


826 O. MOSTOVYI, M. SÎRBU, AND T. ZARIPHOPOULOU

The work herein focuses on the higher-order regularity and, ultimately, the an-
alyticity of the value function u in (1.1). The core of our work is based on a
deep connection we develop with stochastic dominance in the domain of the dual
optimization problem. This interplay between regularity/analyticity of the value
function and stochastic dominance of various degrees in the dual domain is, to our
knowledge, explored and developed for the first time. It offers new insights on dis-
tinct characteristics between the primal and the dual problems. Furthermore, it
also led us to derive new results of independent interest regarding stochastic dom-
inance of different orders, including the infinite one, for the set of supermartingale
deflators.

For the regularity of u, the authors in [19, 20] showed that, under general market
assumptions, if U ∈ C1 ((0,∞)), so is u. For higher-order regularity, there are two
types of results. If the utility function U is either power or logarithmic, the value
function also inherits this form and it is thus analytic. This is a direct consequence
of homotheticity and holds under minimal model assumptions. For utilities beyond
homothetic ones, however, only the second-order differentiability of u has been
established for twice differentiable utilities and additional model assumptions (see
[21]).

To our knowledge, no other regularity and analyticity results exist to date besides
the aforementioned limited cases. We are motivated to investigate such questions
for various reasons. To begin with, the degree of regularity per se has always been of
central interest in stochastic optimization. It is used to establish verification results
and also study the regularity and other properties of the optimal control functionals.
It is also employed in the analysis of higher-order sensitivities of the value function
and the control policies with respect to various model inputs. The question of
whether the indirect utility u inherits all the properties of U may appear as a rather
abstract task at first that is asking if the map U → u has some semigroup/invariance
properties.

For the expected utility stochastic optimization problem (1.1), in particular, the
motivation for studying the higher-order regularity of the value function goes beyond
purely mathematical considerations. Indeed, we first recall that the derivatives U (n)

of the utility function are directly related to foundational economic indices like risk
aversion, risk tolerance, prudence, temperance, the higher-degree Ross indices (see,

for example, [8], [13], [7], and [24]). In turn, their counterparts u(n) are also related
to analogous indices. Important questions then arise on the connection between the
various utility indices with the ones of the value function. Here, the understanding
is quite limited, mainly due to the narrow results on the higher-order regularity of
the value function.

As the indirect utility, u, may become the direct utility of a new optimization
problem, for example, in an iterative model or in indifference valuation, preserv-
ing the properties of U to u may go beyond describing the higher-order risk. The
derivatives of the value function also appear in quantities like certainty equivalents,
risk measures, optimized certainty equivalents, and other valuation quantities. Fur-
thermore, they are linked to expansion-based approaches (see, for example, [9] and
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[10], who used series expansions to investigate various properties in optimal invest-
ments). In a different direction, analyticity plays an important role in the studies
of endogenous completeness, see [1] and [12].

Naturally, both the regularity and analyticity of the value function are expected
to directly depend on similar properties for their utility analogs. On the other hand,
the value function depends crucially on the market environment in which the related
utility optimization problems are cast. We are, then, motivated to ask the following
question:

Can we identify both a class of semimartingale market models and a class of
utility functions such that the value function in (1.1) retains the (highest possible)
regularity of the utility function?

Studying this question constitutes the main contribution of our work herein. We
outline the main findings. We propose

i) the class of market models which possess a non-zero dual maximal element in
the sense of infinite-degree stochastic dominance and ii) the class of utilities whose
inverse marginal is a completely monotonic function (and thus analytic). We denote
these classes by SD (∞) and CMIM, respectively.

We establish the following result: If the market model is in SD (∞) and the utility
is in CMIM, then the value function u is also in CMIM and is, thus, analytic.
In other words, we show that, for such market models and such analytic utilities,
the associated indirect utility inherits the analyticity and, furthermore, remains in
the same CMIM class.

We also examine the necessity of these classes of models and utilities. We provide
two counterexamples, showing that the results fail outside the family of SD (∞)
models and/or the utility class CMIM. In the first counterexample, we construct
a market model in SD (∞) and an analytic, but not in CMIM, utility and show
that the value function is not infinitely differentiable (and, thus, not analytic). In
the second one, we show that, for any non-homothetic CMIM utility (actually, the
utility being two-times differentiable suffices), there exists a market model outside
the SD (∞) class, for which the value function is not even twice differentiable. We
also derive results when some of the above notions are weakened to finite-degree
analogs.

As mentioned above, under minimal model assumptions - well beyond the ones
for the SD (∞) class - homothetic utilities yield homothetic value functions. Such
utilities belong to the CMIM family and are analytic, and these properties are
also inherited by their value functions.

Finally, we show that the class SD (∞) is precisely SD (2). This result is of
independent interest. It is based on a delicate simultaneous change of measure
and numéraire, combined with an approximation argument relying on a one-point
compactification and the monotone class theorem.

The paper is organized as follows: in section 2, we specify the settings for problem
(1.1). In section 3, we discuss the background notions on complete monotonicity and
stochastic dominance and provide their characterizations. In section 4, we introduce
the class of market models and utilities that we propose, followed by the main results
on the analyticity of the value function together with the explicit expressions for
the primal and dual optimizers and their derivatives of all orders, as well as other
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regularity results. Section 5 provides a counterexample for non-CMIM utilities,
while section 6 contains a counterexample for non-SD(∞) market models.

2. The optimal investment problem

2.1. The market model. The market consists of a riskless asset, offering zero in-
terest rate, and d traded stocks, whose price processes form
a d-dimensional semi-martingale S on a complete stochastic basis
(Ω,F , (Ft)t∈[0,T ],P). Here T ∈ (0,∞) is the investment horizon.

A trading strategy H is a predictable and S-integrable process. It generates the
wealth process X := x+H · S, starting at x > 0, which, for the utilities considered
herein, is taken to be non-negative. Using the notation of [19], we denote the set of
admissible wealth processes,

X (x) := {X : Xt = x+H · St ≥ 0, t ∈ [0, T ],

for some S − integrable process H} , x > 0.
(2.1)

Following [15], we say that a sequence (Xn)n∈N ⊂ X (1) generates an unbounded
profit with bounded risk (UPBR), if the family of the random variables (Xn

T )n∈N is
unbounded in probability, i.e., if

lim
m↑∞

sup
n∈N

P [Xn
T > m] > 0.

If no such sequence exists, the condition of no unbounded profit with bounded risk
(NUPBR) is satisfied. A characterization of NUPBR is given via the dual feasible
set, Y (y), introduced in [19],

Y(y) := {Y : Y0 = y and XY = (XtYt)t∈[0,T ] is a supermartingale

for every X ∈ X (1)} , y > 0.
(2.2)

The elements of Y(1) are called super-martingale deflators, see [15]. It was es-
tablished in [15] that NUPBR is equivalent to the existence of a strictly positive
super-martingale deflator, namely,

(2.3) Y(1) contains a strictly positive element.

In [34] and [14], it was later proven that NUPBR is equivalent to the existence
of a strictly positive local martingale deflator; see, also, [4]. Furthermore, it was
shown in [14] that NUPBR is equivalent to other no-arbitrage conditions, such as
no arbitrage of the first kind and no asymptotic arbitrage of the first kind; we refer
the reader to [14, Lemma A.1] for further details.

2.2. Utility functions. We recall the standard class of utility functions U : (0,∞)→
R which are strictly concave, strictly increasing, continuously differentiable and sat-
isfy the Inada conditions

(2.4) lim
x↓0

U ′(x) = ∞ and lim
x↑∞

U ′(x) = 0.

To facilitate the upcoming exposition, we will denote the class of all such utility
functions by −C, in that

U ∈ −C ⇐⇒ −U ∈ C.
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2.3. Primal problem and the indirect utility. We recall the optimal investment
problem from terminal wealth

(2.5) u(x) := sup
X∈X (x)

E [U(XT )] , x > 0,

where U ∈ −C and X (x) as in (2.1).

2.4. Dual problem and the dual function. For any U ∈ −C, its Legendre
transform is given by

(2.6) V (y) := sup
x>0

(U(x)− xy) , y > 0,

and, by biconjugacy,

−C ∋ U ⇐⇒ V ∈ C.
In turn, we recall the dual value function,

(2.7) v(y) := inf
Y ∈Y(y)

E [V (YT )] , y > 0.

with V as in (2.6) and Y(y) as in (4.10).

It was shown in [15] that condition NUPBR is necessary for the non-degeneracy
of problem (2.5) in that, if NUPBR does not hold, then, for any utility function
U , (2.5) has either infinitely many solutions or no solution at all. Specifically, if
U(∞) = ∞, then u(x) = ∞, x > 0. Therefore, either there is no solution (when
the supremum is not attained) or there are infinitely many solutions (when the
supremum is attained). On the other hand, if U(∞) < ∞, there is no solution.

If condition NUPBR holds, problem (2.5) has a solution under the weak assump-
tion that the dual value function v in (2.7) is finite, i.e., v(y) < ∞, y > 0. In
this case, all standard conclusions of the utility maximization theory hold; see, for
example, [18] and [27] for details.

3. Complete monotonicity and stochastic dominance

3.1. Complete monotonicity. Completely monotonic functions have been well-
studied in the literature, see [37] and [33] for the historic overview of the development
of the subject therein. A function f : (0,∞) → R is called completely monotonic,
denoted by f ∈ CM, if it has derivatives of all orders and

(−1)nf (n)(x) ≥ 0, x > 0 and n = 0, 1, 2, . . .

Whenever needed, we extend f to [0,∞) setting f(0) := lim
x↓0

f(x), where f(0) ≤ ∞.

The celebrated Bernstein theorem (see [33, Theorem 1.4] or [37, Theorem 12b])
gives a characterization of completely monotonic functions, stating that f ∈ CM if
and only if

(3.1) f(x) =

∞∫
0

e−xzdµ(z), x ≥ 0,

where µ is a nonnegative sigma-finite measure on [0,∞) such that the integral
converges for every x > 0.
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Definition 3.1. We define D to be the class of functions W : [0,∞) → R, which
satisfy

(1) −W ′ ∈ CM,
(2) W ′ (∞) = 0.

The reader should note that the definition above is related, but not the same,
to what is called in literature a Bernstein functions, see, e.g., [33, p. 15]. Bern-
stein functions would assume bounds on W , but no Inada-type conditions on W ′.

For a W ∈ D, we have W ′(y) = −
∞∫
0

e−yzdµ(z) from the Bernstein representation

characterization of completely monotonic functions. We then deduce that

W ′(0+) := lim
y↓0

W ′(y) = −µ([0,∞)) and W ′(∞) := lim
y↑∞

W ′(y) = −µ({0}).

Therefore, the definition of D dictates that the measure µ has no mass at z = 0, to
satisfy

(3.2) µ({0}) = −W ′(∞) = 0.

We note that the Inada-type condition W ′(0) = −∞ holds if and only if µ([0,∞)) =
µ((0,∞)) = ∞, not assumed for W ∈ D.

3.2. Monotonicity of finite order. A weaker notion of complete monotonicity is
the monotonicity of finite order. We adopt the slightly more restrictive definition of
monotonicity of order n in the paper [25] and not the somewhat weaker definitions
in the earlier works [38] and [29].

A function f : (0,∞) → R is called monotonic of (finite) order n, denoted by
f ∈ CM(n), if it has derivatives of order k = 1, 2, ..., n and

(−1)kf (k)(x) ≥ 0, x > 0 and k = 0, 1, 2, . . . , n.

As in the CM case, whenever needed, we extend f to [0,∞) by f(0) := lim
x↓0

f(x),

where f(0) ≤ ∞. In analogy to the class D, we introduce the following definition.

Definition 3.2. For n ≥ 1, we define D(n) to be the class of functions W : [0,∞) →
R, which satisfy

(1) −W ′ ∈ CM(n− 1),
(2) W ′ (∞) = 0.

We note that W ∈ D(n) is not necessarily strictly decreasing by definition. While
we assume that W ′(∞) = 0 (both to make it similar to the n = ∞ case and to
simplify the upcoming definition of stochastic dominance), we do not impose the
condition W ′(0) = ∞ for W ∈ D(n), nor assume that such a W is bounded below.

Proposition 3.3. Fix W ∈ D(n), n ∈ {2, 3, . . . }. Then,

(3.3) W ′(∞) = W ′′(∞) = · · · = W (n−1)(∞) = 0

and

0 ≤ −W ′(y1) =

∞∫
y1

· · ·
∞∫

yn−1

(−1)nW (n)(yn)dyn . . . dy2 < ∞, y1 > 0.
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Therefore, any W ∈ D(n) has the representation

(3.4) W (y) = W (y0) +

y0∫
y

∞∫
y1

· · ·
∞∫

yn−1

(−1)nW (n)(yn)dyn . . . dy2dy1, y > 0.

For each fixed y0 > 0, the above representation holds.

Proof. As W ∈ D(n), we have (−1)kW (k)(y) ≥ 0 for k = 1, . . . , n and W ′(∞) = 0.

Assume now that W (k)(∞) = 0 for some k ≤ n − 2. Since (−1)k+2W (k+2)(y) ≥ 0,
we conclude that the function

y → (−1)k+1W (k+1)(y) ≥ 0

is decreasing. Next, assume that W (k+1)(∞) ̸= 0, so

(−1)k+1W (k+1)(∞) > 0.

This, however, would contradict the monotonicity of y → (−1)kW (k)(y), which

is decreasing, and the assumption that W (k)(∞) = 0. An inductive argument
completes the proof. □

3.3. Stochastic dominance of finite order. Let F and G be two cumulative
distribution functions with supports on R+ = [0,∞). We recall that F stochastically
dominates G in the first order if

F (y) ≤ G(y), y ≥ 0.

To define stochastic dominance of higher orders, following, for example, [35], we
set

(3.5) F1 = F and Fi(y) =

y∫
0

Fi−1(z)dz, i = 2, 3 . . . .

Since 0 ≤ F ≤ 1, the integrals are well defined. The functions Gi are defined
similarly. Next, we depart slightly from the definition customary in the literature,
e.g., in [35], see also [39] and [36]. On the one hand, we use a somewhat weaker
definition, while, on the other, we can treat unbounded supports. More comments
follow the definition.

Definition 3.4. For any n ≥ 1, we say that F stochastically dominates G in the
sense of the n-th order, and denote F⪰nG, if Fn(y) ≤ Gn(y), y ≥ 0. For two
random variables ξ, η ≥ 0 we say that ξ⪰nη if Fξ⪰nFη.

Remark 3.5. For n ≥ 3, it is customary in the literature, in order to define F⪰nG,
to both

(1) assume that F and G are supported on a finite interval [0, b],
(2) have the additional condition Fk(b) ≤ Gk(b), k = 1, . . . , n− 1.

Our definition by-passes both points above since we will only use a restrictive set of
“test” functions, namely D(n). For such test functions, condition (3.3) ensures that
we do not (even formally) need the extra assumption. Furthermore, our definition
works well for n ≥ 3 for measures fully supported on the [0,∞) that we need.
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Proposition 3.6. Consider two non-negative random variables ξ and η. Fix n ≥ 2.
Then, the following conditions are equivalent:

(1) ξ⪰nη,
(2) E[W (ξ)] ≤ E[W (η)] for every function W ∈ D(n), such that W (∞) > −∞,

(i.e., W is bounded from below),
(3) E[W (ξ)] ≤ E[W (η)] for every function W ∈ D(n) such that E[W−(ξ)] < ∞

and E[W−(η)] < ∞.

Proof. If W ∈ D(n) is bounded below, we will suppose that W (∞) = 0, without
loss of generality. For y0 = ∞, representation (3.4) becomes

W (y) =

∫ ∞

y

∞∫
y1

. . .

∞∫
yn−1

(−1)nW (n)(yn)dyn . . . dy2dy1

=

∫
Rn
+

1{y≤y1≤···≤yn}(−1)nW (n)(yn)dyn . . . dy2dy1, y > 0.

(3.6)

Therefore, Fubini’s theorem yields

E[W (ξ)] = E

∫
Rn
+

1{ξ≤y1≤···≤yn}(−1)nW (n)(yn)dyn . . . dy2dy1



=

∞∫
0

 ∫
Rn−1
+

E
[
1{ξ≤y1≤···≤yn}

]
dy1 . . . dyn−1

 (−1)nW (n)(yn)dyn.

(3.7)

Fix yn. Using the cdf F of ξ we can rewrite∫
Rn−1
+

E
[
1{ξ≤y1≤···≤yn}

]
dy1 . . . dyn−1 =

yn∫
0

· · ·
y2∫
0

P [ξ ≤ y1] dy1 . . . dyn−1

=

yn∫
0

· · ·
y2∫
0

F (y1)dy1 . . . dyn−1 = Fn(yn),

where we have used that ξ ≥ 0. Together with (3.7), we obtain

(3.8) E[W (ξ)] =

∞∫
0

W (y)dF (y) =

∞∫
0

(−1)nW (n)(yn)Fn(yn)dyn.

This shows that (1) and (2) above are equivalent.
To show (2) ⇒ (3), for a general W ∈ D(n) in (3), first assume that W (1) = 0,

without any loss of generality. Next, one has to use a smooth cut-off of the n-th
derivative of W away from infinity. More precisely, consider an increasing sequence
of functions

0 ≤ fi(y) ↗ 1, 0 < y < ∞
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and such that

supp(fi) ⊂ (
1

i
, i).

Then we set

W
(n)
i (y) := fi(y)W

(n)(y), y > 0,

and

Wi(1) = 0,W ′(∞) = · · · = W (n−1)(∞) = 0.

We therefore recover all the lower order derivatives, up to the first order, using the
computation in Proposition 3.3:

0 ≤ −W ′
i (y1) =

∞∫
y1

· · ·
∞∫

yn−1

(−1)nfi(yn)W
(n)(yn)dyn . . . dy2 < ∞, y1 > 0,

so

0 ≤ −W ′
i (y1) ↗ −W ′(y1), 0 < y1 < ∞.

We integrate the above relation to conclude that

W+
i (y) = 1{y≤1}Wi(y)

= 1{y≤1}

∫ 1

y
−W ′

i (y1)dy1 ↗ 1{y≤1}

∫ 1

y
−W ′(y1)dy1 = W+(y),

and

W−
i (y) = 1{y>1}(−Wi(y))

= 1{y>1}

∫ y

1
−W ′

i (y1)dy1 ↗ 1{y>1}

∫ y

1
−W ′(y1)dy1 = W+(y).

Using (2) for the bounded test functions Wi ∈ D(n), we can pass to the limit
separately for the positive and negative parts to conclude that (2) ⇒ (3). □

3.4. Stochastic dominance of infinite degree. The infinite-order stochastic
dominance is, intuitively, defined by letting n ↑ ∞ in Definition 3.4. This, how-
ever, has to be done carefully. We again depart from [35] for our definition.

To provide some intuition, we first note that, for each z > 0, the exponential
function W (y) = e−zy, y > 0, is in D(n), for every z > 0 and n ≥ 1. For every
z > 0, relation (3.8) reads

E[e−zξ] =

∞∫
0

e−zydF (y) =

∞∫
0

zne−zyFn(y)dy, n ≥ 1.

Therefore, if for any n, no matter how large, we have F⪰nG, then the exponential
moments of the two distributions compare, for all positive values of z. It thus
appears to us that the weakest possible form of dominance, obtaining by letting
n ↑ ∞, is the one below.
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Definition 3.7. Consider two cumulative distributions F and G on [0,∞). We say
that F dominates G in infinite degree stochastic dominance, and denote by F⪰∞G,
if

∞∫
0

e−zydF (y) ≤
∞∫
0

e−zydG(y), z > 0.

For nonnegative random variables ξ and η, we say that ξ dominates η in infinite-
order stochastic dominance, and denote ξ⪰∞η if Fξ⪰∞Fη, that is

E
[
e−zξ

]
≤ E

[
e−zη

]
, z > 0.

Remark 3.8. To the best of our knowledge, the name of infinite-order stochastic
dominance first appeared in [35] (but for a somewhat less precise definition), whereas
[3] does not use the specific name of infinite-order dominance.

Below, we provide a characterization of infinite-order stochastic dominance.

Proposition 3.9. Consider two non-negative random variables ξ and η. Then, the
following conditions are equivalent:

(1) ξ⪰∞η,
(2) E[W (ξ)] ≤ E[W (η)] for every function W ∈ D, such that W (∞) > −∞, i.e.,

W is bounded from below,
(3) E[W (ξ)] ≤ E[W (η)] for every function W ∈ D such that

(3.9) E[W−(ξ)] < ∞ and E[W−(η)] < ∞.

Proof. (2) ⇒ (1). Let us suppose that (2) holds and assume by contradiction that
there exists z > 0, such that

(3.10) E
[
e−zξ

]
> E

[
e−zη

]
.

Let us consider a measure µ such that

µ({0}) = 0, µ((0,∞)) = ∞, and

∞∫
0

∞∫
0

e−ytµ(dt)dy =

∞∫
0

1

t
µ(dt) < ∞.

For example

µ(dt) =

{
t−

1
2dt, t ≥ 1

0 dt, t ∈ (0, 1)
,

works. Next, let us define W as

W (y) :=

∞∫
y

∞∫
0

e−ztµ(dt)dz, y > 0.

Then W ∈ D and is bounded from below by 0 and from above by
∞∫
0

∞∫
0

e−ytµ(dt)dy < ∞.
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Now, for a constant c > 0, we set

νc := µ+ cδz,

where δz is a delta function centered at z. We further define

Wc(y) :=

∞∫
y

∞∫
0

e−ztνc(dt)dz, y > 0.

One can see that Wc ∈ D and is bounded from below by 0. By Tonelli’s theorem,
we have

Wc(y) =

∫ ∞

0
e−yt νc(dt)

t
, y > 0,

and thus

E [Wc(ξ)] = E
[∫ ∞

0
e−ξt νc(dt)

t

]
=

∫ ∞

0
E
[
e−ξt

] νc(dt)
t

=

∫ ∞

0
E
[
e−ξt

] µ(dt)
t

+
c

z
E
[
e−ξz

]
= E [W (ξ)] +

c

z
E
[
e−ξz

]
.

Therefore, from (3.10), and for a sufficiently large c, we obtain that

E [Wc(ξ)] = E [W (ξ)] +
c

z
E
[
e−ξz

]
> E [W (η)] +

c

z
E
[
e−ηz

]
= E [Wc(η)] ,

which contradicts (2).
(3) ⇒ (2) is trivial. Therefore, it remains to show (1) ⇒ (3). Let us consider ξ

and η satisfying (1) and W ∈ D such that (3.9) holds. Then −W ′ admits the rep-
resentation (3.1) for some nonnegative sigma-finite measure µ on [0,∞), satisfying
(3.2), and such that the integral in (3.1) converges for every x > 0. Let us also fix
y0 > 0. Using the Bernstein representation and Tonelli’s theorem, we get

W (y)−W (y0) =

y0∫
y

(
−W ′(x)

)
dx =

y0∫
y

∞∫
0

e−xtµ(dt)dx

=

∞∫
0

y0∫
y

e−xtdxµ(dt) =

∞∫
0

(
e−yt − e−y0t

) µ(dt)
t

.

(3.11)

Therefore, using (3.9) and Tonelli’s theorem, we obtain

−∞ < E
[
(W (ξ)−W (y0)) 1{ξ≥y0}

]
=E

 ∞∫
0

(
e−ξt − e−y0t

) µ(dt)

t

 1{ξ≥y0}


=E

 ∞∫
0

(
e−ξt − e−y0t

)
1{ξ≥y0}

µ(dt)

t


=

∞∫
0

E
[(

e−ξt − e−y0t
)
1{ξ≥y0}

] µ(dt)
t

≤ 0.
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Consequently, using (3.2) and the monotone convergence theorem, we conclude that

−∞ < E
[
(W (ξ)−W (y0)) 1{ξ≥y0}

]
=

∞∫
0

E
[(

e−ξt − e−y0t
)
1{ξ≥y0}

] µ(dt)
t

= lim
n→∞

n∫
1/n

E
[(

e−ξt − e−y0t
)
1{ξ≥y0}

] µ(dt)
t

≤ 0.

(3.12)

Similarly, we obtain

0 ≤E
[
(W (ξ)−W (y0)) 1{ξ<y0}

]
= E

 ∞∫
0

(
e−ξt − e−y0t

)
1{ξ<y0}

µ(dt)

t


= E

 lim
n→∞

n∫
1/n

(
e−ξt − e−y0t

)
1{ξ<y0}

µ(dt)

t


= lim

n→∞
E

 n∫
1/n

(
e−ξt − e−y0t

)
1{ξ<y0}

µ(dt)

t


= lim

n→∞

n∫
1/n

E
[(

e−ξt − e−y0t
)
1{ξ<y0}

] µ(dt)
t

,

(3.13)

where the latter limit might be finite or not. Combining (3.12) and (3.13), we assert
that

−∞ < E [W (ξ)] = W (y0) + lim
n→∞

n∫
1/n

(
E
[
e−ξt

]
− e−y0t

) µ(dt)

t
,

and a similar representation holds for η. Therefore, if ξ⪰∞η and (3.9) holds, we
have

−∞ < E [W (ξ)] = W (y0) + lim
n→∞

n∫
1/n

(
E
[
e−ξt

]
− e−y0t

) µ(dt)

t

≤ W (y0) + lim
n→∞

n∫
1/n

(
E
[
e−ηt

]
− e−y0t

) µ(dt)
t

= E [W (η)] ,

which implies (3). This completes the proof of the proposition. □

4. Main results

4.1. The CMIM and CMIM (n) utilities. As utility-based preferences are in-
variant under positive linear transformations of the form U∗(x) = aU(x)+ b, a > 0,
and in view of the importance of the marginal utility in many problems, it is natural
to define a utility function through its derivative. Additionally, it has been observed
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that the most widely used utility functions have completely monotonic marginals,
see [3]. In the present paper, we investigate a class of functions, whose inverse
marginals are completely monotonic. This is particularly natural in view of the
overall importance of the duality approach to the expected utility maximization.

We start with the following definition.

Definition 4.1. We define the CMIM to be the class of utility functions U ∈ −C
for which their inverse marginal (U ′)−1 ∈ CM.

From Bernstein’s theorem, we deduce that if U ∈ CMIM, then we have the
representation

(4.1) (U ′)−1(y) =

∞∫
0

e−yzµ(dz), y > 0,

where µ is a nonnegative measure, such that the integral converges for every y > 0.
We stress that the Inada conditions (2.4) dictate that the underlying measure µ

must satisfy µ ({0}) = 0 and µ ((0,∞)) = ∞. Indeed, U ′ (0) = ∞ yields µ ({0}) = 0
while U ′ (∞) = 0 yields µ((0,∞)) = ∞.

Example 4.2. Here we show that standard utilities are included.

(1) U(x) = log x, x > 0. Then, (U ′)−1 (y) = 1
y ∈ CM and we have

(
U ′)−1

(y) =

∞∫
0

e−yzdz, y > 0.

(2) U(x) = xp

p , x > 0, p < 1, p ̸= 0. Then, (U ′)−1 (y) = y
− 1

1−p ∈ CM and with

q = − p
1−p (i.e., such that 1

p + 1
q = 1), we have

(
U ′)−1

(y) =
1

Γ(1− q)

∞∫
0

e−yzz−qdz, y > 0,

where Γ is the Gamma function, see [33, p. viii, formula (2)].

Assuming less regularity on the utility function but keeping monotonic structure
up to finite order leads to the following definition.

Definition 4.3. For n ∈ {2, 3, . . . }, we say that a utility function U ∈ −C is in the
CMIM(n) class if its inverse marginal is completely monotonic of order n−1, that

is, (U ′)−1 ∈ CM(n− 1).

Recalling Definitions 3.1 and 4.1, and denoting by V the convex conjugate of U
in the sense of (2.6), we deduce that

U ∈ CMIM ⇐⇒ V ∈ D ∩ C.

Likewise, from Definitions 3.2 and 4.3, we get

U ∈ CMIM (n) ⇐⇒ V ∈ D (n) ∩ C.
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4.2. The class SD (∞) and SD (n) of market models. The stochastic domi-
nance had to be formally defined separately for finite and infinite n (see Definitions
3.4 and 3.7). However, for the associated market models, now, we can give a unified
definition (for both finite and infinite degree) below.

Definition 4.4. Fix n ∈ {2, 3, . . . }∪{∞}. We say that the financial model satisfies

condition SD(n) if there exists Ŷ ∈ Y(1) such that ŶT⪰nYT for every Y ∈ Y(1).

In what follows, we will use the terminologies “market model in SD(n) class”
and “SD(n)-model” interchangeably. In view of Propositions 3.6 and 3.9, we have
the following result, for both infinite and finite orders.

Lemma 4.5. Fix n ∈ {2, 3, ...} ∪ {∞}. Assume that the model satisfies condition
SD(n) and that U ∈ CMIM(n), thus V ∈ D(n)∩C. Then, the dual value function
has the representation

(4.2) v(y) = E[V (yŶT )], y > 0.

This result yields the key property that, up to a multiplicative constant, the

dual problem admits the same optimizer, Ŷ , for any initial y > 0. Representation
(4.2) can be thought of as a relaxation of the notion of model completeness, in the
following sense: while a market model in SD(n) is, in general, incomplete from the
point of view of replication, it does behave like a complete one from the point of
view of optimal investment, if the utility function U ∈ CMIM(n).

4.3. Main theorems. We will assume that

(4.3) v(y) < ∞, y > 0.

We recall that the above condition is the canonical integrability one on the dual value
function that is necessary and sufficient for the standard assertions of the utility
maximization theory to hold; see [20] (see, also, [18] for the formulation without
NFLVR and [27] for the formulation with intermediate consumption and stochastic
utility, where (4.3) is combined with the finiteness of the primal value function).
We also recall that for U ∈ −C, under (2.3) and (4.3), for every x, y > 0, there exist

unique optimizers, X̂(x) ∈ X (x) and Ŷ (y) ∈ Y(y), for the primal (2.5) and dual
(2.7) problems, respectively. This is a consequence of the abstract theorems in [27].

Theorem 4.6. Consider a financial model for which (2.3) holds, and which is in
SD(∞). For U ∈ CMIM and the measure µ defined by the Bernstein represen-
tation (4.1) of (U ′)−1, consider the optimal investment problem (2.5) and assume
that (4.3) holds. Then, the following assertions hold:

(1) The value function u ∈ CMIM and is thus analytic.



ANALYTICITY IN OPTIMAL INVESTMENT AND STOCHASTIC DOMINANCE 839

(2) The dual value function v ∈ D∩C. Furthermore, for n ∈ {1, 2, . . . }, we have

(−1)nv(n)(y) = (−1)nE

[
V (n)(ŶT (y))

(
ŶT (y)

y

)n]
= (−1)nE

[
V (n)(yŶT )

(
ŶT

)n]
= E

 ∞∫
0

e−zyŶT zn−1Ŷ n
T µ(dz)

 ∈ (0,∞), y > 0.

(4.4)

(3) The CM function −v′ admits the Bernstein representation

(4.5) v′(y) = −
∞∫
0

e−yzν(dz), y > 0,

for some sigma-finite measure ν supported in (0,∞), such that

ν ({0}) = 0 and ν ((0,∞)) = ∞,

and which satisfies

(4.6) lim
n↑∞

∫
(0,z]

(−1)n+1v(n+1)

(
n

ρ

)(
n

ρ

)n+1

dρ =
ν ((0, z]) + ν ((0, z))

2
, z > 0.

(4) For n ≥ 2 and f(y) := − 1
v′′(y) , y > 0, we have

u(n)(x) =
∑ (n− 2)!

k1!1!k1 . . . kn−2!(n− 2)!kn−2
f (k1+···+kn−2)(u′(x))

n−2∏
j=1

(
u(j+1)(x)

)kj
,

x > 0,

(4.7)

where the sum is over all n-tuples of nonnegative integers (k1, . . . , kn−2)

satisfying
n−2∑
i=1

iki = n− 2.

The following theorem specifies the derivatives of optimizers of all orders for both
primal and dual problems.

Theorem 4.7. Under the conditions of Theorem 4.6, the following assertions hold:

(1) The primal and dual optimizers are related via

(4.8) X̂T (x) =

∞∫
0

e−zu′(x)ŶT ν(dz), x > 0.

(2) Their derivatives are given by

X̂
(1)
T (x) := lim

h→0

X̂T (x+ h)− X̂T (x)

h
= −V ′′(u′(x)ŶT )u

′′(x)ŶT

=
u′′(x)

U ′′(X̂T (x))
ŶT > 0,

(4.9)
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(4.10) Ŷ
(1)
T (y) := lim

h→0

ŶT (y + h)− ŶT (y)

h
=

ŶT (y)

y
= ŶT .

(3) Recursively, for every n ≥ 2, the higher-order derivatives are given by

X̂
(n)
T (x) := lim

h→0

X̂
(n−1)
T (x+ h)− X̂

(n−1)
T (x)

h

=
∑ n!

k1!1!k1k2!2!k2 . . . kn!n!kn

(
−V (1+k1+···+kn)

(
u′(x)ŶT

)) n∏
j=1

(
u(j+1)(x)ŶT

)kj
,

where the sum is over all n-tuples of nonnegative integers (k1, . . . , kn) sat-

isfying
n∑

i=1
iki = n. Trivially,

Ŷ
(n)
T (y) := lim

h→0

Ŷ
(n−1)
T (y + h)− Ŷ

(n−1)
T (y)

h
= 0.

The limits for the derivatives of the optimizers above are in probability. However,

because of the multiplicative structure of the dual Ŷ (y) = yŶ , the limits above can
be understood in the stronger sense: for every sequence hk → 0, the convergence
holds for P-a.e. ω ∈ Ω.

Analogous results (and even easier, in many ways) can be stated for the case
n < ∞.

Proposition 4.8. Fix n ∈ {2, 3, . . . } Consider a financial model for which (2.3)
holds, and which is in SD(n). Let U ∈ CMIM(n) so V = VU ∈ D(n) ∩ C.
Furthermore, assume (4.3) and that V satisfies the inequalities
(4.11)

0 < ck ≤ −y V (k+1)(y)

V (k)(y)
=

(−y)k+1V (k+1)(y)

(−y)kV (k)(y)
≤ dk < ∞, y > 0, k = 1, . . . , n− 1,

for some constants ck, dk, k = 1, . . . , n−1. Then, for the optimal investment problem
(2.5), the following assertions hold:

(1) The value function u ∈ CMIM(n).
(2) Up to order n, the derivatives of the dual value function v are given by (4.4).
(3) The dual value function v satisfies the bounds (4.11) with respect to the

same constants ck and dk, for k = 1, . . . , n− 1.

Stochastic dominance of order n is the natural condition to study n-th order
differentiability of value functions, as can be seen from the Proposition above. As
defined, SD(n) for n ≥ 3 appears a weaker condition than second order stochastic
dominance (n = 2). However, we show in Proposition 7.2 that, surprisingly, these
notions coincide after all, from n = 2 to n = ∞. Therefore, the class of models
considered here is the same as the models with a maximal element in the sense of
second order dominance in [22]. In such models, [22, Theorem 5] shows that the
risk tolerance wealth process R(x) exists, for every x > 0.
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We briefly recall the definition of R(x) in [22] as the maximal wealth process

R(x) = (Rt(x))t∈[0,T ], such that RT (x) = − U ′(X̂T (x))

U ′′(X̂T (x))
. The process R(x) is equal,

up to an initial value, to the first derivative of the primal optimizer:

lim
h→0

X̂T (x+ h)− X̂T (x)

h
=

RT (x)

R0(x)
,

where the limit is in P probability.
We also note that the existence of the risk tolerance wealth process is connected to

asymptotic expansions of second order (see [22], [23]) or [28]). For a formulation and
asymptotics with consumption and their relationship to the risk tolerance wealth
process, we refer to [11].

Remark 4.9 (On an integrability convention). Recalling a common convention (see,
e.g., [27]), we set

(4.12) E [V (YT )] := ∞ if E
[
V +(YT )

]
= ∞.

This is done to avoid issues related to E [V (YT )] not being well-defined.
However, the following argument shows that E [V (YT )] is well-defined for every

y > 0 and Y ∈ Y(y). To see this, take an arbitrary y > 0 and Y ∈ Y(y). Then,
from the conjugacy between U and V , we get

−V (YT ) ≤ YT − U(1) ≤ YT + |U(1)|.
Therefore, by the supermartingale property of Y , we obtain

E
[
V −(YT )

]
≤ y + |U(1)| < ∞.

Therefore, E [V (YT )] is well-defined with or without convention (4.12).
In analogy for the primal problem, we set

(4.13) E [U(XT )] := −∞ if E
[
U−(XT )

]
= ∞.

Assume that

(4.14) v(y) < ∞ for some y > 0,

which is even weaker than (4.3).
By the argument from the previous paragraph, we know that E [V (YT )] ∈ R. For

an arbitrary x > 0 and X ∈ X (x), by conjugacy between U and V , we get

U(XT ) ≤ V (YT ) +XTYT ≤ V +(YT ) + V −(YT ) +XTYT .

Therefore,

U+(XT ) ≤ V +(YT ) + V −(YT ) +XTYT ∈ L1(P).
Thus, E [U(XT )] is well-defined for every x > 0, and X ∈ X (x), with or without
the convention (4.13), under the minimal assumption (4.14).

Remark 4.10 (On the positivity of X̂
(1)
T ). We note that, in general, the derivative

of the primal optimizer with respect to the initial wealth does not have to be a
positive random variable, see [21, Example 4]. However, for models satisfying the

assumptions of Theorem 4.6, (4.9) implies the strict positivity of X̂
(1)
T . This com-

plements the results in [22], see Theorem 4 there, which implies the positivity of
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X̂
(1)
T in stochastically dominant models in the sense of the second order stochastic

dominance.

Proof of Theorem 4.6. As U ∈ CMIM, its convex conjugate V ∈ D ∩ C. Then,
Lemma 4.5 gives that

v(y) = E
[
V (yŶT )

]
, y > 0,

i.e., the dual minimizer is the same up to the multiplicative constant y: Ŷ (y) = yŶ ,
y > 0. The expectation above is well-defined, see the discussion in Remark 4.9.
Note that (2.3), (4.3) and the structure of the utility function (the Inada conditions,
together with the strict monotonicity, concavity, and smoothness) imply the strict
concavity and continuous differentiability of both u and −v on (0,∞); see [20],
[27], and [4]. For n = 1, (4.4) follows from the standard conclusions of the utility
maximization theory, as

(4.15) −v′(y)y = −E
[
V ′(ŶT (y))ŶT (y)

]
= −E

[
V ′(yŶT )yŶT

]
∈ (0,∞),

and therefore, v′(y) = E
[
V ′(yŶT )ŶT

]
, for every y > 0.

Next, assume that (4.4) holds for n = k, i.e.,

v(k)(y) = E
[
V (k)

(
yŶT

)(
ŶT

)k]
= (−1)kE

 ∞∫
0

e−yŶT zzk−1µ(dz)
(
ŶT

)k , y > 0,

where in the second equality we have used (4.1). Let us recall that (4.1) gives

V (k)(y) = (−1)k
∞∫
0

e−yzzk−1µ(dz), y > 0.

Then, let us consider

v(k)(y + h)− v(k)(y)

h
=

1

h
E
[
V (k)((y + h)ŶT )Ŷ

k
T − V (k)(yŶT )Ŷ

k
T

]
=(−1)kE

 ∞∫
0

(ŶT z)
k−1ŶT
h

(
e−(y+h)ŶT z − e−yŶT z

)
µ(dz)

 ,

(4.16)

Let us fix y > 0. As for every h ̸= 0, we have

0 ≤ − 1

h

(
e−(y+h)ŶT z − e−yŶT z

)
≤ e−(y−|h|)ŶT zzŶT ,

we deduce that, for a constant h0 ∈ (0, y), and every h ∈ (−h0, h0), the following
inequalities hold

0 ≤− (ŶT z)
k−1 1

h

(
e−(y+h)ŶT z − e−yŶT z

)
ŶT ≤ (ŶT z)

ke−ŶT (y−h0)zŶT .(4.17)

Furthermore, as there exists a constant M , such that

(4.18) z̄ke−z̄(y−h0) ≤ Me−
1
2 z̄(y−h0), for every z̄ ≥ 0,



ANALYTICITY IN OPTIMAL INVESTMENT AND STOCHASTIC DOMINANCE 843

and since, by (4.4) for n = 1 (see also (4.15)), we have

(4.19) E

 ∞∫
0

MŶT e
−1
2 ŶT (y−h0)zµ(dz)

 = −Mv′
(
1
2(y − h0)

)
< ∞,

we deduce from (4.18) and (4.19) that the last expression in (4.17) is P×µ integrable.
Therefore, in (4.16), one can pass to the limit as h → 0 to deduce that (4.4) holds
for n = k + 1. We conclude that (4.4) holds for every n ∈ N. Now, the complete
monotonicity of v follows from the complete monotonicity of V and (4.4). In turn,

this implies the analyticity of v, see, e.g., [26]. Further, as (−1)nV (n) do not vanish

(see, e.g., [33, Remark 1.5]), we deduce from (4.4) that (−1)nv(n) are also strictly
positive for every n ∈ N. By [20, Theorem 4], −v satisfies the Inada conditions,
which imply that ν({0}) = 0 and ν((0,∞)) = ∞. Representation (4.5) follows,
where (4.6) results from the inversion formula, see [37, Chapter VII, Theorem 7a].

To obtain the properties of u, first, we observe that the biconjugacy relations
between the value functions imply that u′ exists at every x > 0, and it is the inverse
of −v′. This, and since v′ is strictly negative on (0,∞), imply the analyticity of
u. In turn, (4.7) is the consequence of the Faà di Bruno formula, see [30, Section
4.3]. □

Proof of Theorem 4.7. First, we observe that (4.8) is the consequence of (4.1) and
standard assertions of the utility maximization theory. In turn, (4.10) follows from

the optimality of yŶ for every y > 0, whereas (4.9) results from the relation

X̂T (x) = −V ′(yŶT ), for y = u′(x).

The higher order derivatives of the dual and primal optimizers follow from the
direct computations and an application of the Faà di Bruno formula. □

Proof of Proposition 4.8. From Lemma 4.5, we have

v(y) = E[V (yŶT )], y > 0.

By [20, Theorem 4], v is differentiable and we have

v′(y) = E[ŶTV ′(yŶT )], y > 0.

Therefore, it only remains to compute the higher order derivatives of v, recursively,
up to order n, as in formula (4.4). The bounds (4.11) for v would follow immediately.
In what follows, we show that (4.4) holds up to order n. Assume that, for some
1 ≤ k ≤ n− 1, we have

(4.20) (−1)k−1v(k−1)(y) = E[(−ŶT )
k−1V (k−1)(yŶT )] < ∞, y > 0.

Using bounds (4.11) and following the proof of [21, Lemma 3] we obtain that, for
any a > 1, there exist some constants

αk < 1 < βk < ∞

for which

(4.21) αk(−1)k−1V (k−1)(y) ≤ (−1)k−1V (k−1)(ay) ≤ βk(−1)k−1V (k−1)(y), y > 0.
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Fix y > 0. Then,

v(k−1)(y + h)− v(k−1)(y)

h
= E

[
(ŶT )

k−1V
(k−1)((y + h)ŶT )− V (k−1)(yŶT )

h

]
= E

[
(ŶT )

kV (k)(ξh)
]
,

where ξh is a random variable taking values between yŶT and (y + h)ŶT .

Fix a > 1. Using the bounds (4.11) for V (k) in terms of V (k−1), together with
(4.21), we conclude that there exists a finite constant C, such that for |h| small
enough so that

1

a
≤ y − |h|

y
≤ y + |h|

y
≤ a,

we have ∣∣∣(ŶT )kV (k)(ξh)
∣∣∣ ≤ C

∣∣∣(ŶT )k−1V (k−1)(yŶT )
∣∣∣ .

Since the right-hand side above is integrable, according to (4.20), and

V (k−1)((y + h)ŶT )− V (k−1)(yŶT )

h
→ ŶTV

(k)(yŶT ), P− a.s,

we can use the Lebesgue dominated convergence theorem to conclude the assertions
of part ii). The remaining assertions follow. □

4.4. An Example. The condition that Y(1) has a maximal element means that,
while the market is incomplete with respect to the replication of contingent claims,
it behaves like a complete market from the point of view of optimal investment.
Our main result, Theorem 4.6, may appear restrictive at first, for this reason. How-
ever, the counter-example in Section 6 shows that this is actually the best one can
hope. A generic example has to be precisely such a market model with a maximal
dual element. This is the case for a multi-dimensional market driven by Brownian
motion with a larger dimension, where the coefficients (market prices of risk) are
deterministic. For simplicity, we present a one-dimensional stock driven by two
Brownian motions.

Let W 1 = (W 1
t )t∈[0,T ] and W 2 = (W 2

t )t∈[0,T ] be two independent Brownian
motions on a complete stochastic basis (Ω,F , (Ft)t∈[0,T ],P), where the filtration

(Ft)t∈[0,T ] is generated by W 1 and W 2. Let us suppose that there are two traded
securities: a riskless asset with zero interest rate, Bt = 1, t ∈ [0, T ], and a traded
stock, whose dynamics is given by

St = S0 +

t∫
0

µsds+

t∫
0

σsdW
1
s , t ∈ [0, T ].

for some S0 ∈ R, and where µ and σ are deterministic measurable functions on
[0, T ], such that, for some constant M > 0, −M ≤ µt ≤ M and 1

M ≤ σt ≤ M ,
t ∈ [0, T ].
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Next, consider the process Ŷ given by

(4.22) Ŷt = exp

−
t∫

0

µs

σs
dW 1

s − 1

2

t∫
0

µ2
s

σ2
s

ds

 , t ∈ [0, T ].

Following the argument in [22, Example 7, p. 2185], one can show that

(4.23) ŶT⪰2YT , for every Y ∈ Y(1),

in the sense of Definition 3.4, where we recall that the set of supermartingale defla-
tors Y(1) is given in (2.2).

The reader may note that the market (B,S, (FS
t )0≤t≤T ) is complete, while the

original market (B,S, (Ft)0≤t≤T ), with all the information available for investment,
is incomplete. In such a market (either one), let us consider the optimal investment

problem (2.5). If U ∈ CMIM and (4.3) holds, then, with Ŷ being given by (4.22),
the properties of the primal and dual value functions are given by the assertions of
Theorems 4.6, whereas the properties of the optimizers are given by the conclusions
of Theorem 4.7. If, instead, one supposes that for a fixed n ∈ {2, 3, . . . }, U ∈
CMIM(n) and is such that its convex conjugate V satisfies the inequalities (4.11)
for some constants ck, dk, k = 1, . . . , n − 1, then, under (4.3), we obtain from
Proposition 4.8 that its assertions apply.

5. counterexample 1: SD (∞) market model and U /∈ CMIM

We show that the analyticity of the value function may fail if the utility is not
CMIM, even if it is analytic, and even if the market model is complete, and thus
in the SD (n) class for every n ∈ {2, 3, ...} ∪ {∞}. As the construction shows, we
will be using completely monotonic functions of finite order. Working with this
class allows to tailor the assumptions on the utility function so that differentiability
holds up to order n, but fails at order n+ 1, for any choice of n ∈ N.

Proposition 5.1. Fix n ≥ 1. There exists a complete market model and an analytic
utility function U : (0,∞) → R such that

U ∈ CMIM(n+ 1) ⇐⇒ V ∈ D(n+ 1) ∩ C,
where the dual V satisfies the bounds (4.11) (up to order k = n− 1, but not up to
order k = n), and for which the conjugate value functions u and v satisfy

u ∈ CMIM(n) ⇐⇒ v ∈ D(n) ∩ C,

together with identical bounds (4.11) up to order k = n− 1, but with

(−1)n+1v(n+1)(1) = ∞.

We will need the following Lemma.

Lemma 5.2. There exists an analytic function f : (0,∞) → R with the following
properties

(1) 1 ≤ f ≤ 2,
(2) f ′ < 0,

(3) −f ′(i) ≥ i2

C , i = 1, 2, . . . , for some constant C > 0.
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Proof of Proposition 5.1. Consider the auxiliary dual value function V̄ (y) := y−1.
Consider now the new utility function V defined as

V (y) :=

∞∫
y

∞∫
y1

· · ·
∞∫

yn−1

(−1)nf(yn)V̄
(n)(yn)dyn . . . dy2dy1 > 0.

Note that the intuition behind this definition comes from setting V at the level of
the n-th order derivative,

V (n)(y) := f(y)V̄ (n)(y), y > 0,

and then recovering V by integration.
Since 1 ≤ f ≤ 2 and using the integral representations

(−1)kV̄ (k)(yk) =

∞∫
yk

. . .

∞∫
yn−1

(−1)nV̄ (n)(yn)dyn . . . dyk+1, yk > 0,

(−1)kV (k)(yk) =

∞∫
yk

. . .

∞∫
yn−1

(−1)nf(yn)V̄
(n)(yn)dyn . . . dyk+1, yk > 0,

we obtain bounds for derivatives of V in terms of derivatives of the same order of
V̄ ,

(5.1) (−1)kV̄ (k)(y) ≤ (−1)kV (k)(y) ≤ 2(−1)kV̄ (k)(y) y > 0, k = 0, 1, . . . , n.

Since

V̄ ′′(y) = 2y−3, V̄ ′′′(y) = −6y−4, . . . , V̄ (n+1)(y) = (−1)n+1Cn+1y
−n−2, y > 0,

for some explicit positive constants Ck, V̄ satisfies some bounds on higher order risk
tolerance coefficients of the type (4.11) up to order k = n − 1. Using the integral
representations above, (5.1) yields similar bounds for risk tolerance type coefficients
for V : for every k = 1, . . . , n− 1, there exist 0 < ck < dk < ∞ such that

ck ≤ −yV (k+1)(y)

V (k)(y)
=

(−y)k+1V (k+1)(y)

(−y)kV (k)(y)
≤ dk, y > 0, k = 1, . . . , n− 1.

Since −f ′(i) ≥ i2

C , we choose weights qi :=
1
i3

> 0, such that

s1 :=

∞∑
i=1

iqi < ∞,

∞∑
i=1

−f ′(i)qi = ∞.

Denoting by

s0 :=

∞∑
i=1

qi <

∞∑
i=1

iqi = s1 < ∞,

we define

ε :=
1
2

s1
s0

− 1
2

∈ (0, 1)

and consider a random variable Z such that

P(Z =
1

2
) = 1− ε, P(Z = i) = pi := ε

qi
s0

, i = 1, 2, 3, . . . .
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Then, we have

E[Z] =
1

2
(1− ε) +

ε

s0
s1 =

1

2
+ ε

(
s1
s0

− 1

2

)
= 1.

Next, consider any market with the unique martingale measure with density Z. The
dual value function is finite since Z is bounded from below. Therefore,

(5.2) v(y) = E[V (yZ))] < ∞, y > 0,

i.e., (4.3) holds. Using Proposition 4.8, we obtain that

(5.3) 0 < (−1)kv(k)(y) = (−1)kE[V (k)(yZ)Zk)] < ∞, y > 0, k = 1, . . . , n.

Therefore, v ∈ D(n) ∩ C and, in particular, the n-th derivative is given by

(5.4) v(n)(y) = E[V (n)(yZ)Zn)], y > 0.

The n+ 1 derivative of V is

V (n+1)(y) = f(y)V̄ (n+1)(y) + f ′(y)V̄ (n)(y).

One should note that

(−1)n+1V (n+1)(y) = f(y)(−1)n+1V̄ (n+1)(y) + (−f ′(y))(−1)nV̄ (n)(y) > 0,

and
(−y)(n+1)V (n+1)(y) > −Cnf

′(y).

By construction, E[−f ′(Z)] = ∞, so E[(−Z)n+1V (n+1)(Z)] = ∞. Finally, from (5.4)
we have

(−1)n+1 v
(n)(y)− v(n)(1)

y − 1
= (−1)n+1E[V (n)(yZ)Zn)− V (n)(Z)Zn)]

y − 1

= E[V (n+1)(ξ)(−Z)n+1],

for some random variable ξ taking values between Z and yZ. Since

0 ≤ V (n+1)(ξ)(−Z)n+1 → V (n+1)(Z)(−Z)n+1,

we can now apply Fatou’s lemma to obtain

(−1)n+1v(n+1)(1) = ∞.

□
Proof of Lemma 5.2. Consider the Gaussian densities (up to a multiplicative factor)
with mean µ and standard deviation σ > 0, given by

gµ,σ(x) :=
1

σ
e−

(x−µ)2

2σ2 , x ∈ R.

Then, we have
∞∫

−∞

gµ,σ(x)dx =
√
2π, gµ,σ2(µ) =

1

σ
.

Next, let

g(z) :=
∞∑
i=1

1

i2
gi,i−4(z), z ∈ C.
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While not obvious, it is easy to see that the series converges uniformly on compacts
(in the complex plane), so it is analytic (entire). In addition,

∞∫
−∞

g(x)dx ≤
√
2π

∞∑
i=1

1

i2
=: C < ∞.

Furthermore, we have

g(i) ≥ 1

i2
gi,i−4(i) =

1

i2
i4 = i2.

Finally, we set

f(y) := 2− 1

C

y∫
0

g(x)dx, y > 0.

One can then see that f satisfies the desired properties. □
Remark 5.3. To obtain an example with a utility having positive third deriva-
tive U ′′′ > 0, we just use Proposition 5.1 for n = 2. The fact that −V ′′′ =
(−1)(n+1)V (n+1) > 0 ensures, by duality, that the corresponding utility

U(x) := inf
y>0

(V (y) + xy) , x > 0,

satisfies the desired condition U ′′′(x) > 0 for all x > 0.

6. Counterexample 2: non-stochastically dominant models and lack
of differentiability

We show that for any non-homothetic utility U ∈ −C with U ∈ C2 ((0,∞)),
we may construct a non-SD (∞) market model such that, at some point x > 0,
the two-times differentiability of u fails. We recall that standard results in utility
maximization theory, in the form of Kramkov and Schachermayer [19], assert the
continuous differentiability of the value functions. The result below demonstrates
that differentiability might cease to exist at the very next order (even with a CMIM
utility).

We note that, due to the multiplicative structure Ŷ (y) = yŶ under the assump-
tions of Theorem 4.6, we do not make any sigma-boundedness assumption, as in
[21]. Our counterexample is somewhat related to the sigma-boundedness counterex-
ample from [21], but it is stronger: we construct a (counterexample) model for every
Inada utility function with non-constant relative risk aversion.

Let U ∈ −C with U ∈ C2 ((0,∞)) , having non-constant relative risk aversion

(6.1) A(x) := −U ′′(x)x

U ′(x)
, x > 0.

The assumption U ∈ C2 ((0,∞)) is without loss of generality. We may also choose
U ∈ CMIM.

Proposition 6.1. For any non-homothetic1 utility U ∈ −C, with U ∈ C2 ((0,∞)),
and thus, U ∈ CMIM(2), there exists a non-SD (∞) market model such that the
value function is not twice differentiable at some x > 0.

1I.e., such that A ̸= const, where A is defined in (6.1).



ANALYTICITY IN OPTIMAL INVESTMENT AND STOCHASTIC DOMINANCE 849

Proof. We first assume that the risk aversion A satisfies A(1/m) ̸= A(1/k), for some
m and k in N. As we justify at the end of the proof, this is without loss of generality.

Let us suppose that the sample space Ω = {ω0, ω1, . . . }, and consider a one-period
model, where the market consists of a money market account with 0 interest rate
and a stock, with S0 = 1 and S1(ω0) = 2, S1(ωn) =

1
n , n ∈ N.

We are going to construct probabilities pn := P[ωn] > 0, n ≥ 0, satisfying the
following three properties

(6.2) E
[
−U ′′(S1)

]
< ∞,

(6.3) E
[
U ′(S1)S1

]
= E

[
U ′(S1)

]
< ∞,

and

(6.4) E
[
U ′(S1)(1− S1)A(S1)

]
̸= 0,

where A is defined in (6.1). Note that, relations (6.3) and (6.4) can hold together
only if the function A is non-constant.

Direct computations show that (6.4) holds if and only if

(6.5) ∆̂ := − E [U ′′(S1)(S1 − 1)]

E [U ′′(S1)(S1 − 1)2]
̸= 1.

Furthermore, note that ∆̂ ∈ (−1, 2).
In addition to (6.2), (6.3), and (6.4), we will show that there exists ε̄ ∈

(
0, 12
]
,

such that for a random variable defined as

G(ω) := min
ε∈[0,ε̄]

U ′′
(
S1(ω) + ε(1 + ∆̂(S1(ω)− 1))

)
1{∆̂<1}

+ min
ε∈[−ε̄,0]

U ′′
(
S1(ω) + ε(1 + ∆̂(S1(ω)− 1))

)
1{∆̂>1}, ω ∈ Ω,

satisfies

(6.6) G ∈ L1(P).

Assuming for now that such probabilities indeed exist, we show that under (6.3)
and stock as above, P is not a martingale measure for S, and we have

(6.7) 2 > E [S1] > 1.

Indeed, the monotonicity of U ′ yields

E [1− S1] = E
[
(1− S1)1{S1<2}

]
− P[{S1 = 2}]

<E
[
U ′(S1)

U ′(2)
(1− S1)1{S1<2}

]
− P[{S1 = 2}]

=
1

U ′(2)

(
E
[
U ′(S1)(1− S1)1{S1<2}

]
+ U ′(2)E[(1− S1)1{S1=2}]

)
=

1

U ′(2)
E
[
U ′(S1)(1− S1)

]
= 0,

where in the last equality we used (6.3). This implies (6.7), where the upper bound
is also strict as pn > 0, for every n ≥ 0. Thus, P is not a martingale measure for S.
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Therefore, the constant-valued process Z ≡ 1 is not an element of Y(1), and thus
it is not the dual minimizer for y = 1.

Furthermore, we claim that (4.3) holds. This is rather clear by observing that,
for n0 large enough, one can choose a martingale measure Q that changes the
probabilities only for ω0, ω1, . . . , ωn0 for some n0, but keeps the same probabilities
for ωn, n > n0. As the density Z ∈ Y(1) of such a martingale measure is bounded
below away from 0, (4.3) holds.

Next, we construct appropriate probabilities pn’s (such that (6.3), (6.6), and (6.5)
hold; note that one might need to perturb finitely many of these pn’s later such that
(6.12) below holds too). For this, we set

(6.8) pn :=
1

2n+1

min(1, U ′(2))

max

(
1, U ′

(
1
n

)
− min

s∈[ 2
3n

, 2
3
+ 2

3n ]
U ′′ (s)

) , n ≥ 2.

Note that

min
s∈[ 2

3n
, 2
3
+ 2

3n ]
U ′′ (s) ≤ min

z∈[0,1/3]
min

∆∈[−1,1]
U ′′(1/n+ z(1 + ∆(1/n− 1)))

and
min

s∈[ 2
3n

, 2
3
+ 2

3n ]
U ′′ (s) ≤ min

z∈[−1/3,0]
min

∆∈[1,2]
U ′′(1/n+ z(1 + ∆(1/n− 1))).

The intuition behind the exact form of the intervals above comes from taking ε̄ = 1/3

in the construction of G satisfying (6.6) when ∆̂ is not fixed yet.
Then, as S1 > 1 only for ω0, we have

0 ≤ E
[
U ′(S1)S1

]
≤ U ′(2) + E

[
U ′(S1)

]
≤ 2U ′(2) + U ′(1)

+
∑
n≥2

1

2n+1

U ′ ( 1
n

)
max

(
U ′
(
1
n

)
− min

s∈[ 2
3n

, 2
3
+ 2

3n ]
U ′′ (s) , 1

) < ∞,

and, the finiteness in (6.3) holds (regardless of the choice of p0 and p1).
Now, with pn, n ≥ 2, given by (6.8), we show that we can simultaneously have

(6.3) and (6.5). We define

p0 :=
1

U ′(2)

∑
n≥2

pnU
′ ( 1

n

) (
1− 1

n

)
=
min(U ′(2), 1)

U ′(2)

∑
n≥2

1

2n+1

U ′ ( 1
n

) (
1− 1

n

)
max

(
U ′
(
1
n

)
− min

s∈[ 2
3n

, 2
3
+ 2

3n ]
U ′′ (s) , 1

) .
(6.9)

Then, using the above, we rewrite

2p0U
′(2) +

∑
n≥1

pnU
′ ( 1

n

) 1
n
= p0U

′(2) +
∑
n≥1

pnU
′ ( 1

n

)
,

and (6.3) follows. Thus, (6.3) holds with pn, n ≥ 2, given by (6.8) and p0 specified by
(6.9). Note that p0 ≤ 1/4,

∑
n≥2

pn ≤ 1/4, and, therefore, p1 := 1−(p0+
∑
n≥2

pn) ≥ 1/2.
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To show (6.6), we observe that there exist constants a and a′, such that 0 < a < a′

and, for an appropriate ε̄, we have

0 ≥ E [G] ≥2 min
s∈[a,a′]

U ′′ (s)

+
∑
n≥2

1

2n+1

min
s∈[ 2

3n
, 2
3
+ 2

3n ]
U ′′ (s)

max

(
U ′
(
1
n

)
− min

s∈[ 2
3n

, 2
3
+ 2

3n ]
U ′′ (s) , 1

) > −∞.

Next, we show that (6.4) holds for the choice of pn’s or for a slightly perturbed
choice of pn’s, where the distortion is such that the remaining assumptions of the
example do not change. To this end, we rewrite (6.5) as

(6.10) −U ′′(2)p0 +
∑
n≥2

U ′′( 1n)(1−
1
n)pn ̸= U ′′(2)p0 +

∑
n≥2

U ′′( 1n)(1−
1
n)

2pn.

Collecting terms and plugging the expression for p0 from (6.9), we can rewrite (6.10)
as

0 ̸= −2U ′′(2)

U ′(2)

∑
n≥2

pnU
′ ( 1

n

) (
1− 1

n

)
+
∑
n≥2

U ′′( 1n)(1−
1
n)

1
npn

or, in turn,

(6.11) 0 ̸=
∑
n≥2

pnU
′( 1n)

(
1− 1

n

) (
A(2)−A( 1n)

)
.

We note that, if x → A(x), x > 0, is strictly monotone2, (6.5) holds, as all terms
under the sum in (6.11) are non-zero and of the same sign.

When the relative risk aversion is not monotone, but also non-constant, and if
(6.11) does not hold, it is enough to perturb finitely many of the pn’s in a way to
get simultaneously ∑

n≥0

pn = 1,

∑
n≥0

pnU
′(sn)(1− sn) = 0,

∑
n≥0

pnU
′(sn)(1− sn)A(sn) ̸= 0,

(6.12)

while preserving the positivity of pn’s (here s0 = 2 and sn = 1/n, n ∈ N). As
A(1/m) ̸= A(1/k), for some m and k, such a distortion of pn’s exists. As we have
only perturbed finitely many pn’s, (6.6) still holds. This results in the choice of a
probability measure, such that (6.3), (6.5), and (6.6) hold.

2An example of an Inada utility function of class CMIM, where the relative risk aversion
is strictly monotone, is given via −V ′(y) = y−k 1

y+1
, y > 0, for some constant k > 0. Here

−V ′ is completely monotonic as a product of the completely monotonic functions y → y−k and
y → 1

y+1
, y > 0, see [33, Corollary 1.6]. Then, the relative risk tolerance at x = −V ′(y) is given by

B(y) = −V ′′(y)y
V ′(y) = k+ y

y+1
, which is a strictly monotone function of y on (0,∞). As A(x)B(y) = 1

for y = U ′(x), we deduce that A is also a strictly monotone function on (0,∞).
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We show that u′′(1) does not exist. First, we will assume that in (6.5), the
left-hand side is strictly less than 1, i.e.,

(6.13) − E [U ′′(S1)(S1 − 1)]

E [U ′′(S1)(S1 − 1)2]
< 1.

As for every x ≥ 0, {x +∆(S1 − 1) : ∆ ∈ [−x, x]} is the set of terminal values of
the elements of X (x), we observe that buying the portfolio consisting of one share
of stock is admissible for x = 1. Then, by conjugacy, we have

E [U(S1)] = E
[
V (U ′(S1)) + U ′(S1)S1

]
.(6.14)

Using (6.3) and with an arbitrary ∆ ∈ [−1, 1], we can rewrite the latter expression
as

E
[
V (U ′(S1)) + U ′(S1)S1

]
= E

[
V (U ′(S1)) + U ′(S1)

]
= E

[
V (U ′(S1)) + U ′(S1)(1 + ∆(S1 − 1))

]
≥ E [U(1 + ∆(S1 − 1))] .

(6.15)

Combining (6.14) and (6.15), we get

E [U(S1)] ≥ E [U(1 + ∆(S1 − 1))] , ∆ ∈ [−1, 1],

which yields that X̂(1) = S.
In turn, by the relations between the primal and dual optimizers, we get

(6.16) u′(1) = E
[
S1U

′(S1)
]
= E

[
U ′(S1)

]
,

where the second equality follows from (6.3).
For ε being small, Taylor’s expansion yields

(6.17)

U(X̂1(1 + ε))− U(S1) = εU ′(S1)
X̂1(1 + ε)− S1

ε
+

ε2

2
U ′′(η(ε))

(
X̂1(1 + ε)− S1

)2
ε2

,

where η(ε) is a random variable taking values between S1 and X̂1(1+ε). Therefore,
from (6.16) and (6.17), we obtain

2
ε2

(
u(1 + ε)− u(1)− εu′(1)

)
=

2

ε
E

[
U ′(S1)

(
X̂1(1 + ε)− S1

ε
− 1

)]

+ E

U ′′(η(ε))

(
X̂1(1 + ε)− S1

)2
ε2

 .

(6.18)

Let us consider the first term in the right-hand side of (6.18),

(6.19)
2

ε
E

[
U ′(S1)

(
X̂1(1 + ε)− S1

ε
− 1

)]
.
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As X̂1(1+ε) = 1+ε+∆̂(1+ε)(S1−1), for some (fixed and nonrandom) ∆̂(1+ε) ∈
[−1− ε, 1 + ε], we can rewrite (6.19) as

2

ε
E

[
U ′(S1)

(
1 + ε+ ∆̂(1 + ε)(S1 − 1)− S1

ε
− 1

)]

=
2

ε
E
[
U ′(S1)

(
1 + ε− S1 − ε

ε

)]
+

2

ε2
∆̂(1 + ε)E

[
U ′(S1) (S1 − 1)

]
=

2

ε2
E
[
U ′(S1) (1− S1)

]
+

2

ε2
∆̂(1 + ε)E

[
U ′(S1) (S1 − 1)

]
= 0,

(6.20)

where in the last equality we used (6.3). Therefore, (6.18) becomes

2
ε2

(
u(1 + ε)− u(1)− εu′(1)

)
= E

U ′′(η(ε))

(
X̂1(1 + ε)− S1

)2
ε2

 .(6.21)

Next, we look at

(6.22) lim sup
ε↑0

E

U ′′(η(ε))

(
X̂1(1 + ε)− S1

)2
ε2

 .

Using that u(1) < ∞, [19, Lemma 3.6] together with the symmetry between the
primal and dual problems (see the abstract theorems from [27]) allow to conclude

that X̂1(1 + ε) → X̂1(1) = S1, as ε → 0, in probability. Consequently, since η(ε)

takes values between X̂1(1) and X̂1(1+ε), we deduce that η(ε) → S1 in probability.
Passing to the limit along a subsequence in (6.22), and applying Fatou’s lemma, we
get
(6.23)

lim sup
ε↑0

E

U ′′(η(ε))

(
X̂1(1 + ε)− S1

)2
ε2

 ≤ sup
∆̃≥1

E
[
U ′′(S1)

(
∆̃S1 + 1− ∆̃

)2]
,

where we used the representation X̂1(1+ε)−S1

ε = ∆̃S1 + 1− ∆̃, for some constant ∆̃,
which, for ε ∈ (−1, 0), is bounded from below by 1, and the observation that, on

∆̃ > 2, U ′′(η(ε))
(
∆̃S1 + 1− ∆̃

)2
is monotone in ∆̃, for every sufficiently small and

negative ε and for every ω.
Combining (6.21) and (6.23), we deduce that

(6.24) lim sup
ε↑0

2
ε2

(
u(1 + ε)− u(1)− εu′(1)

)
≤ sup

∆̃≥1

E
[
U ′′(S1)

(
∆̃S1 + 1− ∆̃

)2]
.

On the other hand, there exists a constant ε′0 > 0, such that for every ∆̄ ∈ [−1 −
2/ε′0, 1], we have that

(6.25) X (1 + ε) ∋ Xε,∆̄ := 1 + ε+ (1 + ∆̄ε)(S − 1), for every ε ∈ (0, ε′0].



854 O. MOSTOVYI, M. SÎRBU, AND T. ZARIPHOPOULOU

In particular, for every ∆̄ < 1, we can choose ε′0 such that (6.25) holds. We then
obtain

lim inf
ε↓0

2
ε2

(
u(1 + ε)− u(1)− εu′(1)

)
≥ lim inf

ε↓0
2
ε2

(
E
[
U
(
Xε,∆̄

1

)]
− u(1)− εu′(1)

)
,

(6.26)

where E
[
U
(
Xε,∆̄

1

)]
is well-defined see the justification in Remark 4.9. Since

Xε,∆̄ = S + (∆̄ε)S + ε(1− ∆̄),

applying Taylor’s expansion once more in (6.26) gives

2

ε2

(
E
[
U
(
Xε,∆̄

1

)]
− u(1)− εu′(1)

)
=

2

ε2
(
ε(∆̄− 1)E

[
U ′(S1)(S1 − 1)

]
+
1

2
E
[
U ′′(η̃(ε))(∆̄εS1 + ε(1− ∆̄))2

])
=

1

ε2
E
[
U ′′(η̃(ε))(∆̄εS1 + ε(1− ∆̄))2

]
,

(6.27)

for some random variable η̃(ε) taking values between S1 and Xε,∆̄, and where in
the last equality, we have used (6.3).

In particular, for ∆̄ = ∆̂ = − E[U ′′(S1)(S1−1)]
E[U ′′(S1)(S1−1)2]

, where by assumption (6.13), ∆̂ < 1,

we can rewrite the latter expression in (6.27) as

E
[
U ′′(η̃(ε))(∆̂S1 + (1− ∆̂))2

]
.

Note that the function f(∆̄) := E
[
U ′′(S1)(∆̄S1 + (1− ∆̄))2

]
, ∆̄ ∈ R, reaches

its strict global maximum at ∆̂ defined above. Also, from (6.25), we deduce that

Xε,∆̄ → S1 as ε ↓ 0. Combining (6.26) and (6.27) and using (6.6), for ∆̄ = ∆̂, we
deduce that

lim inf
ε↓0

2
ε2

(
u(1 + ε)− u(1)− εu′(1)

)
≥ E

[
U ′′(S1)(∆̂S1 + 1− ∆̂)2

]
.(6.28)

Therefore, from (6.23) and (6.28), we conclude that

lim inf
ε↓0

2
ε2

(
u(1 + ε)− u(1)− εu′(1)

)
≥ E

[
U ′′(S1)(∆̂S1 + 1− ∆̂)2

]
= sup

∆̄∈R
E
[
U ′′(S1)

(
∆̄S1 + 1− ∆̄

)2]
> sup

∆̄≥1

E
[
U ′′(S1)

(
∆̄S1 + 1− ∆̄

)2]
≥ lim sup

ε↑0

2
ε2

(
u(1 + ε)− u(1)− εu′(1)

)
,

which shows that u′′(1) does not exist in the case when ∆̂ < 1, where ∆̂ is defined

in (6.5). The case when ∆̂ > 1 can be handled similarly.
We conclude justifying why we may assume that, without loss of generality, A

satisfies A(1/m) ̸= A(1/k), for some m and k in N. Indeed, for a given utility
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function U , let us consider the family Uλ := U(λ·), λ > 0. Then, for a given λ > 0
and every x > 0, we have

(6.29) Aλ(x) := −
U ′′
λ (x)x

U ′
λ(x)

= −λ2U ′′(λx)x

λU ′(λx)
= A(λx).

If A(a) ̸= A(b) for some 0 < a < b, then, we have, by (6.29), that Aλ(a/λ) ̸=
Aλ(b/λ). Therefore, by the choice of λ, we may assume that

Aλ(a/λ) ̸= Aλ(1/m),

for some m ∈ N and where a/λ ∈ (0, 1/m). If we add a/λ to the range of S1, and
assign to this state a positive but small probability, the arguments above still go
through, and imply that u′′λ(1) does not exist, where

uλ(x) := sup
X∈X (1)

E [U(λxX1)] = u(λx).

Therefore, non-existence of u′′λ(1) would imply that u′′(λ) does not exist either. □

7. SD(2) = SD(∞)

While condition SD(n), n = 2, . . . ,∞ is the natural condition for differentiability
of order n, or analyticity, for n = ∞, it turns out that, when applied to the dual
domain, having a maximal element is the same for every n. In addition, we have
a characterization of such a maximal element. This is related to [32, Proposition

3.10], but unlike [32, Proposition 3.10], we do not assume that Ŷ is a density of a
probability measure, as no free lunch with vanishing risk (NFLVR) is not supposed

here. Even if NFLVR is assumed, if Ŷ is maximal in the second-order stochastic
dominance, one can conclude that it is a measure.

We recall that a probability measure Q ∼ P is an equivalent local martingale
measure for S if every X ∈ X (1) is a local martingale under Q. We will denote the
family of equivalent local martingale measures by Me(S). By [5, Theorem 1.1], the
celebrated no-free lunch with vanishing risk (NFLVR) condition for S is equivalent
to

(7.1) Me
σ(S) := {Q ∼ P : S is a σ −martingale under Q} ̸= ∅,

that is to non-emptiness of the set of equivalent sigma-martingale measures for S.
Following [5], let us also recall that an equivalent separating measure for S is defined
as Q ∼ P such that every X ∈ X (1) is a supermartingale under Q. Me

s(S) denotes
the family of the equivalent separating measures for S.

Remark 7.1. We recall that, using the Ansel and Stricker Theorem, [2, Corollary
3.5], one can show that

Me
s(S) ⊇ Me(S) ⊇ Me

σ(S)

If Me
s(S) ̸= ∅, then S satisfies NFLVR, and thus by [5, Theorem 1.1], we have that

M e
σ(S) ̸= ∅.
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Further, by [5, Proposition 4.7], the density of Me
σ(S) in Me

s(S) implies that, for
every non-negative random variable g, we have

sup
Q∈Me

s(S)
EQ[g] = sup

Q∈Me
σ(S)

EQ[g],

see the proof of [5, Theorem 5.12].

Proposition 7.2. Let us consider a financial model for which (2.3) holds3. Then
the following conditions are equivalent:

1. SD(∞) : ŶT ⪰∞ YT , for every Y ∈ Y(1);

2. ŶT ≥ E
[
YT |σ(ŶT )

]
, for every Y ∈ Y(1);

3. SD(2) : ŶT ⪰2 YT , for every Y ∈ Y(1).

In addition if NFLVR holds, then: E
[
ŶT

]
= 1 and the probability measure Q̂

defined through its derivative as dQ̂
dP := ŶT is a separating measure in the terminology

of Delbaen and Schachermayer [5], that is Q̂ ∈ Me
s(S).

Proof. The implication 3 ⇒ 1 is trivial. Likewise, 2 ⇒ 3 follows from Jensen’s
inequality. For the additional statement, under NFLVR there exists YT = dQ

dP ,
Q ∈ Me

σ(S), such that E [YT ] = 1, and thus from 2, we have

ŶT ≥ E
[
YT |σ(ŶT )

]
.

Therefore E
[
ŶT

]
≥ 1, and the proof is complete.

It remains to prove 1 ⇒ 2. Assume SD(∞) and let Ŷ be the maximal element
in Y(1) in the sense of the infinite order stochastic dominance. Let us consider the
dual function V such that the following properties hold:

(i) −V ′ is CM;
(ii) the Inada conditions (2.4) hold for −V ;
(iii) V is bounded.

Remark 7.3. One way of constructing such a V is though a measure µ such that

(7.2) µ({0}) = 0, µ((0,∞)) = ∞, and

∞∫
0

∞∫
0

e−ytµ(dt) < ∞.

Then V can be defined (through its derivative) as

(7.3) V (y) :=

∞∫
y

∞∫
0

e−ztµ(dt)dz, y > 0.

Then

−V ′(y) =

∞∫
0

e−ytµ(dt), y > 0,

3In particular, we do not suppose (7.1).
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is demonstratively CM. The Inada conditions (2.4) and finiteness will hold for −V
by (7.2). Thus properties (i)-(iii) hold. Note that, for the finiteness of V , we have

∞∫
0

 ∞∫
0

e−ytµ(dt)

 dy =

∞∫
0

 ∞∫
0

e−ytdy

µ(dt) =

∞∫
0

1

t
µ(dt).

This allows for an explicit choice of µ. For example, we can pick µ given by

µ(dt) =

{
t−

1
2dt, t ≥ 1

0dt, t ∈ (0, 1)
.

Another way to construct V satisfying (i)-(iii) is the following: for some constants
a ∈ (−1, 0) and b ∈ (−∞, 1), we can set

V (y) :=

∞∫
y

za(z + 1)bdz, y > 0.

Then, −V ′(y) = ya(y + 1)b, y > 0, is CM as a product of CM functions, see [33,
Corollary 1.6]. As

0 ≤ V (y) ≤ lim
y↓0

V (y) =

∞∫
0

ya(y + 1)bdz < ∞,

and the Inada conditions (2.4) hold for −V ′, we deduce that properties (i)-(iii) hold.

Now, with V as above for the utility function U(x) = inf
y>0

(V (y)+xy), x > 0, let us

consider (2.5). Under (2.3), its dual is (2.7), where (4.3) holds by the boundedness
of V . Therefore, the abstract theorems in [27] apply, and we deduce the existence

of x̂ = −v′(1), such that X̂ ∈ X (x̂) and X̂Ŷ is a true martingale and

(7.4) X̂T = −V ′(ŶT ).

Let us fix a constant λ > 0 and consider a new dual function defined (on the level
of the derivative) as

Vλ(y) := −
∞∫
y

V ′(z)
(
1 + e−λz

)
dz, y > 0;

that is

−V ′
λ(y) = −V ′(y)

(
1 + e−λy

)
, y > 0.

As −V ′(y) ≤ −V ′
λ(y) ≤ −2V ′(y), y > 0, we deduce that the Inada conditions

(2.4) hold for −V and that V is bounded. Further, −V ′
λ is CM by [33, Corol-

lary 1.6]. Thus Vλ satisfies properties (i)-(iii) above, and therefore for Uλ(x) =
inf
y>0

(Vλ(y) + xy), x > 0, if we consider the utility maximization problem (2.5) and

it dual (2.7), we deduce from [27, Theorem 3.2] that xλ := −v′λ(1) is well-defined

and that there exists Xλ ∈ X (xλ) such that XλŶ is a P martingale and

Xλ
T = −V ′

λ(ŶT ) = −V ′(ŶT )
(
1 + e−λŶT

)
= X̂T

(
1 + e−λŶT

)
,
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is the optimizer to (2.5) for x = xλ and the utility function Uλ.
Now, one can see that

xλ − x̂ > 0 and Xλ − X̂ ∈ X (xλ − x̂).

Further, (Xλ − X̂)Ŷ is a true P-martingale and

Xλ
T − X̂T

X̂T

= e−λŶT .

Let us consider

M :=
Xλ − X̂

X̂
,

and change numéraire to X̂
x̂ and the probability measure to R defined as

dR
dP

=
X̂T ŶT

x̂
.

One can see that under the numéraire X̂
x̂ and measure R, the sets of the nonnegative

wealth processes and supermartingale deflators are given by

X̂ (x) :=
X (x)

X̂
x =

{
X

X̂
x̂ =

(
Xt

X̂t

x̂

)
t∈[0,T ]

: X ∈ X (x)

}
, x > 0;

Ŷ(y) :=
Y(y)

Ŷ
=

{
Y

Ŷ
=

(
Yt

Ŷt

)
t∈[0,T ]

: Y ∈ Y(y)

}
, y > 0.

Let us also denote

Ŝ :=

(
x̂

X̂
,
x̂S

X̂

)
.

One can see that

M ∈ X̂
(
xλ − x̂

x̂

)
and that M is a true R-martingale such that

MT = e−λŶT .

Therefore, M is a bounded replication process for e−λŶT under the numéraire X̂
x̂

(and measure R).
We deduce that for every constant λ > 0, the option

0 ≤ fλ(ŶT ) := e−λŶT ≤ 1

is replicable by a bounded stochastic integral under the numéraire X̂
x̂ . Let us work

under the measure R and numéraire X̂
x̂ . One can see that R ∈ Me

s(Ŝ). In particular

(under the numéraire X̂
x̂ ), we obtain that

Me
s(Ŝ) ̸= ∅;

and we have

(7.5) ER
[
fλ(ŶT )

]
= EQ

[
fλ(ŶT )

]
, for every λ > 0 and Q ∈ Me

s(Ŝ).
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Next, from every fλ of the form fλ(y) = e−λy, y > 0, we will extend (7.5) to any

(7.6) h : [0,∞) → R, h is continuous and lim
y↑∞

h(y) = 0.

The latter property of h allows for the Alexandroff extension to [0,∞]. Equivalently,
one can consider

g(y) :=

{
h(− log(y)), y ∈ (0, 1]
0, y = 0

,

and observe that g is continuous on [0, 1]. Therefore, we can uniformly approximate
g by the polynomials Pn of the form

Pn(y) = a0 + a1y + · · ·+ any
n, y ∈ [0, 1].

Since g(0) = 0, we further conclude that a0 = 0. Going back to h, we deduce that
h can be approximated uniformly on [0,∞) by the functions of the form

a1e
−y + · · ·+ ane

−ny = Pn(e
−y), y ≥ 0.

Consequently, for such an h and any Q ∈ Me
s(Ŝ), we get

ER
[
h(ŶT )

]
= ER

[
lim
n↑∞

Pn

(
e−ŶT

)]
= lim

n↑∞
ER
[
Pn

(
e−ŶT

)]
=

= lim
n↑∞

EQ
[
Pn

(
e−ŶT

)]
= EQ

[
lim
n↑∞

Pn

(
e−ŶT

)]
= EQ

[
h
(
ŶT

)]
,

(7.7)

where we have used the dominated convergence theorem and (7.5).
To recapitulate, we have shown that for any function h satisfying (7.6), we have

(7.8) ER
[
h(ŶT )

]
= EQ

[
h(ŶT )

]
, for every Q ∈ Me

s(Ŝ).

Next, we observe that (7.8) holds for any function h : [0,∞) → R, which is
smooth and has a compact support in (0,∞), as every such function satisfies (7.6).
Further, using truncation and regularization by convolution, one can approximate
(in the topology of uniform convergence on compact subsets of (0,∞)) any bounded
and continuous function (0,∞) → R by a uniformly bounded sequence of smooth
functions with compact support in (0,∞). Therefore, similarly to the computa-
tions in (7.7), we deduce that (7.8) holds for every bounded continuous function h:
(0,∞) → R.

Let H be the set of bounded Borel-measurable functions h: (0,∞) → R, such that
(7.8) holds. One can see that H is a monotone class. By C let us denote the set
of bounded continuous functions (0,∞) → R. As C is closed under the pointwise
multiplication, and C ⊆ H, we deduce from a version of the monotone class theorem,
see e.g., [31, Theorem I.8] or [6, Theorem 21, p. 14], that H contains all bounded
σ(C)-measurable functions. As σ(C) is the Borel sigma-field on (0,∞), we conclude
that, for every bounded Borel-measurable function h: (0,∞) → R, (7.8) holds.

Therefore, every bounded option h(ŶT ) is replicable under the numéraire X̂
x̂ .

Now, let us fix a bounded function h: (0,∞) → [0,∞). Then, there exists x ≥ 0,
and X ∈ X (x), such that

(7.9) X̃ =
X

X̂
x̂ ∈ X̂ (x) is bounded and X̃T = h(ŶT ).
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We also have

(7.10) x = ER
[
h(ŶT )

]
= E

[
X̂T

x̂
ŶTh(ŶT )

]
.

Now, let us get back to the original numéraire and measure: by (7.9), we have a
process X ∈ X (x), such that

XT =
X̂T

x̂
h(ŶT ).

Therefore, for any Y ∈ Y(1), we have

(7.11) x ≥ E [XTYT ] = E

[
X̂T

x̂
h(ŶT )YT

]
Comparing (7.10) and (7.11), we deduce, for every Y ∈ Y(1) and every bounded
h ≥ 0, that

E
[
X̂T ŶTh(ŶT )

]
≥ E

[
X̂TYTh(ŶT )

]
.

Consequently, we have

X̂T ŶT ≥ E
[
X̂TYT |σ(ŶT )

]
.

We recall that by (7.4), X̂T = −V ′(ŶT ), and thus X̂T is σ(ŶT )-measurable. We
conclude that

ŶT ≥ E
[
YT |σ(ŶT )

]
,

for every Y ∈ Y(1). This completes the proof. □
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