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Abstract
We investigate the stability of the Epstein–Zin problem
with respect to small distortions in the dynamics of the
traded securities. We work in incomplete market model
settings, where our parametrization of perturbations
allows for joint distortions in returns and volatility of
the risky assets and the interest rate. Considering empir-
ically the most relevant specifications of risk aversion
and elasticity of intertemporal substitution, we provide
a condition that guarantees the convexity of the domain
of the underlying problem and results in the existence
and uniqueness of a solution to it. Then, we prove
the convergence of the optimal consumption streams,
the associated wealth processes, the indirect utility pro-
cesses, and the value functions in the limit when the
model perturbations vanish.
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1 INTRODUCTION

Recursive utilities of Epstein–Zin type allow for the incorporation of future consumption choice
into preferences. In the discrete-time environment, this topic goes back to Kreps and Porteus
(1978) and Epstein and Zin (1989), whereas in continuous-time stochastic settings, it was originally
investigated in Duffie and Epstein (1992). These utilities allowed for the resolution of several asset
pricing puzzles; see the introduction to Xing (2017a) for an overview of this topic. The Epstein–
Zin problem remains an active research area. Thus, recently, explicit solutions are characterized
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2 MONOYIOS and MOSTOVYI

in Xing (2017a), Kraft et al. (2017), and Matoussi and Xing (2018); for the results in infinite time
horizon settings, we refer to Herdegen et al. (2023), Herdegen et al. (2021), andAurand andHuang
(2023); a finite yet random horizon is considered in Aurand and Huang (2021).
The continuous-time counterpart of a recursive utility is also known as a stochastic differential

utility. Two constants govern its parametrization. One is the usual risk aversion, and the other
is an elasticity of intertemporal substitution (EIS) that specifies the willingness to interchange
consumption over time. As pointed out in Xing (2017a, Remark 2.1, p. 231), the empirically most
relevant case corresponds to the relative risk aversion 𝛾 > 1 and the EIS 𝜓 > 1.
The notion of thewell-posedness of amathematical problemgoes back toHadamard (1902), and

it comprises the following three properties for a solution to a given problem to hold: existence,
uniqueness, and continuous dependence on the initial data, where the last property is loosely
known as stability. While the existence and uniqueness results (and various characterizations of
the solution) for the Epstein–Zin problem are established in the papers mentioned above, the
questions of stability in the context of this problem, to the best of our knowledge, have not been
answered before.
An additional motivation for studying stability comes from the fact that in many cases, for

example, in the factor model considered in Kraft et al. (2017), the explicit solution ceases to exist
under general perturbations of themodel parameters, where such perturbations can be associated
with a procedure of calibration. In this case, it is important to understand whether the outputs
of the problem, such as the optimal consumption, the optimal wealth process, the indirect utility
process, and the value function, differ only slightly from the solution to the unperturbed problem
admitting an explicit solution.
In the case of the more traditional additive utility, which corresponds to a particular case of

the Epstein–Zin problem (𝛾 = 1

𝜓
, in the present notations), the questions of stability are studied

more, and historically, and they have also followed establishing the existence and uniqueness
results. The results on the stability of the outputs to the optimal investment problem with respect
to various perturbations and in varying formulations are contained in Jouini and Napp (2004),
Carasus and Rasonyi (2007), Kardaras and Žitković (2011), Xing (2017b), Veraguas and Silva
(2018), and Mostovyi (2021), among others. These works do not establish any stability to BSDEs
result, in contrast to the present paper, as the analysis of the stability of the optimal investment
problem in many formulations relies on different techniques, despite the BSDE-base approach
pioneered in Hu et al. (2005). Thus, compared to the papers on the stability of the traditional
utility maximization in various formulationsmentioned in this paragraph, we rely on the analysis
of BSDE and establish related approximation and stability results in the present work.
In view of the previously listed works, one can argue that the literature on the Epstein–Zin

problem does not contain its stability analysis. The aim of the present paper is to give insight into
this problem, and thus, here, we investigate the stability of the Epstein–Zin problem with respect
to perturbations of the dynamics of the traded securities. Our parametrization of perturbations
allows us to include joint or separate distortions of the interest rate as well as of the return and
volatility of the risky assets. We consider the above-described case when both the relative risk
aversion and EIS exceed one. Our analysis is performed under a weak no-arbitrage condition,
no unbounded profit with bounded risk (NUPBR) introduced in Karatzas and Kardaras (2007),
which still allows for the meaningful structure of the underlying problem.
Our results include a sufficient condition for the convexity of the domain of the primal prob-

lem and for the existence and uniqueness of the optimizer to this problem. This condition
can be stated as nonemptiness of the dual domain, that is, the existence of a state price den-
sity satisfying an integrability condition, which guarantees a unique solution of class D to the
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MONOYIOS and MOSTOVYI 3

dual BSDE, see Lemma 2.1. We also show the convergence of the value functions, the opti-
mal consumption streams, the associated wealth processes, and the indirect utility processes as
perturbations vanish.
One of the difficulties in the analysis involves establishing stability-type estimates for the solu-

tions to BSDEs with an unbounded terminal condition and non-Lipschitz generator, with respect
to particular perturbations of both the terminal condition and the generator. Here, we establish
a ucp convergence result for the family of solutions to such BSDEs, see Lemma 5.6. Further, it
is crucial for the proof to show the strict r(and stronger than strict) concavity of the rvalue func-
tion, in a sense Lemma 5.5. All these estimates are needed to establish the convergence of the
optimal consumption streams, whereas the convergence of the value functions relies on conju-
gacy results fromMatoussi and Xing (2018) and on a particular construction of the nearly optimal
consumption streams also combined with localization.
The remainder of this paper is organized as follows: in Section 2, we specify the model and

Section 3 contains the main results. In Section 4, we discuss the integrability condition on the
perturbations, and the proofs are given in Section 5.

2 MODEL

2.1 Market

Let
(
Ω, (𝑡)𝑡∈[0,𝑇] , , ℙ

)
be a complete stochastic basis, where 𝑇 ∈ (0,∞) is the time horizon, 0

is the completion of the trivial𝜎-field, (𝑡)𝑡∈[0,𝑇] is the augmented filtration generated by a (𝑘 + 𝑛)-
dimensional Brownianmotion𝐵 =

(
𝑊,𝑊⟂

)
, where𝑊 represents the first 𝑘 components and𝑊⟂

the remaining 𝑛 components. For an ℝ𝑛×𝑛-valued 𝑊-adapted process 𝜌 taking values in ℝ𝑛×𝑘

and for anℝ𝑛×𝑛-valued adapted process1 𝜌⟂ satisfying 𝜌𝜌⊤ + 𝜌⟂(𝜌⟂)⊤ = 𝐼𝑛×𝑛, the 𝑛-dimensional
identity matrix, we set

𝑊𝜌 ∶= ∫
⋅

0

𝜌𝑠𝑑𝑊𝑠 + ∫
⋅

0

𝜌⟂𝑠 𝑑𝑊
⟂
𝑠 .

We consider a family of markets parametrized by 𝜀 ∈ (−𝜀0, 𝜀0) for some 𝜀0 > 0. Thus, for a
fixed 𝜀, the traded assets are (𝑆𝜀,0, … , 𝑆𝜀,𝑛), where 𝑆𝜀,0 is the price process of the riskless asset
and (𝑆𝜀,1, … , 𝑆𝜀,𝑛) are the prices of the risky assets. Their evolution is given by

𝑑𝑆𝜀,0𝑡 = 𝑆𝜀,0𝑡 𝑟𝜀𝑡 𝑑𝑡, 𝑑𝑆𝜀,𝑖𝑡 = 𝑆𝜀,𝑖𝑡

((
𝑟𝜀𝑡 + 𝜇

𝜀,𝑖
𝑡

)
𝑑𝑡 +

𝑛∑
𝑗=1

𝜎
𝜀,𝑖,𝑗
𝑡 𝑑𝑊

𝜌,𝑗
𝑡

)
,

𝑖 ∈ {1, … , 𝑛},

(1)

where the processes 𝑟𝜀 ≥ 0, 𝜇𝜀,𝑖 , and 𝜎𝜀,𝑖 are 𝑊-adapted processes such that the integrals in
Equation (1) are well-defined and such that 𝜎𝜀𝑡 is invertible, 𝑡 ∈ [0, 𝑇], ℙ-a.s..

1 Through process 𝜌, one, in particular, can include stochastic volatility-type models as in Kraft et al. (2017, Section 4). We
note that the model in Kraft et al. (2017) allows for an explicit solution to the Epstein–Zin problem via Hamilton–Jacobi–
Bellman equations, and under perturbations of the model parameters, the structure allowing for explicit solutions can
be lost.
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4 MONOYIOS and MOSTOVYI

In particular, our parametrization of perturbations allows us to include the following cases:

∙ Perturbations of the drift 𝜇 only. This corresponds to setting 𝑟𝜀 ≡ 𝑟0, and 𝜎𝜀,𝑖,𝑗 ≡ 𝜎0,𝑖,𝑗 , for every
𝑖, 𝑗 ∈ {1, … , 𝑛}.

∙ Perturbations of the volatility 𝜎 only.
∙ Similarly, we can consider perturbations of the interest rate only. In many works in mathemat-
ical finance, the riskless asset is assumed to be constant-valued. While this gives the correct
structure to many problems of mathematical finance, having nonzero interest rates can also be
significant and leads to extra technicalities.

∙ Perturbations of the numéraire, where the parametrization of such perturbations can follow
the ones in Mostovyi (2020).

∙ Combinations of perturbations above.

2.2 The Epstein–Zin problem

For every 𝜀 ∈ (−𝜀0, 𝜀0), let 𝜋𝜀 =
(
𝜋𝜀,0, … , 𝜋𝜀,𝑛

)
be an 𝑆𝜀-integrable ℝ𝑛+1-valued process repre-

senting the proportions of the total wealth invested in the respective assets, thus, satisfying
r
∑𝑛

𝑖=0
𝜋𝜀,𝑖𝑡 = 1, 𝑡 ∈ [0, 𝑇]. Let 𝑐𝜀 be a non-negative progressively measurable process represent-

ing the consumption rate in the 𝜀th market. Let 𝜅 be a deterministic consumption clock given by
𝜅𝑡 = 𝑡 + 1{𝑇}(𝑡), 𝑡 ∈ [0, 𝑇]. We specify the dynamics of the wealth process 𝑋𝜀,𝜋𝜀,𝑐𝜀 associated with
consumption–investment pair (𝜋𝜀, 𝑐𝜀) and starting from an initial wealth 𝑥 as follows

𝑑𝑋𝜀,𝜋
𝜀,𝑐𝜀

𝑡 = 𝑋𝜀,𝜋
𝜀,𝑐𝜀

𝑡

𝑛∑
𝑖=0

𝜋𝜀,𝑖𝑡
𝑑𝑆𝜀,𝑖𝑡

𝑆𝜀,𝑖𝑡

− 𝑐𝜀𝑡𝑑𝜅𝑡, 𝑋𝜀0 = 𝑥. (2)

We call a consumption process 𝑐𝜀 admissible from 𝑥 > 0 for the 𝜀th market, if there exists an

𝑆𝜀-integrable process 𝜋𝜀, such that
𝑛∑
𝑖=0

𝜋𝜀,𝑖𝑡 = 1, 𝑡 ∈ [0, 𝑇], and the associated wealth process in

Equation (2) is non-negative,ℙ-a.s.. We denote the family of admissible consumptions from 𝑥 > 0

in the 𝜀th market by(𝑥, 𝜀), 𝜀 ∈ (−𝜀0, 𝜀0).
An agent, starting with an initial capital 𝑥 > 0, invests and consumes in the market in a way to

maximize his or her expected utility with Epstein–Zin preferences. With 𝛿 > 0 representing the
discount rate, 0 < 𝛾 ≠ 1 being the relative risk aversion, and 0 < 𝜓 ≠ 1 specifying the EIS, one can
define the Epstein–Zin aggregator 𝑓 via

𝑓(𝑐, 𝑢) = 𝛿
𝑐
1−

1

𝜓

1 −
1

𝜓

((1 − 𝛾)𝑢)
1−

1

𝜃 − 𝛿𝜃𝑢, 𝑐 > 0 and (1 − 𝛾)𝑢 > 0, (3)

where 𝜃 ∶= (1 − 𝛾)∕
(
1 −

1

𝜓

)
. Given the bequest utility𝑈𝑇(𝑐) = 𝑐1−𝛾∕ (1 − 𝛾), 𝑐 > 0, the Epstein–

Zin utility for a non-negative consumption stream 𝑐 is a process
(
𝑈𝑐
𝑡

)
𝑡∈[0,𝑇]

, which satisfies the
BSDE

𝑈𝑐
𝑡 = 𝔼𝑡

[
𝑈𝑇(𝑐𝑇) + ∫

𝑇

𝑡

𝑓 (𝑐𝑠, 𝑈
𝑐
𝑠 ) 𝑑𝑠

]
, 𝑡 ∈ [0, 𝑇], (4)
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MONOYIOS and MOSTOVYI 5

where 𝔼𝑡 is 𝔼 [ ⋅ |𝑡]. Sufficient conditions for the existence of 𝑈𝑐 for a given 𝑐 are contained in
Matoussi and Xing (2018, Proposition 2.1).
The agent aims to maximize his or her Epstein–Zin utility at time zero over all admissible

strategies, that is

sup
𝑐∈(𝑥,𝜀)

𝑈𝑐
0, (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0). (5)

This formulation, however, does not guarantee that for a given 𝑐 ∈ (𝑥, 𝜀), 𝑈𝑐 in Equation (4)
is well-defined. As pointed out in Matoussi and Xing (2018, Remark 2.2), one needs some mild
integrability properties on the elements of (𝑥, 𝜀), (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0). Below, we provide
some insights on this issue. For this, we need to introduce the state price densities.

2.3 State price density processes

The family of state price density processes is defined as

(𝑦, 𝜀) ∶={𝐷 > 0 ∶𝐷0 = 𝑦, 𝐷𝑋𝜀,𝜋,𝑐 + ∫
⋅

0

𝐷𝑠𝑐𝑠𝑑𝜅𝑠

𝑖𝑠 𝑎 𝑠𝑢𝑝𝑒𝑟𝑚𝑎𝑟𝑡𝑖𝑛𝑔𝑎𝑙𝑒 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐 ∈ (1, 𝜀)},
(𝑦, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0),

(6)

where (𝜋, 𝑐) is the investment–consumption pair, such that𝑋𝜀,𝜋,𝑐 in Equation (2) is non-negative.
Thus, one can see that the family of minimal state price densities

𝐷𝜀,0 ∶= 
(
−∫

⋅

0

𝑟𝜀𝑠𝑑𝑠 − ∫
⋅

0

(
(𝜎𝜀𝑠)

−1
𝜇𝜀𝑠

)
𝑑𝑊

𝜌
𝑠

)
, 𝜀 ∈ (−𝜀0, 𝜀0), (7)

is well-defined, where  denotes the stochastic exponential. In particular, since, for every 𝜀, the set
of state price densities is nonempty, and this also applies to the set of supermartingale deflators,
this precludes the arbitrage opportunities in the sense of unbounded profit with bounded risk
(UPBR) introduced in Karatzas andKardaras (2007), we also refer to Karatzas andKardaras (2021,
Chapter 2) for its multiple equivalent characterizations. In other words,

𝑁𝑈𝑃𝐵𝑅 ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜀 ∈ (−𝜀0, 𝜀0). (8)

For the BSDE characterizations, as in Xing (2017a), it is important to restrict the admissible
consumptions to the ones that are also integrable in a sense made precise below. Thus, one can
define

̃(𝑥, 𝜀) ∶=
{
𝑐 ∈ (𝑥, 𝜀) ∶ 𝔼

[
∫

𝑇

0

𝑐
1−

1

𝜓

𝑠 𝑑𝑠

]
< ∞

}
. (9)

Formally, in Xing (2017a), also 𝔼
[
𝑐
1−𝛾
𝑇

]
< ∞ is imposed. However, for every constant 𝛿 > 0, a

consumption plan satisfying 𝑐𝑇 ≥ 𝛿 satisfies 𝔼
[
𝑐
1−𝛾
𝑇

]
< ∞. In particular, the plans such that
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6 MONOYIOS and MOSTOVYI

𝔼
[
𝑐
1−𝛾
𝑇

]
= ∞ correspond to small values of 𝑐𝑇 , and thus are suboptimal. By setting the associate

𝑈𝑐 ≡ −∞ for every 𝑐 such that 𝔼
[
𝑐
1−𝛾
𝑇

]
= ∞, one can rule them out. If all consumption plans

allow for 𝔼
[
𝑐
1−𝛾
𝑇

]
= ∞, then intuitively, the problem is degenerate. This, however, does not hap-

pen if the interest rate 𝑟0 ≥ 0, in which case constant-valued consumptions are admissible and
integrable in the sense above.
Having ruled out the possibility of 𝔼

[
𝑐
1−𝛾
𝑇

]
= ∞ for all consumption plans, as in the para-

graph above, one can provide a sufficient condition for 𝔼

[
∫ 𝑇

0
𝑐
1−

1

𝜓

𝑠 𝑑𝑠

]
< ∞ to hold for every

𝑐 ∈ (𝑥, 𝜀). It is related to a characterization via the reverse Hölder inequality in the spirit of
Nutz (2010, Proposition 4.5) and Kazamaki (1994).
The following lemma provides a sufficient condition for(𝑥, 𝜀) = ̃(𝑥, 𝜀).

Lemma 2.1. Let 𝜀 ∈ (−𝜀0, 𝜀0) be fixed and suppose that there exists 𝐷 ∈ (1, 𝜀), such that

𝔼

[
∫

𝑇

0

𝐷
1−𝜓
𝑠 𝑑𝑠

]
< ∞. (10)

Then, we have

(𝑥, 𝜀) = ̃(𝑥, 𝜀), 𝑥 > 0. (11)

Proof. Let us fix 𝜀 ∈ (−𝜀0, 𝜀0). Then, for every 𝐷 ∈ (1, 𝜀), along the lines of Mostovyi (2015,
Proposition 4.2), one can show that

𝔼

[
∫

𝑇

0

𝐷𝑠𝑐𝑠𝑑𝑠

]
≤ 1, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑐 ∈ (1, 𝜀). (12)

Next, let us consider𝐷 ∈ (1, 𝜀), satisfying Equation (10). Then, for an arbitrary 𝑐 ∈ (1, 𝜀), using
Hölder’s inequality, we get

𝔼
⎡⎢⎢⎣∫

𝑇

0

𝑐
1−

1

𝜓
𝑠 𝑑𝑠

⎤⎥⎥⎦ = 𝔼
⎡⎢⎢⎣∫

𝑇

0

𝑐
1−

1

𝜓
𝑠 𝐷

1−
1

𝜓
𝑠 𝐷

1

𝜓
−1

𝑠 𝑑𝑠
⎤⎥⎥⎦

≤ 𝐶𝔼

[
∫

𝑇

0

𝐷𝑠𝑐𝑠𝑑𝑠

]1− 1

𝜓

𝔼

[
∫

𝑇

0

𝐷
1−𝜓
𝑠 𝑑𝑠

] 1

𝜓

< ∞,

for some constant 𝐶 ∈ (0,∞), where the last inequality follows from Equations (10) and (12).

Therefore, 𝔼

[
∫ 𝑇

0
𝑒−𝛿𝑠𝑐

1−
1

𝜓

𝑠 𝑑𝑠

]
< ∞, and we conclude that 𝑐 ∈ ̃(1, 𝜀). □

As pointed out in Matoussi and Xing (2018, Remark 2.2), instead of verifying the integrability
conditions in Equation (9), it is enough to check for the optimal consumption stream, 𝑐∗, that
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MONOYIOS and MOSTOVYI 7

the associated 𝑈𝑐∗ exists and is of class (D). A similar argument can be provided for the dual
problem below.
With the integrability conditions in Equation (9), one can restate Equation (5) as

𝑢(𝑥, 𝜀) = sup
𝑐∈̃(𝑥,𝜀)

𝑈𝑐
0, (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0). (13)

We call 𝑢—the value function and 𝑈𝑐(𝑥,𝜀)—the value process if 𝑐(𝑥, 𝜀) is an optimizer in Equa-
tion (13) for a given pair (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0), provided that such an optimizer exists. Next,
following Matoussi and Xing (2018), let us define

𝑔(𝑑, 𝑣) ∶= 𝛿𝜓
𝑑1−𝜓

𝜓 − 1
((1 − 𝛾)𝑣)

1−
𝛾𝜓

𝜃 − 𝛿𝜃𝑣, 𝑑 > 0, (1 − 𝛾)𝑣 > 0, (14)

and a function 𝑉𝑇 , the convex conjugate of 𝑈𝑇 , which is given by

𝑉𝑇(𝑑) ∶=
𝛾

1 − 𝛾
𝑑
𝛾−1

𝛾 , 𝑑 > 0. (15)

Next, for a given pair (𝑦, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0) and 𝐷 ∈ (𝑦, 𝜀), one defines the Epstein–Zin
stochastic differential dual for 𝐷 to be a process 𝑉𝐷 satisfying the BSDE

𝑉𝐷𝑡 = 𝔼𝑡

[
𝑉𝑇(𝐷𝑇) + ∫

𝑇

𝑡

𝑔

(
𝐷𝑠,

1

𝛾
𝑉𝐷𝑠

)
𝑑𝑠

]
, 𝑡 ∈ [0, 𝑇]. (16)

Sufficient conditions for the existence of𝑉𝐷 are presented inMatoussi andXing (2018, Proposition
2.5). We state the family of the dual minimization problems as

inf
𝐷∈(𝑦,𝜀) 𝑉

𝐷
0 , (𝑦, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0). (17)

Similarly to Equation (13), to ensure that for a given state price density 𝐷, 𝑉𝐷 is well-defined, one
needs some integrability conditions, and followingMatoussi and Xing (2018, Proposition 2.5), one
can set

̃(𝑦, 𝜀) ∶=
{
𝐷 ∈ (𝑦, 𝜀) ∶ 𝔼

[
∫

𝑇

0

𝐷
1−𝜓
𝑠 𝑑𝑠

]}
< ∞. (18)

Technically in Matoussi and Xing (2018, Proposition 2.5), it is also required that 𝔼

[
𝐷

𝛾−1

𝛾

𝑇

]
< ∞,

which however holds in our settings for every state price density, by an application of Holder’s
inequality, as 𝛾−1

𝛾
∈ (0, 1), and since 𝐷 (under nonnegative interests rates) is a supermartingale.

This allows us to restate Equation (17) as

𝑣(𝑦, 𝜀) ∶= inf
𝐷∈̃(𝑦,𝜀) 𝑉

𝐷
0 , (𝑦, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0). (19)
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8 MONOYIOS and MOSTOVYI

We conclude this section by pointing out that, by Equation (10), if ̃(1, 𝜀) ≠ ∅, then (1, 𝜀) =
̃(1, 𝜀), and thus, the convexity of ̃(1, 𝜀) holds. Thus, for every 𝜀 ∈ (−𝜀0, 𝜀0), the nonemptiness
of the dual feasible set implies the convexity of the primal domain.

3 MAIN RESULTS

3.1 Model assumptions

We will need two assumptions. To ensure that the dual problem (19) is nondegenerate in a
neighborhood of 𝜀 = 0, we impose the following assumption.

Assumption 3.1. For every 𝜀 ∈ (−𝜀0, 𝜀0), ̃(1, 𝜀) ≠ ∅.

The second assumption allows for the additional structure for the base model corresponding to
𝜀 = 0.

Assumption 3.2. Let 𝑥 > 0 be fixed and suppose that, for 𝜀 = 0, a conjugacy relation in the
following sense holds:

𝑢(𝑥, 0) = min
𝑦>0

(𝑣(𝑦, 0) + 𝑥𝑦) = 𝑣(𝑦, 0) + 𝑥𝑦, (20)

for some 𝑦 > 0. Further, assume that, for 𝜀 = 0, there exist optimizers 𝑐(𝑥, 0) to Equation (13) and
�̂�(𝑦, 0) to Equation (19), such that 𝑈𝑐(𝑥,0) and 𝑉�̂�(𝑦,0) are of class D.

3.2 Sufficient conditions for Assumption 3.2

Sufficient conditions for Equation (20) are contained in Matoussi and Xing (2018, Section 3).
Explicit solutions are contained (Xing, 2017a, Theorem 2.14), see also Kraft et al. (2017), where
optimal strategies are obtained in Markovian settings. To be more precise, Kraft et al. (2017) con-
tain the explicit solution for the primal problem (13), and the optimal state price density could be
identified via the utility gradient approach, following, for example, Duffie and Skiadas (1994).

Proposition 3.3 (Matoussi & Xing, 2018, Theorem 3.6). Suppose that 𝛾𝜓 ≥ 1, 𝜓 > 1, or 𝛾𝜓 ≤
1, 𝜓 < 1 and the processes 𝑟0, (𝜇0)⊤

((
𝜎0

)⊤)−1 (
𝜎0

)−1
𝜇0 are bounded. Then Equation (20)

holds.

For models with unbounded market price of risk, we refer to Matoussi and Xing (2018, Sec-
tion 3.4) for the exact conditions that guarantee Assumption 3.2. In a Markov setting, we refer
to Kraft et al. (2017, Theorem 5.1), where, in the one-dimensional stock prices process and a fac-
tor model for the dynamics of both riskless and risky assets, boundedness of 𝜇0 and 𝑟0 as well
as boundedness away from 0 and ∞ of 𝜎0, guarantee that Matoussi and Xing (2018, Theorem
3.6) applies.
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MONOYIOS and MOSTOVYI 9

To analyze the behavior of the primal and dual problems under perturbations, we introduce a
family of ℝ𝑛-dimensional processes 𝜆𝜀, defined by

𝜆𝜀𝑡 ∶=
((
𝜎0𝑡

)⊤)−1 ((
𝜎𝜀𝑡

)−1
𝜇𝜀𝑡 −

(
𝜎0𝑡

)−1
𝜇0𝑡

)
, 𝑡 ∈ [0, 𝑇], 𝜀 ∈ (−𝜀0, 𝜀0). (21)

We also set 𝑅 ∶= (𝑅1, … , 𝑅𝑛), where

𝑑𝑅𝑖𝑡 = 𝜇0,𝑖𝑑𝑡 +

𝑛∑
𝑗=1

𝜎
0,𝑖,𝑗
𝑡 𝑑𝑊

𝜌,𝑗
𝑡 , 𝑅𝑖0 = 0, 𝑖 ∈ {1, … , 𝑛}, (22)

Along the lines of Mostovyi (2020), let us introduce the family of processes𝑁𝜀, 𝜀 ∈ (−𝜀0, 𝜀0), given
via

𝑑𝑁𝜀
𝑡 = 𝑁𝜀

𝑡

((
𝑟0𝑡 − 𝑟

𝜀
𝑡

)
𝑑𝑡 − 𝜆𝜀𝑡𝑑𝑅𝑡

)
, 𝑡 ∈ [0, 𝑇], 𝑁𝜀

0 = 1, 𝜀 ∈ (−𝜀0, 𝜀0). (23)

We recall that 𝜅 is given by 𝜅𝑡 = 𝑡 + 1{𝑇}(𝑡), 𝑡 ∈ [0, 𝑇]. Let 𝕃0(𝑑𝜅 × ℙ) be the linear
space of (equivalence classes of) real-valued measurable processes on the stochastic basis
(Ω, , (𝑡)𝑡∈[0,𝑇], ℙ) equipped with the topology of convergence in measure (𝑑𝜅 × ℙ).

3.3 Stability theorems

The first theorem establishes convergence of the value functions.

Theorem 3.4. Let 𝑥 > 0 be fixed, 𝛾 > 1 and 𝜓 > 1 in Equation (3). Let us further suppose that
Assumptions 3.1 and 3.2 hold and for every 𝜀 ∈ (−𝜀0, 𝜀0), 𝜎𝜀 is invertible, 𝜆𝜀 appearing in Equation
(21) is 𝑅-integrable and lim

𝜀→0
𝑁𝜀 = 1, 𝑖𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑑𝜅 × ℙ).

Then for every 𝜀 ∈ (−𝜀0, 𝜀0), we have

(i) the value functions are finite-valued, that is

𝑢(𝑧, 𝜀) ∈ ℝ 𝑎𝑛𝑑 𝑣(𝑧, 𝜀) ∈ ℝ, (𝑧, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0); (24)

(ii) the value functions converge

lim
(𝑥′,𝜀)→(𝑥,0)

𝑢(𝑥′, 𝜀) = 𝑢(𝑥, 0), 𝑥 > 0, (25)

lim
(𝑦′,𝜀)→(𝑦,0)

𝑣(𝑦′, 𝜀) = 𝑣(𝑦, 0), 𝑦 > 0; (26)

(iii) for every (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0), there exists a unique optimizer to Equation (13).

Remark 3.5. For the problem in Equation (13), a condition of the finiteness of the value functions
condition is typically imposed. In the present settings, as we deal with nonpositive value functions
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10 MONOYIOS and MOSTOVYI

𝑢(𝑥, 𝜀) finiteness from above (by zero) holds. For the finiteness from below,

𝑢(𝑥, 𝜀) > −∞, (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0), (27)

we remark that this also holds as 𝑟0 ≥ 0, and thus 𝑐 ≡ 𝑥

𝑇+1
is an admissible consumption for the

initial wealth 𝑥, for which one can use comparison results for BSDEs to show that the value func-
tion is finite-valued. Similar arguments can be employed to show the finiteness of 𝑣(𝑦, 𝜀), as it is
also bounded by zero from above, and by (𝑢(1, 𝜀) − 𝑦) from below.

The next theorem addresses the convergence of the optimizers. The assumptions of Theo-
rem 3.4 ensure that for every (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0), there exists a unique 𝑐(𝑥, 𝜀), such that
𝑢(𝑥, 𝜀) = 𝑈

𝑐(𝑥,𝜀)
0 , and that 𝑢(𝑥, 𝜀) is finite-valued for every such (𝑥, 𝜀). To prove convergence of the

optimizers, we need to ensure finiteness for the value processes in the sense below.

Theorem 3.6. Let 𝑥 > 0 be fixed. Let the conditions of Theorem 3.4 hold and suppose that there
exists 𝜀′ > 0, such that

ess sup(𝑥,𝜀)∈𝐵𝜀′ (0,0)
𝑐(𝑥, 𝜀) ∈ 𝕃0(𝑑𝜅 × ℙ), ess inf (𝑥,𝜀)∈𝐵𝜀′ (0,0) 𝑈

𝑐(𝑥,𝜀) ∈ 𝕃0(𝑑𝜅 × ℙ),

where 𝐵𝜀′(0, 0) is a Euclidean ball of radius 𝜀′ inℝ2.
We then have that

lim
(𝑥′,𝜀)→(𝑥,0)

𝑐(𝑥′, 𝜀) = 𝑐(𝑥, 0), (28)

where the convergence is in measure (𝑑𝜅 × ℙ).

Let us recall that under the conditions of Theorem 3.4, the existence and uniqueness of the
optimizer to Equation (13) follows from Theorem 3.4, item (𝑖𝑖𝑖). Let us also recall that, for a
given nonnegative consumption stream 𝑐,𝑈𝑐 was defined in Equation (4). The following theorem
establishes the convergence of the indirect utility processes.

Theorem 3.7. Let 𝑥 > 0 be fixed. Then, under the conditions of Theorem 3.6, we have

lim
(𝑥′,𝜀)→(𝑥,0)

𝑈𝑐(𝑥′,𝜀) = 𝑈𝑐(𝑥,0), 𝑢𝑐𝑝.

Next, for a fixed 𝑥 > 0 and 𝜀 = 0, let 𝑦 > 0 be as in Assumption 3.2 and suppose that the dual
minimizer has the form

�̂�𝑡(𝑦, 0) = 𝐶 exp

(
∫

𝑡

0

𝜕𝑢𝑓
(
𝑐𝑡(𝑥, 0), 𝑈

𝑐(𝑥,0)
𝑡

)
𝑑𝑠

)
𝜕𝑐𝑓

(
𝑐𝑡(𝑥, 0), 𝑈

𝑐(𝑥,0)
𝑡

)
, 𝑡 ∈ [0, 𝑇], (29)

for some constant 𝐶 > 0 and

𝑋𝑐(𝑥,0)�̂�(𝑦, 0) + ∫
⋅

0

�̂�𝑠(𝑦, 0)𝑐𝑠(𝑥, 0)𝑑𝜅𝑠 is a martingale, (30)

where 𝑋𝑐(𝑥,0) is the wealth process starting from 𝑥 financing 𝑐(𝑥, 0) (given by Equation 2 at
𝜀 = 0). We note that sufficient conditions for Equations (29) and (30) are similar to the ones for
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MONOYIOS and MOSTOVYI 11

Assumption 3.2 to hold; see the discussion after Assumption 3.2. In particular, both Equations

(29) and (30) hold if the market price of risk (𝜇0)⊤
((
𝜎0

)⊤)−1 (
𝜎0

)−1
𝜇0 process is bounded

as well as 𝛾 > 1 and 𝜓 > 1. Then, the conditions of Matoussi and Xing (2018, Theorem 3.6,
p. 1002), apply and Matoussi and Xing (2018, Corollary 3.7, p. 1002) implies Equations (29) and
(30). Furthermore, representation (29) for the optimal state-price density goes back to Duffie and
Skiadas (1994) and is known as the utility gradient approach.

Theorem 3.8. Let 𝑥 > 0 be fixed. Let the assumptions of Theorem 3.6, Equation (29), and Equation
(30) hold. Then, lim(𝑥′,𝜀)→(𝑥,0) 𝑋

𝑐(𝑥′,𝜀) = 𝑋𝑐(𝑥,0), in measure (𝑑𝜅 × ℙ), where 𝑋𝑐(𝑥′,𝜀) is any wealth
process financing 𝑐(𝑥′, 𝜀) starting from the initial capital 𝑥′ in themarket where the traded assets are
given by Equation (1). Furthermore, if lim𝜀→0 𝑁

𝜀 = 1, 𝑢𝑐𝑝, then lim(𝑥′,𝜀)→(𝑥,0) 𝑋
𝑐(𝑥′,𝜀) = 𝑋𝑐(𝑥,0), ucp.

4 ON THE INTEGRABILITY CONDITION ON PERTURBATIONS

Let us revisit Assumption 3.1. For a fixed 𝜀 ∈ (−𝜀0, 𝜀0), in order for ̃(1, 𝜀) ≠ ∅, where ̃(1, 𝜀) are
defined in Equation (18), there must exist a supermartingale state price density𝐷𝜀 ∈ (1, 𝜀), such
that

𝔼

[
∫

𝑇

0

(𝐷𝜀𝑠 )
1−𝜓

𝑑𝑠

]
< ∞. (31)

The natural candidate for Equation (31) to hold is to checkwhether theminimal state price density
given by Equation (7) satisfies the integrability condition (31). Another sufficient condition for
Assumption 3.1 to hold is given by

𝔼

[
∫

𝑇

0

(
�̂�𝑠(𝑦, 0)𝑁

𝜀
𝑠

)1−𝜓
𝑑𝑠

]
< ∞, 𝜀 ∈ (−𝜀0, 𝜀0),

where �̂�𝑠(𝑦, 0) is the dual minimizer at (𝑦, 0), which exists by Assumption 3.2 and 𝑁𝜀 are given
by Equation (23). Condition (31) is the only integrability condition needed on the perturbations
to ensure that the dual domain incorporating the additional integrability for perturbed models
is nonempty, that is, ̃(1, 𝜀) ≠ ∅, for 𝜀 ≠ 0. Perhaps the most surprising feature in our analysis
(at least for the authors) was that other than Equation (31), no further integrability needs to be
imposed. This can be explained as follows, where the key is in the utility maximization consider-
ations. It is well-known that for the expected utility maximization from terminal wealth, the key
role is played by the finiteness of the value functions, see Kramkov and Schachermayer (1999),
where the finiteness of the primal value function (from above) is assumed, and Kramkov and
Schachermayer (2003), where the finiteness of the dual value function (from above) is required.
To be more precise, both conditions require the value functions to be less than ∞ (in Kramkov
and Schachermayer (1999, Theorem 2.2), under the asymptotic elasticity). In Mostovyi (2015), the
finiteness of both primal and dual value functions (from below and above) is introduced and
proven to be necessary and sufficient for the standard assertions of the utilitymaximization theory
in the case of additive and stochastic utility.
In the present setting, in view of the choice of the parameters 𝛾 > 1 and 𝜓 > 1, we obtain that

the associated value function is negative-valued. This follows from the analysis of the associated
BSDEs as in rLemma 5.2. In particular, the base model exhibits a finiteness conditions for both
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12 MONOYIOS and MOSTOVYI

the primal and dual value functions. For the perturbed models, as 𝛾 and 𝜓 do not change, we still
obtain that the primal value function is negative-valued, and the dual one too. Here, the primal
gives a lower bound for the dual via the conjugacy relations. Thus the blow-up to∞ is not possible
under perturbations of the models. In turn, the blow-up to −∞ is also not possible, as Equation
(13) is a maximization problem, and thus finiteness of the base model guarantees that we do not
have a blow-up as long as the processes 𝑁𝜀’s appearing in Equation (23) are well-defined, and
without any further integrability conditions needed on this family. This situation can be compared
to the counterexample in Mostovyi (2020), where blow-up does happen for a particular form of
perturbations, as the utility function there can take positive values.
The connection between the last two paragraphs can be further illustrated by the case of 𝛾 = 1

𝜓

(going outside the scope of the analysis in this paper). Then the problem (13) reduces to the one
with an additive utility, given by

𝑈𝑐
0 = 𝔼

[
∫

𝑇

0

𝛿𝑒−𝛿𝑠
𝑐
1−𝛾
𝑠

1 − 𝛾
𝑑𝑠 + 𝑒−𝛿𝑇

𝑐
1−𝛾
𝑇

1 − 𝛾

]
.

In this case, and with 𝛾 > 1, the value function is negative-valued, and so is the dual one, thus
precluding the blow-up to∞. The blow-up to−∞ is not possible by the feasibility of the constant-
valued consumptions, which also gives a lower bound for the dual problem.

5 PROOFS

5.1 Preliminary results

We begin with the following structural lemma.

Lemma 5.1. Let the conditions of Theorem 3.4 hold, let 𝑥 > 0 be fixed, and 𝑦 > 0 be given through
(20). Then, for every 𝜀 ∈ (−𝜀0, 𝜀0), we have

𝑐𝜀 ∶ = 𝑐(𝑥, 0)
1

𝑁𝜀
∈ (𝑥, 𝜀), 𝑥 > 0,

𝐷𝜀 ∶ = �̂�(𝑦, 0)𝑁𝜀 ∈ (𝑦, 𝜀), 𝑦 > 0,

(32)

where 𝑐(𝑥, 0) and �̂�(𝑦, 0) are the optimizers, for 𝜀 = 0, to (13) and (19), respectively.

Proof. First, we observe that for every 𝜀 ∈ (−𝜀0, 𝜀0), the process𝑁𝜀 is progressively measurable by
Karatzas and Shreve (1998, Proposition 1.13, p. 5). Now, the assertion of the lemma follows from
Itô’s lemma. □

Let us introduce some notations used in this section’s remaining part.

∙ Let 2 be the space of one-dimensional continuous adapted processes (𝑌𝑡)𝑡∈[0,𝑇] such that
𝔼

[
sup𝑡∈[0,𝑇] |𝑌𝑡|2] < ∞.

∙ Let ∞ =
{
𝑌 ∈ 2 ∶ || sup𝑡∈[0,𝑇] |𝑌𝑡|||∞ < ∞

}
.
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MONOYIOS and MOSTOVYI 13

∙ Let 2 denote the space of predictable multidimensional processes (𝑍𝑡)𝑡∈[0,𝑇], such that
𝔼

[∫ 𝑇

0
|𝑍𝑡|2𝑑𝑡] < ∞.

With 𝑓 given in Equation (3), let us consider the BSDE

𝑈𝑐
𝑡 =

𝑐
1−𝛾
𝑇

1 − 𝛾
+ ∫

𝑇

𝑡

𝑓 (𝑐𝑠, 𝑈
𝑐
𝑠 ) 𝑑𝑠 − ∫

𝑇

𝑡

𝑍𝑐𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇]. (33)

Next, with the transformation

(𝑌, 𝑍) ∶= 𝑒−𝛿𝜃𝑡(1 − 𝛾)(𝑈𝑐, 𝑍𝑐), 𝑡 ∈ [0, 𝑇], (34)

we obtain a BSDE for (𝑌, 𝑍) of the form

𝑌𝑡 = 𝑒−𝛿𝜃𝑇𝑐
1−𝛾
𝑇 + ∫

𝑇

𝑡

𝐹(𝑠, 𝑐𝑠, 𝑌𝑠)𝑑𝑠 − ∫
𝑇

𝑡

𝑍𝑠𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇], (35)

where, for 𝜃 < 0, 𝐹(𝑡, 𝑥, 𝑦) ∶= 𝛿𝜃𝑒−𝛿𝑡𝑥
1−

1

𝜓 𝑦
1−

1

𝜃 ≤ 0 is monotonically decreasing in 𝑦.

Lemma 5.2. Under the conditions of Theorem 3.4, for every (𝑧, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0), 𝑢(𝑧, 𝜀) and
𝑣(𝑧, 𝜀) are finite-valued.

Proof. Let us fix (𝑧, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0). From Lemma 5.1, we deduce that 𝑧
𝑥
𝑐(𝑥, 0)

1

𝑁𝜀
∈ (𝑧, 𝜀).

Therefore, for a fixed𝑚 ≥ 1,

𝑐 ∶=
𝑧

𝑥 +
1

𝑚

1

𝑚
∨

(
𝑐(𝑥, 0)

1

𝑁𝜀

)
∧ 𝑚 ∈ (𝑧, 𝜀). (36)

In particular, we have

𝔼[(𝑐𝑇)
1−𝛾] < ∞.

Next, with 𝐹𝑘(𝑡, 𝑐𝑡, 𝑦) ∶= 𝛿𝜃𝑒−𝛿𝑡𝑐
1−

1

𝜓

𝑡 (|𝑦| ∧ 𝑘)1− 1

𝜃 (note that the process 𝑐 is bounded from
above by𝑚 here), let us consider

𝑌𝑘𝑡 = 𝑒−𝛿𝜃𝑇𝑐
1−𝛾
𝑇 + ∫

𝑇

𝑡

𝐹𝑘(𝑠, 𝑐𝑠, 𝑌
𝑘
𝑠 )𝑑𝑠 − ∫

𝑇

𝑡

𝑍𝑘𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇], 𝑘 ∈ ℕ.

This is a BSDEwith a Lipschitz generator and a bounded terminal condition. Therefore, by Cohen
and Elliot (2012, Theorem 5.1), this BSDE admits a unique solution (𝑌𝑘, 𝑍𝑘) ∈ 2 ×2. Further-
more, as 𝑐 in Equation (36) is bounded away from0and∞, wehave 1

�̄�
≤ 𝑌𝑘𝑇 ≤ �̄�, for some constant

�̄� > 0. As, additionally,𝐹𝑘 is nonpositive-valued, using the comparison result for BSDEs (Pardoux,
1999, Theorem 2.4, p. 517), one can show that 𝑌𝑘 takes values in [0, �̄�]. Therefore, with 𝑐 in Equa-
tion (36) and the associated 𝑌 given via Equation (35), for every 𝑘 ≥ �̄�, 𝐹𝑘(𝑡, 𝑐𝑡, 𝑌𝑘) = 𝐹(𝑡, 𝑐𝑡, 𝑌

𝑘),
𝑡 ∈ [0, 𝑇], ℙ-a.s. As a result, (𝑌, 𝑍) ∶= (𝑌𝑘, 𝑍𝑘) is a solution to Equation (35) (for 𝑐 given in
Equation 36).
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14 MONOYIOS and MOSTOVYI

Changing variables back to (𝑈𝑐, 𝑍𝑐), that is from Equation (34), and with

(
𝑈𝑐
𝑡 , 𝑍

𝑐
𝑡

)
∶=

𝑒𝛿𝜃𝑡

1 − 𝛾
(𝑌𝑡, 𝑍𝑡), 𝑡 ∈ [0, 𝑇],

one can show that this pair satisfies Equation (33) and further, following the proof of Xing (2017a,
Proposition 2.2), that𝑈𝑐 satisfies Equation (4),𝑈𝑐 is nopositive-valued and is bounded away from
−∞. As in Equation (13), we take the supremum over all admissible consumptions, 𝑢(𝑧, 𝜀) ≥ 𝑈𝑐

0
(for 𝑐 as above). Next, also similarly to the proof of Xing (2017a, Proposition 2.2) and relying on
the localization technique from Briand and Hu (2006), one can see that for every admissible
consumption, 𝑈𝑐

0 ≤ 0. We conclude that 𝑢(𝑧, 𝜀) ≤ 0 and is finite-valued for every 𝜀 ∈ (−𝜀0, 𝜀0).
Now, by Matoussi and Xing (2018, Theorem 2.7), 𝑣(𝑧, 𝜀) ≥ 𝑢(𝑥, 𝜀) − 𝑥𝑧, (𝑥, 𝑧) ∈ (0,∞)2, and thus
𝑣(𝑧, 𝜀) is bounded away from −∞. Furthermore, similarly to showing that 𝑢(𝑧, 𝜀) ≤ 0, one can
show that 𝑣(𝑧, 𝜀) ≤ 0. We conclude that 𝑣(𝑧, 𝜀) is finite-valued. □

Lemma 5.3. Let 𝑥 > 0 be fixed. Then, under the conditions of Theorem 3.4, we have

lim inf
(𝑥′,𝜀)→(𝑥,0)

𝑢(𝑥′, 𝜀) ≥ 𝑢(𝑥, 0). (37)

Proof. Let us fix 𝜀′ > 0 and let 𝑐(𝑥, 0) be the optimizer to Equation (13) at (𝑥, 0), which belongs to
̃(𝑥, 0), as this results from Assumption 3.2. Let (𝑥𝑘, 𝜀𝑘), 𝑘 ∈ ℕ, be a sequence which converges
to (𝑥, 0) and such that

lim
𝑘→∞

𝑢(𝑥𝑘, 𝜀𝑘) = lim inf
(𝑥′,𝜀)→(𝑥,0)

𝑢(𝑥′, 𝜀). (38)

For 𝑐 = 𝑐(𝑥, 0), let us consider the BSDE (35) (which is related to Equation 33 via Equation 34). As,
by Assumption 3.2,𝑈𝑐 is of class D, one can show (see the discussion in Matoussi and Xing (2018,
Remark 2.2)) that 𝑐 ∈ ̃(𝑥, 0). Furthermore, as established in the proof of Xing (2017a, Proposi-
tion 2.2), r(for 𝛾, 𝜓 > 1) (35) admits a unique solution (𝑌, 𝑍), such that 𝑌 is continuous, strictly
positive, and of class D, with ∫ 𝑇

0
|𝑍𝑡|2𝑑𝑡 < ∞, ℙ-a.s. Moreover,𝑈𝑐 ∶= 𝑒𝛿𝜃𝑡𝑌𝑡

1

1−𝛾
, 𝑡 ∈ [0, 𝑇], satis-

fies Equations (33) and (4). Next, using the approximation procedure as in step 2 of the proof of
Xing (2017a, Proposition 2.2), one can show that there exists 𝑛0 ∈ ℕ, such that

|𝑌𝑛0 − 𝑌0| < 𝜀′

3
, 𝑛 ≥ 𝑛0, (39)

where 𝑌𝑛 solves

𝑌𝑛𝑡 =
(
𝑒−𝛿𝜃𝑇𝑐

1−𝛾
𝑇

)
∧ 𝑛 + ∫

𝑇

𝑡

𝐹 (𝑠, 𝑐𝑠, 𝑌
𝑛
𝑠 ) 𝑑𝑠 − ∫

𝑇

𝑡

𝑍𝑛𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇].

The latter BSDE admits a solution (𝑌𝑛, 𝑍𝑛) ∈ ∞ ×2, where using the comparison argu-
ment, one can show that 0 ≤ 𝑌𝑛 ≤ 𝑛, and 𝑌𝑛 =↓ lim𝑚→∞ 𝑌𝑛,𝑚, 𝑛 ∈ ℕ, where 𝑌𝑛,𝑚 solves

𝑌𝑛,𝑚𝑡 =
(
𝑒−𝛿𝜃𝑇𝑐

1−𝛾
𝑇

)
∧ 𝑛 + ∫

𝑇

𝑡

𝐹𝑚(𝑠, 𝑐𝑠, 𝑌
𝑛,𝑚
𝑠 )𝑑𝑠 − ∫

𝑇

𝑡

𝑍𝑛,𝑚𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇], (40)
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MONOYIOS and MOSTOVYI 15

with 𝐹𝑚(𝑡, 𝑐𝑡, 𝑦) ∶= 𝛿𝜃𝑒−𝛿𝑡

(
𝑐
1−

1

𝜓

𝑡 ∧ 𝑚

)
(|𝑦| ∧ 𝑚)1− 1

𝜃 . Likewise, one can show that 0 ≤ 𝑌𝑛,𝑚 ≤
𝑛. Therefore, for𝑚 ≥ 𝑛, we obtain

𝐹𝑚
(
𝑡, 𝑐𝑡, 𝑌

𝑛,𝑚
𝑡

)
= 𝛿𝜃𝑒−𝛿𝑡

(
𝑐
1−

1

𝜓

𝑡 ∧ 𝑚

)(
𝑌𝑛,𝑚𝑡 ∧ 𝑚

)1− 1

𝜃

= 𝛿𝜃𝑒−𝛿𝑡

(
𝑐
1−

1

𝜓

𝑡 ∧ 𝑚

)(
𝑌𝑛,𝑚𝑡

)1− 1

𝜃 .

(41)

For every 𝑛 ∈ ℕ, one can show that lim𝑚→∞ sup𝑡∈[0,𝑇] |𝑌𝑛𝑡 − 𝑌𝑛,𝑚𝑡 | = 0 in probabilityℙ, and thus,
we deduce that there exists𝑚′(𝑛) ∈ ℕ, such that

|||𝑌𝑛0 − 𝑌𝑛,𝑚0 ||| < 𝜀′

3
, 𝑛 ∈ ℕ, 𝑚 ≥ 𝑚′(𝑛). (42)

It follows from Lemma 5.1 that the process 𝑐𝑘 = 𝑐(𝑥, 0)
1

𝑁𝜀𝑘
∈ (𝑥, 𝜀𝑘). Next, for every 𝑀1 >

0,𝑀2 > 0 the process 𝑐𝑘 defined as 𝑐𝑘𝑡 ∶=
𝑥𝑘

𝑥+
1

𝑀1

1

𝑀1
∨ 𝑐𝑘𝑡 ∧ 𝑀2, 𝑡 ∈ [0, 𝑇], satisfies 𝑐𝑘 ∈ ̃(𝑥𝑘, 𝜀𝑘).

Now let us consider the sequence of BSDEs

�̄�𝑘𝑡 = 𝑒−𝛿𝜃𝑇
(
𝑐𝑘𝑇

)1−𝛾
+ ∫

𝑇

𝑡

𝐹
(
𝑠, 𝑐𝑘𝑠 , �̄�

𝑘
𝑠

)
𝑑𝑠 − ∫

𝑇

𝑡

�̄�𝑘𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇], 𝑘 ∈ ℕ. (43)

Cohen and Elliot (2012, Theorem 5.1) ensure that there exists a unique solution to BSDE (43),(
�̄�𝑘, �̄�𝑘

)
∈ 2 ×2. Further, by replacing 𝐹 with 𝐹𝑘 as in the previous step, and using the com-

parison for BSDEs (with Lipschitz generator) results, see, for example, Pardoux (1999, Theorem
2.4), we deduce that the first component of the solution is in ∞.
Let us consider Equations (40) and (43). These are BSDEs with bounded terminal conditions

and Lipschitz generators. Therefore, the stability of BSDEs, as in Cohen and Elliot (2015, Theo-
rem 19.1.6, p. 472), implies that, for some 𝑛 satisfying Equation (39) and for 𝑚 = 𝑛(𝑚) satisfying
Equation (42), one can first pick𝑀1 and𝑀2 and then 𝑘0, such that

|||�̄�𝑘0 − 𝑌𝑛,𝑚0 ||| < 𝜀′

3
, 𝑘 ≥ 𝑘0. (44)

Comparing Equations (39), (42), and (44), we deduce that|||�̄�𝑘0 − 𝑌0||| < 𝜀′, 𝑘 ≥ 𝑘0.

Therefore, as 𝑐𝑘 ∈ ̃(𝑥𝑘, 𝜀𝑘), via Equation (34), we obtain

lim inf
𝑘→∞

𝑢(𝑥𝑘, 𝜀𝑘) ≥ lim inf
𝑘→∞

�̄�𝑘0
1 − 𝛾

≥ 𝑌0
1 − 𝛾

−
𝜀′|1 − 𝛾| = 𝑢(𝑥, 0) −

𝜀′|1 − 𝛾| .
Consequently, as 𝜀′ is arbitrary, via Equation (38), we deduce that Equation (37) holds. □

The next lemma establishes a result similar to Lemma 5.3 for the dual value function. The proof
is similar to the proof of Lemma 5.3, so we only outline the main steps.
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16 MONOYIOS and MOSTOVYI

Lemma 5.4. Under the conditions of Theorem 3.4, we have

lim sup
(𝑦′,𝜀)→(𝑦,0)

𝑣(𝑦′, 𝜀) ≤ 𝑣(𝑦, 0). (45)

Proof. Let us consider a sequence (𝑦𝑘, 𝜀𝑘), 𝑘 ∈ ℕ, convergent to (𝑦, 0) and such that

lim
𝑘→∞

𝑣(𝑦𝑘, 𝜀𝑘) = lim sup
(𝑦′,𝜀)→(𝑦,0)

𝑣(𝑦, 0).

By Assumption 3.1, for every 𝑘 ∈ ℕ, there �̃�𝑘 ∈ ̃(1, 𝜀𝑘), that is, �̃�𝑘, such that

𝔼

[
∫

𝑇

0

(
�̃�𝑘𝑠

)1−𝜓
𝑑𝑠

]
< ∞, 𝑘 ∈ ℕ. (46)

Let us set

𝐷𝑘 = (1 − (−1 ∨ 𝜀𝑘 ∧ 1))
𝑦𝑘
𝑦
�̂�(𝑦, 0)𝑁𝜀𝑘 + (−1 ∨ 𝜀𝑘 ∧ 1)𝑦𝑘�̃�

𝑘, 𝑘 ∈ ℕ.

Then, as 𝑁𝜀𝑘 → 1, in measure (𝑑𝜅 × ℙ), by the assumption of Theorem 3.4, we deduce that
𝐷𝑘 → �̂�(𝑦, 0), in measure (𝑑𝜅 × ℙ). Moreover, it follows from Equation (46), and since 1 − 𝜓 < 0,
that 𝐷𝑘 ∈ ̃(𝑦𝑘, 𝜀𝑘), 𝑘 ∈ ℕ. Next, applying the approximation procedure entirely similarly to
Lemma 5.3, we obtain the assertion of the lemma. □

We now show the concavity of 𝑈𝑐
0 in 𝑐 in the following sense, which is closely related to the

notion of strong concavity.

Lemma 5.5. Let us suppose that 𝑐′ and 𝑐′′ are in
⋃
(𝑥,𝜀)∈(0,∞)×(−𝜀0,𝜀0)

̃(𝑥, 𝜀) and are such that

(𝑑𝜅 × ℙ)

[|𝑐′ − 𝑐′′| ≥ 𝛿, 𝑐′ + 𝑐′′ ≤ 1

𝛿

]
≥ 𝛿, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛿 > 0. (47)

Further, let us suppose that for a given constant 𝜆 ∈ (0, 1), we have

𝑐 ∶= 𝜆𝑐′ + (1 − 𝜆)𝑐′′ ∈
⋃

(𝑥,𝜀)∈(0,∞)×(−𝜀0,𝜀0)

̃(𝑥, 𝜀).

Then, there exists a constant 𝜂 > 0, such that

𝜆𝑈𝑐′

0 + (1 − 𝜆)𝑈
𝑐′′

0 + 𝜂 ≤ 𝑈𝑐
0. (48)

Proof. Let us show that

𝜆𝑌𝑐
′

0 + (1 − 𝜆)𝑌
𝑐′′

0 − 𝜂0 ≤ 𝑌𝑐0, (49)

where𝑌s satisfy Equation (35)with respective 𝑐s and 𝜂0 is somepositive constant. As the generator
of 𝑌 is not jointly concave in (𝑐, 𝑌, 𝑍), with 𝑝 ∶= 1 −

1

𝜓
, following Xing (2017a), one can set

(𝕐,ℤ) ∶=
1

𝑝

(
𝑌

1

𝜃 ,
1

𝜃
𝑌

1

𝜃
−1
𝑍

)
.
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MONOYIOS and MOSTOVYI 17

Then 𝕐 satisfies

𝕐𝑡 = 𝑒−𝛿𝑇
𝑐
𝑝
𝑇

𝑝
+ ∫

𝑇

𝑡

(
𝛿𝑒−𝛿𝑠

𝑐
𝑝
𝑠

𝑝
+
1

2
(𝜃 − 1)

ℤ2𝑠
𝕐𝑠

)
𝑑𝑠 − ∫

𝑇

𝑡

ℤ𝑠𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇], (50)

where the generator is jointly concave in (𝑐, 𝕐,ℤ) when 𝜃 < 1.
For 𝕐′ and 𝕐′′, let Δ𝕐 ∶= 𝜆𝕐′ + (1 − 𝜆)𝕐′′, Δ𝑐 ∶= 𝜆𝑐′ + (1 − 𝜆)𝑐′′, and Δℤ ∶= 𝜆ℤ′ + (1 −

𝜆)ℤ′′. We observe that

Δ𝑌 ∶= (𝑝Δ𝕐)𝜃 𝑎𝑛𝑑 Δ𝑍 ∶= (1 − 𝛾)(𝑝Δ𝕐)
𝜃−1

Δℤ,

satisfy

Δ𝑌𝑡 = (𝑝Δ𝕐𝑇)
𝜃 + ∫

𝑇

𝑡

(
𝛿𝜃𝑒−𝛿𝑠(Δ𝑐𝑠)

𝑝 − (1 − 𝛾)𝐴𝑡
)
Δ𝑌

1−
1

𝜃
𝑠 𝑑𝑠

− ∫
𝑇

𝑡

Δ𝑍𝑠𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇],

where

𝐴𝑡 =
𝛿𝑒−𝛿𝑡

𝑝

(
(Δ𝑐𝑡)

𝑝 − 𝜆(𝑐′𝑡)
𝑝 − (1 − 𝜆)

(
𝑐′′𝑡

)𝑝)
+

1

2
(𝜃 − 1)

(
Δℤ2𝑡
Δ𝕐𝑡

− 𝜆
ℤ′

2
𝑡

𝕐′𝑡
− (1 − 𝜆)

ℤ′′
2
𝑡

𝕐′′𝑡

)
≥ 0,

(51)

as both terms on the right-hand side are non-negative by the joint concavity of the genera-
tor to Equation (50). Additionally, the function 𝑥 → 𝑥𝑝, 𝑥 > 0 is strictly concave. Therefore, on{
𝑐′𝑡 + 𝑐

′′
𝑡 ≤ 1

𝜀
, ||𝑐′𝑡 − 𝑐′′𝑡 || ≥ 𝜀

}
, we have

(
(Δ𝑐𝑡)

𝑝 − 𝜆
(
𝑐′𝑡
)𝑝
− (1 − 𝜆)

(
𝑐′′𝑡

)𝑝) ≥ 𝛿1, for some constant

𝛿1 > 0, which depends only on 𝜀 and 𝜆 in the statement of the lemma (also on 𝑝 = 1 −
1

𝜓
, but 𝜓

is fixed throughout the paper). Similarly, we obtain

𝑝𝑒𝛿𝑇Δ𝕐𝑇 ≤ (Δ𝑐𝑇)
𝑝 − 𝛿11{𝑐′𝑇+𝑐

′′
𝑇≤ 1

𝜀
,|𝑐′𝑇−𝑐′′𝑇 |≥𝜀}.

Therefore, for some constant 𝛿2 > 0, we have

Δ𝑌𝑇 ≥ 𝑒−𝛿𝜃𝑇(Δ𝑐𝑇)
1−𝛾 + 𝛿21{𝑐′𝑇+𝑐

′′
𝑇≤ 1

𝜀
,|𝑐′𝑇−𝑐′′𝑇 |≥𝜀}. (52)

It follows from Equations (51) and (52), that (Δ𝑌, Δ𝑍) is a supersolution to

𝑌Δ𝑐𝑡 = 𝑒−𝛿𝜃𝑇(Δ𝑐𝑇)
1−𝛾 + ∫

𝑇

𝑡

𝐹(𝑠, Δ𝑐𝑠, 𝑌
Δ𝑐
𝑠 )𝑑𝑠 − ∫

𝑇

𝑡

𝑍Δ𝑐𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇].
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18 MONOYIOS and MOSTOVYI

Setting 𝜉𝑡 ∶= −(1 − 𝛾)𝐴𝑡Δ𝑌
1−

1

𝜃
𝑡 , 𝑡 ∈ [0, 𝑇), 𝜉𝑇 ∶= Δ𝑌𝑇 − 𝑌

Δ𝑐
𝑇 , we observe that 𝜉𝑡 ≥ 0, 𝑡 ∈ [0, 𝑇],

and, moreover, for some constant 𝛿1 > 0, we have

𝜉𝑡 ≥ 𝛿1Δ𝑌
1−

1

𝜃
𝑡 1

{𝑐′𝑡+𝑐
′′
𝑡 ≤ 1

𝜀
,|𝑐′𝑡−𝑐′′𝑡 |≥𝜀}, 𝑡 ∈ [0, 𝑇),

𝜉𝑇 ≥ 𝛿21{𝑐′𝑇+𝑐
′′
𝑇≤ 1

𝜀
,|𝑐′𝑇−𝑐′′𝑇 |≥𝜀}.

(53)

We stress here that 𝛿1 and 𝛿2 depend only on 𝜆 and 𝜀 in the statement of the lemma.
Further, let us define 𝜂𝑡 ∶= Δ𝑌𝑡 − 𝑌

Δ𝑐
𝑡 , and 𝜁𝑡 ∶= Δ𝑍𝑡 − 𝑍

Δ𝑐
𝑡 , 𝑡 ∈ [0, 𝑇], we deduce that

𝜂𝑡 = 𝜉𝑇 + ∫
𝑇

𝑡

{(
𝛿𝜃𝑒−𝛿𝑠(Δ𝑐𝑠)

𝑝 − (1 − 𝛾)𝐴𝑡
)
Δ𝑌

1−
1

𝜃
𝑠 − 𝐹

(
𝑠, Δ𝑐𝑠, 𝑌

Δ𝑐
𝑠

)}
𝑑𝑠

− ∫
𝑇

𝑡

𝜁𝑠𝑑𝐵𝑠.

(54)

Let us rewrite the latter generator as

(
𝛿𝜃𝑒−𝛿𝑠 (Δ𝑐𝑠)

𝑝
− (1 − 𝛾)𝐴𝑡

)
Δ𝑌

1−
1

𝜃
𝑠 − 𝐹

(
𝑠, Δ𝑐𝑠, 𝑌

Δ𝑐
𝑠

)
= − (1 − 𝛾)𝐴𝑡Δ𝑌

1−
1

𝜃
𝑠 + 𝐹(𝑠, Δ𝑐𝑠, Δ𝑌𝑠) − 𝐹

(
𝑠, Δ𝑐𝑠, 𝑌

Δ𝑐
𝑠

)
.

Setting 𝛼𝑡 ∶=
𝐹(𝑡,Δ𝑐𝑠,Δ𝑌𝑡)−𝐹(𝑡,Δ𝑐𝑡,𝑌

Δ𝑐
𝑡 )

𝜂𝑠
1{𝜂𝑡≠0}, 𝑡 ∈ [0, 𝑇], we can rewrite Equation (54) as

𝜂𝑡 = 𝜉𝑇 + ∫
𝑇

𝑡

(𝛼𝑠𝜂𝑠 + 𝜉𝑠)𝑑𝑠 − ∫
𝑇

𝑡

𝜁𝑠𝑑𝐵𝑠,

With Γ𝑡 ∶= exp
(∫ 𝑡

0
𝛼𝑠𝑑𝑠

)
, we get

𝜂𝑡 =
1

Γ𝑡
𝔼𝑡

[
Γ𝑇𝜉𝑇 + ∫

𝑇

𝑡

𝜉𝑠Γ𝑠𝑑𝑠

]
.

In particular, at 𝑡 = 0, we get

𝜂0 = 𝔼

[
Γ𝑇𝜉𝑇 + ∫

𝑇

0

𝜉𝑠Γ𝑠𝑑𝑠

]
= 𝔼[(Γ𝜉) ⋅ 𝜅𝑇]. (55)

As bothΔ𝑌 and𝑌Δ𝑐 are finite-valued, Γ > 0. Next, as from Equations (70) and (55), we deduce the
strict positivity of �̄�0 (by the strict comparison and Equation 47) that

Δ𝑌0 − 𝑌
Δ𝑐
0 = 𝜂0 > 0. (56)

Moreover, as in Xing (2017a, eq. (A.6), p. 247), we get

Δ𝑌𝑡 ≤ 𝜆𝑌𝑐
′

𝑡 + (1 − 𝜆)𝑌
𝑐′′

𝑡 , 𝑡 ∈ [0, 𝑇], ℙ-a.s.. (57)
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MONOYIOS and MOSTOVYI 19

Combining Equations (56) and (57), we deduce that

𝜆𝑌𝑐
′

0 + (1 − 𝜆)𝑌
𝑐′′

0 ≥ Δ𝑌0 ≥ 𝑌Δ𝑐0 + 𝜂0,

and thus Equation (49) holds, which, via Equation (34) and Xing (2017a, Proposition 2.2), implies
Equation (48), where 𝜂 = 𝜂0

𝛾−1
. □

We will need the following technical lemma.

Lemma 5.6. Let 𝑥 > 0 be fixed. Under the conditions of Theorem 3.6, let 𝜀𝑘 , 𝑘 ∈ ℕ, be a sequence
or real numbers converging to zero. Let us set

𝑐𝑘,𝛿
′,𝑀

𝑡 ∶=
𝑥

𝑥 + 𝛿′
𝛿′ ∨ 𝑐𝑡(𝑥, 0)

1

𝑁
𝜀𝑘
𝑡

∧ 𝑀, 𝑡 ∈ [0, 𝑇], 𝑘 ∈ ℕ, 𝛿′ > 0, 𝑀 > 0. (58)

Then, for every 𝑘 ∈ ℕ, there exist 𝛿′(𝑘),𝑀(𝑘), such that for

𝑐𝑘 ∶= 𝑐𝑘,𝛿
′(𝑘),𝑀(𝑘), 𝑘 ∈ ℕ, (59)

the associated solutions to Equation (35) satisfy

lim
𝑘→∞

𝑌𝑐
𝑘
= 𝑌𝑐(𝑥,0), 𝑟𝑢𝑐𝑝.

Proof. First, we observe that 𝑐𝑘 ∈ (𝑥, 𝜀𝑘), 𝑘 ∈ ℕ. Fixing an 𝜀′ > 0, reutilizing the argument from
the proof of Xing (2017a, Proposition 2.2), one can first show that there exists 𝑛′ ∈ ℕ, such that

ℙ

[
sup
𝑡∈[0,𝑇]

|||𝑌𝑛𝑡 − 𝑌𝑐(𝑥,0)𝑡
||| ≥ 𝜀′

3

]
<
𝜀′

3
, 𝑛 ≥ 𝑛′, (60)

where 𝑌𝑛 is the first component of the solution to

𝑌𝑛𝑡 =
(
𝑒−𝛿𝜃𝑇(𝑐𝑇(𝑥, 0))

1−𝛾
)
∧ 𝑛 + ∫

𝑇

𝑡

𝐹 (𝑠, 𝑐𝑠(𝑥, 0), 𝑌
𝑛
𝑠 ) 𝑑𝑠 − ∫

𝑇

𝑡

𝑍𝑛𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇].

Further following the proof of Xing (2017a, Proposition 2.2), one can show that (𝑌𝑛, 𝑍𝑛) ∈ ∞ ×

2 to the BSDE above exists and is unique. Furthermore, via the comparison result, see, for
example, Pardoux (1999, Theorem2.4), we deduce that 0 ≤ 𝑌𝑛 ≤ 𝑛, and𝑌𝑛 =↓ lim𝑚→∞ 𝑌𝑛,𝑚,𝑚 ∈

ℕ, where 𝑌𝑛,𝑚 solves

𝑌𝑛,𝑚𝑡 =
(
𝑒−𝛿𝜃𝑇(𝑐𝑇(𝑥, 0))

1−𝛾
)
∧ 𝑛 + ∫

𝑇

𝑡

𝐹𝑚
(
𝑠, 𝑐𝑠(𝑥, 0), 𝑌

𝑛,𝑚
𝑠

)
𝑑𝑠

− ∫
𝑇

𝑡

𝑍𝑛,𝑚𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇],

(61)
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20 MONOYIOS and MOSTOVYI

where 𝐹𝑚(𝑡, 𝑐𝑡, 𝑦) ∶= 𝛿𝜃𝑒−𝛿𝑡

(
𝑐
1−

1

𝜓

𝑡 ∧ 𝑚

)
(|𝑦| ∧ 𝑚)1− 1

𝜃 . Here, by comparison, we have 0 ≤
𝑌𝑛,𝑚 ≤ 𝑛. As a result, for𝑚 ≥ 𝑛, we get

𝐹𝑚
(
𝑡, 𝑐𝑡, 𝑌

𝑛,𝑚
𝑡

)
= 𝛿𝜃𝑒−𝛿𝑡

(
𝑐
1−

1

𝜓

𝑡 ∧ 𝑚

)(
𝑌𝑛,𝑚𝑡 ∧ 𝑚

)1− 1

𝜃

= 𝛿𝜃𝑒−𝛿𝑡

(
𝑐
1−

1

𝜓

𝑡 ∧ 𝑚

)(
𝑌𝑛,𝑚𝑡

)1− 1

𝜃 .

(62)

Further, as we can show that, for every 𝑛 ∈ ℕ, we have lim𝑚→∞ sup𝑡∈[0,𝑇]
||𝑌𝑛𝑡 − 𝑌𝑛,𝑚𝑡 || = 0 in

probability ℙ. Therefore, we conclude that there exists𝑚′(𝑛), such that

ℙ

[
sup
𝑡∈[0,𝑇]

||𝑌𝑛𝑡 − 𝑌𝑛,𝑚𝑡 || ≥ 𝜀′

3

]
≤ 𝜀′

3
, 𝑚 ≥ 𝑚′(𝑛). (63)

Next, for 𝑐𝑘,𝛿′,𝑀 given by Equation (58), 𝑘 ∈ ℕ, 𝛿′ > 0, and𝑀 > 0, let us consider the following
family of BSDEs:

�̄�𝑐
𝑘,𝛿′,𝑀

𝑡 = 𝑒−𝛿𝜃𝑇
(
𝑐𝑘,𝛿

′,𝑀
𝑇

)1−𝛾
+ ∫

𝑇

𝑡

𝐹
(
𝑠, 𝑐𝑘,𝛿

′,𝑀
𝑠 , �̄�𝑐

𝑘,𝛿′,𝑀

𝑠

)
𝑑𝑠

− ∫
𝑇

𝑡

�̄�𝑘,𝛿
′,𝑀

𝑠 𝑑𝐵𝑠, 𝑡 ∈ [0, 𝑇], 𝑘 ∈ ℕ, 𝛿′ > 0, 𝑀 > 0.

(64)

By Cohen and Elliot (2012, Theorem 5.1), for every choice of 𝑘, 𝛿′,𝑀, there exists a unique solution
to Equation (64),

(
�̄�𝑐

𝑘,𝛿′,𝑀
, �̄�𝑘,𝛿

′,𝑀
)
∈ 2 ×2. Further, by replacing 𝐹 with 𝐹𝑘 as in Equation

(62), and using the comparison for BSDEs results as in Pardoux (1999, Theorem 2.4), we deduce
that the first component of the solution is in ∞.
Let us consider Equations (61) and (64). These are BSDEs with bounded terminal conditions

and Lipschitz generators. Therefore, for a given 𝑛 satisfying Equation (60) and𝑚 satisfying Equa-
tion (61), Cohen and Elliot (2015, Theorem 19.1.6, p. 472) allow to pick 𝛿′ and𝑀 and then 𝑘0, such
that

ℙ

[
sup
𝑡∈[0,𝑇]

||||�̄�𝑐𝑘,𝛿′,𝑀𝑡 − 𝑌𝑛,𝑚𝑡
|||| ≥ 𝜀′

3

]
<
𝜀′

3
, 𝑘 ≥ 𝑘0. (65)

Comparing Equations (60), (63), and (65), we deduce that

ℙ

[
sup
𝑡∈[0,𝑇]

||||�̄�𝑐𝑘,𝛿′,𝑀𝑡 − 𝑌
𝑐(𝑥,0)
𝑡

|||| ≥ 𝜀′

]
< 𝜀′, 𝑘 ≥ 𝑘0.

As 𝜀′ is arbitrary, we deduce that there exists 𝑐𝑘, 𝑘 ∈ ℕ, as in Equation (59), for which the assertion
of this lemma holds. □
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MONOYIOS and MOSTOVYI 21

5.2 Proofs of the main theorems

Proof of Theorem 3.4. First, we observe that Equation (24) follows from Lemma 5.2. Next, from
Lemma 5.3, we get

lim inf
(𝑥′,𝜀)→(𝑥,0)

𝑢(𝑥′, 𝜀) ≥ 𝑢(𝑥, 0). (66)

Applying Lemma 5.4, we obtain

𝑣(𝑦, 0) + 𝑥𝑦 ≥ lim sup
(𝑦′,𝜀)→(𝑦,0)

(𝑣(𝑦′, 𝜀) + 𝑥𝑦′). (67)

Now, using Matoussi and Xing (2018, Theorem 2.7), we have

lim sup
(𝑦′,𝜀)→(𝑦,0)

(𝑣(𝑦′, 𝜀) + 𝑥′𝑦′) ≥ lim sup
𝜀→0

𝑢(𝑥′, 𝜀), 𝑥′ > 0. (68)

From the assumption of the theorem (Equation 20), we deduce

𝑢(𝑥, 0) = 𝑣(𝑦, 0) + 𝑥𝑦. (69)

Combining Equations (66)–(69), we conclude

𝑢(𝑥, 0) ≤ lim inf
(𝑥′,𝜀)→(𝑥,0)

𝑢(𝑥′, 𝜀) ≤ lim sup
(𝑥′,𝜀)→(𝑥,0)

𝑢(𝑥′, 𝜀)

≤ lim sup
(𝑥′,𝜀)→(𝑥,0)

(
𝑣(𝑦, 𝜀) + 𝑥′𝑦

) ≤ 𝑣(𝑦, 0) + 𝑥𝑦 = 𝑢(𝑥, 0).

Therefore, all inequalities above are equalities, and we get Equation (25). Next, from Equations
(69), (67), (68), and (66), we obtain

𝑢(𝑥, 0) = 𝑣(𝑦, 0) + 𝑥𝑦 ≥ lim sup
(𝑦′,𝜀)→(𝑦,0)

(
𝑣(𝑦′, 𝜀) + 𝑥𝑦′

)
≥ lim inf

(𝑦′,𝜀)→(𝑦,0)

(
𝑣(𝑦′, 𝜀) + 𝑥𝑦′

) ≥ lim inf
(𝑦′,𝜀)→(𝑦,0)

𝑢(𝑥, 𝜀) ≥ 𝑢(𝑥, 0).

Therefore, all inequalities above are actually equalities. This implies Equation (26).
Finally, the existence and uniqueness of the optimizers follow from Lemma 5.5 and convexity

and closedness in 𝕃0(𝑑𝜅 × ℙ) of the set ̃(𝑥, 𝜀), (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0), note that the convexity
of ̃(𝑥, 𝜀), (𝑥, 𝜀) ∈ (0,∞) × (−𝜀0, 𝜀0), follows from Assumption 3.1 and Lemma 2.1. □

Proof of Theorem 3.6. Step 1. Assume by contradiction that the assertion of this theorem, that is
Equation (28), fails. Then, there exists 𝛿 > 0, such that

lim sup
𝑛→∞

(𝑑𝜅 × ℙ)[|𝑐(𝑥𝑛, 𝜀𝑛) − 𝑐(𝑥, 0)| > 𝛿] > 𝛿.

As 1

𝑁𝜀𝑛
, 𝑛 ∈ ℕ, converges to 1, in measure (𝑑𝜅 × ℙ), consequently 1

𝑁𝜀𝑛
, 𝑛 ∈ ℕ, is bounded in

𝕃0(𝑑𝜅 × ℙ). Next, following Equation (8) and the argument in Mostovyi (2015, Proposition 4.2),
one can see that the set(1, 0) is bounded in𝕃0(𝑑𝜅 × ℙ). Therefore, since 𝑐(𝑥𝑛, 𝜀𝑛) 1

𝑁𝜀𝑛
∈ (𝑥𝑛, 0),
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22 MONOYIOS and MOSTOVYI

by possibly passing to smaller 𝛿, we deduce that

lim sup
𝑛→∞

(𝑑𝜅 × ℙ)

[||||𝑐(𝑥𝑛, 𝜀𝑛) − 𝑐(𝑥, 0) 1

𝑁𝜀𝑛

|||| ≥ 𝛿, 𝑐(𝑥𝑛, 𝜀𝑛) + 𝑐(𝑥, 0)
1

𝑁𝜀𝑛
≤ 1

𝛿

]
≥ 𝛿.

With 𝑐𝑘, 𝑘 ∈ ℕ, as in Equation (59) (in Lemma 5.6), by passing to even smaller 𝛿, we get

lim sup
𝑛→∞

(𝑑𝜅 × ℙ)

[||𝑐(𝑥𝑛, 𝜀𝑛) − 𝑐𝑛|| ≥ 𝛿, 𝑐(𝑥𝑛, 𝜀𝑛) + 𝑐𝑛 ≤ 1

𝛿

]
≥ 𝛿. (70)

Let us set

𝑐𝑛 ∶=
1

2
||𝑐(𝑥𝑛, 𝜀𝑛) + 𝑐𝑛|| ∈ 

(
𝑥𝑛 + 𝑥

2
, 𝜀𝑛

)
, 𝑛 ∈ ℕ. (71)

Furthermore, one can show that 𝑐𝑛 ∈ ̃(
𝑥𝑛+𝑥

2
, 𝜀𝑛

)
, as for every 𝑡 ∈ [0, 𝑇], we have

(
𝑐𝑛𝑡

)1− 1

𝜓 =

(
1

2
||𝑐𝑡(𝑥𝑛, 𝜀𝑛) + 𝑐𝑛𝑡 ||)1−

1

𝜓

≤ max
(
𝑐𝑡(𝑥

𝑛, 𝜀𝑛), 𝑐𝑛𝑡
)1− 1

𝜓 ≤ (𝑐𝑡(𝑥
𝑛, 𝜀𝑛))

1−
1

𝜓 + (𝑐𝑛𝑡 )
1−

1

𝜓 ,

and at maturity, we have

(
𝑐𝑛𝑇

)1−𝛾
=

(
1

2
|||𝑐𝑇(𝑥𝑛, 𝜀𝑛) + 𝑐𝑛𝑇|||

)1−𝛾

≤
(
1

2

𝑥

𝑥 + 𝜀𝑛
1

𝜀𝑛

)1−𝛾

,

and thus, 𝑐𝑛s satisfy both integrability conditions in the definition of ̃′s in Equation (9).
Step 2. Let us use Lemma 5.5 along a subsequence from Step 1 that we do not relabel and such

that

lim
𝑛→∞

(𝑑𝜅 × ℙ)

[||𝑐(𝑥𝑛, 𝜀𝑛) − 𝑐𝑛|| ≥ 𝛿, 𝑐(𝑥𝑛, 𝜀𝑛) + 𝑐𝑛 ≤ 1

𝛿

]
≥ 𝛿.

In the argument below, the notations from the proof of Lemma 5.5 are used. For

𝜂𝑛 ∶= 𝔼[(Γ𝑛𝜉𝑛) ⋅ 𝜅𝑇], 𝑛 ∈ ℕ, (72)

one can show that2

Γ𝑛𝑡 ≥ exp

(
𝑎𝜃 ∫

𝑡

0

(𝑐𝑛𝑠 )
1−

1

𝜓 (Δ𝑌𝑛𝑠 )
−
1

𝜃 𝑑𝑠

)
,

for some constant 𝑎 > 0 (andwhere 𝜃 < 0 and rΔ𝑌𝑛 is as in the proof of Lemma 5.5 corresponding
to 𝑐′ = 𝑐(𝑥𝑛, 𝜀𝑛), 𝑐′′ = 𝑐𝑛, and 𝜆 = 1

2
.)

Next, from Lemma 5.6, along a subsequence, which we do not relabel, we have

lim
𝑘→∞

sup
𝑡∈[0,𝑇]

|||𝑌𝑐𝑘𝑡 − 𝑌
𝑐(𝑥,0)
𝑡

||| = 0, ℙ-a.s.

2 The lower bounds on 𝛼𝑛s are obtained through estimates on the slopes of 𝐹.
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MONOYIOS and MOSTOVYI 23

Further, 𝑌𝑐(𝑥𝑛,𝜀𝑛) is bounded from above by a real-valued process, by the assumption of this the-
orem. Therefore, as Δ𝑌𝑛𝑡 ≤ 1

2
𝑌
𝑐(𝑥𝑛,𝜀𝑛)
𝑡 +

1

2
𝑌𝑐

𝑛

𝑡 , 𝑡 ∈ [0, 𝑇], ℙ-a.s., by the proof of Lemma 5.5, we
deduce that

Γ𝑛𝑡 ≥ exp

(
𝑎𝜃 ∫

𝑡

0

(𝑐𝑛𝑠 )
1−

1

𝜓 (Δ𝑌𝑛𝑠 )
−
1

𝜃 𝑑𝑠

)

≥ exp

(
𝑎𝜃 ∫

𝑡

0

(𝑐𝑠(𝑥
𝑛, 𝜀𝑛) + 𝑐𝑛𝑠 )

1−
1

𝜓

(
𝑌
𝑐(𝑥𝑛,𝜀𝑛)
𝑠 + 𝑌𝑐

𝑛

𝑠

)− 1

𝜃
𝑑𝑠

)
.

(73)

From the assumptions of this theorem and Lemma 5.6, we obtain that

lim inf
𝑛→∞

Γ𝑛𝑡 =∶ Γ̃
∞
𝑡 > 0, 𝑡 ∈ [0, 𝑇], ℙ-a.s. (74)

Let us consider the sequence 𝜉𝑛, 𝑛 ∈ ℕ. Following the proof of Lemma 5.5 (see Equation 70), we
observe that

𝜉𝑛𝑡 ≥ 𝛿1
(
Δ𝑌𝑛𝑡

)1− 1

𝜃 1
{|𝑐𝑡(𝑥𝑛,𝜀𝑛)−𝑐𝑛𝑡 |≥𝛿, 𝑐𝑡(𝑥𝑛,𝜀𝑛)+𝑐𝑛𝑡 ≤ 1

𝛿
}
, 𝑡 ∈ [0, 𝑇), (75)

and

𝜉𝑛𝑇 ≥ 𝛿21{|||𝑐𝑇(𝑥𝑛,𝜀𝑛)−𝑐𝑛𝑇|||≥𝛿, 𝑐𝑇(𝑥𝑛,𝜀𝑛)+𝑐𝑛𝑇≤ 1

𝛿
}
, (76)

where constant 𝛿1 > 0 and 𝛿2 > 0 depend on 𝛿 appearing in Equation (70) only. As Δ𝑌𝑛𝑡 ≥ 1

2𝜃
𝑌𝑐

𝑛

𝑡 ,
𝑡 ∈ [0, 𝑇], ℙ-a.s., by the argument in Lemma 5.6, we have

lim inf
𝑛→∞

(
Δ𝑌𝑛𝑡

) ≥ lim inf
𝑛→∞

1

2𝜃
𝑌𝑐

𝑛

𝑡 =
1

2𝜃
𝑌
𝑐(𝑥,0)
𝑡 > 0, 𝑡 ∈ [0, 𝑇], ℙ-a.s.. (77)

By the Dunford–Pettis compactness criterion (see, e.g., Karatzas and Shreve (1998, p. 26)), there
exists a weakly (in 𝕃1(𝑑𝜅 × ℙ)) convergent subsequence of 𝜉𝑛 ∧ 1, 𝑛 ∈ ℕ, whose limit is denoted
by 𝜉∞. In view of Equations (75)–(77), we have (𝑑𝜅 × ℙ)[𝜉∞ > 0] > 0.
Let us pass to this subsequence that we do not relabel again. The non-negativity of Γ𝑛𝜉𝑛 (by the

construction above) allows invoking Fatou’s lemma, which implies that

lim inf
𝑛→∞

𝔼[(Γ𝑛(𝜉𝑛 ∧ 1)) ⋅ 𝜅𝑇]

= lim inf
𝑛→∞

(
𝔼
[
(Γ̃∞(𝜉𝑛 ∧ 1)) ⋅ 𝜅𝑇

]
+ 𝔼

[(
(Γ𝑛 − Γ̃∞)(𝜉𝑛 ∧ 1)

)
⋅ 𝜅𝑇

])
≥𝔼[(Γ̃∞𝜉∞) ⋅ 𝜅𝑇] > 0,

as (𝑑𝜅 × ℙ)[𝜉∞ > 0] > 0 and Γ̃∞ > 0, (𝑑𝜅 × ℙ) − 𝑎.𝑒., as well as

lim
𝑛→∞

𝔼
[
(Γ̃∞(𝜉𝑛 ∧ 1)) ⋅ 𝜅𝑇

]
= 𝔼

[
(Γ̃∞𝜉∞) ⋅ 𝜅𝑇

]
,
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24 MONOYIOS and MOSTOVYI

by the weak convergence in 𝕃1(𝑑𝜅 × ℙ) (here we recall that Γs take values in [0,1] as 𝜃 < 0), by
Fatou’s lemma (here, Γ∞(𝜉𝑛 ∧ 1) is bounded from below by −1) and Equation (74), we have

lim inf
𝑛→∞

𝔼
[(
(Γ𝑛 − Γ̃∞)(𝜉𝑛 ∧ 1)

)
⋅ 𝜅𝑇

] ≥ 0.

We conclude that

lim inf
𝑛→∞

𝜂𝑛 > 0. (78)

Step 3. For 𝑐𝑛, 𝑛 ∈ ℕ, defined in Step 1 (see Equation 71), let us consider the subsequence from
Step 2. By Lemma 5.5, we have

lim inf
𝑛→∞

𝑈𝑐𝑛

0 ≥ lim inf
𝑛→∞

(
1

2
𝑢(𝑥𝑛, 𝜀𝑛) +

1

2
𝑈𝑐𝑛

0 + 𝜂𝑛
)
, (79)

where 𝜂𝑛 = 𝜂𝑛

𝛾−1
and 𝜂𝑛 are given in Equation (72). It follows from Lemma 5.6 that

lim
𝑛→∞

𝑈𝑐𝑛

0 = 𝑢(𝑥, 0). (80)

On the other hand, as 𝑐𝑛 ∈ ̃(
𝑥𝑛+𝑥

2
, 𝜀𝑛

)
, we get

𝑈𝑐𝑛

0 ≤ 𝑢

(
𝑥𝑛 + 𝑥

2
, 𝜀𝑛

)
. (81)

By Theorem 3.4, we have

lim inf
𝑛→∞

𝑢(𝑥𝑛, 𝜀𝑛) = 𝑢(𝑥, 0). (82)

Therefore, in Equation (79), via Equations (80)–(82), we conclude that

𝑢(𝑥, 0) ≥ lim inf
𝑛→∞

𝑈𝑐𝑛

0 ≥ lim inf
𝑛→∞

(
1

2
𝑢(𝑥𝑛, 𝜀𝑛) +

1

2
𝑈𝑐𝑛

0 + 𝜂𝑛
)

≥ 𝑢(𝑥, 0) + lim inf
𝑛→∞

𝜂𝑛,

which is impossible, as lim inf𝑛→∞ 𝜂𝑛 = lim inf𝑛→∞
𝜂𝑛

𝛾−1
> 0 by Equation (78). □

Proof of Theorem 3.7. Let us recall that, for a given nonnegative consumption stream 𝑐, 𝑈𝑐 was
defined in Equation (4) and 𝑌𝑐 in Equation (35). The proof of Theorem 3.7 is entirely similar to
the proof of Lemma 5.6. It relies on the truncation and the stability of BSDEs result as in Cohen
and Elliot (2015, Theorem 19.1.6, p. 472), so that we can show that

lim
(𝑥′,𝜀)→(𝑥,0)

𝑌𝑐(𝑥
′,𝜀) = 𝑌𝑐(𝑥,0), 𝑢𝑐𝑝 and lim

(𝑥′,𝜀)→(𝑥,0)
𝑈𝑐(𝑥′,𝜀) = 𝑈𝑐(𝑥,0), 𝑢𝑐𝑝.

We omit further details for brevity. □

Proof of Theorem 3.8. Let us consider a sequence (𝑥𝑛, 𝜀𝑛), 𝑛 ∈ ℕ, convergent to (𝑥, 0). Without
loss of generality, we will suppose that 𝑥𝑛 > 0 and 𝜀𝑛 ∈ (−𝜀0, 𝜀0), 𝑛 ∈ ℕ. Let us denote

𝑋𝑛 = 𝑋𝑐(𝑥𝑛,𝜀𝑛), 𝑁𝑛 = 𝑁𝜀𝑛 , 𝑐𝑛 = 𝑐(𝑥𝑛, 𝜀𝑛), 𝑛 ∈ ℕ, 𝐷 = �̂�(𝑦, 0),
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MONOYIOS and MOSTOVYI 25

and set

𝐷𝑛 ∶= 𝐷𝑁𝑛, 𝐿𝑛 ∶=
1

𝑥𝑛

(
𝑋𝑛𝐷𝑛 + ∫

⋅

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠

)
. (83)

Then, by Lemma 5.1, 𝐷𝑛 ∈ (𝑦, 𝜀𝑛) and thus 𝐿𝑛, 𝑛 ∈ ℕ, is a sequence of non-negative super-
martingales. Since (𝑑𝜅 × ℙ)- lim𝑛→∞ 𝑐𝑛 = 𝑐(𝑥, 0) by Theorem 3.6 and (𝑑𝜅 × ℙ)- lim𝑛→∞ 𝐷𝑛 = 𝐷

by Equation (83) and the assumption that (𝑑𝜅 × ℙ)- lim𝜀→0 𝑁
𝜀 = 1, we pass to a subsequence,

which we do not relabel and suppose that lim
𝑛→∞

𝐷𝑛𝑐𝑛 = 𝐷𝑐(𝑥, 0), (𝑑𝜅 × ℙ)-a.e. Therefore, using
Fatou’s lemma, we get

lim inf
𝑛→∞ ∫

𝑇

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 ≥ ∫

𝑇

0

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠, ℙ-a.s. (84)

Let us further set

𝐿 ∶=
1

𝑥

(
𝑋𝑐(𝑥,0)𝐷 + ∫

⋅

0

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠

)
. (85)

The optimality of 𝑐(𝑥, 0) implies that 𝑋𝑐(𝑥,0)𝑇 = 0, ℙ-a.s., as it is optimal to consume everything
that is left at maturity. Likewise, the optimality of 𝑐𝑛 implies that 𝑋𝑛𝑇 = 0, ℙ-a.s., for every 𝑛 ∈ ℕ.
Therefore, Equations (83)–(85) result in

lim inf
𝑛→∞

𝐿𝑛𝑇 ≥ 𝐿𝑇, ℙ-a.s. (86)

From the respective definitions of 𝐿𝑛, 𝑛 ∈ ℕ, and 𝐿, we conclude that

𝐿𝑛0 = 𝐷0 = 𝐿0, 𝑛 ∈ ℕ. (87)

Let us recapitulate that 𝐿𝑛, 𝑛 ∈ ℕ, are non-negative càdlàg supermartingales and 𝐿 is a non-
negative càdlàg martingale satisfying Equations (86) and (87). Let us consider a probability
measureℝ, whose density is 𝑑ℝ

𝑑ℙ
=

1+𝐿𝑇

1+𝐿0
. Thenℝ ∼ ℙ, and, underℝ, 1+𝐿

𝑛

1+𝐿
=

(
1+𝐿𝑛𝑡

1+𝐿𝑡

)
𝑡∈[0,𝑇]

, 𝑛 ∈ ℕ,

are non-negative supermartingales. Consequently, fromEquations (86) and (87), we conclude that
1+𝐿𝑛

1+𝐿
, 𝑛 ∈ ℕ, satisfies

1 + 𝐿𝑛0
1 + 𝐿0

= 1 𝑎𝑛𝑑 lim
𝑛→∞

1 + 𝐿𝑛𝑇
1 + 𝐿𝑇

= 1, ℙ-a.s.

Therefore, applying Kardaras (2013, Lemma 2.11) (under ℝ), we deduce that

lim
𝑛→∞

1 + 𝐿𝑛

1 + 𝐿
= 1, 𝑢𝑐𝑝,

and thus

lim
𝑛→∞

𝐿𝑛 = 𝐿, 𝑢𝑐𝑝. (88)
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26 MONOYIOS and MOSTOVYI

Consequently, and in particular, passing to another subsequence, which we do not relabel, we
get

lim
𝑛→∞∫

𝑇

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 = ∫

𝑇

0

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠, ℙ-a.s. (89)

Next, similarly to Equation (84), for every 𝑡 ∈ [0, 𝑇], we deduce that

lim inf
𝑛→∞ ∫

𝑇

𝑡

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 ≥ ∫

𝑇

𝑡

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠, ℙ-a.s., (90)

and

lim inf
𝑛→∞ ∫

𝑡

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 ≥ ∫

𝑡

0

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠, ℙ-a.s. (91)

Therefore, from Equations (89) and (90), we get

lim sup
𝑛→∞ ∫

𝑡

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 = lim sup

𝑛→∞

(
∫

𝑇

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 − ∫

𝑇

𝑡

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠

)

≤ ∫
𝑡

0

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠, ℙ-a.s.

(92)

In turn, Equations (91) and (92) imply that

lim
𝑛→∞∫

𝑡

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 = ∫

𝑡

0

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠, ℙ-a.s., (93)

where the last equality holds for every 𝑡 ∈ [0, 𝑇]. As the processes ∫ ⋅

0
𝐷𝑛𝑠 𝑐

𝑛
𝑠 𝑑𝜅𝑠, 𝑛 ∈ ℕ, and

∫ ⋅

0
𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠, are cádlág monotone, from Equation (93), we get

lim
𝑛→∞

sup
𝑡∈[0,𝑇]

|||||∫
𝑡

0

𝐷𝑛𝑠 𝑐
𝑛
𝑠 𝑑𝜅𝑠 − ∫

𝑡

0

𝐷𝑠𝑐𝑠(𝑥, 0)𝑑𝜅𝑠

||||| = 0, ℙ-a.s.. (94)

Finally, as 𝐷𝑛s and 𝐷 are strictly positive and (𝑑𝜅 × ℙ)- lim𝑛→∞ 𝐷𝑛 = 𝐷, from Equations (88)

and (94), using Durret (2005, Thoerem 1.6.2, p. 46), we deduce that 𝑋𝑛 =
𝐿𝑛−∫ ⋅

0
𝐷𝑛𝑠 𝑐

𝑛
𝑠 𝑑𝜅𝑠

𝐷𝑛
, 𝑛 ∈ ℕ,

converges to 𝑋𝑐(𝑥,0) =
𝐿−∫ ⋅

0
𝐷𝑠𝑐𝑠(𝑥,0)𝑑𝜅𝑠

𝐷
in measure (𝑑𝜅 × ℙ). If lim𝜀→0 𝑁

𝜀 = 1, 𝑢𝑐𝑝, then, similarly,
from Equations (83), (88), and (94), using Durret (2005, Thoerem 1.6.2, p. 46), we conclude that

lim
𝑛→∞

𝑋𝑛 = 𝑋𝑐(𝑥,0), 𝑢𝑐𝑝.
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