MS24a, proof of Theorem 4.2] to

the present settings. �

Assumption 2.9. The processes R and R̃ are locally bounded.
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Assumption 2.10. There exists a predictable symmetric positive semidefinite matrix-valued pro-

cesses γ0 and ν0 with bounded components, exactly one of which is the identity matrix1 (dκ×P)-a.e.,

such that

ν0 · 〈Md〉 = γ0 · 〈M c〉.

Assumption 2.11. Let us suppose that Q̂(ux(x, 0), 0) ∈ Qe(0) and we have2

dQ̂(y, 0)

dP
=
ŶT (y, 0)

y
= E (H) .

where

H = −λ ·M + β · (−γ0 ·M c + ν0 ·Md) + L,

where L ∈ H2
loc(P) is orthogonal to both M c and Md, β is

(
−γ0 ·M c + ν0 ·Md

)
-integrable and

β ·
(
−γ0 ·M c + ν0 ·Md

)
∈ H2

loc(P).

3. Asymptotic expansions of the indifference prices

Let us denote by H2
0(Q) the set of square-integrable martingales under the probability measure Q

with the initial value 0. Next, we define

(15) M2 := {M̃ ∈ H2
0(Q) : M̃ = H ·R, for some R-integrable H}.

The complement of M2 in H2
0(Q) is denoted by N 2, that is

N 2 := {Ñ ∈ H2
0(Q) : M̃Ñ is a Q martingale for every M̃ ∈M2}.

3.1. Transformation ·H . Let H be the stochastic logarithm of Ŷ
y , that is Ŷ = yE (H). For a

semimartingale K, we set

(16) KH := K − [Kc, Hc]−
∑
s≤·

∆Ks
∆Hs

1 + ∆Hs
,

which is also a semimartingale. One can see that, if H +K is non-vanishing, KH satisfies

E
(
KH

)
=
E (K +H)

E (H)
,

that is KH is the excessive return of K under the dual numéraire E(H). We also observe that ·H is

linear in the sense that for semimartingales K1 and K2 and a constant c̃, we have

(K1 + c̃K2)H = K1,H + c̃K2,H .

With
Ãct := ν0

t(I + ν0
t)
−1Ãt1{γ0t≡I} + (I + γ0

t)
−1Ãt1{ν0t≡I},

Ãdt := γ0
t(I + γ0

t)
−1Ãt1{ν0t≡I} + (I + ν0

t)
−1Ãt1{γ0t≡I}, t ∈ [0, T ],

let us set

(17)
gct = ζ − (Ãct)

−1φtÃ
c
tλt − (Ãct)

−1φtÃ
c
tγ

0
tβ̂t,

gdt = ζ − (Ãdt )
−1ψtÃ

d
tλt + (Ãdt )

−1ψtÃ
d
t ν

0
tβ̂t, t ∈ [0, T ].

1This allows to include both the situation with no jumps, in which case γ0 ≡ 0, and the discrete-time case, when

ν0 ≡ 0.
2We will denote below Q̂(ux(x, 0), 0) by Q and Ŷ (ux(x, 0), 0) by Ŷ .
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and

(18) F := −gc ·M c,H − gd ·Md,H and G := Ĥ · R̃.

In the one-dimensional case, that is, if only one risky asset is available, we have

gc = ζ − φλ− φγ0β and gd = ζ − ψλ+ ψν0β.

Assumption 3.1. There exists a constant c > 0, such that

EQ

[
exp (c|GT |) + exp (c (|FT |+ [F ]T ))

(
1 + X̂2

T

)
+ ŶT

]
<∞,

and the jumps of F are bounded, where processes F and G are defined in (18).

3.2. Quadratic minimization problems. Let us consider auxiliary minimization problems

uxx := −y inf
M̃∈M2

EQ

[
A
(
X̂T

)(
1 + M̃T

)2
]
,(19)

uεε := −y inf
M̃∈M2

EQ

[
A
(
X̂T

)(
M̃T +GT

)2
+ 2M̃TFT

]
,(20)

vyy := y inf
Ñ∈N 2

EQ

[
B(ŶT )

(
1

y
+ ÑT

)2
]
,(21)

vεε := y inf
Ñ∈N 2

EQ

[
B(ŶT )

(
FT + ÑT

)2
+ 2

(
FT + ÑT

)
GT

]
.(22)

Under the conditions of Theorem 4.1, via the direct method in the calculus of variations, see [FL07],

and Komlos’ lemma, one can show that there exist unique minimizers to (19), (20), (21), and (22).

Let us denote these minimizers by Mx, M ε, Ny, and N ε, respectively. Next, let us set

uxε := −yEQ

[
A
(
X̂T

)
(1 +Mx

T ) (M ε
T +GT ) +Mx

TFT

]
,(23)

vyε := yEQ

[
B(ŶT )

(
1

y
+Ny

T

)
(FT +N ε

T ) +GT

(
1

y
+Ny

T

)]
.(24)

3.3. Conditions on f ε. The following assumption imposes sufficient integrability for the proofs below

to hold, and it allows to include the perturbations of the payoffs, e.g., of the put options under

perturbations of the stock price dynamics, particularly in the Black-Scholes model.

Assumption 3.2. There exists a constant C > 0 such that

|f ε| ≤ C P–a.s., ε ∈ (−ε0, ε0),

and such that

L1(Q)- lim
ε→0

f ε − f0

ε
= f ′.

We also denote f0 by f for brevity.

Remark 3.3. If we consider the following perturbations of the dynamics of the volatility in the

Black-Scholes model

Rεt = µt+ (σ + ε)Wt, t ∈ [0, T ],
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for the put option on Sε = s0E(Rε), that if for (K − Sε)+, we have that f ε = (K − Sε)+, and

∂fε

∂ε

∣∣∣∣
ε=0

= CeσW
Q
TWQ

T + C,

where WQ is a Brownian motion under the minimal martingale measure for R0, Q. so∣∣∣∣∂fε∂ε
∣∣∣∣∣∣∣∣
ε=0

≤ C + C ′e2σWQ
T ∈ L1(Q).

One can also see that Assumption 3.2 holds.

Let us set

px := uxxEQ
[
Ny
T f
]
, pε := EQ

[
{(uxεNy

T +N ε
T + FT }f + f ′

]
.(25)

Remark 3.4. In view of Theorem 4.2 below, pε in (25) can be represented as

pε = vyεpx + EQ
[
(N ε

T + FT ) f + f ′
]
.

Theorem 3.5. Let x ∈ R be fixed, M ∈ H2
loc(P), and suppose that (10), (1), (3) and Assumptions

2.1, 2.2, 2.9, 2.10, 2.11, 3.1, and 3.2 hold, and denote y = ux(x, 0), which is well-defined by [Sch01,

Theorem 2.2]. Then, we have

(26) lim
|∆x|+|ε|→0

|p(ε,∆x)− p(0, 0)− εpε −∆xpx|
|∆x|+ |ε|

= 0,

where px and pε are given in (25).

The corrections of trading strategies are given in Theorem 4.7 below.

4. Asymptotic analysis of (P) and (D)

4.1. First-order analysis. We start from the first-order expansion theorem.

Theorem 4.1. Let x ∈ R be fixed, M ∈ H2
loc(P), and suppose that (10), (1), (3) and Assumptions

2.1, 2.2, 2.9, 2.10, 2.11, 3.1 hold, and denote y = ux(x, 0). Then, there exists ε̃0 > 0, such that for

every ε ∈ (−ε̃0, ε̃0), we have

u(x, ε) ∈ R, x ∈ R, and v(y, ε) ∈ R, y > 0.

Further, u and v are jointly differentiable (thus, continuous) at (x, 0) and (y, 0), respectively, and we

have

(27) ∇u(x, 0) =

(
y

uε(x, 0)

)
and ∇v(y, 0) =

(
−x

vε(y, 0)

)
,

where

(28) uε(x, 0) = yEQ [GT ] = vε(y, 0) = −yEQ

[
X̂TFT

]
,

where G and F are defined in (18).
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4.2. Second-order analysis. Here we establish second-order expansions of the value functions ap-

pearing (P) and (D), as well as the first-order expansions of the optimizers for these problems.

Theorem 4.2. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and denote

y = ux(x, 0). Then, we have

(29)

(
uxx 0

uxε 1

)(
vyy 0

vyε −1

)
= −

(
1 0

0 1

)
,

and

(30) uεε − vεε = uxεvyε.

Furthermore, with Mx, M ε, Ny, and N ε denoting the optimizers to (19), (20), (21), and (22), re-

spectively, we have

(31) A(X̂T )

(
1 +Mx

T

GT +M ε
T

)
= −

(
uxx 0

uxε 1

)(
1
y +Ny

T

FT +N ε
T

)
;

equivalently,

(32) B(ŶT )

(
1
y +Ny

T

FT +N ε
T

)
=

(
vyy 0

vyε −1

)(
1 +Mx

T

GT +M ε
T

)
.

Theorem 4.3. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and denote

y = ux(x, 0). With

(33) Hu :=

(
uxx uxε

uxε uεε

)
,

we have

u(x+ ∆x, ε) = u(x, 0) + (∆x ε)∇u(x, 0) +
1

2
(∆x ε)Hu

(
∆x

ε

)
+ o(∆x2 + ε2),

where ∇u is given by (27). Similarly, with

(34) Hv :=

(
vyy vyε

vyε vεε

)
,

we have

v(y + ∆y, ε) = v(y, 0) + (∆y ε)∇v(y, 0) +
1

2
(∆y ε)Hv

(
∆y

ε

)
+ o(∆y2 + ε2),

where ∇v(y, 0) is given by (27).

Remark 4.4. In view of the concavity of u in the x-variable, Theorem 4.3 implies that uxx given by

(19) is the second-order partial derivative of u with respect to x. Moreover, (19) implies that

c1 ≤ −
uxx(x, 0)

ux(x, 0)
≤ c2,

that is, the absolute risk aversion of the indirect utility u at (x, 0) is bounded by the same constants

as in Assumption 2.1.
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Moreover, considering only perturbations of the initial wealth, under the assumptions of Theorem

4.1, similarly to the proof below, one can show that the quadratic expansion of u in x holds at every

(x, ε) ∈ R× (−ε0, ε0), that is, similarly to (19), we have

(35)

−uxx(x+ ∆x, ε) = ux(x+ ∆x, ε) inf
M̃∈M2(x+∆x,ε)

EQ̂(ux(x+∆x,ε),ε)

[
A
(
X̂T (x+ ∆x, ε)

)(
1 + M̃T

)2
]
,

where Q̂(ux(x+ ∆x, ε), ε) is the dual optimal measure at (x+ ∆x, ε), andM2(x+ ∆x, ε) is the space

of square-integrable martingales starting from 0 under Q̂(ux(x+∆x, ε), ε) that are stochastic integrals

with respect to Rε, that is M2(x+ ∆x, ε) is defined entirely similarly to (15), but at (x+ ∆x, ε). By

the concavity of u in x, (35) implies the two times differentiability of u in x at (x + ∆x, ε). Finally,

from (35), we can obtain the following bounds for the absolute risk aversion of u

c1 ≤ −
uxx(x, ε)

ux(x, ε)
≤ c2, (x, ε) ∈ R× (−ε0, ε0),

where c1 and c2 are given by Assumption 2.1. These bounds will be used in the proof of Lemma 5.4

below.

Theorem 4.5. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and denote

y = ux(x, 0). With Mx
T and M ε denoting the optimizers to (19) and (20), respectively, we have

(36) lim
|∆x|+|ε|→0

1

|∆x|+ |ε|

∣∣∣X̂T (x+ ∆x, ε)−
{
X̂T (x, 0) + ∆x(1 +Mx

T ) + ε (GT +M ε
T )
}∣∣∣ = 0,

where the convergence takes place in P-probability. Likewise, with Ny
T and N ε denoting the optimizers

to (21) and (22), respectively, we have

(37) L1(P)- lim
|∆y|+|ε|→0

∣∣∣ŶT (y + ∆y, ε)− ŶT (y, 0)
(

1 + ∆y
(

1
y +Ny

T

)
+ ε (FT +N ε

T )
)∣∣∣

|∆y|+ |ε|
= 0.

Corollary 4.6. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and denote

y = ux(x, 0). With Ny
T and N ε

T denoting the optimizers to (21) and (22), respectively, we have

(38) L1(P)- lim
1

|∆y|+ |ε|

∣∣∣∣∣dQ̂(y + ∆y, ε)

dP
− dQ̂(y, 0)

dP
{

1 + ∆yNy
T + ε(FT +N ε

T )
}∣∣∣∣∣ = 0.

4.3. Corrections to optimal strategies. With Mx and M ε be the optimizers to (19) and (20) that

are the elements of M2, respectively, let us approximate them by bounded Q-martingales M
x,n

and

M
ε,n

, such that

lim
n→∞

M
x,n
T = Mx

T and lim
n→∞

M
ε,n
T = M ε

T , P− a.s.

By the local boundedness of R (which implies the σ-boundedness of R), we can further approximate

M
x,n

’s and M
ε,n

’s, so that that there exist sequences of bounded predictable processes Hx,n and Hε,n,

n ∈ N, such that Hx,n ·R, Hx,n · R̃, Hε,n ·R, Hε,n · R̃ are bounded, and we have

(39) lim
n→∞

H∆x,n ·RT = Mx
T and lim

n→∞
Hε,n ·RT = M ε

T , P− a.s.

Let us consider

(40) X̃∆x,ε,n = (x+ ∆x) + (H + ∆xH∆x,n + εHε,n) ·Rε, (∆x, ε, n) ∈ R× (−ε0, ε0)× N.

We note that X̃ ∈ X (x+ ∆x, ε), for every (x+ ∆x, ε, n) ∈ R× (−ε0, ε0)× N.
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Theorem 4.7. Let x ∈ R be fixed, and suppose that the assumptions of Theorem 4.1 hold. Then,

there exists a function n = n(∆x, ε) : R× (−ε0, ε0)→ N, such that

E
[
U
(
X̃∆x,ε,n
T

)]
= u(x+ ∆x, ε)− o(∆x2 + ε2).

The process X̃∆x,ε,n has the following positions in the risky assets

(41) H + ∆xH∆x,n + εHε,n,

and H∆x,n’s and Hε,n’s satisfy (39).

4.4. Technical estimates.

Lemma 4.8. Let us suppose that Assumption 2.1 holds. Then, we have

(42) U ′(x)e−c1z ≤ U ′(x+ z) ≤ U ′(x)e−c2z, for every (x, z) ∈ R× (−∞, 0).

and

(43) U ′(x+ z) ≤ U ′(x)
(
1 + e−c2z

)
, for every (x, z) ∈ R2.

Proof. Let h(x̃) := log (U ′(x̃)), x̃ ∈ R. Then, we have

h′(x̃) =
U ′′(x̃)

U ′(x̃)
, x̃ ∈ R.

Therefore, for every x ∈ R and z < 0, using Assumption 2.1, we obtain

c1(−z) ≤
∫ x

z+x
(−h′(t))dt = h(x+ z)− h(x) =

∫ x

z+x
(−h′(t))dt ≤ c2(−z).

Next, from the definition of h, we get

log(U ′(x)) + c1(−z) ≤ log(U ′(z + x)) ≤ log(U ′(x)) + c2(−z).

Exponentiating both sides, we obtain (42). In turn, as U ′ is decreasing, from (42), we deduce (43). �

Lemma 4.9. Let U : R→ R satisfies Assumption 2.1. Then, we have

(44) V ′(y) +
1

c1
log z ≥ V ′(zy) ≥ V ′(y) +

1

c2
log z, for every y > 0 and z > 0.

Proof. Let us fix y > 0 and z > 0. Then, with for x = −V ′(y), we recall that U ′′(x) = − 1
V ′′(y) , and

(9) gives
1

c 2
≤ B(y) = V ′′(y)y ≤ 1

c 1
, y > 0.

As a consequence, by direct computations, we get

(45) V ′(zy)− V ′(y) =

∫ zy

y
V ′′(t)dt =

∫ zy

y
V ′′(t)t

dt

t
≥ 1

c2
log z.

Similarly, we can show that

(46) V ′(zy)− V ′(y) ≤ 1

c1
log z.

As (45) and (46) hold for every y > 0 and z > 0, (44) follows. �
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Proof of Lemma 2.6. As in the proof of Lemma 4.20, one can show that

Ŷ

y
E
(
J0,ε,H

)
∈ Y(1, ε),

where J0,ε’s are defined in (77). As Ŷ
y E
(
J0,ε,H

)
is a positive local martingale, thus supermartingale

under P, it is enough to show that, for every ε sufficiently close to 0, we have

(47) E

[
ŶT
y
E
(
J0,ε,H

)
T

]
= 1.

Let us consider the left-hand side in (47) and rewrite it as

(48) E

[
ŶT
y
E
(
J0,ε,H

)
T

]
= EQ

[
E
(
J0,ε,H

)
T

]
.

Now, E
(
J0,ε,H

)
is a nonnegative local martingale under Q, thus supermartingale. It follows from

Assumption 3.1 that there exists ε̃′0 > 0 such that

EQ

[(
E
(
J0,ε,H

)
T

)2]
<∞, ε ∈ (−ε̃′0, ε̃′0).

Therefore, ε ∈ (−ε̃′0, ε̃′0), E
(
J0,ε,H

)
is a square-integrable martingale under Q, and so, using (48), we

get

1 = EQ
[
E
(
J0,ε,H

)
T

]
= E

[
ŶT
y
E
(
J0,ε,H

)
T

]
,

which implies (47), thus Y
y E
(
J0,ε,H

)
is a true P martingale, and so

Qe(ε) 6= ∅, ε ∈ (−ε̃′0, ε̃′0).

�

4.5. Results needed for reformulations of the auxiliary minimization problems.

Lemma 4.10. Let x ∈ R be fixed and assumptions of Theorem 4.1 hold. Then, with

(49) λc := λ+ (γ0)>β and λd := λ− (ν0)>β,

and

(50) Rc := M c +

∫ ·
0
d〈M c〉sλcs and Rd := Md +

∫ ·
0
d〈Md〉sλds

the processes Rc and Rd satisfy

(51) R = Rc +Rd,

and form a decomposition of a Q-local martingale R into a continuous and purely discontinuous parts.

Proof. First, using Assumption 2.10, we obtain (51). Next, let us consider a bounded predictable

d-dimensional process a. Then, from [Pro04, Theorem II.38], we have

E (a ·Rc) E (H) = E (a ·Rc +H + [a ·Rc, H]) ,

where H is given by Assumption 2.11 is a P-local martingale. By [JS03, Proposition I.4.49(c)], we have

that
[∫ ·

0 a
>
s d〈M c〉sλcs, H

]
is a local martingale. The local martingale property of (a ·Rc +H + [a ·Rc, H])

follows, which implies, via [Pro04, Theorem III.29], that E (a ·Rc) E (H) is a local martingale under
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P. Therefore, by [JS03, Proposition III.3.8], we deduce that E (a ·Rc) is a continuous local martingale

under Q. Consequently, a ·Rc is a local martingale under Q, as a stochastic logarithm of a continuous

local martingale. Since a is an arbitrary bounded and predictable process, we deduce that Rc is a

local martingale under Q.

Now, having the local martingale property of Rc under Q, using the local boundedness of R,

similarly to the argument above, by taking a bounded predictable a, such that the jumps of a · Rd

are strictly greater than −1, we can show that local martingale property of Rd. To show that Rd is

a purely discontinuous locally bounded martingale under Q, let us consider an arbitrary continuous

local martingale K under Q. Furthermore, in

(52) K(a ·Rd) = (a ·Rd)− ·K + (K−a) ·Rd +
[
K, a ·Rd

]
,

by [Pro04, Theorem III.29], (a · Rd)− · K is a local martingale under Q and, by [Pro04, Theorem

IV.29], (K−a) ·Rd is a local martingale under Q. Therefore, in (52), to show that L(a ·Rd) is a local

martingale under Q, it is enough to show that
[
K, a ·Rd

]
is a local martingale under Q. We have[

K, a ·Rd
]

=
[
K, a ·Md

]
+

[
K,

∫ ·
0
a>s d〈Md〉sλd

]
,

where, by [JS03, Proposition I.4.49(c)],
[
K,
∫ ·

0 a
>
s d〈Md〉sλd

]
is a local martingale under Q. So, we are

left to show that
[
K, a ·Md

]
is a local martingale under Q, which via [JS03, Proposition III.3.8], holds

if

E
([
K, a ·Md

])
E (H) = E

([
K, a ·Md

]
+H +

[[
K, a ·Md

]
, H
])

is a P-local martingale. Since K is continuous, so is
[
K, a ·Md

]
, therefore, by and [JS03, Proposition

I.4.49(c)],
[[
K, a ·Md

]
, H
]

is a P-local martingale. Decomposing K into a continuous local martingale

under P and a predictable finite variation part, using [JS03, Proposition I.4.49(c)] and the purely

discontinuous martingale property of Md under P, we can show that
[
K, a ·Md

]
is a local martingale.

�

Lemma 4.11. Let x ∈ R be fixed, and the assumptions of Theorem 4.1 hold. Then, there exists ε̃ > 03,

such that for every ε ∈ (−ε̃, ε̃), the families of vector-valued processes λε,c and λε,d given implicitly via

(53)

∫ ·
0
d〈M c〉s (λs + εζs) =

∫ ·
0

(I + εφs) d〈M c〉sλε,cs ,∫ ·
0
d〈Md〉s (λs + εζs) =

∫ ·
0

(I + εψs) d〈Md〉sλε,ds ,

are well-defined. Furthermore, the matrix-valued processes γε and νε given via

(54)
γε := (I + εψ)−1 γ0 (I + εφ) , νε = I, if ν0 ≡ I,

νε := (I + εφ)−1 ν0 (I + εψ) , γε = I, if γ0 ≡ I,

satisfy

(55)

∫ ·
0
γεsd〈M c〉sλε,cs =

∫ ·
0
d〈Md〉sλε,ds , if ν0 ≡ I,∫ ·

0
d〈M c〉sλε,cs =

∫ ·
0
νεsd〈Md〉sλε,ds , if γ0 ≡ I.

3Below, we suppose that ε̃ = ε0, without loss of generality.
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Proof. By the uniform boundedness of the components of φ and ψ, we deduce that there exists ε̃ > 0,

such that for every ε ∈ (−ε̃, ε̃), (I + εφ)−1 and (I + εψ)−1 exist and are bounded. Using the matrix-

valued version of the Radon-Nikodym Theorem (see, e.g., [RR68]), we deduce that for every ε ∈ (−ε̃, ε̃),
the vector-valued processes λε,c and λε,d given as solutions to (53) are well-defined. Now, (55) follows

from (53) and (54). �

4.6. Implicit differentiation.

Lemma 4.12 (First-order implicit differentiation). Let x ∈ R be fixed, and the assumptions of The-

orem 4.1 hold. Then, for every predictable process H̃ and β̃, such that H̃ is R integrable and β̃ is

M -integrable and the integrals in (56) are well-defined and finite-valued P–a.s., we have∫ T

0
(H̃s)

>d〈M〉sζs −
∫ T

0
(H̃s)

>φsd〈M c〉s
(
λs + (γ0

s )>β̃
)
−
∫ T

0
(H̃s)

>ψsd〈Md〉s
(
λs − (ν0

s )>β̃s

)
=

∫ T

0
(H̃s)

>d〈M c〉s
((
λ0,c
s

)′
+
((
γ0
s

)>)′
β̃s

)
+

∫ T

0
(H̃s)

>d〈Md〉s
((

λ0,d
s

)′
−
((
ν0
s

)>)′
β̃s

)
,

(56)

where the derivatives above are given by

(57)
(λ0,c
t )′ = ζ − (Ãct)

−1φtÃ
c
tλt, (γ0

t )′ = −
(

(Ãct)
−1φtÃ

c
tγ

0
t

)>
,

(λ0,d
t )′ = ζ − (Ãdt )

−1ψtÃ
d
tλt, (ν0

t )′ = −
(

(Ãdt )
−1ψtÃ

d
t ν

0
t

)>
, t ∈ [0, T ].

Moreover, for a predictable and R-integrable H, such that the integrals in (58) are well-defined and

finite-valued P–a.s., we have∫ T

0
(Hs)

>d〈M〉sζs −
∫ T

0
(Hs)

>φsd〈M c〉sλcs −
∫ T

0
(Hs)

>ψsd〈Md〉sλds

=

∫ T

0
(Hs)

>d〈M c〉sgcs +

∫ T

0
(Hs)

>d〈Md〉sgds .
(58)

Remark 4.13. Lemma 4.12 allows to characterize gc and gd defined in (17) as

gct = (λ0,c
t )′ +

(
(γ0
t )′
)>
βt and gd = (λ0,d

t )′ −
(
(ν0
t )′
)>
βt, t ∈ [0, T ],

where (λ0,c
t )′, (λ0,d

t )′, γ0
t )′, and (ν0

t )′ are given by (57) in Lemma 4.12.

Proof of Lemma 4.12. With λε,c and λε,d being given by (53) and γε and νε given by (54), using [Pro04,

Theorem II.38], one can see that for every predictable process H̃ and β̃, such that the integrals in (56)

are well-defined and finite-valued P–a.s., the process

E
(
H̃ ·Rε

)
E
(
−λε,c ·M c − λε,d ·Md + β̃ ·

(
−γε ·M c + νε ·Md

))
is a local martingale. The local martingale property of this process implies that∫ ·

0
H̃>s d〈M〉s(λs + εζs) =

∫ ·
0
H̃>s (I + εφ) d〈M c〉s

(
λε,cs + (γεs)

>β̃s

)
+

∫ ·
0
H̃>s (I + εψ) d〈Md〉s

(
λε,ds − (νεs)

>β̃s

)
.

(59)
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Let us consider a sequence εn, n ∈ N, converging to 0. From (59), we have∫ ·
0
H̃>s d〈M〉sζs =

1

εn

(∫ ·
0
H̃>s (I + εφ) d〈M c〉s

(
λε,cs + (γεs)

>β̃s

)
−
∫ ·

0
H̃>s d〈M c〉s

(
λcs + (γ0

s )>β̃s

))
+

1

εn

(∫ ·
0
H̃>s (I + εψ) d〈Md〉s

(
λε,ds − (νεs)

>β̃s

)
−
∫ ·

0
H̃>s d〈Md〉s

(
λds − (ν0

s )>β̃s

))
.

Taking the limit as n→ 0, we obtain (56). (58) can be proven similarly. �

Similarly to the proof of the previous lemma, we can establish the second-order implicit differenti-

ation formulas.

Lemma 4.14 (Second-order implicit differentiation). Let x ∈ R be fixed, and the assumptions of

Theorem 4.1 hold. Then, for every predictable process Hε and β̃, such that the integral below are

well-defined and finite-valued P–a.s., we have

2

∫ T

0
(Hε

s )>φsd〈M c〉s
((
λ0,c
s

)′
+
((
γ0
s

)>)′
β̃s

)
+ 2

∫ T

0
(Hε

s )>ψsd〈Md〉s
((

λ0,d
s

)′
−
((
ν0
s

)>)′
β̃s

)
= −

∫ T

0
(Hε

s )>d〈M c〉s
((
λ0,c
s

)′′
+
((
γ0
s

)>)′′
β̃s

)
−
∫ T

0
(Hε

s )>d〈Md〉s
((

λ0,d
s

)′′
−
((
ν0
s

)>)′′
β̃s

)
.

(60)

4.7. Characterization of key Q-martingales.

Lemma 4.15. Let x ∈ R be fixed, and the assumptions of Theorem 4.1 hold. Let Hε be a predictable

process, such that

(61) Hε ·R ∈ H2
loc(Q),

and gε,c and gε,d be predictable processes, such that gε,c

gc 1{gc 6=0} and gε,d

gd
1{gd 6=0} are locally bounded

and gε,c = 0 on {gc = 0} as well as gε,d = 0 on {gd = 0}. Then, the following processes are local

martingales under Q:

(Hε ·R)
(
gε,c ·M c,H + gε,d ·Md,H

)
−
∫ ·

0 H
ε
s

(
d〈M c〉sgε,cs + d〈Md〉sgε,ds

)
;(62)

(Hε ·Rc)
(
gε ·M c,H

)
−
∫ ·

0 H
ε
sd〈M c〉sgεs;(63) (

Hε ·Rd
) (
gε ·Md,H

)
−
∫ ·

0 H
ε
sd〈Md〉sgεs.(64)

If additionally

Hε ·R and gε,c ·M c,H + gε,d ·Md,H are in H2(Q),

then the processes in (62), (63), and (64) are true martingales under Q.

Proof. First, in view of Assumption 3.1, we have

K := gε,c ·M c,H + gε,d ·Md,H is locally bounded.
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As Ŷ−
y is left-continuous, by [Pro04, Theorem III.29], we have that

(65)
Ŷ−
y
·
(∫ ·

0
Hε
s
>d
[
Md
]
s
gε,ds −

∫ ·
0
Hε
s
>d〈Md〉sgε,ds

)
is a P− local martingale.

Let τ ′n, n ∈ N, be the localizing sequence of this local martingale, τ̃n, n ∈ N, be a sequence of stopping

times such that
∫ t∧τ̃n

0 Hε
s
>d〈Md〉sgε,ds ∈ L1(Q) t ∈ [0, T ], n ∈ N. Note that such as sequence τ̃n, n ∈ N,

exists as every component of M ∈ H2
loc(P), and every component of R is locally bounded, so every

component of
∫ ·

0〈M〉sλs is locally square-integrable under P; therefore, by Assumption 3.1 and the

Cauchy-Schwartz inequality, we have

EQ

[∫ τ̃n

0
Hε
sd〈M〉sλs

]
≤ 1
√
y

(
E
[∫ τ̃n

0
Hε
sd〈M〉sλs

])1
2

EQ

[
ŶT

]1
2
<∞.

Also, let τn, n ∈ N, be a sequence of stopping times, such that gε,c ·M c,H , gε,d ·Md,H , [gε,c ·M c,H ],

and [gε,d ·Md,H ] are bounded on [0, τn], n ∈ N. The existence of such a sequence τn, n ∈ N follows

from Assumption 3.1. It follows from [Pro04, Theorem 3.11] that
∫ ·∧τn∧τ̃n

0 Hε
s
>d〈M〉sλs is natural.

Therefore, in view of the definition of the natural processes as in [Pro04, page 111], we have

E

[[∫ ·
0
Hε
s
>d〈M〉sλs,K

]
τn∧τ̃n

]
= 0, n ∈ N.

Let τ ′′n , n ∈ N, be a localizing sequence for Hε ·R. Let us fix n ∈ N, consider an arbitrary stopping

time σ and set τ := σ ∧ τ ′n ∧ τ̃n ∧ τn ∧ τ ′′n . Then we have

EQ [(Hε ·Rτ ) (Kτ )]

=EQ

Hε ·
(
M +

∫ ·
0
d〈M〉sλs

)
,K − [gε,c ·M c, Hc]−

∑
s≤·

gε,ds ∆Ms
∆Hs

1 + ∆Hs


τ


=EQ

Hε ·M,K − [gε,c ·M c, Hc]−
∑
s≤·

gε,ds ∆Ms
∆Hs

1 + ∆Hs


τ

 ,
(66)

where, in the second equality, we used the (true) martingale property of
[∫ ·

0 H
ε
s
>d〈M〉sλs,K

]
on [0, τ ].

Further, by direct computations, we can rewrite the last expression in (66) as

EQ

∫ τ

0
Hε
s
>d〈M c〉sgε,cs +

∑
s≤τ

Hε
s∆Ms

gε,ds ∆Ms

1 + ∆Hs

 .
Let us denote

T̃1 := EQ

[∫ τ

0
Hε
s
>d〈M c〉sgε,cs

]
and T̃2 := EQ

∑
s≤τ

Hε
s∆Ms

gε,ds ∆Ms

1 + ∆Hs

 .
It follows from the assumption of the lemma that both T̃1 and T̃2 are well-defined and finite-valued,

and using integration by parts, one can rewrite T̃2 as

(67) T̃2 = E

∑
s≤τ

Ŷs−
y

(Hε
s∆Ms)

(
gε,ds ∆Ms

) .
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By [Pro04, Theorem II.28, page 75], we have

(68)

∫ ·
0
Hε
s
>d
[
Md
]
s
gε,ds =

[
Hε ·Md, gε,d ·Md

]
=
∑
s≤·

(Hε
s∆Ms)

(
gε,ds ∆Ms

)
.

In view of (65), (68) allows to further rewrite T̃s in (67) as

(69) T̃2 = E

[∫ τ

0

Ŷs−
y
Hε
s
>d〈Md〉sgε,ds

]
.

Further, using localization, [JS03, Theorem I.4.49], we can rewrite T̃2 as

T̃2 = EQ

[∫ τ

0
Hε
s
>d〈Md〉sgε,ds

]
.

We recapitulate that (66) can be rewritten as

EQ

[
(Hε ·Rτ )

(
gε,c ·M c,H

τ + gε,d ·Md,H
τ

)]
= T̃1 + T̃2

=EQ

[∫ τ

0
Hε
s
>d〈M c〉sgε,ds

]
+ EQ

[∫ τ

0
Hε
s
>d〈Md〉sgε,ds

]
.

(70)

As τ is an arbitrary stopping time on [0, τn] and τn, n ∈ N, is a localizing sequence, we conclude

that
∫ τ

0 H
ε
s
>
(
d〈M c〉sgε,cs + d〈Md〉sgε,ds

)
is the predictable quadratic covariation under Q of the pair

(Hε ·R, gε,c ·M c,H + gε,d ·Md,H).

If additionally both Hε ·R and gε,c ·M c,H+gε,d ·Md,H are in H2(Q), we deduce from [JS03, Theorem

I.4.2, p. 38] that

(Hε ·R)(gε,c ·M c,H + gε,d ·Md,H)−
∫ ·

0
Hε
s
·
(
d〈M c〉sgε,cs + d〈Md〉sgε,ds

)
is a true martingale under Q, and so (70) implies (62). (63) and (64) can be proven similarly. �

4.8. Bound for u.

Lemma 4.16. Let x ∈ R be fixed. Under the conditions of Theorem 4.1 with y = ux(x, 0), let H∆x

and Hε be bounded predictable processes such that

H∆x ·
(
φ ·
(
M c +

∫ ·
0
〈M c〉sλcs

))
, H∆x ·

(
ψ ·
(
Md +

∫ ·
0
〈Md〉sλds

))
,

Hε ·
(
φ ·
(
M c +

∫ ·
0
〈M c〉sλcs

))
, Hε ·

(
ψ ·
(
Md +

∫ ·
0
〈Md〉sλds

))
,

H∆x ·R, Hε ·R, H∆x · R̃, and Hε · R̃ are bounded.

Let X∆x,ε be given by (40) for (x, ε) ∈ R× (−ε0, ε0) and let us define

w(∆x, ε) := E
[
U
(
X∆x,ε
T

)]
, (x, ε) ∈ R× (−ε0, ε0).

Then, w admits the following expansion

w(∆x, ε) = w(0, 0) + (∆x ε)∇w(x, 0) +
1

2
(∆x ε)Hw

(
∆x

ε

)
+ o(∆x2 + ε2),

where

w∆x(0, 0) = ux(x, 0), wε(x, 0) = EQ [GT ] ,
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and

Hw :=

(
w∆x∆x w∆xε

w∆xε wεε

)
,

where, with processes F and G defined in (18), we have

w∆x∆x = −yEQ

[
A
(
X̂T

) (
1 +H∆x ·RT

)2]
,

w∆xε = −yEQ

[
A
(
X̂T

) (
1 +H∆x ·RT

)
(Hε ·RT +GT ) + (H∆x ·RT )FT

]
,

wεε = −yEQ

[
A
(
X̂T

)
(Hε ·RT +GT )2 + 2(Hε ·RT )FT

]
.

Lemma 4.17. Let x ∈ R be fixed. Under the conditions of Theorem 4.1 with y = ux(x, 0), let and Hε

be bounded predictable processes such that satisfying the assumptions of Lemma 4.16. Then, we have

EQ

[
Hε · R̃T

]
= EQ

[
(Hε ·RT )

(
gc ·M c,H

T + gd ·Md,H
T

)]
= −EQ [(Hε ·RT )FT ] ,

where gc and gd are defined in (17) and F is defined in (18).

Proof. Let us recall that, in (49), λc = λ+ (γ0)>β, λd = λ− (ν0)>β. Next, one can see that

Hε ·
(
φ ·
(
M c +

∫ ·
0
〈M c〉sλcs

))
and Hε ·

(
ψ ·
(
Md +

∫ ·
0
〈Md〉sλds

))
are Q-martingales.

Completing R̃ to a local martingale under Q, we get

EQ

[
Hε · R̃T

]
= EQ

[
Hε ·

(
φ ·M c + ψ ·Md +

∫ ·
0
d〈M〉sζs

)
T

]
= EQ

[
Hε ·

(
φ ·
(
M c +

∫ ·
0
〈M c〉sλcs

)
+ ψ ·

(
Md +

∫ ·
0
〈Md〉sλds

)
−
∫ ·

0
φsd〈M c〉sλcs −

∫ ·
0
ψsd〈Md〉sλds +

∫ ·
0
d〈M〉sζs

)
T

]
.

Now, using the martingale property of Hε ·
(
φ ·
(
M c +

∫ ·
0〈M

c〉sλcs
))

and Hε ·
(
ψ ·
(
Md +

∫ ·
0〈M

d〉sλds
))

under Q, we can rewrite the latter expression as

EQ

[
Hε ·

(
−
∫ ·

0
φsd〈M c〉sλcs −

∫ ·
0
ψsd〈Md〉sλds +

∫ ·
0
d〈M〉sζs

)
T

]
= EQ

[∫ T

0
(Hε)>

(
d〈M c〉sgcs + d〈Md〉sgds

)]
,

where, in the last equality, we have used Lemma 4.12 and the definition of gc and gd in (17). Now, the

assertion of the lemma follows from Lemma 4.15 (particularly from (63) and (64)) and the definition

of process F in (18). �

Proof of Lemma 4.16. Let us first fix δ > 0, then fix (∆x, ε) ∈ Bδ(0, 0), where Bδ(0, 0) is a ball of

radius δ in R2 centered at (0, 0). Let us consider

Xz∆x,zε = (x+ z∆x) + (Ĥ + z∆xH∆x + zεHε) ·Rzε, z ∈ (−1, 1).
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By direct computations, we get

∂Xz∆x,zε

∂z
= ∆x+

(
∆xH∆x + εHε

)
·Rε + (Ĥ + z∆xH∆x + zεHε) · R̃,

∂2Xz∆x,zε

∂z2
= 2ε

(
∆xH∆x + εHε

)
· R̃.

(71)

Next, we set

W (z) := U
(
Xz∆x,zε
T

)
, z ∈ (−1, 1).

By direct computations, we get

W ′(z) = U ′
(
Xz∆x,zε
T

) ∂Xz∆x,zε
T

∂z
,

W ′′(z) = U ′′
(
Xz∆x,zε
T

)(∂Xz∆x,zε
T

∂z

)2

+ U ′
(
Xz∆x,zε
T

) ∂2Xz∆x,zε
T

∂z2
,

(72)

With process G being defined in (18), let us introduce

J := 1 + |GT | .

From (72), via (71), Assumption 2.1, and Lemma 4.8, we deduce that there exists a constant b > 0,

which does not depend on δ, such that

(73) sup
z∈(−1,1)

∣∣W ′(z)∣∣+ sup
z∈(−1,1)

∣∣W ′(z)∣∣ ≤ bU ′(X̂T ) exp (bδJ)
(
J + J2

)
.

As 1 ≤ J ≤ J2, we deduce from (73) that, for every z1 and z2 in (−1, 1), we have

(74)

∣∣∣∣W (z1)−W (z2)

z1 − z2

∣∣∣∣+

∣∣∣∣W ′(z1)−W ′(z2)

z1 − z2

∣∣∣∣ ≤ 2bU ′(X̂T ) exp (bδJ) J2.

Now, by choosing a sufficiently small δ, we obtain from Assumption 3.1 via Holder’s inequality that

the right-hand side of (74) is integrable. Now, the assertion of the lemma follows from the dominated

convergence theorem and Lemma 4.17. �

Lemma 4.18. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and denote

y = ux(x, 0). Then, we have

u(x+ ∆x, ε) ≥ u(x, 0) + (∆x ε)∇u(x, 0) +
1

2
(∆x ε)Hu

(
∆x

ε

)
+ o(∆x2 + ε2),

Proof. Assumption 2.9 and [KS06a, Lemma 7 and Lemma 8] implies, in the terminology of [KS06a],

the sigma-boundedness of R. Therefore, [KS06a, Lemma 6] asserts that we can approximate elements

ofM2 by bounded martingales inM2. Now, the assertion of the lemma follows from Lemma 4.16. �

4.9. Preliminary results for the bound for v.

Lemma 4.19. Let x ∈ R be fixed and Assumptions of Theorem 4.1 hold. Then, we have

−EQ

[
X̂TFT

]
= EQ

[
X̂T

(
gc ·M c,H

T + gd ·Md,H
T

)]
= EQ

[
Ĥ · R̃T

]
= EQ [GT ] .
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Proof. Let us recall Rc and Rd defined in (50) and consider

EQ

[
Ĥ · R̃T

]
= EQ

[
Ĥ ·

(
φ ·M c + ψ ·Md +

∫ ·
0
d〈M〉sζs

)
T

]
= EQ

[
Ĥ ·

(
φ ·Rc −

∫ ·
0
φsd〈M c〉sλcs

+ψ ·Rd −
∫ ·

0
ψsd〈Md〉sλds +

∫ ·
0
d〈M〉sζs

)
T

]
.

(75)

We observe that, by Assumption 3.1, we have the square-integrability of both Ĥ · RcT and Ĥ · RdT .

Therefore, in view of the uniform componentwise boundedness of φ and ψ,
(
φ>Ĥ

)
·(Rc) and

(
ψ>Ĥ

)
·

Rd are in H2(Q). Therefore, we can rewrite the latter expression in (75) as

EQ

[
Ĥ ·

(
−
∫ ·

0
φsd〈M c〉sλcs −

∫ ·
0
ψsd〈Md〉sλds +

∫ ·
0
d〈M〉sζs

)
T

]
= EQ

[∫ T

0
Ĥ>s

(
d〈M c〉sgcs + d〈Md〉sgds

)]
,

where, in the last equality, we have used the first-order implicit differentiation Lemma 4.12. Next,

from Lemma 4.15, we have

EQ

[∫ T

0
Ĥ>s

(
d〈M c〉sgcs + d〈Md〉sgds

)]
= EQ

[(
Ĥ ·RT

)(
gc ·M c,H

T + gd ·Md,H
T

)]
= EQ

[(
x+ Ĥ ·RT

)(
gc ·M c,H

T + gd ·Md,H
T

)]
= EQ

[
X̂T

(
gc ·M c,H

T + gd ·Md,H
T

)]
,

which, in view of definitions of processes F and G in (18), completes the proof of this lemma. �

Lemma 4.20. Let x ∈ R be fixed and conditions of Theorem 4.1 hold, y = ux(x, 0). Let L and L̃

be locally square-integrable P-martingales that are orthogonal to both M c and Md. Let β∆y and βε be

bounded predictable processes. Let us denote

(76) Ñ∆y := β∆y · (−γ0 ·M c,H + ν0 ·Md,H) +L
H

and Ñ ε := βε · (−γ0 ·M c,H + ν0 ·Md,H) + L̃H ,

and suppose that the following processes are bounded:

(1) L
H

, L̃H , [L
H

], and [L̃H ];

(2) β∆y ·M c,H and βε ·M c,H ;

(3) β∆y ·Md,H and βε ·Md,H ;

(4) [β∆y ·MH ] and [βε ·MH ];

(5) [F, Ñ∆y] and [F, Ñ ε];

(6) (gd ·Md,H)− · Ñ∆y
T and (gc ·M c,H)− · Ñ∆y

T ;

(7)
(∫ ·

0 Ĥ
>
s d〈Md〉sgds

)
−
· Ñ∆y

T and
(∫ ·

0 Ĥ
>
s d〈M c〉sgcs

)
−
· Ñ∆y

T ;

(8)
(
F + Ñ ε

)
−
· Ñ ε.
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Then, with

J∆y,ε :=− (λε,c − λ) ·M c −
(
λε,d − λ

)
·Md

+ β ·
((
−γε + γ0

)
·M c + (νε − ν0) ·Md

)
+ (∆yβ∆y + εβε) ·

(
−γε ·M c + νε ·Md

)
+ ∆yL+ εL̃,

(77)

there exists δ > 0, such that for every (∆y, ε) ∈ Bδ(0, 0), we have

Ŷ

y
E
(
J∆y,ε,H

)
∈ Y(1, ε).

Remark 4.21. For β∆y and βε as in Lemma 4.20, with λε,c and λε,d being given by (53) and γε and

νε by (54), (∆yβ∆y + εβε) ·
(
−γε ·M c + νε ·Md

)
is orthogonal to λε,c ·M c + λε,d ·Md.

Lemma 4.22. Let x ∈ R be fixed, assumptions of Theorem 4.1 hold, and let us denote y = ux(x, 0).

With L and β∆y satisfying the assumptions of Lemma 4.20, and K := β∆y · (−γ0 ·M c + ν0 ·Md) +L,

we have

yEQ

B(ŶT )

1

y
+KT −

[
Ĥ,K

]c
T
−
∑
s≤T

∆Ĥs∆Ks

1 + ∆Ĥs

2

−X̂T

1

y
+KT −

[
Ĥ,K

]c
T
−
∑
s≤T

∆Ĥs∆Ks

1 + ∆Ĥs

2

+ X̂T

 1

y2
+ [K]c +

∑
s≤T

(∆Ks)
2(

1 + ∆Ĥs

)2




= yEQ

B(ŶT )

1

y
+KT −

[
Ĥ,K

]c
T
−
∑
s≤T

∆Ĥs∆Ks

1 + ∆Ĥs

2 .
Proof. Let us recall the transformation ·H in (16). As KH is a bounded martingale under Q that is

orthogonal to X̂, we deduce that

EQ

−X̂T

1

y
+KT −

[
Ĥ,K

]c
T
−
∑
s≤T

∆Ĥs∆Ks

1 + ∆Ĥs

2

+ X̂T

 1

y2
+ [K]c +

∑
s≤T

(∆Ks)
2(

1 + ∆Ĥs

)2




= EQ

[
−X̂T

(
1

y
+KH

T

)2

+ X̂T

(
1

y2
+
[
KH

]
T

)]

= EQ

[
−2

y
X̂TK

H
T + X̂T

([
KH

]
T
−
(
KH
T

)2)]
= EQ

[
X̂T

([
KH

]
T
−
(
KH
T

)2)]
.

Now, by the boundedness of KH and [KH ] and Assumption 3.1 and the orthogonality of KH to X̂

under Q we have that X̂
([
KH

]
−
(
KH

)2)
is a uniformly integrable Q-martingale, we conclude that

EQ

[
X̂T

([
KH

]
T
−
(
KH
T

)2)]
= 0,

and the assertion of the lemma follows. �



24 OLEKSII MOSTOVYI

Lemma 4.23. Let x ∈ R be fixed, assumptions of Theorem 4.1 hold, and let us denote y = ux(x, 0).

Let β∆y, βε, L, L̃, Ñ∆y and Ñ ε be as in Lemma 4.20. Then, we have

(78)

EQ

[
−X̂T

{(
1

y
+ Ñ∆y

T

)(
FT + Ñ ε

T

)
−
[

1

y
+ Ñ∆y, F + Ñ ε

]
T

+β∆y ·
(

(−γ0)′ ·M c,H + (ν0)′ ·Md,H
)
T

}]
= EQ

[
GT

(
1

y
+ Ñ∆y

T

)]
,

where processes F and G are defined in (18).

Proof. First, to match the terms containing 1
y in (78), we need to check that

(79) EQ

[
Ĥ · R̃T

]
= EQ

[
−X̂T

(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)]
,

which follows from Lemma 4.19 and the orthogonality of X̂ and Ñ ε and which implies that

EQ

[
−X̂T

(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)]
= EQ

[
−X̂T

(
−gc ·M c,H

T − gd ·Md,H
T

)]
.

With λc and λd defined in (49), Rc and Rd are defined in (50), as H · R ∈ H2(Q) by Assumption

3.1, from Lemma 4.10, we deduce that both Ĥ ·Rc and Ĥ ·Rd are in H2
0(Q) and are orthogonal. Using

Lemma 4.12, we can rewrite the right-hand side of (78) as

(80)

EQ

[
Ĥ ·

(
φ ·M c + ψ ·Md +

∫ ·
0
d〈M〉sζs

)
T

Ñ∆y
T

]
=EQ

[
Ĥ ·

(
φ ·Rc + ψ ·Rd +

∫ ·
0
d〈M c〉sgcs +

∫ ·
0
d〈Md〉sgds

)
T

Ñ∆y
T

]
.

Now, using Lemma 4.15, we can rewrite the right-hand side of (80) as

(81)

EQ

[
Ĥ ·

(
φ ·Rc + ψ ·Rd +

∫ ·
0
d〈M c〉sgcs +

∫ ·
0
d〈Md〉sgds

)
T

Ñ∆y
T

]
=EQ

[∫ T

0
Ĥ>s φsd〈M c〉s

(
−γ0

s

)>
β∆y
s +

∫ T

0
Ĥ>s ψsd〈M c〉s

(
ν0
s

)>
β∆y
s

+

(∫ T

0
Ĥ>s d〈M c〉sgcs +

∫ T

0
Ĥ>s d〈Md〉sgds

)
Ñ∆y
T

]
.

Now, let us consider the term EQ

[
−X̂T

(
β∆y ·

(
(−γ0)′ ·M c,H + (ν0)′ ·Md,H

)
T

)]
in the left-hand side

of (78). Using the martingale property of β∆y ·
(
(−γ0)′ ·M c,H + (ν0)′ ·Md,H

)
under Q and Lemma

4.15, we can rewrite it as follows.

(82)

EQ

[
−X̂T

(
β∆y ·

(
(−γ0)′ ·M c,H + (ν0)′ ·Md,H

)
T

)]
=EQ

[
−Ĥ ·RT

(
β∆y ·

(
(−γ0)′ ·M c,H + (ν0)′ ·Md,H

)
T

)]
=EQ

[∫ T

0
Ĥ>s d〈M c〉s

(
(γ0
s )′
)>
β∆y
s +

∫ T

0
Ĥ>s d〈Md〉s

(
(−ν0

s )′
)>
β∆y
s

]
.

Now, applying Lemma 4.12, we can rewrite the latter term in (82) as

(83)

EQ

[∫ T

0
Ĥ>s d〈M c〉s

(
(γ0
s )′
)>
β∆y
s +

∫ T

0
Ĥ>s d〈Md〉s

(
(−ν0

s )′
)>
β∆y
s

]
=EQ

[∫ T

0
Ĥ>s φsd〈M c〉s

(
−γ0

s

)>
β∆y
s +

∫ T

0
Ĥ>s ψsd〈Md〉s

(
ν0
s

)>
β∆y
s

]
,
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which up to

(84) EQ

[(∫ T

0
Ĥ>s d〈M c〉sgcs +

∫ T

0
Ĥ>s d〈Md〉sgds

)
Ñ∆y
T

]
term coincides with the right-hand side of (81).

Now, in the left-hand side of (78), let us consider the term

(85)

EQ

[
−X̂T

{(
Ñ∆y
T

)(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)
−
[
N∆y,−gc ·M c,H − gd ·Md,H + Ñ ε

]
T

}]
.

As
(
Ñ∆y

)(
−gc ·M c,H − gd ·Md,H + Ñ ε

)
−
[
Ñ∆y,−gc ·M c,H − gd ·Md,H + Ñ ε

]
is a Q-martingale

and since both N∆y and N ε are orthogonal to Ĥ ·R, we deduce that (85) can be rewritten as

(86)

EQ

[
−Ĥ ·RT

{(
Ñ∆y
T

)(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)
−
[
Ñ∆y,−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

]
T

}]
= EQ

[
−Ĥ ·RT

{(
Ñ∆y
T

)(
−gc ·M c,H

T − gd ·Md,H
T

)
−
[
Ñ∆y,−gc ·M c,H − gd ·Md,H

]
T

}]
.

Let us observe that(
Ñ∆y
T

)(
−gc ·M c,H

T − gd ·Md,H
T

)
−
[
Ñ∆y,−gc ·M c,H − gd ·Md,H

]
T

= −(Ñ∆y
− gc) ·M c,H

T − (gc ·M c,H)− · Ñ∆y
T − (Ñ∆y

− gd) ·Md,H
T − (gd ·Md,H)− · Ñ∆y

T .

Consequently, we can rewrite the right-hand side of (86) as

(87)
EQ

[
−Ĥ ·RT

{
−(Ñ∆y

− gc) ·M c,H
T − (gc ·M c,H)− · Ñ∆y

T

−(Ñ∆y
− gd) ·Md,H

T − (gd ·Md,H)− · Ñ∆y
T

}]
.

By the assumption of the lemma (gd ·Md,H)− · Ñ∆y
T and (gc ·M c,H)− · Ñ∆y

T are bounded. Therefore,

taking into account the orthogonality of Ñ∆y and Ĥ · R under Q, and lemma 4.15, we can rewrite

(87) as

(88) EQ

[∫ T

0
Ĥ>s d〈M c〉s(Ñ∆y

s− g
c
s) +

∫ T

0
Ĥ>s d〈Md〉s(Ñ∆y

s− g
d
s )

]
.

Now, as
∫ T

0 Ĥ>s d〈Md〉sgds is integrable (in view of Lemma 4.15 and Assumption 3.1) and
∫ ·

0 Ĥ
>
s d〈Md〉sgds

is predictable, by [Pro04, Theorem III.11],
∫ ·

0 Ĥ
>
s d〈Md〉sgds is natural. Therefore, by the definition of

natural processes as in [Pro04, page 111], we have

(89) E
[[∫ ·

0
Ĥ>s d〈Md〉sgds , Ñ∆y

]
T

]
= 0.

Next, using [JS03, Theorem I.4.49], we deduce that∫ T

0
Ĥ>s d〈Md〉s(Ñ∆y

s− g
d
s ) =

(∫ T

0
Ĥ>s d〈Md〉sgds

)
Ñ∆y
T

+

(∫ ·
0
Ĥ>s d〈Md〉sgds

)
−
· Ñ∆y

T +

[∫ ·
0
Ĥ>s d〈Md〉sgds , Ñ∆y

]
T

As a result, from (89) and the assumptions of the lemma, which imply that

E
[(∫ ·

0
Ĥ>s d〈Md〉sgds

)
−
· Ñ∆y

T

]
= 0,



26 OLEKSII MOSTOVYI

we obtain

E
[∫ T

0
Ĥ>s d〈Md〉s(Ñ∆y

s− g
d
s )

]
=E

[(∫ T

0
Ĥ>s d〈Md〉sgds

)
Ñ∆y
T

]
.

Similarly, we get

E
[∫ T

0
Ĥ>s d〈M c〉s(Ñ∆y

s− g
c
s)

]
= E

[(∫ T

0
Ĥ>s d〈M c〉sgcs

)
Ñ∆y
T

]
.

We conclude that, we can rewrite (88) as

(90) EQ

[(∫ T

0
Ĥ>s d〈M c〉sgcs +

∫ T

0
Ĥ>s d〈Md〉sgds

)
Ñ∆y
T

]
,

which is precisely the (84) term. The assertion of the lemma follows from combining the estimates

above.

�

Lemma 4.24. Let x ∈ R be fixed, assumptions of Theorem 4.1 hold. Let βε, L̃, and Ñ ε be as in

Lemma 4.20. Then, we have

− EQ

[
X̂T

{(
FT + Ñ ε

T

)2
−
[
F + Ñ ε

]
T

+ 2βε ·
(

(−γ0)′ ·M c,H + (ν0)′ ·Md,H
)
T

−(λ0,c)′′ ·M c,H
T − (λ0,d)′′ ·Md,H

T + β ·
(

(−γ0)′′ ·M c,H + (ν0)′′ ·Md,H
)
T

}]
= 2EQ

[(
FT + Ñ ε

T

)
GT

]
,

(91)

where processes F and G are defined in (18).

Proof. Using Lemma 4.12, one can show that, on the right-hand side of (91), we have

(92)

EQ

[
(−gc ·M c,H

T − gd ·Md,H
T )(Ĥ · R̃T )

]
=EQ

[
(−gc ·M c,H

T − gd ·Md,H
T )(Ĥ>s d〈M c〉sgcs + Ĥ>s d〈Md〉sgds + Ĥ · φ ·RcT + Ĥ · ψ ·RdT )

]
=EQ

[
(−gc ·M c,H

T − gd ·Md,H
T )(Ĥ>s d〈M c〉sgcs + Ĥ>s d〈Md〉sgds )

−Ĥ>s φsd〈M c〉sgcs − Ĥ>s ψsd〈Md〉sgds
]
,

where, in the last equality, we used Lemma 4.15. Next, using the martingale property of
(
−gc ·M c,H − gd ·Md,H + Ñ ε

)2
−[

−gc ·M c,H − gd ·Md,H + Ñ ε
]

under Q and the integration by parts formula, we can rewrite the

−EQ

[
X̂T

{(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)2
−
[
−gc ·M c,H − gd ·Md,H + Ñ ε

]
T

}]
term in the left-hand side of (91) as

(93)

− EQ

[
X̂T

{(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)2
−
[
−gc ·M c,H − gd ·Md,H + Ñ ε

]
T

}]
=2EQ

[
−Ĥ ·RT

{(
−gc ·M c,H − gd ·Md,H + Ñ ε

)
−
·
(
−gc ·M c,H − gd ·Md,H + Ñ ε

)
T

}]
.

In turn, using the orthogonality of Ñ ε and Ĥ ·R under Q, we can rewrite the right-hand side of (95)

as

2EQ

[
−Ĥ ·RT

{(
−gc ·M c,H − gd ·Md,H + Ñ ε

)
−
·
(
−gc ·M c,H − gd ·Md,H

)
T

}]
,
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which, in turn, via Lemma 4.15 can be restated as

(94) 2EQ

[∫ T

0
Ĥ>s

(
d〈M c〉sgcs + d〈Md〉sgds

)(
−gc ·M c,H − gd ·Md,H + Ñ ε

)
s−

]
.

Using Lemma 4.15 and Assumption 3.1, we deduce that
∫ ·

0 Ĥ
>
s 〈M c〉sgcs +

∫ ·
0 Ĥ
>
s 〈Md〉sgds is the pre-

dictable quadratic covariation of the pair (Ĥ · R, gc · M c,H + gd · Md,H). Via Assumption 3.1,

Doob’s maximal inequality (see [KS98, Theorem I.3.8(iv)]) and the Burkholder-Davis-Gundy inequal-

ity (see [CE15, Theorem 11.5.5 and Remark 11.5.8]), we deduce that there exists δ > 0, such that∣∣∣∫ ·0 Ĥ>s 〈M c〉sgcs +
∫ ·

0 Ĥ
>
s 〈Md〉sgds

∣∣∣1+δ
is of class D in the sense of [KS98, Definition I.4.8]. Therefore,

in view of Assumption 3.1 and Hölder’s inequality, we have(
−gc ·M c,H − gd ·Md,H + Ñ ε

) ∣∣∣∣∫ ·
0
Ĥ>s 〈M c〉sgcs +

∫ ·
0
Ĥ>s 〈Md〉sgds

∣∣∣∣ is of class D.

Now, via localization, integration by parts and [JS03, Proposition I.4.49(c)], we can rewrite (94) as

2EQ

[(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)∫ T

0
Ĥ>s

(
d〈M c〉sgcs + d〈Md〉sgds

)]
.

We recapitulate that

(95)

− EQ

[
X̂T

{(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)2
−
[
−gc ·M c,H − gd ·Md,H + Ñ ε

]
T

}]
= 2EQ

[(
−gc ·M c,H

T − gd ·Md,H
T + Ñ ε

T

)∫ T

0
Ĥ>s

(
d〈M c〉sgcs + d〈Md〉sgds

)]
.

Next, similarly to the proof of Lemma 4.23 (and to the proof of [MS24b, Lemma 5.19]), we can show

that

(96)

EQ

[
−X̂Tβ

ε ·
(

(−γ0)′ ·M c,H + (ν0)′ ·Md,H
)
T

]
=EQ

[
(Ñ ε

T )
(
Ĥ · R̃T

)]
− EQ

[
(Ñ ε

T )

(∫ T

0
Ĥ>s

(
d〈M c〉sgcs + d〈Md〉sgds

))]
.

Now, in the left-hand side of (91), let us consider

(97)
−EQ

[
X̂T

{
−(λ0,c)′′ ·M c,H

T − (λ0,d)′′ ·Md,H
T

+β ·
(

(−γ0)′′ ·M c,H + (ν0)′′ ·Md,H
)
T

}]
.

Using Assumption 3.1 and [Pro04, Corollary II.3], we can show that

−(λ0,c)′′ ·M c,H − (λ0,d)′′ ·Md,H + β ·
(

(−γ0)′′ ·M c,H + (ν0)′′ ·Md,H
)
∈ H2

0(Q).

Therefore, using Lemma 4.15, we can rewrite (97) as

(98)

EQ

[(
−Ĥ ·RT

){
−(λ0,c)′′ ·M c,H

T − (λ0,d)′′ ·Md,H
T + β ·

(
(−γ0)′′ ·M c,H + (ν0)′′ ·Md,H

)
T

}]
=EQ

[
−
∫ T

0
Ĥ>s d〈M c〉s

(
(−λ0,c

s )′′ +
(
(−γ0

s)
′′)> βs)− ∫ T

0
Ĥ>s d〈Md〉s

(
(−λ0,d

s )′′ +
(
(ν0
s )′′
)>
βs

)]
.
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Next, using Lemma 4.14, we can rewrite the right-hand side of (98) as

2EQ

[∫ T

0
Ĥ>s φsd〈M c〉s

(
(−λ0,c

s )′ +
(
(−γ0

s)
′)> βs)+

∫ T

0
Ĥ>s ψsd〈Md〉s

(
(−λ0,d

s )′ +
(
(ν0
s )′
)>
βs

)]
=− 2EQ

[∫ T

0
Ĥ>s φsd〈M c〉sgcs +

∫ T

0
Ĥ>s ψsd〈Md〉sgds

]
.

We recapitulate that

(99)

− EQ

[
X̂T

{
−(λ0,c)′′ ·M c,H − (λ0,d)′′ ·Md,H + β ·

(
(−γ0)′′ ·M c,H + (ν0)′′ ·Md,H

)}]
= −2EQ

[∫ T

0
Ĥ>s φsd〈M c〉sgcs +

∫ T

0
Ĥ>s ψsd〈Md〉sgds

]
.

Now, from (96), (92), (95) and (99), we conclude that (91) holds.

�

4.10. Bound for v.

Lemma 4.25. Let x ∈ R be fixed and conditions of Theorem 4.1 hold, y = ux(x, 0). Let β∆y, βε, L,

and L̃ as in Lemma 4.20 and consider

Ψ(∆y, ε) :=

(
1 +

∆y

y

)
E
(
J∆y,ε,H

)
T
, (∆y, ε) ∈ Bδ(0, 0),

where J∆y,ε is given in (77), δ ∈ (0, y) is sufficiently small, so that the jumps of J∆y,ε,H take values

in [−1/2, 1/2], for every (∆y, ε) ∈ Bδ(0, 0). Let us define

w̃(∆y, ε) := E [V (YTΨ(∆y, ε))] , (∆y, ε) ∈ Bδ(0, 0).

Then w̃ admits the following expansion at (0, 0):

w̃(∆y, ε) = w̃(0, 0) + (∆y ε)∇w̃(y, 0) +
1

2
(∆y ε)Hw̃

(
∆y

ε

)
+ o(∆y2 + ε2),

where

w̃∆y(0, 0) = −vy(y, 0), w̃ε(y, 0) = −yEQ

[
X̂TFT

]
,

and

(100) Hw :=

(
w̃∆y∆y w̃∆yε

w̃∆yε w̃εε

)
,

where, with processes F and G being given by (18) and Ñ∆y and Ñ ε by (76), respectively, the compo-

nents of Hw are given by

w̃∆y∆y = yEQ

[
B(ŶT )

(
1

y
+ Ñ∆y

T

)2
]
,

w̃∆yε = yEQ

[
B(ŶT )

(
1

y
+ Ñ∆y

T

)(
FT + Ñ ε

T

)
+

(
1

y
+ Ñ∆y

T

)
GT

]
,

w̃εε = yEQ

[
B(ŶT )

(
FT + Ñ ε

T

)2
+ 2(FT + Ñ ε

T )GT

]
.
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Proof. The proof follows [MS24b, proof of Lemma 5.16]. Let us consider

(101) E
(
J∆y,ε,H

)
T

= exp

J∆y,ε,H
T − 1

2

[
J∆y,ε,H

]c
T

+
∑
s≤T

(
log(1 + ∆J∆y,ε,H

s )−∆J∆y,ε,H
s

) .

As

|log(1 + x)− x| ≤ x2, for every x ∈
[
−1

2 ,
1
2

]
,

we obtain that, in (101), the series
∑
s≤T

(
log(1 + ∆J∆y,ε,H

s )−∆J∆y,ε,H
s

)
converges absolutely for every

(∆y, ε) ∈ Bδ(0, 0), P–a.s., and we have∑
s≤T

∣∣log(1 + ∆J∆y,ε,H
s )−∆J∆y,ε,H

s

∣∣ ≤ [J∆y,ε,H
]
T
.

With gc and gd being given by (17), next, we observe that for every (∆y, ε) ∈ Bδ(0, 0), there exists

C > 0, which does not depend on (∆y, ε), such that

(102) E
(
J∆y,ε,H

)
T
≤ y

y − δ
Ψ(∆y, ε) ≤ C exp (C|ε| (|FT |+ [F ]T )) .

Furthermore, the series of term-by-term partial derivatives of∑
s≤T

∣∣log(1 + ∆J∆y,ε,H
s )−∆J∆y,ε,H

s

∣∣ ≤ [J∆y,ε,H
]
T

converges uniformly in (∆y, ε) ∈ Bδ(0, 0), P–a.s., where additionally the term-by-term derivatives

of
∑
s≤T

(
log(1 + ∆J∆y,ε,H

s )−∆J∆y,ε,H
s

)
are continuous in (∆y, ε) ∈ Bδ(0, 0), P–a.s.. Therefore, we

obtain

∂

∂∆y

∑
s≤T

(
log(1 + ∆J∆y,ε,H

s )−∆J∆y,ε,H
s

)
= −

∑
s≤T

∆J∆y,ε,H
s

1 + ∆J∆y,ε,H
s

((
(νεs)

>β∆y
s

)
∆Md,H

s + ∆L
H
s

)
,

∂

∂ε

∑
s≤T

(
log(1 + ∆J∆y,ε,H

s )−∆J∆y,ε,H
s

)
= −

∑
s≤T

∆J∆y,ε,H
s

1 + ∆J∆y,ε,H
s

×
(
−(λε,ds )′∆Md,H

s +
((

(νεs)
′)> (βs + ∆yβ∆y

s + εβεs
))

∆Md,H
s +

(
(νεs)

> βεs

)
∆Md,H

s + ∆L̃Hs

)
.

For a fixed ∆y and ε, let us denote I := J∆y,ε,H . By direct computations, we get

Ψ∆y(∆y, ε)

Ψ(∆y, ε)
=

 1

y + ∆y
+

∂I

∂∆y
−
[
Ic,

∂Ic

∂∆y

]
−
∑
s≤·

∂∆Is
∂∆y ∆Is

1 + ∆Is


T

,

Ψε(∆y, ε)

Ψ(∆y, ε)
=

∂I
∂ε
−
[
Ic,

∂Ic

∂ε

]
−
∑
s≤·

∂∆Is
∂ε ∆Is

1 + ∆Is


T

.

Therefore, we obtain

Ψ∆y(∆y, ε)

Ψ(∆y, ε)

∣∣∣∣
(∆y,ε)=(0,0)

=
1

y
+ Ñ∆y

T ,

Ψε(∆y, ε)

Ψ(∆y, ε)

∣∣∣∣
(∆y,ε)=(0,0)

= FT + Ñ ε
T .
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Similarly, we can show that the series of term-by-term second-order partial derivatives of∑
s≤T

(
log(1 + ∆J∆y,ε,H

s )−∆J∆y,ε,H
s

)
converges uniformly in (∆y, ε) ∈ Bδ(0, 0), where moreover the term-by-term second-order partial

drivatives of
∑
s≤T

(
log(1 + ∆J∆y,ε,H

s )−∆J∆y,ε,H
s

)
are continuous in (∆y, ε) ∈ Bδ(0, 0). Therefore, we

get

Ψ∆y∆y(∆y, ε)

Ψ(∆y, ε)
=

 1

y + ∆y
+

∂I

∂∆y
−
[
Ic,

∂Ic

∂∆y

]
−
∑
s≤·

∂∆Is
∂∆y ∆Is

1 + ∆Is


T

2

− 1

(y + ∆y)2
+
∂2IT
∂∆y2

−
[
Ic,

∂2Ic

∂∆y2

]
T

−
[
∂Ic

∂∆y

]
T

−
∑
s≤T

∂2∆Is
∂∆y2

∆Is +
(
∂∆Is
∂∆y

)2

1 + ∆Is
+
∑
s≤T

(
∂∆Is
∂∆y

1 + ∆Is

)2

∆Is.

Consequently, we obtain

Ψ∆y∆y(∆y, ε)

Ψ(∆y, ε)

∣∣∣∣
(∆y,ε)=(0,0)

=

(
1

y
+ Ñ∆y

T

)2

− 1

y2
−
[
∂Ic

∂∆y

]
T

−
∑
s≤T

(
∂∆Is
∂∆y

)2

=

(
1

y
+ Ñ∆y

T

)2

− 1

y2
−
[
Ñ∆y

]
T
.

Similarly, we deduce that

Ψ∆yε(∆y, ε)

Ψ(∆y, ε)
=

 1

y + ∆y
+

∂I

∂∆y
−
[
Ic,

∂Ic

∂∆y

]
−
∑
s≤·

∂∆Is
∂∆y ∆Is

1 + ∆Is


T

×

∂I
∂ε
−
[
Ic,

∂Ic

∂ε

]
−
∑
s≤·

∂∆Is
∂ε ∆Is

1 + ∆Is


T

+
∂2IT
∂∆y∂ε

−
[
Ic,

∂2Ic

∂∆y∂ε

]
T

−
[
∂Ic

∂ε
,
∂Ic

∂∆y

]
T

−
∑
s≤T

∂2∆Is
∂∆y∂ε∆Is + ∂∆Is

∂∆y
∂∆Is
∂ε

1 + ∆Is
+
∑
s≤T

∂∆Is
∂∆y

∂∆Is
∂ε ∆Is

(1 + ∆Is)2
.

As a result, we get

Ψ∆yε(∆y, ε)

Ψ(∆y, ε)

∣∣∣∣
(∆y,ε)=(0,0)

=

(
1

y
+ Ñ∆y

T

)(
FT + Ñ ε

T

)
−
[

1

y
+ Ñ∆y, F + Ñ ε

]
T

+ β∆y ·
(

(−γ0)′ ·M c,H + (ν0)′ ·Md,H
)
T

Likewise, we obtain

Ψεε(∆y, ε)

Ψ(∆y, ε)
=

∂I
∂ε
−
[
Ic,

∂Ic

∂ε

]
−
∑
s≤·

∂∆Is
∂ε ∆Is

1 + ∆Is


T

2

+
∂2IT
∂ε2

−
[
Ic,

∂2Ic

∂ε2

]
T

−
[
∂Ic

∂ε

]
T

−
∑
s≤T

∂2∆Is
∂ε2

∆Is +
(
∂∆Is
∂ε

)2
1 + ∆Is

+
∑
s≤T

(
∂∆Is
∂ε

1 + ∆Is

)2

∆Is.
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and thus

Ψεε(∆y, ε)

Ψ(∆y, ε)

∣∣∣∣
(∆y,ε)=(0,0)

=
(
FT + Ñ ε

T

)2
−
[
F + Ñ ε

]
T

+ 2βε ·
(

(−γ0)′ ·M c,H + (ν0)′ ·Md,H
)
T

− (λ0,c)′′ ·M c,H
T − (λ0,d)′′ ·Md,H

T + β ·
(

(−γ0)′′ ·M c,H + (ν0)′′ ·Md,H
)
T
.

Next, let us fix (∆y, ε) ∈ Bδ(0, 0), and consider

W (z) := V
(
ŶTΨ(z∆y, zε)

)
, z ∈ (−1, 1).

Then, we have

W ′(z) = V ′
(
ŶTΨ(z∆y, zε)

)
ŶT

∂

∂z
Ψ(z∆y, zε)

= V ′
(
ŶTΨ(z∆y, zε)

)
ŶT (Ψ∆y(z∆y, zε)∆y + Ψε(z∆y, zε)ε) .

Using Lemma 4.9, we get

|W ′(z)| ≤
(
|V ′(ŶT )|+ 1

c1
|log (Ψ(∆y, ε))|

)
ŶT |Ψ∆y(z∆y, zε)∆y + Ψε(z∆y, zε)ε| .

With

J := 1 + |F |+ [F ]T ,

from (102), can see that there exists a constant b1 > 0, such that, for every z ∈ (−1, 1), we have

(103)

Ψ(z∆y, zε) ≤ b1 exp (b1δJ) ,
1

c1
log (Ψ(z∆y, zε)) ≤ b1δJ, and |Ψ′(z∆y, zε)| ≤ b1J exp (b1δJ) ,

so that

(104) sup
z∈(−1,1)

|W ′(z)| ≤ ŶT
(
|X̂T |+ b1δJ

)
exp (b1δJ) b1J.

Similarly, we get

W ′′(z) = V ′′
(
ŶTΨ(z∆y, zε)

)
Ŷ 2
T

(
∂

∂z
Ψ(z∆y, zε)

)2

+ V ′
(
ŶTΨ(z∆y, zε)

)
ŶT

∂2

∂z2
Ψ(z∆y, zε).

Using Assumption 2.1 and Lemma 4.9, we deduce that

(105) |W ′′(z)| ≤ ŶT
c1

(
∂
∂zΨ(z∆y, zε)

)2
Ψ(z∆y, zε)

+ ŶT

(
|V ′(ŶT )|+ 1

c1
| log (Ψ(z∆y, zε)) |

) ∣∣∣∣ ∂2

∂z2
Ψ(z∆y, zε)

∣∣∣∣ .
As

∂2

∂z2
Ψ(z∆y, zε) = Ψ∆y∆y(z∆y, zε)∆y

2 + 2Ψ∆yε(z∆y, zε)∆yε+ Ψεε(z∆y, zε)ε
2,

using (102), we deduce that there exists a constant b̃ > 0, such that, for every z ∈ (−1, 1), we have

(106)

∣∣∣∣ ∂2

∂z2
Ψ(z∆y, zε)

∣∣∣∣ ≤ b̃ exp
(
b̃δJ
)
J2.

From (105), using (103) and (106), we deduce that there exists a constant b2 > 0, such that

(107) sup
z∈(−1,1)

|W ′′(z)| ≤ b2ŶT exp (b2δJ) J2 + ŶT

(
|X̂T |+ b1δJ

)
b2 exp (b2δJ) J2.
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Now, from (104) and (107), we obtain that there exists a constant b > 0, such that, for every z1 and

z2 in (−1, 1), we have∣∣∣∣W (z1)−W (z2)

z1 − z2

∣∣∣∣+

∣∣∣∣W ′(z1)−W ′(z2)

z1 − z2

∣∣∣∣ ≤ ŶT (|X̂T |+ bδJ
)

exp (bδJ) bJ.(108)

By passing to a smaller δ, if necessary, and by using Höllder’s inequality, we deduce from Assumption

3.1 that the right-hand side of (108) is integrable. Furthermore, as the bound given by the right-hand

side in (108) is uniform in (∆y, ε) ∈ Bδ(0, 0), we deduce the assertion of the lemma from the dominated

convergence theorem and Lemmas 4.22, 4.23, and 4.24. �

Similarly to Lemma 4.18, as a consequence of Lemma 4.25 and [KS06a, Lemma 6], we can establish

the following bound for the dual value function.

Lemma 4.26. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and denote

y = ux(x, 0). Then, we have

v(y + ∆y, ε) ≤ v(y, 0) + (∆y ε)∇v(y, 0) +
1

2
(∆y ε)Hv

(
∆y

ε

)
+ o(∆y2 + ε2),

where ∇v(y, 0) is given by (27).

4.11. Proofs of Theorems 4.2, 4.3, 4.5, and 4.7.

Proof of Theorem 4.2. First, using the optimality conditions for the optimizers to (19) and (21), we

get

B(ŶT )

(
1

y
+Ny

T

)
= vyy (1 +Mx

T ) ,

A(X̂T ) (1 +Mx
T ) = −uxx

(
1

y
+Ny

T

)
.

(109)

Multiplying these two equations and taking the expectation under Q, we deduce that

(110) uxx(x, 0)vyy(y, 0) = −1.

Next, using the standard techniques of calculus of variations, for some M ∈M2 and N ∈ N 2, we get

B(ŶT ) (N ε
T + FT ) +GT = d (1 +MT ) ,

A(X̂T ) (M ε
T +GT ) + FT = c

(
1

y
+NT

)
.

(111)

Multiplying the first equation by
(

1
y +Ny

T

)
and the second by (1 +Mx

T ) and taking the expectation

under Q, we deduce that

d = vyε and c = −uxε.

So, we can rewrite (111) as

B(ŶT ) (N ε
T + FT ) = vyε (1 +MT )−GT ,

A(X̂T ) (M ε
T +GT ) = −uxε

(
1

y
+NT

)
− FT .

(112)
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B(ŶT ) (N ε
T + FT ) = vyε (1 +Mx

T +MT −Mx
T )−GT ,

A(X̂T ) (M ε
T +GT ) = −uxε

(
1

y
+Ny

T +NT −Ny
T

)
− FT ,

(113)

which, using (109), we can rewrite as

B(ŶT ) (N ε
T + FT ) =

vyε
vyy

B(ŶT )

(
1

y
+Ny

T

)
+ vyε (MT −Mx

T )−GT ,

A(X̂T ) (M ε
T +GT ) =

uxε
uxx

A(X̂T ) (1 +Mx
T )− uxε

(
NT −Ny

T

)
− FT ,

(114)

Multiplying the first equation by A(X̂T ) and the second by B(ŶT ), respectively, further deduce that

(N ε
T + FT ) =

vyε
vyy

(
1

y
+Ny

T

)
+A(X̂T ) (vyε (MT −Mx

T )−GT ) ,

(M ε
T +GT ) =

uxε
uxx

(1 +Mx
T )−B(ŶT )

(
uxε
(
NT −Ny

T

)
+ FT

)
.

Next, by rearranging terms, we obtain

A(X̂T ) (vyε (Mx
T −MT ) +GT ) + FT =

vyε
vyy

(
1

y
+Ny

T

)
−N ε

T ,

B(ŶT )
(
uxε
(
NT −Ny

T

)
+ FT

)
+GT =

uxε
uxx

(1 +Mx
T )−M ε

T .

(115)

Using characterizations of the unique minimizers to (20) and (22), respectively, in (111), we get

M ε = vyε (Mx −M) , −uxε =
vyε
vyy

,

N ε = uxε
(
NT −Ny

T

)
, vyε =

uxε
uxx

.
(116)

Now, (110) and (116) imply (29). Next, plugging characterizations in (116) formulas into (115), we

get

A(X̂T ) (M ε
T +GT ) = −uxε

(
1

y
+Ny

T

)
− (N ε

T + FT ) ,

B(ŶT ) (N ε
T + FT ) = vyε (1 +Mx

T )− (M ε
T +GT ) .

(117)

Now, (109) and (117) imply (30) and (31). It remains to show (30). Plugging the representations

from (117) into (20) and (22), respectively, we conclude that

vεε
y

= EQ [vyε (1 +Mx
T ) (N ε

T + FT )− (M ε
T +GT ) (N ε

T + FT ) + 2GTN
ε
T ] + 2EQ [FTGT ] ,

−uεε
y

= EQ

[
−uxε

(
1

y
+Ny

T

)
(M ε

T +GT )− (N ε
T + FT ) (M ε

T +GT ) + 2M ε
TFT

]
.

(118)

Adding these equations, we get

vεε − uεε
y

=EQ [vyε (1 +Mx
T ) (N ε

T + FT )− (M ε
T +GT ) (N ε

T + FT ) + 2GTN
ε
T ] + 2EQ [FTGT ]

+ EQ

[
−uxε

(
1

y
+Ny

T

)
(M ε

T +GT )− (N ε
T + FT ) (M ε

T +GT ) + 2M ε
TFT

]
.

(119)

Canceling the EQ [2M ε
TFT ] and EQ [2GTN

ε
T ] terms and using the orthogonality of M ε and N ε, we can

rewrite the right-hand side of (119) as

EQ [vyε (1 +Mx
T ) (N ε

T + FT )− 2GTFT ] + 2EQ [FTGT ] + EQ

[
−uxε

(
1

y
+Ny

T

)
(M ε

T +GT )

]
.
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Next, cancelling the EQ [2GTFT ] terms and using the orthogonality of M ε and N ε again, we can

rewrite the latter expression as

EQ

[
vyε (1 +Mx

T )FT − uxε
(

1

y
+Ny

T

)
GT

]
.

We recapitulate that

vεε − uεε
y

=EQ

[
vyε (1 +Mx

T )FT − uxε
(

1

y
+Ny

T

)
GT

]
.(120)

On the other hand, by multiplying the equations in (117) and taking the expectation under Q, we

obtain
1

y
uxεvyε = EQ

[
uxε

(
1

y
+Ny

T

)
GT − vyε (1 +Mx

T )FT

]
.

Comparing this to (120), we get

vεε − uεε
y

= −1

y
uxεvyε,

which implies (30). �

Proof of Theorem 4.3. With Theorem 4.2 and Lemmas 4.18 and 4.26 proven, the remaining steps

parallel [MS24b, proof of Theorem 4.15]. �

Proof of Theorem 4.5. Let (εn,∆yn), n ∈ N, be a sequence convergent to (0, 0) and such that |εn| < ε0,

where ε0 is given by Lemma 2.8. Let us set

η̂n := ŶT (y + ∆yn, εn), n ∈ N,

and observe that, by Lemma 2.8, Ŷ (y + ∆yn, εn)’s are nonnegative P-martingales.

Next, let us fix bounded predictable processes β∆y and βε and locally square-integrable P-martingales

L and L̃ satisfying the assumptions of Lemma 4.20, and with J∆yn,εn be given by (77), let us define

(121) ηn :=
ŶT
y

(y + ∆yn) E
(
J∆yn,εn,H

)
T
, θn := E

(
J∆yn,εn,H

)
T
, n ∈ N,

Similarly to the proof of Lemma 2.6, one can show that there exists n0 ∈ N, such that

(122) ηn ∈ L1(P) and θn ∈ L1(Q), n ≥ n0.

Let us fix n ≥ n0 and consider a correspondence (in the sense of [AB06, Definition 17.1]) ψ̃ : Ω→ R
defined as

ψ̃(ω) :=


[ηn(ω), η̂n(ω)], if ηn(ω) < η̂n(ω),

[η̂n(ω), ηn(ω)], if η̂n(ω) < ηn(ω),

{0}, if η̂n(ω) = ηn(ω).

Then, the distance function associated with ψ̃ is given by

δ(ω, y) =
(
(y − η̂n(ω))+ + (ηn(ω)− y)+

)
1{ηn(ω)<η̂n(ω)}

+
(
(y − ηn(ω))+ + (η̂n(ω)− y)+

)
1{η̂n(ω)<ηn(ω)}

+ |y|1{η̂n(ω)=ηn(ω)}, (ω, y) ∈ Ω× R.

One can see that δ is continuous for every ω ∈ Ω and is measurable for every y ∈ R, that is, δ is a

Caratheodory function in the sense of [AB06, Definition 4.50]. Therefore, by [AB06, Theorem 18.5], ψ̃
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is weakly measurable in the sense of [AB06, Definition 18.1]. Additionally, ψ̃ has nonempty compact

values by its construction and

g(ω, y) :=
1

2

(
−V ′′(y)

)
(η̂n(ω)− ηn(ω))2, (ω, y) ∈ Ω× (0,∞),

is also a Caratheodory function by the continuity of V ′′, which, in turn, follows from Assumption

2.1. Consequently, we deduce from the Measurable Maximum Theorem, [AB06, Theorem 18.19], that

there exists a random variable ξn taking values in [ηn ∧ η̂n, ηn ∨ η̂n], such that

(123) ξn(ω) ∈ arg max
y∈ψ̃(ω)

g(ω, y), ω ∈ Ω.

That is, ξn is a measurable selector of the arg max correspondence. Therefore, we have

(124) V (ηn)− V (η̂n) ≥ V ′(η̂n)(ηn − η̂n) +
1

2
V ′′(ξn) (ηn − η̂n)2 , n ≥ n0.

As −V ′(η̂n) are optimizers to the primal problem, by [Sch01, Theorem 2.2], we get

(125) E
[
V ′(η̂n)η̂n

]
= (y + ∆yn)vy(y + ∆yn, εn), n ≥ n0.

For every n ≥ n0, as E [V ′(η̂n)ηn] = −E
[
X̂n
T η

n
]
, following the definition of the admissible wealth

processes in [Sch01, Theorem 2.2] and its consequence, (13), let us consider an approximating sequence

of bounded from below wealth processes with the initial wealth at most x + ∆xn, and denote this

sequence X̃n,m, m ∈ N, such that U
(
X̃n,m
T

)
converges to U

(
X̂n
T

)
in L1(P). By Fatou’s lemma, we

get

(126) EQ

[
X̂n
T 1{X̂n

T≥0}θ
n
]
≤ lim inf

m→∞
EQ

[
X̃n,m
T 1{X̃n,m

T ≥0}θ
n
]
, n ≥ n0.

From Lemma 42, we deduce that there exist constants c̃0 > 1, c̃1 > 0, and c̃2 > 0, such that

(127) (−x)4c̃0 ≤ c̃1(U−(x)) + c̃2, x ≤ 0.

Therefore, we obtain

(128) 2EQ

[(
−X̃n,m

T 1{X̃n,m
T <0}θ

n
)c̃0]

≤ EQ

[(
−X̃n,m

T 1{X̃n,m
T <0}

)2c̃0
]

+ EQ

[
(θn)2c̃0

]
,

Next, from Assumption 3.1, similarly to the proof of Lemma 2.6, one can show that there exists ñ0 ≥

n0, such that, for every n ≥ ñ0, the term the EQ

[
(θn)2c̃0

]
<∞. Let us bound EQ

[(
−X̃n,m

T 1{X̃n,m
T <0}

)2c̃0
]

term in (128) as follows.

(129)

EQ

[(
−X̃n,m

T 1{X̃n,m
T <0}

)2c̃0
]

= E

[
ŶT
y

(
−X̃n,m

T 1{X̃n,m
T <0}

)2c̃0

]

≤ 1

y
EQ

[
ŶT

]
+ E

[(
−X̃n,m

T 1{X̃n,m
T <0}

)4c̃0
]
.

Here EQ

[
ŶT

]
< ∞ by Assumption 3.1 and E

[(
−X̃n,m

T 1{X̃n,m
T <0}

)4c̃0
]

is bounded uniformly in m

by (127) and the boundedness in L1(P) of U
(
X̃n,m
T

)
, m ∈ N. (128) and (129) imply the uniform

integrability of (−X̃n,m
T 1{X̃n,m

T <0})θ
n, m ∈ N, under Q, for every n ≥ ñ0.
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Therefore, by the construction of ηn in (121), we deduce that,
(
−X̃n,m

T

)
1{X̃n,m

T <0}η
n, m ∈ N, is

uniformly integrable under P, for every n ≥ ñ0, which together with (126) imply that

EQ

[
X̂n
T θ

n
]
≤ lim inf

k→∞
E
[
X̃n,mk
T ηn

]
≤ −vy(y + ∆yn, εn), n ≥ ñ0.

and thus

(130) − E
[
V ′(η̂n)ηn

]
≤ −(y + ∆yn)vy(y + ∆yn, εn), n ∈ N.

Now, from (125) and (130), we conclude that

(131) E
[
V ′(η̂n) (ηn − η̂n)

]
≥ 0, n ≥ ñ0.

Therefore, from (124) and (131), we obtain

(132) E
[

1
2V
′′(ξn) (ηn − η̂n)2

]
≤ E [V (ηn)]− v(y + ∆yn, εn), n ≥ ñ0.

With Hv(y, 0) given by (34) in Theorem 4.3 and Hw given by (100) in Lemma 4.25, from Theorem

4.3 and Lemma 4.25, we get

(133) lim sup
n→∞

E[V (ηn)]− v(y + ∆yn, εn)

(∆yn)2 + (εn)2
≤ 1

2
|Hw −Hv(y, 0)|.

Combining (132) and (133), we deduce that

(134) lim sup
n→∞

E
[

1
2V
′′(ξn) (ηn − η̂n)2

]
(∆yn)2 + (εn)2

≤ 1

2
|Hw −Hv(y, 0)|.

We remark that, by the choice of β∆y, βε, L, L̃, such that β∆y ·
(
−γ0 ·M c,H + ν0 ·Md,H

)
+ L

H
and

βε ·
(
−γ0 ·M c,H + ν0 ·Md,H

)
+ L̃H are close in H2(Q) to the optimizers to (21) and (22), Ny and

N ε, respectively, we can make the right-hand side of (133) arbitrarily small. Such an approximation

of elements of N 2 by the bounded ones is possible by [KS06a, Lemma 6].

Next, via Hölder’s inequality, we deduce that

(135)
E[|ηn − η̂n|]
|∆yn|+ |εn|

≤
(
(∆yn)2 + (εn)2

)1
2

|∆yn|+ |εn|

E
[

1
2V
′′(ξn) (ηn − η̂n)2

]1
2

((∆yn)2 + (εn)2)
1
2

E
[

2

V ′′(ξn)

]1
2
.

As Assumption 2.1 implies (9), by taking into account that ξn is given by by (123) and takes values

in [ηn ∧ η̂n, ηn ∨ η̂n], from (9), we obtain

2

V ′′(ξn)
≤ 2c2ξ

n ≤ 2c2 (ηn + η̂n), n ≥ ñ0.

Furthermore, since ηn and η̂n are terminal values of P-martingales, we get

(136) E
[

2

V ′′(ξn)

]
≤ E [2c2 (ηn + η̂n)] = 4c2(y + |εn|), n ≥ ñ0.

From (135) and (136), we deduce that, there exists a constant c̃ > 0, which does not depend on the

choice of β∆y, βε, L, and L̃, such that

(137) lim sup
n→∞

E[|ηn − η̂n|]
|∆yn|+ |εn|

≤ c̃ lim sup
n→∞

E
[

1
2V
′′(ξn) (ηn − η̂n)2

]1
2

((∆yn)2 + (εn)2)
1
2

.
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Combining (134) and (138), we obtain that

(138) lim sup
n→∞

E[|ηn − η̂n|]
|∆yn|+ |εn|

≤ c̃

2
|Hw −Hv(y, 0)|.

Next, we have

(139)

lim sup
n→∞

E
[∣∣∣η̂n − ŶT

y

(
y + ∆yn(1 + yNy

T ) + εn (yN ε
T + yFT )

)∣∣∣]
|∆yn|+ |εn|

≤ lim sup
n→∞

E[|η̂n − ηn|]
|∆yn|+ |εn|

+ lim sup
n→∞

E
[∣∣∣ηn − ŶT

y

(
y + ∆yn(1 + yNy

T ) + εn (yN ε
T + yFT )

)∣∣∣]
|∆yn|+ |εn|

.

If we choose β∆y, βε, L, and L̃, such that β∆y ·
(
−γ0 ·M c,H + ν0 ·Md,H

)
+ L

H
and

βε ·
(
−γ0 ·M c,H + ν0 ·Md,H

)
+ L̃H are sufficiently close in H2(Q) to Ny and N ε, respectively, we can

make the right-hand side of (139) arbitrarily small, as the first term in the right-hand side can be

made arbitrarily small by (138) and the second by the construction of ηn’s in (121), which ensures

that

lim sup
n→∞

1

|∆yn|+ |εn|
E

[∣∣∣∣∣ηn − ŶT
y

(
y + ∆yn(1 + yNy

T ) + εn (yN ε
T + yFT )

)∣∣∣∣∣
]

can be made arbitrarily small by the choice of β∆y, βε, L, and L̃. Thus, via (139), we deduce that

L1(P)- lim
n→∞

1

|∆yn|+ |εn|

∣∣∣∣∣η̂n − ŶT
y

(
y + ∆yn(1 + yNy

T ) + εn (yN ε
T + yFT )

)∣∣∣∣∣ = 0.

This shows (37). (36) can be proven similarly. �

Proof of Corollary 4.6. By direct computations, we have

1

|∆y|+ |ε|

{
ŶT (y + ∆y, ε)

y + ∆y
− ŶT (y, 0)

y

(
1 + ∆yNy

T + ε(FT +N ε
T )
)}

=
1

y

1

|∆y|+ |ε|

{
ŶT (y + ∆y, ε)− ŶT (y, 0)

(
1 + ∆y

(
1

y
+Ny

T

)
+ ε(FT +N ε

T )

)}
+

1

|∆y|+ |ε|

{
Ŷ (y + ∆y, ε)

(
1

y + ∆y
− 1

y

)
+ ŶT

1

y2
∆y

}
,

(140)

where, in the right-hand side, the first term

1

y

1

|∆y|+ |ε|

{
ŶT (y + ∆y, ε)− ŶT (y, 0)

(
1 + ∆y

(
1

y
+Ny

T

)
+ ε(FT +N ε

T )

)}
→ 0 in L1(P),

by Theorem 4.5, and the second term can be rewritten as

1

|∆y|+ |ε|

{
Ŷ (y + ∆y, ε)

(
1

y + ∆y
− 1

y

)
+ ŶT (y, 0)

1

y2
∆y

}
=

∆y

|∆y|+ |ε|

{
1

y(y + ∆y)

(
ŶT (y, 0)− ŶT (y + ∆y, ε)

)}
+

∆y2

|∆y|+ |ε|
ŶT (y, 0)

y2(y + ∆y)
.

In the latter expression, the first term, ∆y
|∆y|+|ε|

{
1

y(y+∆y)

(
ŶT (y, 0)− ŶT (y + ∆y, ε)

)}
, converges to 0

in L1(P) as a consequence of Theorem 4.5 and the second term, ∆y2

|∆y|+|ε|
ŶT (y,0)
y2(y+∆y)

, also converges to 0
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also in L1(P), as ŶT (y, 0) ∈ L1(P). Combining these estimates, we conclude that the left-hand side in

(140) converges to 0 in L1(P), and so, (38) holds.

�

Proof of Theorem 4.7. The proof is very similar to the proof of [MS19, Theorem 3.1]; see also the

proof of [Mos20, Theorem 4.2]. It is omitted for the brevity of the presentation. �

5. Proofs of the asymptotic expansion of the indifference prices

Lemma 5.1. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and denote

y = ux(x, 0). Then, we have

(141)

L1(P)- lim
1

|∆y|+ |ε|

∣∣∣∣∣dQ̂(y + ∆y, ε)

dP
f ε − dQ̂(y, 0)

dP
{

1 + ∆yNy
T + ε(FT +N ε

T )
}
f0 − εdQ̂(y, 0)

dP
f ′

∣∣∣∣∣ = 0.

Proof. Let us consider

1

|∆y|+ |ε|

{
dQ̂(y + ∆y, ε)

dP
f ε − dQ̂(y, 0)

dP
{

1 + ∆yNy
T + ε(FT +N ε

T )
}
f0 − εdQ̂(y, 0)

dP
f ′

}

=
1

|∆y|+ |ε|

{
dQ̂(y + ∆y, ε)

dP
f0 − dQ̂(y, 0)

dP
{

1 + ∆yNy
T + ε(FT +N ε

T )
}
f0

}

+
1

|∆y|+ |ε|
dQ̂(y + ∆y, ε)

dP
{
f ε − f0

}
− ε

|∆y|+ |ε|
dQ̂(y, 0)

dP
f ′.

(142)

The first term in the right-hand side converges to 0 in L1(P) by Corollary 4.6 and boundedness of f0,

which together imply that

1

|∆y|+ |ε|

{
dQ̂(y + ∆y, ε)

dP
f0 − dQ̂(y, 0)

dP
{

1 + ∆yNy
T + ε(FT +N ε

T )
}
f0

}
, (∆y, ε) ∈ Bδ(0, 0),

is uniformly integrable for some δ > 0. Therefore, as from Corollary 4.6, we also have

P- lim
|∆y|+|ε|→0

1

|∆y|+ |ε|

{
dQ̂(y + ∆y, ε)

dP
f0 − dQ̂(y, 0)

dP
{

1 + ∆yNy
T + ε(FT +N ε

T )
}
f0

}
= 0,

by the uniform integrability of this sequence, the convergence also holds in L1(P).

Let us consider the other term on the right-hand side of (142). We can rewrite it as

1

|∆y|+ |ε|
dQ̂(y + ∆y, ε)

dP
{
f ε − f0

}
− ε

|∆y|+ |ε|
dQ̂(y, 0)

dP
f ′

=
1

|∆y|+ |ε|

{
dQ̂(y + ∆y, ε)

dP
− dQ̂(y, 0)

dP

}{
f ε − f0

}
+

1

|∆y|+ |ε|
dQ̂(y, 0)

dP
(
f ε − f0 − εf ′

)
.

(143)

By Corollary 4.6 and Assumption 3.2, which implies that
∣∣f ε − f0

∣∣ is bounded uniformly in (∆y, ε) ∈
Bδ(0, 0), for some δ > 0, we deduce that, in the right-hand side of (143), we have

L1(P)- lim
|∆y|+|ε|→0

1

|∆y|+ |ε|

{
dQ̂(y + ∆y, ε)

dP
− dQ̂(y, 0)

dP

}{
f ε − f0

}
= 0.
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As for the remaining term on the right-hand side of (143), by Assumption 3.2, we have

L1(P)- lim
|∆y|+|ε|→0

1

|∆y|+ |ε|
dQ̂(y, 0)

dP
(
f ε − f0 − εf ′

)
= 0.

We conclude that every term in the right-hand side of (142) converges to 0 in L1(P) as (|∆y|+ |ε|)→
0. �

Lemma 5.2. Let x ∈ R be fixed and suppose that the assumptions of Theorem 4.1 hold. Then, we

have

(144) lim
(∆x,ε)→(0,0)

ux(x+ ∆x, ε) = ux(x, 0).

Proof. By [Sch01, Theorem 2.2] and Lemma 2.6 we have

(145) ŶT (ux(x+ ∆x, ε), ε) = U ′(X̂T (x+ ∆x, ε)), (∆y, ε) ∈ Bε0(0, 0).

Since X̂T (x+ ∆x, x)→ X̂T (x, 0) in probability by Theorem 4.5, we deduce from (145) that

(146) lim
(∆x,ε)→(0,0)

ŶT (ux(x+ ∆x, ε), ε) = ŶT (ux(x, 0), 0), in probability.

As, by [Sch01, Theorem 2.2], we have ŶT (ux(x + ∆x, ε), ε) = ux(x + ∆x, ε)dQ(ux(x+∆x,ε),ε)
dP , that is,

every dual minimizer in Bε0(0, 0) does not lose mass, we deduce from (146), the nonnegativity of the

dual minimizers and Fatou’s lemma that

lim inf
(∆x,ε)→(0,0)

ux(x+ ∆x, ε) = lim inf
(∆x,ε)→(0,0)

E
[
ŶT (ux(x+ ∆x, ε), ε)

]
≥ E

[
ŶT (ux(x, 0), 0)

]
= ux(x, 0).

(147)

Next, let us observe that

E
[
V
(
ŶT (ux(x+ ∆x, ε), ε)

)]
= v(ux(x+ ∆x, ε), ε), (∆x, ε) ∈ Bε0(0, 0).

Therefore, from (146) and boundedness from below of V , using Fatou’s lemma, we get

(148)

lim sup
(∆x,ε)→(0,0)

(−v(ux(x+ ∆x, ε), ε)) = − lim inf
(∆x,ε)→(0,0)

E
[
V
(
ŶT (ux(x+ ∆x, ε), ε)

)]
≤ −E

[
V
(
ŶT (ux(x, 0), 0)

)]
= −v(ux(x, 0), 0),

whereas, from Theorem 4.1, we obtain

(149) lim
(∆x,ε)→(0,0)

u(x+ ∆x, ε) = u(x, 0).

Furthermore, from [Sch01, Theorem 2.2], we get

(x+ ∆x)ux(x+ ∆x, ε) = u(x+ ∆x, ε)− v(ux(x+ ∆x, ε), ε), (∆x, ε) ∈ Bε0(0, 0).

Therefore, using (148) and (149), we deduce that

lim sup
(∆x,ε)→(0,0)

(x+ ∆x)ux(x+ ∆x, ε) = lim sup
(∆x,ε)→(0,0)

(u(x+ ∆x, ε)− v(ux(x+ ∆x, ε), ε))

= lim
(∆x,ε)→(0,0)

u(x+ ∆x, ε) + lim sup
(∆x,ε)→(0,0)

(−v(ux(x+ ∆x, ε), ε))

≤ u(x, 0)− v(ux(x, 0), 0)

= xux(x, 0),
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combining which with (147), we conclude that (144) holds.

�

Lemma 5.3. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold, and y = ux(x, 0).

Then, we have

(150) lim inf
ε→0

(−vy(y, ε)) ≥ −vy(y, 0) = x.

Proof. Let εn ∈ (−ε0, ε0), n ∈ N, be a sequence convergent to 0. For some bounded and predictable

βε and bounded L̃ satisfying the assumptions of Lemma 4.20 and for J defined in (77), similarly to

the proof of Theorem 4.5, let us consider

η̂n = ŶT (y, εn) and ηn :=
ŶT
y
E
(
J0,εn,H

)
T
, n ∈ N.

Then, we have

(151) η̂n(−V ′(η̂n)) = η̂n(−V ′(η̂n))− ηn(−V ′(ηn)) + ηn(−V ′(ηn)), n ∈ N.

Using Assumption 3.1, one can show that

(152) L1(P)- lim
n→∞

ηn(−V ′(ηn)) = ŶT (−V ′(ŶT ))

and

(153) L1(P)- lim
n→∞

ηn = ŶT .

Therefore, using the mean value theorem for random variables, we get

(154) η̂n(−V ′(η̂n))− ηn(−V ′(ηn)) = −V ′′(ξn)ξn (η̂n − ηn)− V ′(ξn) (η̂n − ηn) , n ∈ N,

for some random variables ξn taking values between η̂n and ηn. As by (9), we have

1

c2
≤ V ′′(ξn)ξn ≤ 1

c1
,

we deduce from Theorem 4.5 and (153) that

(155) L1(P)- lim
n→∞

∣∣V ′′(ξn)ξn (η̂n − ηn)
∣∣ ≤ L1(P)- lim

n→∞

1

c1
|η̂n − ηn| = 0.

For the V ′(ξn) (η̂n − ηn) term in (154), by the monotonicity of V ′, we have

(156) V ′(ξn) (η̂n − ηn) ≤
(
V ′(η̂n) (η̂n − ηn)

)
∨
(
V ′(ηn) (η̂n − ηn)

)
.

Next, using the mean value theorem for random variables, we have

(157) V ′(η̂n) (η̂n − ηn) = V (η̂n)− V (ηn) +
1

2
V ′′(ξ̃n) (η̂n − ηn)2 ,

for some ξ̃n taking values between η̂n and ηn.

Since V (η̂n)→ V (ŶT ) and V (ηn)→ V (ŶT ) in probability and

(158) E[V (η̂n)]→ E[V (ŶT )] and E[V (ηn)]→ E[V (ŶT )],

as V is bounded from below, by Schaffe’s lemma, the convergence in probability and (158) imply

that V (η̂n) → V (ŶT ) in L1(P) and V (ηn) → V (ŶT ) in L1(P). As for 1
2V
′′(ξ̃n) (η̂n − ηn)2 term in the



THE GREEKS FOR INDIFFERENCE PRICING 41

right-hand side of (157), it can also be proven to converge to 0 in L1(P), similarly to the proof of

Theorem 4.5. We deduce that, in the left-hand side of (157), we have

lim
n→∞

E
[
V ′(η̂n) (η̂n − ηn)

]
= 0.

Let us denote An := {V ′(ηn) (η̂n − ηn) ≥ 0}. Using the convexity of V , we have

(159) (V (η̂n)− V (ηε)) 1An ≥ V ′(ηε) (η̂n − ηε) 1An ≥ 0.

Therefore, as V (η̂n) − V (ηn) → 0 in L1(P), we obtain from (159) that V ′(ηn) (η̂n − ηn) 1An → 0 in

L1(P). As a result, by Fatou’s lemma, we deduce that

lim sup
n→∞

E
[
V ′(ηn) (η̂n − ηn)

]
≤ 0,

which via (156) implies that

lim sup
n→∞

E
[
V ′(ξn) (η̂n − ηn)

]
≤ 0.

Combining this with (154) and (155), we get

(160) lim inf
n→∞

E
[
η̂n(−V ′(η̂n)) + ηn(−V ′(ηn))

]
≥ 0.

As, from Theorem 4.5, we have that

P- lim
n→∞

η̂n(−V ′(η̂n)) = ŶT (−V ′(ŶT )),

we conclude from (151), (152), (160), and Fatou’s lemma that (150) holds. �

Lemma 5.4. Let x ∈ R be fixed and suppose that the assumptions of Theorem 4.1 hold. Then, we

have

(161) lim sup
|∆x|+|ε|→0

|ux(x+ ∆x, ε)− ux(x, 0)|
|∆x|+ |ε|

<∞.

Proof. First, following Remark 4.4, we observe that uxx(x + ∆x, ε) is a second-order derivative of u

with respect to x exists for every (x, ε) ∈ R× (−ε0, ε0), and the absolute risk aversion of the indirect

utility u satisfies the bounds of Assumption 3.1, that is

c1 ≤ −
uxx(x+ ∆x, ε)

ux(x+ ∆x, ε)
≤ c2, (∆x, ε) ∈ R× (−ε0, ε0).

Next, for every ε ∈ (−ε0, ε0) let us set

x̃(ε) := −vy(ux(x, 0), ε), ε ∈ (−ε0, ε0),

and observe that by Lemma 5.3, we have

lim inf
ε→0

x̃(ε) ≥ −vy(ux(x, 0), 0) = x.

Therefore, by the mean-value theorem, there exists ξ(ε) ∈ [(x+ ∆x)∧ x̃(ε), (x+ ∆x)∨ x̃(ε)], such that

|ux(x+ ∆x, ε)− ux(x̃, ε)| = −uxx(ξ(ε), ε)|∆x| ≤ c2ux(ξ(ε), ε)|∆x| ≤ c2ux((x+ ∆x) ∧ x̃(ε), ε)|∆x|,
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where, in the inequality, we have used (35). Therefore, we have

|ux(x+ ∆x, ε)− ux(x, 0)|
|∆x|+ |ε|

≤ |ux(x+ ∆x, ε)− ux(x̃(ε), ε)|+ |ux(x̃(ε), ε)− ux(x, 0)|
|∆x|+ |ε|

≤
c2ux((x+ ∆x) ∧ x̃(ε), ε)|∆x|+

∣∣∣E [ŶT (ux(x, 0), ε)− ŶT (ux(x, 0), 0)
]∣∣∣

|∆x|+ |ε|
.

As a result, using Lemma 5.2, Lemma 5.3 and Theorem 4.5, we get

lim sup
|∆x|+|ε|→0

|ux(x+ ∆x, ε)− ux(x, 0)|
|∆x|+ |ε|

≤ lim sup
|∆x|+|ε|→0

c2ux((x+ ∆x) ∧ x̃(ε), ε)|∆x|+
∣∣∣E [ŶT (ux(x, 0), ε)− ŶT (ux(x, 0), 0)

]∣∣∣
|∆x|+ |ε|

≤c2ux(x, 0) + EQ [|G+M ε
T |] ,

which implies (161). �

Lemma 5.5. Let x ∈ R be fixed and suppose that the assumptions of Theorem 4.1 hold. Then, we

have

(162) lim
|∆x|+|ε|→0

|ux(x+ ∆x, ε)− ux(x, 0)−∆xuxx(x, 0)− εuxε(x, 0)|
|∆x|+ |ε|

= 0.

Proof. Let ε0 be as in Lemma 2.6 and let us denote

(163)
∆y = ∆y(∆x, ε) := uxx∆x+ uxεε,

∆y = ∆y(∆x, ε) := ux(x+ ∆x, ε)− ux(x, 0), (∆x, ε) ∈ Bε0(0, 0).

and observe that, by Lemma 5.2, we have

lim
|∆x|+|ε|→0

∆y(∆x, ε) = 0,

and by Lemma 5.4, we have a stronger assertion

lim sup
|∆x|+|ε|→0

|∆y(∆x, ε)|
|∆x|+ |ε|

<∞.

Next, by Lemma 2.6 and [Sch01, Theorem 2.2], we have the conjugacy relations between the value

functions, that is

v(y + ∆y(∆x, ε), ε) + (x+ ∆x)(y + ∆y) = u(x+ ∆x, ε), (∆x, ε) ∈ Bε0(0, 0),

which implies that

(164) v(y + ∆y, ε)− v(y, 0) + (x+ ∆x)∆y = u(x+ ∆x, ε)− u(x, 0)− y∆x, (∆x, ε) ∈ Bε0(0, 0),

and, similarly, we get

(165) v(y + ∆y, ε)− v(y, 0) + (x+ ∆x)∆y = u(x+ ∆x, ε)− u(x, 0)− y∆x, (∆x, ε) ∈ Bε0(0, 0).

From (164) and (165), we obtain

(166)
v(y + ∆y, ε)− v(y, 0) + (x+ ∆x)∆y = v(y + ∆y, ε)− v(y, 0) + (x+ ∆x)∆y,

(∆x, ε) ∈ Bε0(0, 0).
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Using Theorem 4.3 and Lemma 5.4, we deduce from (166) that

(∆y ε)∇v(y, 0) + 1
2(∆y ε)Hv

(
∆y

ε

)
+ (x+ ∆x)∆y

=(∆y ε)∇v(y, 0) + 1
2(∆y ε)Hv

(
∆y

ε

)
+ (x+ ∆x)∆y + o(∆x2 + ε2),

which simplifies to

1
2(∆y ε)Hv

(
∆y

ε

)
+ ∆x∆y = 1

2(∆y ε)Hv

(
∆y

ε

)
+ ∆x∆y + o(∆x2 + ε2),

that is

vyy((∆y(∆x, ε))2 −∆y2) + 2vyε(∆y(∆x, ε)−∆y)ε+ 2∆x(∆y(∆x, ε)−∆y) = o(∆x2 + ε2),

which implies that(
∆y(∆x, ε)−∆y

) (
vyy
(
∆y(∆x, ε) + ∆y

)
+ 2vyεε+ 2∆x

)
= o(∆x2 + ε2).

Using Theorem 4.2, we get

(167)
(
∆y(∆x, ε)−∆y

) ((
∆y(∆x, ε) + ∆y

)
− 2 (uxεε+ uxx∆x)

)
= o(∆x2 + ε2).

Since uxεε+ uxx∆x = ∆y, we can rewrite (167) as

(168)
(
∆y(∆x, ε)−∆y

)2
= o(∆x2 + ε2),

that is

|∆y(∆x, ε)−∆y| = o(|∆x|+ |ε|),

which, in view of (163), implies that (162) holds. �

Lemma 5.6. Let x ∈ R be fixed, suppose that the assumptions of Theorem 4.1 hold and ε0 is as in

Lemma 2.6. Let us denote y(x+ ∆x, ε) = ux(x+ ∆x, ε), (∆x, ε) ∈ Bε0(0, 0). Then, we have

(169)

L1(P)- lim
|∆x|+|ε|→0

1

|∆x|+ |ε|

∣∣∣∣∣dQ̂ (y(x+ ∆x, ε), ε)

dP

−dQ̂ (y(x, 0), 0)

dP
{

1 +Ny
T (uxx∆x+ uxεε) + (FT +N ε

T )ε
}∣∣∣∣∣ = 0.

Proof. For every (∆x, ε) ∈ Bε0(0, 0), let us denote

(170) ∆y = ∆y(∆x, ε) := ux(x+ ∆x, ε)− ux(x, 0).

To show (169), let us first observe that∣∣∣dQ̂(y(x+∆x,ε),ε)
dP − dQ̂(y(x,0),0)

dP
{

1 +Ny
T (uxx∆x+ uxεε) + (FT +N ε

T )ε
}∣∣∣

|∆x|+ |ε|

≤ (|∆y|+ |ε|)
(|∆x|+ |ε|)

∣∣∣dQ̂(y(x+∆x,ε),ε)
dP − dQ̂(y(x,0),0)

dP
{

1 +Ny
T∆y + (FT +N ε

T )ε
}∣∣∣

(|∆y|+ |ε|)

+
dQ̂ (y(x, 0), 0)

dP
|Ny

T |
|∆y −∆xuxx − εuxε|

|∆x|+ |ε|
.

(171)
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As ∆x → 0, it follows from (170) and Lemma 5.2 that ∆y → 0, so the first term on the right-hand

side of (171) converges to 0 in L1(P) by Corollary 4.6 and since, by Lemma 5.5, we have

lim sup
|∆x|+|ε|→0

|∆y|+ |ε|
|∆x|+ |ε|

= lim sup
|∆x|+|ε|→0

|ux(x+ ∆x, ε)− ux(x, 0)|+ |ε|
|∆x|+ |ε|

≤ −uxx + |uxε|+ 1 <∞.

It remains to show that

L1(P)- lim
|∆x|+|ε|→0

dQ̂ (y(x, 0), 0)

dP
|Ny

T |
|∆y −∆xuxx − εuxε|

|∆x|+ |ε|
= 0,

which, in view of (170) and the square-integrability of Ny
T under Q, follows from

lim
|∆x|+|ε|→0

|∆y −∆xuxx − εuxε|
|∆x|+ |ε|

= lim
|∆x|+|ε|→0

|ux(x+ ∆x, ε)− ux(x, 0)−∆xuxx − εuxε|
|∆x|+ |ε|

= 0,

that is established in Lemma 5.5. �

Proof of Theorem 3.5. Let ε0 be as in Lemma 2.6 and let us set

y(x+ ∆x, ε) = ux(x+ ∆x, ε), ∆y = ux(x+ ∆x, ε)− ux(x, 0), (∆x, ε) ∈ Bε0(0, 0).

Next, let us consider

1

|∆x|+ |ε|

(
dQ̂(ux(x+ ∆x, ε), ε)

dP
f ε

−dQ̂(y, 0)

dP
{

1 +Ny
T (uxx∆x+ uxεε) + ε(FT +N ε

T )
}
f0 − εdQ̂(y, 0)

dP
f ′

)

=
f0

|∆x|+ |ε|

(
dQ̂(ux(x+ ∆x, ε), ε)

dP
− dQ̂(y, 0)

dP
{

1 +Ny
T (uxx∆x+ uxεε) + ε(FT +N ε

T )
})

+

(
f ε − f0

)
|∆x|+ |ε|

dQ̂(ux(x+ ∆x, ε), ε)

dP
− εdQ̂(y, 0)

dP
f ′.

(172)

On the first term on the right-hand side of (172), from Lemma 5.6 and the boundedness of f0 by

Assumption 3.2, we have

L1(P)- lim
|∆x|+|ε|→0

1

|∆x|+ |ε|

∣∣∣∣∣
(
dQ̂(ux(x+ ∆x, ε), ε)

dP

−dQ̂(y, 0)

dP
{

1 +Ny
T (uxx∆x+ uxεε) + ε(FT +N ε

T )
})

f0

∣∣∣∣∣ = 0.

(173)

For the remaining term on the right-hand side of (172), we can rewrite it as(
f ε − f0

)
|∆x|+ |ε|

dQ̂(ux(x+ ∆x, ε), ε)

dP
− εdQ̂(y, 0)

dP
f ′

=
1

|∆x|+ |ε|

(
dQ̂(ux(x+ ∆x, ε), ε)

dP
− dQ̂(y, 0)

dP

)(
f ε − f0

)
+
dQ̂(y, 0)

dP
(
f ε − f0 − εf ′

)
,

(174)

where L1(P)- lim
|∆x|+|ε|→0

1
|∆x|+|ε|

(
dQ̂(ux(x+∆x,ε),ε)

dP − dQ̂(y,0)
dP

) (
f ε − f0

)
= 0 by Theorem 4.5 and the uni-

form in ε boundedness of f ε that together imply, for some δ > 0, the uniform integrability of the
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family {
1

|∆x|+ |ε|

(
dQ̂(ux(x+ ∆x, ε), ε)

dP
− dQ̂(y, 0)

dP

)(
f ε − f0

)
: (∆x, ε) ∈ Bδ(0, 0)

}
.

As for the remaining term in the right-hand side of (174), dQ̂(y,0)
dP

(
f ε − f0 − εf ′

)
, it converges to 0

in L1(P), by Assumption 3.2. Thus, the left-hand side of (174) converges to 0 as |∆x| + |ε| → 0 in

L1(P), which together with (172) and (173) imply that the left-hand side of (172) converges to 0 as

|∆x|+ |ε| → 0 in L1(P), and so (26) follows, where px and pε are given by (25). �

6. Link to the risk tolerance wealth process

In this section, we will characterize the solutions to quadratic minimization problems (20) and (22)

through a Kunita-Watanabe decomposition under a change of measure and numéraire, provided that

there exists a maximal wealth process R, such that

RT = − U
′(X̂T )

U ′′(X̂T )
.

In the context of the utility defined on the positive real line, this process was introduced in [KS06b].

If the risk-tolerance wealth process R exists, let us change the measure and numéraire to

dR̃
dP

=
RT
R0

ŶT
y

and SR :=

(
R0

R
,
R0E

(
R1
)

R
, . . . ,

R0E
(
Rd
)

R

)
.

This leads to the sets of orthogonal martingales under the measure R̃ and numéraire R

M̃2 :=
{
M ∈ H2

0(R̃) : M = H · SR
}
,

Ñ 2 is the orthogonal complement of M̃2 in H2
0(R̃).

Similarly to [MS19, Lemma 9.1], we can establish the following characterization of M̃2 and Ñ 2.

Lemma 6.1. Let us suppose R is locally bounded d-dimensional semimartingale satisfying (10), As-

sumptions 2.1 and 2.5 hold4. Let us also fix an x ∈ R and assume that the risk tolerance wealth

processes R exists (for the base model at x). Then we have

M̃2 =
M2

R
:=

{
M

R
: M ∈M2

}
and Ñ 2 = N 2.

Similarly to [MS24b, Proposition 6.2], we can establish the following lemma.

Lemma 6.2. Let us suppose that x ∈ R is fixed and assume that the conditions of Lemma 6.1 hold.

Then, the minimizers to (19) an (21) are given by

Mx =
R
R0
− 1 and Ny = 0.

If additionally Assumption 3.1 hold. Then the following process5

Pt := −ER̃

[(
FT +

GT
RT

)
|Ft
]
, t ∈ [0, T ],

4These conditions imply the assertions of [Sch01, Theorem 2.2].
5We recall that processes F and G are defined in (18).
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is well-defined and in H2(R̃). The Kunita-Watanabe decomposition of P under R̃

P = P0 + M̃ ε + Ñ ε, where M̃ ε ∈ M̃2 and Ñ ε ∈ Ñ 2.

is related to the optimizers to (20) and (22) via

M ε = M̃ εR, and N ε = Ñ ε.

7. Examples of the indifference Greeks

7.1. Indifference Delta. In arbitrage-free pricing, e.g., in the Black-Scholes settings, Delta denotes

the sensitivity of the arbitrage-free price with respect to the perturbations of the stock price, which

is a state variable, that is, this price can be represented as a function of the stock price (and other

parameters). For indifference pricing, the role of Delta is played by the initial wealth, that is, the state

variable in (14) is x. Therefore, we call indifference Delta the sensitivity of the indifference prices to

small perturbations of the initial wealth. For its representation, from Theorem 3.5, we get

px = lim
∆x→0

p(x+ ∆x, 0)− p(x, 0)

∆x
= EQ̂

[
N̂0
T f
]
.

For the hedging strategy, from Theorem 4.7, we get the following

X̃∆x,0,n = (x+ ∆x) +
(
Ĥ + ∆xH∆x,n

)
·R0,

where

H∆x,n ·R0 = M∆x,n, n ∈ N,

where Mx,n
T → Mx

T , P–a.s.. M∆x,n, n ∈ N, is a sequence of bounded processes converging to Mx, the

solution to (19), it is characterized in Theorem 4.7.

We conclude this part by noting that, for the exponential utility function, as the absolute risk

aversion A(x) does not depend on x ∈ R, the minimizer to (19) is Mx = 0. Therefore, we have

H∆x,n = 0 and X̃∆x,0,n = (x+ ∆x) + Ĥ ·R0,

where the later is the optimizer to (P) at x+ ∆x.

7.2. Indifference Vega. The derivative of the option price with respect to volatility is called Vega.

To compute indifference Vega, in 17, we have a possibility to only perturb the continuous martingale

part of the stock price or the martingale part of the stock price. Let us consider the first scenario. In

this case, in (2), we need to take

φ 6= 0, ζ ≡ 0, and ψ ≡ 0.

In the case of only one risky asset, in (17), we obtain

gc = −φ(λ+ γ0β) and gd ≡ 0,

so (18) becomes

F = −gc ·M c,H and G = Ĥ · R̃ = H · (φ ·M c).
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With these of processes F and G, the optimizers to (21) and (22), Ny and N ε govern the sensitivity of

the indifference prices to small perturbations of the volatility, which is represented by pε in Theorem

3.5. It is given by

pε = EQ
[
{(uxεNy

T + (N ε
T + FT )}f + f ′

]
= vyεpx + EQ

[
(N ε

T + FT ) f + f ′
]
,

where px = uxxEQ
[
Ny
T f
]
, and, in turn, uxx, uxε, and vyε are given by (19), (23), and (24), respectively.

The corrections to the optimal wealth process are given by Hε,n’s in Theorem 4.7, see (41) and also

(39).

7.3. Sensitivity to perturbations of the jump part Md. First, to the best of the author’s knowl-

edge, there is no special Greek letter denoting such a sensitivity for the arbitrage-free prices, as when

the dynamics of the stock price process includes a nontrivial pure jump martingale, the model is

(typically) incomplete, and the class of replicable contingent claims is very narrow. Each of such

nonreplicable contingent claims allows for an interval of arbitrage-free prices. Therefore, the differen-

tiability in the usual sense of such prices is not possible, and so the Greeks for arbitrage-free prices are

not defined (in the usual sense for such nonreplicable contingent claims). We refer to [Shr04, Chapter

11] and [CT04, Chapter 10] for more details.

Perturbations of the pure jump martingale Md are exactly the settings where the approach of this

paper works when the traditional Greeks for the arbitrage-free pricing is not applicable except for

some very particular contingent claims that are replicable for every ε in some neighborhood of 0 and

some very particular models of the jumps, where the jump sizes are allowed to take very particular

values, as elaborated in [Shr04, Chapter 11]. In the literature, however, models admitting jumps are

quite widespread, and they are typically parametrized by more than one constant, see, e.g., [Mer76],

[Kou02], [CT04], and [CK11]. The setup of the present paper uses one process ψ in (2) to describe the

perturbations of Md, and one can also use perturbations of 〈M〉 to parametrize perturbations of the

jumps. We leave the sensitivity of various parameters governing jumps considered in the literature for

future research and illustrate the case for which the framework of this paper allows.

To compute the sensitivities of the indifference prices to small perturbations of the pure jump

martingale part of M , in (2), we take

φ ≡ 0, ζ ≡ 0, and ψ 6= 0.

In the case of only one risky asset, in (17), we get

gc ≡ 0 and gd = −ψ(λ− ν0β),

so that in (18), we have

F = −gd ·Md,H and G = Ĥ · R̃ = Ĥ · (ψ ·Md).

With these specifications of processes G and F , the optimizers to (21) and (22), Ny and N ε govern

the sensitivity of the indifference prices to small perturbations of the pure discontinuous martingale

part of the stock price in the sense that

pε = EQ
[
{(uxεNy

T + (N ε
T + FT )}f + f ′

]
= vyεpx + EQ

[
(N ε

T + FT ) f + f ′
]
,
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where px = uxxEQ
[
Ny
T f
]
, and, in turn, uxx, uxε, and vyε are given by (19), (23), and (24), respectively,

and as a consequence of Theorem 3.5. Hε,n’s in Theorem 4.7, see (41) and also (39), give the corrections

to the optimal wealth process under perturbations of the pure discontinuous martingale part of the

risky asset.

7.4. Sensitivity to small perturbations of the finite variation part of R. These sensitivities

correspond to the following choices in (2) of ζ, φ, and ψ

ζ 6= 0, and φ = 0 = ψ.

In the case of only one risky asset, in (17), we have

gc = ζ = gd,

and (18) becomes

F = −ζ ·MH and G = Ĥ · R̃ =

∫ ·
0
H>s d〈M〉sζs.

Theorem 3.5, again, for a given contingent claim f satisfying Assumption 3.2, produces the following

sensitivity

pε = EQ
[
{(uxεNy

T + (N ε
T + FT )}f + f ′

]
= vyεpx + EQ

[
(N ε

T + FT ) f + f ′
]
,

where px = uxxEQ
[
Ny
T f
]
, uxx, uxε, and vyε are given by (19), (23), and (24), respectively, and Ny

and N ε are the optimizers to (21) and (22). Hε,n’s in Theorem 4.7, see (41) and also (39), give the

corrections to optimal strategies.

7.5. Indifference ρ. The framework of this paper allows us to compute the indifference ρ, the sensi-

tivity to small perturbations of the interest rate in the settings, where the latter is deterministic. For

simplicity of the presentation, let us consider the following model of the evolution of undiscounted

traded assets, where R
ε

is the d-dimensional process representing the returns of the risky assets, and

R
0,ε

is the return of the riskless assets

R
ε

=

∫ ·
0
µsds+ Σ ·W +Md,

R
0,ε

=

∫ ·
0
rεsds,

where µ and Σ are predictable and sufficiently integrable processes, W is a d-dimensional Brownian

motion, and Md is a d-dimensional pure jump martingale, whose quadratic covariation is absolutely

continuous with respect to time, that is of the form

(175) 〈Md〉 =

∫ ·
0
md
sds,

for some predictable process md, taking values in symmetric positive definite d-by-d matrices.

Remark 7.1. If we suppose that there is only one risky asset present on the market, that is, if R
ε

is

one-dimensional, by supposing that Md is a compound Poisson process of the form Md
t =

Nt∑
i=1

Yi − ct,

t ∈ [0, T ], where N is a Poisson process with intensity λ̃ > 0, and Yi are IID random variables with

particular properties, we can include the framework of [Mer76] by taking Yi to be normal (and constant



THE GREEKS FOR INDIFFERENCE PRICING 49

c can be chosen appropriately to preserve the martingale structure), and the framework in [Kou02],

if Yi ≥ −1 and log(Yi + 1) has an asymmetric double exponential distribution, and the framework in

[CK11] by taking Yi to be mixed-exponential random variables. In each of these cases, in (175), we

have md = V ar(Y1)λ̃.

For the rε, ε ∈ (−ε0, ε0), we suppose that this is a family of deterministic nonnegative functions on

[0, T ] of the form

rεt = r0
t + εr̃t, t ∈ [0, T ],

where both r0 and r̃ are uniformly bounded on [0, T ]. We denote

(176) r′ :=
∂

∂ε

(∫ T

0
rεsds

)∣∣∣∣
ε=0

=

∫ T

0
r̃sds.

Remark 7.2. Extending the assertions of this example to stochastic interest rates would likely require

extending the results in [Sch01, Theorem 2.2] to stochastic utilities.

Let X (x, ε) be the set of self-financing wealth processes obtained by trading in Rε and R0,ε starting

from the initial wealth x ∈ R and that are bounded from below. us formulate the utility maximization

problem in undiscounted terms as

(177) u(x, ε) = sup
X∈X (x,ε)

E[U(XT )], (x, ε) ∈ R× (−ε0, ε0).

We remark that this formulation is closely related to (P), yet (177) is an extension of (P) to undis-

counted traded assets.

Definition 7.3. Let x ∈ R and ε ∈ (−ε0, ε0) be fixed. For a bounded contingent claim f ε, its

indifference price p = p(x, ε) is defined as a constant p ∈ R such that

(178) E [U(XT + qf ε)] ≤ u(x, ε), for every q ∈ R and every X ∈ X (x− qp, ε).

Let us us a change of numéraire and, for every ε ∈ (−ε0, ε0), let us use the riskless asset as a

numéraire. Thus, the evolution of the discounted traded assets is

Rε =

∫ ·
0

(µs − rεs)ds+ Σ ·W +Md,

R0,ε = 0,

(179)

Let us denote by X (x, ε) the set of bounded from below self-financing discounted wealth processes,

that is, measured in the units of the riskless asset. The associate value function is

(180) u(x, ε) = sup
X∈X (x,ε)

E[U(XT )], (x, ε) ∈ R× (−ε0, ε0),

which is the formulation in (P), for which the results of the previous sections apply.

Let us denote

(181) Bε = exp

(∫ ·
0
rεsds

)
, ε ∈ (−ε0, ε0).

A change of numéraire approach gives

(182) X(x, ε) = X (x, ε)Bε, (x, ε) ∈ R× (−ε0, ε0).
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Since Bε
T is deterministic, we can further obtain from (182) that

(183)
{
XT : X ∈ X(x, ε)

}
= {XT : X ∈ X (xBε

T , ε)} , (x, ε) ∈ R× (−ε0, ε0),

which results in

(184) u(x, ε) = u(xBε
T , ε), (x, ε) ∈ R× (−ε0, ε0),

where u and u are defined in (177) and (180), respectively. Further, (183) and (184) imply that (178)

can be rewritten as

(185) E [U(XT + qfε)] ≤ u(xBε
T , ε), for every q ∈ R and every X ∈ X (xBε

T − qp, ε).

Comparing (185) to Definition 2.3, we conclude that p is an indifference price in the sense of Definition

7.3 at (x, ε), if an only is p is an indifference price in the sense of Definition 2.3 at (xBε
T , ε). We deduce

that

(186) p(x, ε) = p(xBε
T , ε), (x, ε) ∈ R× (−ε0, ε0),

where p’s are given by Definition 7.3 and p’s by Definition 2.3.

Next, let us fix x ∈ R and set x := xB0
T . Supposing that the conditions of Theorem 3.5 hold at x,

we deduce from this theorem and (186) that

(187) pε := lim
ε→0

p(x, ε)− p(x, 0)

ε
= pxxr

′ + pε,

where px and pε are given by (25) and r′ by (176). The constant pε is the sensitivity of the indifference

price to small perturbations of the interest rate, that is, pε is the indifference ρ. It corresponds to

taking ζt = −(md
t + ΣtΣ

>
t )−1r̃t, t ∈ [0, T ], in (2), where md is given by (175), and considering the

joint perturbations of the finite-variation part of the return of the risky assets as described in (179)

and (perturbations) of the initial wealth of a particular form ∆x = ∆x(ε) = x(Bε
T −B0

T ), where Bε
T ’s

are given by (181). Finally, the corrections to the optimal strategies for ε sufficiently close to 0 are

given by Theorem 4.7 with ∆x = ∆x(ε) = x(Bε
T −B0

T ).

References

[AB06] C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis. Springer, 3th edition, 2006.

[CE15] S. Cohen and R. Elliot. Stochastic Calculus and Applications. Springer, 2015.

[CK11] N. Cai and S. Kou. Option pricing under a mixed-exponential jump diffusion model. Manag. Sci., 57(11):2067–

2081, 2011.

[CT04] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathe-

matics Series, 2004.

[Dav97] M. Davis. Option pricing in incomplete markets. Mathematics of Derivative Securities, pages 216–226, 1997.

M.A.H.Dempster and S. R. Pliska, eds., New York: Cambridge University Press.

[DM82] C. Dellacherie and P.-A. Meyer. Probabilities and Potential B. North-Holland, 1982.

[DS06] F. Delbaen and W. Schachermayer. The Mathematics of Arbitrage. Springer, 2006.

[FL07] I. Fonseca and G. Leoni. Modern Methods in Calculus of Variations: Lp Spaces. Springer, 2007.
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