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Abstract. First, we consider the problem of hedging in complete binomial models. Us-

ing the discrete-time Föllmer-Schweizer decomposition, we demonstrate the equivalence

of the backward induction and sequential regression approaches. Second, in incomplete

trinomial models, we examine the extension of the sequential regression approach for

approximation of contingent claims. Then, on a finite probability space, we investigate

stability of the discrete-time Föllmer-Schweizer decomposition with respect to pertur-

bations of the stock price dynamics and, finally, perform its asymptotic analysis under

simultaneous perturbations of the drift and volatility of the underlying discounted stock

price process, where we prove stability and obtain explicit formulas for the leading order

correction terms.

1. Introduction

In practice, financial models are not exact – as in any field, modeling based on real

data introduces some degree of error. Therefore, it is important to understand the effect

error has on the calculations and assumptions we make on the model. In this paper, we

focus on the stability and asymptotic analysis of the Föllmer-Schweizer decomposition,

as among the pricing and hedging approaches, in incomplete markets, it gives the best

approximation of a given contingent claim in the sense of the least-squares error, which

is one of the most natural criteria used in practice. Further, in complete models, the

Föllmer-Schweizer decomposition is consistent with the backward induction, which is

another canonical method in financial mathematics.

Steven E. Shreve’s Stochastic Calculus for Finance I: The Binomial Asset Pricing Model

[Shr04] introduces option pricing in a highly accessible manner. The text predominantly

focuses on the binomial model, and in this paper, we go beyond it, as there are many

models used in practice that are not binomial. As the most natural extension of a binomial

model is a trinomial one, below, we also give it special consideration. Note that both
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binomial and trinomial models, despite their simplicity, are widely used in approximations

of pricing and hedging in more advanced models, including the continuous-time ones, see,

e.g., [BM07].

In this paper, we extend the introduction to asset hedging given by Shreve to the

strategy of sequential regression, keeping the discrete-time framework but allowing for

consideration of other market models, including incomplete ones. In the complete case,

we show that the strategy of sequential regression introduced by Föllmer and Schweizer

[FS89] is equivalent to Shreve’s recursive hedging formula. We then extend our discussion

to the incomplete trinomial model, after which we show small market perturbations have

a little effect, which we quantify, on hedging strategies and option pricing, and derive

formulas for correction factors.

The remainder of this paper is organized as follows. In Section 2, we formulate the

minimization problem and define the Fölmer-Schweizer decomposition. Section 3 contains

its investigation in complete binomial markets, where we also prove the equivalence of

the approach based on the Fölmer-Schweizer decomposition to the backward induction.

Section 4 presents the discussion of the general incomplete case. In Section 5, we revisit

the stability question in the context of perturbations of the model parameters, where

we introduce a parametrization of perturbations that allows for simultaneous distortions

of its drift and volatility of the underlying stock price process. We prove the stability

of the Fölmer-Schweizer decomposition under such perturbations. Finally, in Section 6,

we obtain explicit formulas for the first-order correction terms of each component of the

decomposition under such perturbations, including the correction to the optimal trading

strategy.

2. The discrete-time Föllmer-Schweizer decomposition

Let (Ω,P) be a finite probability space, N a fixed positive integer and F = (Fn)n=0,1,...,N

a filtration, i.e., an increasing family of sub-algebras, each containing Ω and ∅. Assume

that F0 is trivial and FN contains all subsets of Ω. As we work on a finite probability

space, without loss of generality, we suppose that P[ω] > 0 for every ω ∈ Ω. We suppose

that there is a bank account, which we will use as a numéraire, and in particular, its price

process equals to 1 at all times. Let S = (Sn)n=0,1,...,N be a real-valued, F-adapted process,

i.e., each Sn is Fn-measurable. S describes the discounted price process of a stock. We

denote

∆Sn := Sn − Sn−1, for n = 1, ..., N

the increments of S. We call a process ϑ = (ϑn)n=1,...,N predictable if ϑn is Fn−1-measurable

for each n. Let Θ be the set of all predictable processes ϑ, that financially correspond to
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self-financing trading strategies, in view of the presence of money market account, which

we use as a numéraire.

Definition 2.1. For ϑ ∈ Θ, we define the process G(ϑ) as follows: G(ϑ) as

Gn(ϑ) :=
n∑
j=1

ϑj∆Sj for n = 0, 1, ..., N.

For a given a random variable VN and c ∈ R, one can consider the following problem

posed in [Sch95]

minimize E
[
(VN − c−GN(ϑ))2] over all ϑ ∈ Θ and c ∈ R.(1)

Interpretation 2.2. As we view Sn as the price at time n of a risky financial asset, the

process ϑ describes the trading strategy of some investor in the market, where ϑn is the

number of shares of stock held between the times n and n + 1. Process G(ϑ) becomes

the gains from the trade process. We now interpret VN as a nontraded security measured

in the units of the bank account with maturity N and c as the initial capital. Thus

problem (1) can be interpreted as finding a self-financing trading strategy that gives the

best least-squares approximation of VN . Mathematically, (1) is also closely related to

the problem considered in [Sch94], finding the best approximation of a random variable

by a stochastic integral (plus a constant). Quadratic optimization problems of the form

(1) also appear in the asymptotic analysis of stochastic control problems with respect to

perturbations of the initial data, where they govern the second-order correction terms,

see [KS06a], [KS06b], [MS19], and [Mos20] for details.

A solution (1), given in terms of an explicit formula for an optimal trading strategy

ϑ̂, is known as sequential regression and is shown in [FS89]. For a general probability

space, such a solution is subject to additional conditions on S and is closely related to

the discrete-time Föllmer-Schweizer decomposition, defined below.

Definition 2.3. We use the definition of the nondegeneracy condition (ND) as given in

[Sch95], that is, S satisfies (ND) if there exists a constant δ ∈ (0, 1) such that

(E[∆Sn | Fn−1])2 ≤ δE
[
∆S2

n | Fn−1

]
P-a.s. for n = 1, . . . , N.

Remark 2.4. We note that on finite probability spaces, (ND) holds in non-trivial (or

rather non-degenerate) cases.

Definition 2.5. We now introduce the discrete Föllmer-Schweizer decomposition, follow-

ing [Sch95]. Let

S = M + A,
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be the semimartingale decomposition of S into a martingale M and a predictable process

A. Random variable VN admits the discrete Föllmer-Schweizer decomposition if it can be

written as

(2) VN = V0 +
N∑
j=1

ϑ̂j∆Sj + LN .

for some V0 ∈ R, a process ϑ̂ ∈ Θ, and a P-martingale L, such that

(1) L and M are orthogonal, i.e., LM is a P-martingale, and

(2) E[L0] = 0.

Note that when F0 is trivial, the latter condition reads L0 = 0.

Using the sequential regression approach, following [FS89], we obtain the following

formula for an optimal hedging strategy ϑ̂:

(3) ϑ̂n :=

CovFn−1

[
VN −

N∑
j=n+1

ϑ̂j∆Sj,∆Sn

]
VarFn−1 [∆Sn]

, n = 1, . . . , N,

where CovFn−1 [·, ·] and VarFn−1 [·] denote the conditional covariance and variance, respec-

tively. This demonstrates the richness of the FS-decomposition as an analytic tool. With

very limited assumptions about VN , we are able to obtain an explicit formula for the

optimal (in the sense of (1)) hedging strategy. Furthermore, this hedging formula holds

in both complete and incomplete markets, which are discussed in the following sections.

3. Complete Markets

In the settings of the previous section, when the market is complete, every contingent

claim VN can be represented as

VN = V0 +
N∑
j=1

ϑj∆Sj,

for some ϑ ∈ Θ and V0 ∈ R. Note that this situation corresponds to L = 0 in Definition

2.5. Put differently, VN is now can be obtained by trading between the money market

account and the stock.

3.1. Binomial Asset Pricing Model. We now introduce a simple framework for the

problem following [Shr04], however directly using the bank account as a numéraire. Con-

sider a binomial asset pricing model, where at each time step k, Sk+1 can take one of

two values: uSk or dSk, with probabilities p ∈ (0, 1) and q := 1 − p, and where u > 1

and d ∈ (0, 1), known as the up factor and down factor, respectively, are fixed positive

constants with u > d. The value at each time k is determined by a (not necessarily fair)
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coin flip ωk, which can take either the value H or T and is independent of other coin

tosses. Let F = (Fn)n=0,...,N be the filtration, where each Fn contains information about

the first n coin tosses. An example of a 2-period binomial model is shown in the figure

below.

S

uS

dS

u2S

S

d2S

Example of a 2-Period Binomial Model

Remark 3.1. For figure 1, for the binomial model, we considered the case when d = 1
u
.

That is, after an even number of time steps, the stock price returns to its original value

if we flip exactly the same number of heads and tails. However, in general, it is not

necessarily the case that u = 1
d
.

Let X be the replicating wealth process for the contingent claim VN , i.e., a self-financing

process starting from the initial wealth X0, and such that

XN = VN .

Classical backward induction approach, for which we refer to [Shr04], assures that the

number of shares of stock in the replicating portfolio for VN held between times n and

n+ 1, can be obtained via the formula:

(4) ϑn+1(ω) =
Xn+1(ωH)−Xn+1(ωT )

Sn+1(ωH)− Sn+1(ωT )
,

where ω = ω1, . . . , ωn. This result is known as the Delta-Hedging, see [Shr04, Theorem

1.2.2, p. 12].

The main result of this section is proving that in complete binomial settings the Delta-

Hedging rule gives the same strategy as the Fölmer-Schweizer decomposition.

Proposition 3.2. In complete binomial settings, the formulas (3) and (4) are equivalent.

Proof. Below ϑ̂ will denote the strategy obtained from formula (3), and ϑ will denote the

replicating strategy given by (4) for each n. First, for n = N , (3) reads

(5) ϑ̂N =
CovFN−1

[VN ,∆SN ]

VarFN−1
[∆SN ]

=
CovFN−1

[XN ,∆SN ]

VarFN−1
[∆SN ]

,
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as XN = VN . Also, since1

Xn+1 = Xn + ϑn+1(Sn+1 − Sn), n = 0, . . . , N − 1,

we have

XN − EFN−1
[XN ] = ϑN

(
∆SN − EFN−1

[∆SN ]
)
.

Therefore, we can rewrite CovFN−1
[VN ,∆SN ] as

CovFN−1
[VN ,∆SN ] = EFN−1

[
(XN − EFN−1

[XN ])(∆SN − EFN−1
[∆SN ])

]
= ϑNEFN−1

[
(∆SN − EFN−1

[∆SN ])(∆SN − EFN−1
[∆SN ])

]
= ϑN VarFN−1

[∆SN ] .

And thus ϑN =
CovFN−1

[VN ,∆SN ]

VarFN−1
[∆SN ]

. Comparing ϑN to ϑ̂N from (5), we deduce that they

coincide. This also implies that

XN−1 = XN − ϑ̂N∆SN .

Or equivalently, we have

(6) XN −
N∑
j=N

ϑ̂N∆SN = XN−1.

The latter expression, however, is exactly the term appearing in ϑ̂N−1 in (3), which via

(6), we can rewrite as

ϑ̂N−1 =

CovFN−2

[
XN −

N∑
j=N

ϑ̂N∆SN−1,∆SN−1

]
VarFN−2

[∆SN−1]
=

CovFN−2
[XN−1,∆SN−1]

VarFN−2
[∆SN−1]

,

which differs from (5) only by the value of the index. Therefore, line by line applying

the argument above used for proving that ϑN = ϑ̂N , we can show that ϑN−1 = ϑ̂N−1.

Proceeding in such a way, we can show that ϑn = ϑ̂n for each n ∈ {0, . . . , N}. �

Remark 3.3. Notice that Proposition 3.2 only demonstrates the equivalence of the spe-

cific strategies of backward recursion and sequential regression in the binomial model,

not necessarily the uniqueness of the minimizing strategy. However, the uniqueness of

the solution to (1), that is of the optimal stochastic integral, the associated strategy, and

a constant follows from the strict convexity of the quadratic objective in (1) and some

computations under the risk-neutral measure.

1We use indices for ϑ in a consistent way with [Sch95], so that ϑ is predictable.
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Example 3.4. Consider a 3-step binomial asset pricing model with S0 = 4, u = 2, d =
1
2
, r = 1

4
, p = 1

2
, q = 1

2
, and a European Call Option expiring at timeN = 3 with strike price

K = 1. Note that in this market, the one-step risk-neutral probabilities are p̃ = q̃ = 1
2

and the non-zero interest rate can be handled by considering the discounted stock. We

will illustrate the optimal hedge using both (3) and (4). Recall that the value at time N

of a European Call is given by

VN = (SN −K)+.(7)

We compute the stock prices and discounted asset values at each time step for each

possible combination of coin flips using the following formulas:

Sn(ω1, ..., ωn) = S0 ∗ u(# heads) ∗ d(# tails)

Vn(ω1, ..., ωn) =

(
1

1 + r

)
Ẽ[Vn+1 | ω1, ..., ωn],

where P is the risk-neutral probability measure. The trees of stock prices and discounted

asset values are shown in Figure 2. For brevity, we will calculate a hedge using both

formulas at time 2, since AN = VN in the sequential regression formula at the penultimate

time step. We aim to show that ϑ2(TT ) = ξ2(TT ). Calculating ϑ2(TT ) using (4) yields

1− 0

2− 1
2

=
1
3
2

=
2

3
.

Using (3), ξ2(TT ) is given by

CovF2 [V3,∆S3 | TT ]

VarF2 [(∆S3 | TT )]

=
EF2 [(V3 − EF2 [V3 | TT ])(∆S3 − EF2 [∆S3 | TT ]) | TT ]

EF2 [(∆S3 − EF2 [∆S3 | TT ])2 | TT ]

=
EF2 [(V3 − (1

2
∗ 1 + 1

2
∗ 0))(∆S3 − (1

2
∗ 1 + 1

2
∗ −1

2
)) | TT ]

EF2 [∆S
2
3 | TT ]− EF2 [∆S3 | TT ]2

=
EF2 [(V3 − 1

2
)(∆S3 − 1

4
) | TT ]

5
8
− 1

16

=
(1

2
)(1− 1

2
)(1− 1

4
) + (1

2
)(0− 1

2
)(−1

2
− 1

4
)

9
16

=
3
16

+ 3
16

9
16

=
2

3
.

This illustrates the equivalence of (3) and (4) in the context of this example.
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4

8

16

32

8

4

2 2

1
1
2

(a) Stock Prices

88
25

184
25

76
5

31

7
16
5

36
25 1

2
5

0

(b) Discounted Option Values

Stock Prices and Option Value Trees

Remark 3.5. Although (3) and (4) give us equivalent results in the binomial case, it is

important to note that (4) is specifically limited to the binomial case, while (3) can be

extended to general discrete-time market models, including incomplete models. In the

following section, we apply (3) to the incomplete trinomial model.

4. Incomplete Markets

While the binomial model is often used as an introductory tool, most models used

in practice exhibit incompleteness, that is, there does not exist a risk-neutral probabil-

ity measure under which discounted asset prices are martingales, and subsequently it is

not possible to construct a hedging strategy that always reduces loss to zero. We now

introduce a tractable example of an incomplete market.

4.1. Trinomial Asset Pricing Model. An example of an incomplete market is the

trinomial asset pricing model. Similar to the binomial model, we have a risky asset and a

risk-free asset, and the value of the risky asset at each time step is determined by a small

set of outcomes. This time, we have three possible outcomes for the coin flip instead of

two. That is, along with the possibility of an increase by a factor of u and decrease by a

factor of d, we allow for the possibility that the stock price does not change between two

consecutive time steps.

S

uS

S

dS

u2S

uS

S

dS

d2S

Example of a 2-period Trinomial Model



STABILITY AND ASYMPTOTIC ANALYSIS OF THE FÖLLMER-SCHWEIZER DECOMPOSITION 9

Remark 4.1. For the above formulation of the trinomial model, we again require that

u = 1
d
. However, as in the binomial model, this is not necessarily the case.

Attempting backward recursion on this model using the non-discounted wealth process,

we get

X2(ω1ω2) = (1 + r)(X1(ω1)− ϑ1(ω1)S1(ω1)) + ϑ1(ω1)S2(ω1ω2)

and

X1(ω1) = (1 + r)(X0 − ϑ0S0) + ϑ0S1(ω1)

Note that there are three possible values for ω1 and three possible values for ω2, and

we must solve for ϑ0, X0, each ϑ1(ω1), and each X1(ω1), giving us eight (8) unknowns

and twelve (12) equations. This makes the system overdetermined. In particular, simple

matrix calculations reveal that, in general, we have no solution for X0.

5. Stability Under Model Perturbations

We now turn to the question of stability of the Föllmer-Schweizer decomposition. There

are different kinds of perturbations one can consider, and for example, stability with re-

spect to perturbations of VN is considered in [MS95]. In this paper, we consider perturba-

tions of the stock price process. For the stability analysis, as we work on finite probability

spaces, the exact form of perturbations is not important, and we will suppose that there

is a family of adapted stock price processes parametrized by ε, (Sε)ε∈(−ε0,ε0), for some

ε0 > 0. An example of such a family corresponds to linear perturbations of the drift and

volatility considered in the following section. Here we will only suppose that

Sε → S0

in the sense that

(8) lim
ε→0

Sεn(ω) = S0
n(ω), for every n ∈ {0, . . . , N} and ω ∈ Ω.

The following result asserts that the Föllmer-Schweizer decomposition on finite probability

spaces is stable under perturbations of the stock of the form (8).

Theorem 5.1. On a finite probability space, let us consider a family of stock price pro-

cesses
(
(Sεn)n∈{0,...,N}

)
ε∈(−ε0,ε0)

, for some ε0 > 0, satisfying (8). Let VN be given. Then

the corresponding family of the Fölmer-Schweizer decompositions

VN = V ε
0 +

N∑
j=1

ϑ̂εj∆S
ε
j + LεN , ε ∈ (−ε0, ε0),
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satisfies

lim
ε→0

V ε
0 = V 0

0 ,

lim
ε→0

Lεn = L0
n, n ∈ {0, . . . , N},

lim
ε→0

ϑ̂εn = ϑ̂0
n, n ∈ {1, . . . , N},

(9)

where the equalities hold for every ω ∈ Ω. As a consequence, we also have

(10) lim
ε→0

n∑
j=1

ϑ̂εj∆S
ε
j =

n∑
j=1

ϑ̂0
j∆S

0
j , n ∈ {1, . . . , N}, ω ∈ Ω.

Proof. The proof goes recursively, backward in n. First, let us consider n = N . From (8),

we get

lim
ε→0

∆SεN = S0
N , ω ∈ Ω.

Further, we work on a finite probability space, via the formal definition of conditional

expectation, from (8), without any additional assumptions, we get

lim
ε→0

EFN−1
[∆SεN ] = EFN−1

[
∆S0

N

]
.

As a consequence, we obtain

lim
ε→0

ϑ̂εN = lim
ε→0

CovFN−1
[VN ,∆S

ε
N ]

VarFN−1
[∆SεN ]

= lim
ε→0

EFN−1

[(
VN − EFN−1

[VN ]
) (

∆SεN − EFN−1
[∆SεN ]

)]
EFN−1

[(
∆SεN − EFN−1

[∆SεN ]
)2
]

=
EFN−1

[(
VN − EFN−1

[VN ]
)

lim
ε→0

(
∆SεN − EFN−1

[∆SεN ]
)]

EFN−1

[
lim
ε→0

(
∆SεN − EFN−1

[∆SεN ]
)2
]

=
EFN−1

[(
VN − EFN−1

[VN ]
) (

lim
ε→0

∆SεN − lim
ε→0

EFN−1
[∆SεN ]

)]
EFN−1

[(
lim
ε→0

∆SεN − lim
ε→0

EFN−1
[∆SεN ]

)2
]

=
EFN−1

[(
VN − EFN−1

[VN ]
) (

∆S0
N − EFN−1

[∆S0
N ]
)]

EFN−1

[(
∆S0

N − EFN−1
[∆S0

N ]
)2
]

=
CovFN−1

[VN ,∆S
0
N ]

VarFN−1
[∆S0

N ]

= ϑ̂0
N ,

(11)

where the chain of equalities holds for every ω ∈ Ω. If N = 1,(11) implies the third

equality in (9), and the remaining assertions of the theorem follow. If N > 1 denoting
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Aεn := VN −
N∑

j=n+1

ϑ̂εj∆S
ε
j , n ∈ {0, . . . , N − 1}, ε ∈ (−ε0, ε0), from (11), we get

lim
ε→0

AεN−1 = A0
N−1, ω ∈ Ω.

Consequently, similarly to (11), we obtain

lim
ε→0

ϑ̂εN−1 = lim
ε→0

CovFN−2

[
AεN−1,∆S

ε
N−1

]
VarFN−2

[
∆SεN−1

]
=

CovFN−2

[
lim
ε→0

AεN−1, lim
ε→0

∆SεN−1

]
VarFN−2

[
lim
ε→0

∆SεN−1

]
=

CovFN−2

[
A0
N−1,∆S

0
N−1

]
VarFN−2

[
∆S0

N−1

]
= ϑ̂0

N−1, ω ∈ Ω.

(12)

Proceeding in such a manner, one can show that

lim
ε→0

ϑ̂εn = ϑ̂0
n, n ∈ {1, . . . , N}, ω ∈ Ω,

which is the last equality in (9). In turn, this and (8) imply (10). Therefore, for every

ε ∈ (−ε0, ε0), by taking expectation in

(13) VN = V ε
0 +

N∑
j=1

ϑ̂εj∆S
ε
j + LεN ,

and using E [LεN ] = 0, ε ∈ (−ε0, ε0), we deduce via (10) that lim
ε→0

V ε
0 = V 0

0 , i.e., the first

equality in (9) holds. Consequently, as the left-hand side in (13) does not depend on ε,

from (13), the convergence of V ε
0 to V 0

0 and (10), we deduce that lim
ε→0

LεN = L0
N for every

ω ∈ Ω. Finally, as Lε’s are P-martingales, using EFn [LεN ] = Lεn, we conclude that

lim
ε→0

Lεn = L0
n, for every n ∈ {0, . . . , N} and ω ∈ Ω,

which is the second equality in (9). The proof is complete. �

6. Asymptotic analysis

While stability tells us whether there is a convergence of the problem outputs under

perturbations of the input data or not, the asymptotic analysis gives a quantitative es-

timate of how does the problem respond to such perturbations. In order to make such

estimates assuming merely Sε → S0 as in (8) from the previous section is not enough.

We need to parametrize perturbations more precisely. Before stating our form of pertur-

bations, one can also consider that, in practice, the dynamics of the stock price process,

is commonly decomposed into two parts. The first one is drift, or in discounted settings,

it can also be stated as the market price of risk. This part is responsible for the trend
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of the stock. The second part captures the fluctuations, that is, how much can the stock

alternative in a given interval. Therefore, one can formulate the following dynamics of

the stock for the base model2,

(14) ∆S0
n = λn + σn∆Wn = λn∆t+ σn∆Wn, n ∈ {1, . . . , N},

where λ and σ are predictable processes, ∆t ≡ 1 represents the change in time, and

∆Wn is an Fn-measurable increment of a martingale with initial value 0, interpreted as

an error or “noise” term, where we additionally suppose that the standard deviation of

∆Wn is ∆t = 1 for normalization purposes. (14) is also consistent with the so-called

semimartingale decomposition of the stock price process, where a semimartingale can be

defined to be a process that can be written as a sum of a martingale (noise term) and an

adapted process (drift term). In the finite probability settings, in fact, the drift term in

the semimartingale decomposition can be chosen to be predictable.

Remark 6.1. We observe that given any process S, and once the time step ∆t > 0 is fixed

(and is constant in this paper, for simplicity of notations), the processes λ and σ can be

obtained as follows

λn =
EFn−1 [∆Sn]

∆t
,

σn =
√

VarFn−1 [∆Sn],

∆Wn =
∆S0

n − λn∆t

σn
1{σn>0}, n ∈ {1, . . . , N}.

For perturbations of the underlying dynamics in (14), we can consider simultaneous

(or separate) distortions of both the drift and the noise terms in (14). Therefore, we now

define model perturbations as

∆Sεn = (λn + ελ′n)∆t+ (σn + εσ′n)∆Wn + εσ′′n∆W⊥
n , n ∈ {1, . . . , N}, ε ∈ (−ε0, ε0),

where λ′, σ′, and σ′′ are predictable processes, ∆W⊥
n is an Fn-measurable normalized

noise term, which is conditionally uncorrelated from ∆Wn, that is

EFn−1

[
∆W⊥

n

]
= 0, VarFn−1

[
∆W⊥

n

]
= 1, and CovFn−1

[
∆Wn,∆W

⊥
n

]
= 0, n ∈ {1, . . . , N}.

and ε0 is a strictly positive constant. With

(15) ∆S ′n := λ′n∆t+ σ′n∆Wn + σ′′n∆W⊥
n , n ∈ {1, . . . , N},

we can rewrite the dynamics of the perturbed processes as

(16) ∆Sεn = ∆S0
n + ε∆S ′n, n ∈ {1, . . . , N}, ε ∈ (−ε0, ε0).

2Here the base model is the one that corresponds to ε = 0 in the notations of sections 5 and 6.



STABILITY AND ASYMPTOTIC ANALYSIS OF THE FÖLLMER-SCHWEIZER DECOMPOSITION 13

Remark 6.2. Similarly to the process ∆S, if one starts from a given perturbation process

∆S ′, it can be represented in the form (15), as follows: in the notations of Remark 6.1,

we have

λ′n =
EFn−1 [∆S ′n]

∆t
, n ∈ {1, . . . , N},

and the computation of the remaining parameters goes along the lines of [Shr10, Example

2.3.3, p.72]. Let us consider

∆S ′n − EFn−1 [∆S ′n] = σ′n∆Wn +
(
∆S ′n − EFn−1 [∆S ′n]− σ′n∆Wn

)
, n ∈ {1, . . . , N},

where σ′n has to be determined in a way that term in the brackets is conditionally uncor-

related from ∆Wn. As, VarFn−1 [∆Wn] = 1, direct calculations give

σ′n = EFn−1

[
∆Wn,∆S

′
n − EFn−1 [∆S ′n]

]
= CovFn−1 [∆Wn,∆S

′
n] , n ∈ {1, . . . , N},

therefore, for σ′′n and ∆W⊥
n , we get

σ′′n =
√

VarFn−1

[
∆S ′n − EFn−1 [∆S ′n]− σ′n∆Wn

]
=
√

VarFn−1 [∆S ′n − σ′n∆Wn],

∆W⊥
n =

∆S ′n − EFn−1 [∆S ′n]− σ′n∆Wn

σ′′n
1{σ′′n>0}, n ∈ {1, . . . , N}.

The following theorem gives the leading-order correction terms to the components of the

Föllmer-Schweizer decomposition under perturbations of the form (16). Let us consider

the associated family of the Fölmer-Schweizer decompositions

(17) VN = V ε
0 +

N∑
j=1

ϑ̂εj∆S
ε
j + LεN , ε ∈ (−ε0, ε0),

and let us define recursively, backward in n, process ϑ̂′, which will be proven in Theorem

6.3 to be the first-order correction to the optimal strategy, as

ϑ̂′N :=
CovFN−1

[VN ,∆S
′
N ]

VarFN−1
[∆S0

N ]
− 2

CovFN−1
[VN ,∆S

0
N ] CovFN−1

[∆S0
N ,∆S

′
N ](

VarFN−1
[∆S0

N ]
)2 ,

ϑ̂′n :=
1

VarFn−1 [∆S0
n]

(
CovFn−1

[
VN −

N∑
j=n+1

ϑ̂0
j∆S

0
j ,∆S

′
n

]

−CovFn−1

[
N∑

j=n+1

ϑ̂′j∆S
0
j +

N∑
j=n+1

ϑ̂0
j∆S

′
j,∆S

0
n

])

− 2

CovFn−1

[
VN −

N∑
j=n+1

ϑ̂0
j∆S

0
j ,∆S

0
n

]
CovFN−1

[∆S0
n,∆S

′
n](

VarFn−1 [∆S0
n]
)2 ,

n ∈ {N − 1, . . . , 1}.

(18)
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Theorem 6.3. On a finite probability space, let us consider a family of stock price pro-

cesses
(
(Sεn)n∈{0,...,N}

)
ε∈(−ε0,ε0)

, for some ε0 > 0, where the increments, ∆Sεn
′s, are given

via (16). Let VN be given. Then the components of the family of the Föllmer-Schweizer

decompositions defined in (17) satisfy

lim
ε→0

V ε
0 − V 0

0

ε
= −E

[
N∑
j=1

ϑ̂0
j∆S

′
j +

N∑
j=1

ϑ̂′j∆S
0
j

]
,

lim
ε→0

Lεn − L0
n

ε
= −EFn

[
N∑
j=1

ϑ̂′j∆S
0
j − E

[
N∑
j=1

ϑ̂′j∆S
0
j

]]
− EFn

[
N∑
j=1

ϑ̂0
j∆S

′
j − E

[
N∑
j=1

ϑ̂0
j∆S

′
j

]]
,

n ∈ {0, . . . , N}, ω ∈ Ω,

lim
ε→0

ϑ̂εn − ϑ̂0
n

ε
= ϑ̂′n, n ∈ {1, . . . , N}, ω ∈ Ω,

(19)

where ϑ′ is defined in (18). We also have

lim
ε→0

∑n
j=1 ϑ̂

ε
j∆S

ε
j −

∑n
j=1 ϑ̂

0
j∆S

0
j

ε
=

n∑
j=1

ϑ̂0
j∆S

′
j +

n∑
j=1

ϑ̂′j∆S
0
j ,

n ∈ {1, . . . , N}, ω ∈ Ω.

(20)

Proof. We will investigate lim
ε→0

ϑ̂εn−ϑ̂0n
ε

first. For n = N , we have

lim
ε→0

ϑ̂εn − ϑ̂0
n

ε
= lim

ε→0

CovFN−1 [VN ,∆S
ε
N ]

VarFN−1 [∆S
ε
N ]
− CovFN−1 [VN ,∆S

ε
N ]

VarFN−1 [∆S
ε
N ]

ε
.

(21)

Using the definition of conditional expectation, and Theorem 5.13, we get

lim
ε→0

CovFN−1
[Vn,∆S

ε
N ]− CovFN−1

[Vn,∆S
0
N ]

ε
= CovFN−1

[VN ,∆S
′
N ] .

Similarly, we deduce that

lim
ε→0

VarFN−1
[∆SεN ]− VarFN−1

[∆S0
N ]

ε
= 2 CovFN−1

[
∆S0

N ,∆S
′
N

]
.

Therefore, in (21), we obtain

lim
ε→0

ϑ̂εn − ϑ̂0
n

ε
=

CovFN−1
[VN ,∆S

′
N ] VarFN−1

[∆S0
N ]− 2 CovFN−1

[VN ,∆S
0
N ] CovFN−1

[∆S0
N ,∆S

′
N ](

VarFN−1
[∆S0

N ]
)2 ,

3Below, we apply the assertions of Theorem 5.1 at a family of points ε near the origin, this however

causes no difficulty by relabeling Sε’s.
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which is precisely ϑ̂′N . If N = 1, this completes the proof for lim
ε→0

ϑ̂εn−ϑ̂0n
ε

= ϑ′n, for every n.

If N > 1 denoting Aεn := VN −
N∑

j=n+1

ϑ̂εj∆S
ε
j , n ∈ {0, . . . , N − 1}, ε ∈ (−ε0, ε0), and using

Theorem 5.1, we get recursively, backward in n, the following chain of equalities. First,

for n = N − 1, we obtain

lim
ε→0

Aεn − A0
n

ε
= −

N∑
j=n+1

ϑ̂′j∆S
0
j −

N∑
j=n+1

ϑ̂0
j∆S

′
j.

Therefore, using Theorem 5.1 again, we obtain

lim
ε→0

CovFn−1 [Aεn,∆S
ε
n]− CovFn−1 [A0

n,∆S
0
n]

ε

= CovFn−1

[
−

N∑
j=n+1

ϑ̂′j∆S
0
j −

N∑
j=n+1

ϑ̂0
j∆S

′
j,∆S

0
n

]
+ CovFn−1

[
A0
n,∆S

′
n

]
= CovFn−1

[
−

N∑
j=n+1

ϑ̂′j∆S
0
j −

N∑
j=n+1

ϑ̂0
j∆S

′
j,∆S

0
n

]
+ CovFn−1

[
VN −

N∑
j=n+1

ϑ̂0
j∆S

0
j ,∆S

′
n

]
,

and thus, in (21), we conclude that

lim
ε→0

ϑ̂εn − ϑ̂0
n

ε
=

1

VarFn−1 [∆S0
n]

(
CovFn−1

[
VN −

N∑
j=n+1

ϑ̂0
j∆S

0
j ,∆S

′
n

]

−CovFn−1

[
N∑

j=n+1

ϑ̂′j∆S
0
j +

N∑
j=n+1

ϑ̂0
j∆S

′
j,∆S

0
n

])

−
2 CovFn−1

[
VN −

N∑
j=n+1

ϑ̂0
j∆S

0
j ,∆S

0
n

]
CovFN−1

[∆S0
n,∆S

′
n](

VarFn−1 [∆S0
n]
)2 ,

which is exactly ϑ̂′n from (18) for n = N − 1. Proceeding this way, we can establish (18)

for every n ≥ 1. This completes the proof of the third equality in (19). Now, (20) follows

from the third equality in (19) and Theorem 5.1.

To establish the first two equalities in (19), we proceed as follows. For every ε ∈
(−ε0, ε0), taking the expectation in (17) and observing that the left-hand side does not

depend on ε as well as that E [LεN ] = 0, we get

V ε
0 + E

[
N∑
j=1

ϑ̂εj∆S
ε
j

]
= V 0

0 + E

[
N∑
j=1

ϑ̂0
j∆S

0
j

]
, ε ∈ (−ε0, ε0).

Collecting the terms and dividing by ε 6= 0, we obtain

V ε
0 − V 0

0

ε
=

E
[∑N

j=1 ϑ̂
0
j∆S

0
j −

∑N
j=1 ϑ̂

ε
j∆S

ε
j

]
ε

, ε ∈ (−ε0, 0) ∪ (0, ε0).
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Taking the limit as ε→ 0, and using (20), we conclude that

lim
ε→0

V ε
0 − V 0

0

ε
= −E

[
N∑
j=1

ϑ̂0
j∆S

′
j +

N∑
j=1

ϑ̂′j∆S
0
j

]
,

which is precisely the first equality in (19).

To obtain the remaining assertion in (19), we observe that from (17), (20) and the other

two assertions in (19), we immediately obtain

lim
ε→0

LεN − L0
N

ε
= − lim

ε→0

V ε
0 − V 0

0

ε
− lim

ε→0

∑N
j=1 ϑ̂

ε
j∆S

ε
j −

∑N
j=1 ϑ̂

0
j∆S

0
j

ε

= E

[
N∑
j=1

ϑ̂0
j∆S

′
j +

N∑
j=1

ϑ̂′j∆S
0
j

]
−

N∑
j=1

ϑ̂0
j∆S

′
j −

N∑
j=1

ϑ̂′j∆S
0
j

= −

(
N∑
j=1

ϑ̂0
j∆S

′
j − E

[
N∑
j=1

ϑ̂0
j∆S

′
j

])
−

(
N∑
j=1

ϑ̂′j∆S
0
j − E

[
N∑
j=1

ϑ̂′j∆S
0
j

])
.

If N = 1, this completes the proof. If N > 1, for n < N , we have EFn [LεN ] = Lεn,

ε ∈ (−ε0, ε0). Therefore, using (17) and taking the conditional expectation, we obtain

Lεn − L0
n

ε
=

EFn [LεN − L0
N ]

ε
= −V

ε
0 − V 0

0

ε
−

EFn

[
N∑
j=1

ϑ̂εj∆S
ε
j −

N∑
j=1

ϑ̂0
j∆S

0
j

]
ε

.

Taking the limit, and using (20) and the first equality in (19), we conclude that

lim
ε→0

Lεn − L0
n

ε
= −EFn

[
N∑
j=1

ϑ̂′j∆S
0
j − E

[
N∑
j=1

ϑ̂′j∆S
0
j

]]
−EFn

[
N∑
j=1

ϑ̂0
j∆S

′
j − E

[
N∑
j=1

ϑ̂0
j∆S

′
j

]]
.

This completes the proof of the theorem. �
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