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Abstract We consider the expected utility maximisation problem and its response
to small changes in the market price of risk in a continuous semimartingale set-
ting. Assuming that the preferences of a rational economic agent are modelled by
a general utility function, we obtain a second-order expansion of the value function,
a first-order approximation of the terminal wealth, and we construct trading strategies
that match the indirect utility function up to the second order. The method, which
is presented in an abstract version, relies on a simultaneous expansion with respect
to both the state variable and the parameter, and convex duality in the direction of
the state variable only (as there is no convexity with respect to the parameter). If a
risk-tolerance wealth process exists, using it as numéraire and under an appropri-
ate change of measure, we reduce the approximation problem to a Kunita–Watanabe
decomposition.

Keywords Sensitivity analysis · Optimal investment · Duality theory ·
Kunita–Watanabe decomposition
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1 Introduction

It is well known, see for example Delbaen and Schachermayer [5] or Hulley and
Schweizer [15], that for a continuous (and strictly positive) stock price process, the
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no-arbitrage condition implies that the return J of the stock price has the representa-
tion

J = M + λ · 〈M〉,
where M is a continuous local martingale and λ a predictable process, i.e., the fi-
nite variation part of the return is absolutely continuous with respect to its quadratic
variation. In the formulation above, we analyse the effect of perturbations of the mar-
ket price of risk λ on the utility maximisation problem with a general utility function.
More precisely, we study the second-order asymptotics of the value function and first-
order asymptotics of optimal strategies when the market price of risk is parametrised
by a small parameter δ as λ + δν, around the “base” model for δ = 0.

In the particular case of power utility functions, such a perturbation analysis ap-
pears in Larsen et al. [24] (and Chau and Rásonyi [2], but for lower-order asymp-
totics). Here, we obtain the expansions for general utility functions. Besides the math-
ematical (and arguably more important) motivation in itself, the generalisation to util-
ities which are not powers provides financial insight in two directions:

1) Going back to Merton [28], it has been clear that utility maximisation analysis
has to be understood outside the limited setting of power utilities. There are important
situations where the base model can still be solved rather explicitly, even with a gen-
eral utility function, but the approximate model cannot. This is the case for example
if the base model is complete (at least from the point of view of utility maximisation,
as in Kramkov and Sîrbu [23]), but a perturbation to the market price of risk leads
to genuine incompleteness. If one can solve the base model but not the approximate
one, an asymptotic result is needed. Example 8.5 along these lines is presented below.

2) Our analysis provides the general structure of the approximation, in the di-
rections of both the parameter and the wealth, giving additional insight on why the
constant relative risk aversion case is so particular and therefore more explicit. In
the case of power utilities, the optimal wealth process depends trivially on the ini-
tial wealth by scaling; so the optimal wealth and the risk-tolerance wealth process
coincide (up to a multiplicative constant).

The mathematics, which we consider to be the main contribution, for general util-
ities is substantially different from Larsen et al. [24]. More precisely:

1) We consider perturbations simultaneously in the direction of the state (initial
wealth) and the parameter and thus increase the dimensionality of the value function.
As the proofs show, this is a necessary step for the approach to work.

2) In order to understand the general structure of the approximation, we need to
formulate auxiliary quadratic stochastic control problems and relate the second-order
approximations of both primal and dual value functions to these problems.

3) Finally, if the risk-tolerance wealth process exists, we use it as numéraire and
change the measure accordingly, to identify solutions to the general quadratic opti-
misation problems above in terms of a Kunita–Watanabe decomposition (of a certain
martingale) generated by the perturbation process.

As an important part of our contribution, we also have an abstract version of the
theorems that can be potentially applied to other stochastic control problems which
are convex in the state variable, but not convex with respect to the parameter.

To the best of our knowledge, the closest paper from the mathematical viewpoint
is Kramkov and Sîrbu [23], where the authors obtain a second-order expansion of
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the value function with respect to simultaneous perturbations of the initial wealth
and the number of units of random endowment held in the portfolio. We should like
to stress that unlike the present setting, the value function in [23] is jointly concave
(in both the initial wealth and the number of units of random endowment held in
the portfolio), a fact that plays a significant role in the proofs there. Here, we use
convexity only in the direction of the state variable. Note that the method of primal–
dual simultaneous expansions, used in [23] and the present paper, was introduced in
mathematical finance in [11].

As it is a central problem in financial economics, a large body of work is de-
voted to finding closed-form solutions to utility maximisation problems. Starting
with the seminal work of Merton [27], such closed-form solutions have been con-
structed in Kim and Omberg [18], Zariphopoulou [33], Kraft [19], Liu [26], Guasoni
and Robertson [9]. For a non-power utility, the optimal strategies are characterised
in Horst et al. [12] and Santacroce and Trivellato [30] using backward stochastic
differential equations. For the cases where closed-form solutions do not exist, a first-
order asymptotic expansion with respect to perturbations of the market price of risk
is obtained in Chau and Rásonyi [2] and Veraguas and Silva [32]. A second-order
analysis is performed in Larsen et al. [24] for power utilities with p < 0 in a Brow-
nian setting and under multiple integrability conditions. In contrast to [24], where
the second-order correction terms are obtained via the martingale representation the-
orem, the key structural objects that drive the asymptotic expansions in the present
paper are quadratic minimisation problems in the spirit of Kramkov and Sîrbu [23]
that are closely related to those in Schweizer [31], Gouriéroux et al. [8], Fontana and
Schweizer [7] and Czichowsky and Schweizer [4].

In the constant relative risk aversion case, the risk-tolerance wealth process ex-
ists and equals the optimal wealth process (up to a multiplicative constant) and thus,
the reduction to the Kunita–Watanabe decomposition (as in Theorem 8.3 below) is
done under the optimal wealth process (as numéraire) and optimal dual measure ac-
counting for the change of numéraire. This allowed Larsen et al. [24] to jump to the
Kunita–Watanabe decomposition, which in view of the Brownian filtration is given
via the martingale representation theorem, and to make a direct conjecture (later veri-
fied by duality) what the correction to the optimal strategy is. Also, as opposed to the
multiple integrability conditions in Larsen et al. [24], the analysis here is performed
under one integrability condition, Assumption 2.6. A counterexample in Sect. 6 sup-
ports this assumption by showing that in its absence, the expansions need not ex-
ist.

The remainder of the paper is organised as follows. In Sect. 2, we present the
model, state the technical assumptions and the expansion theorems. Section 3 con-
tains the approximation of optimal trading strategies. Section 4 includes abstract ver-
sions of Theorems 2.7, 2.8, 2.10, and 2.12 with proofs, and Sect. 5 contains the proofs
of non-abstract theorems and Theorem 3.1, where a construction of corrections to the
optimal trading strategies (accurate up to the second order of the value function) is
specified. Section 7 contains sufficient conditions for Assumption 2.6. In Sect. 8,
we relate the asymptotic expansions from previous sections to the existence of the
risk-tolerance wealth process and a Kunita–Watanabe decomposition and present an
important example.
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We finish this section with some of the notations used in the paper. For a vector
a ∈R

2 with components a1 and a2 and a 2 × 2 matrix A, we define their norms as

|a| :=
√

a2
1 + a2

2 and |A| := sup
a∈R2

|Aa|
|a| .

We also often write �x2 for (�x)2 for brevity.

2 Model

2.1 The parametrised family of stock price processes

Let us consider a complete stochastic basis (�,F , (Ft )t∈[0,T ],P), where T ∈ (0,∞)

is the time horizon, the filtration satisfies the usual conditions and F0 is a trivial
σ -algebra. We assume that there are two traded securities, a bank account with zero
interest rate and a stock. Let M be a one-dimensional continuous local martingale
and λ a predictable process such that

(λ2 · 〈M〉)T < ∞ P-a.s. (2.1)

The stock price return process for the unperturbed or 0-model is given by

J 0 := λ · 〈M〉 + M.

Remark 2.1 The decomposition M +λ · 〈M〉 used here for the return process is often
used for the stock process itself; see e.g. Hulley and Schweizer [15]. As a conse-
quence, the processes M and λ have slightly different meanings here than e.g. in
[15].

Next we consider a parametric family of semimartingales J δ , δ ∈R, with the same
martingale part M and where the market price of risk is perturbed, i.e.,

J δ := λδ · 〈M〉 + M,

where for some predictable process ν such that

(ν2 · 〈M〉)T < ∞ P-a.s., (2.2)

we have

λδ := λ + δν, δ ∈ R.

2.2 Primal problem

Let U be a utility function that satisfies Assumption 2.2 below.
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Assumption 2.2 The utility function U on (0,∞) is strictly increasing, strictly con-
cave, two times continuously differentiable, and there exist positive constants c1 and
c2 such that

c1 ≤ A(x) := −U ′′(x)x

U ′(x)
≤ c2, (2.3)

i.e., the relative risk aversion of U is uniformly bounded away from zero and infinity.

The family of primal feasible sets is defined, for (x, δ) ∈ (0,∞) ×R, as

X (x, δ) := {X ≥ 0 : X = x + H · J δ,H is predictable and J δ-integrable},
where H represents the amount invested in the stock. The corresponding family of
value functions is given by

u(x, δ) := sup
X∈X (x,δ)

E[U(XT )], (x, δ) ∈ (0,∞) ×R. (2.4)

Remark 2.3 The utility maximisation problem (2.4) without the existence of a local
martingale measure (or rather without a local martingale deflator) is investigated in
Karatzas et al. [16] in an Itô process setting. The results for the general semimartin-
gale framework follow from the abstract theorems in Kramkov and Schachermayer
[20]. However, the results in [20] are stated in a form that is linked to assuming the
existence of a local martingale measure. The direct assertions for the no-unbounded-
profit-with-bounded-risk setting are given in [17, Theorem 1.4] and [1, Theorem 1].
Also, in certain points below, we refer to the results in Kramkov and Sîrbu [22], for
example in (2.11)–(2.13), that are obtained in [22, Theorem 1] under the assumption
of NFLVR. We shall show that these formulas also hold in the present setting. In turn,
Theorem 8.1 is a version of [23, Theorem 4], which is proved there under NFLVR,
but the proof goes through also under the conditions of the present paper. Therefore,
we shall not give the proof of Theorem 8.1.

Remark 2.4 There are multiple optimisation problems in this paper. Each of them,
under the conditions here and for δ sufficiently close to 0, admits a unique solution.
For easier readability, we introduce the notation for the solution right after the corre-
sponding problem.

Let X̂(x, δ) be the optimiser to (2.4). Also, we use the convention

E[U(XT )] := −∞ if E[U−(XT )] = ∞,

where U− is the negative part of U .

2.3 Dual problem

The investigation of the primal problem (2.4) is conducted via the dual problem. First,
let us define the dual domain, for (y, δ) ∈ (0,∞) ×R, as

Y(y, δ) := {Y :Y is a nonnegative supermartingale such that Y0 = y and

XY = (XtYt )t≥0 is a supermartingale for every X ∈X (1, δ)}.
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We define the convex conjugate to the utility function U as

V (y) := sup
x>0

(
U(x) − xy

)
, y > 0.

Note that for y = U ′(x), we have

V ′′(y) = − 1

U ′′(x)

and

B(y) := −V ′′(y)y

V ′(y)
= 1

A(x)
.

Therefore, Assumption 2.2 implies that

1

c2
≤ B(y) ≤ 1

c1
, y > 0.

The parametrised family of dual value functions is given by

v(y, δ) := inf
Y∈Y(y,δ)

E [V (YT )] , (y, δ) ∈ (0,∞) ×R. (2.5)

Let Ŷ (y, δ) be the optimiser to (2.5). We use the convention

E [V (YT )] := ∞ if E[V +(YT )] = ∞,

where V + is the positive part of V .

2.4 Technical assumptions

We recall the assumption that M is continuous. The absence of arbitrage opportunities
in the 0-model in the sense of no unbounded profit with bounded risk follows from
condition (2.1), which implies that Y(1,0) 
= ∅. Note that (2.1) and (2.2) imply no
unbounded profit with bounded risk for every δ ∈R, thus

Y(1, δ) 
= ∅, δ ∈ R.

In order for the problem (2.4) to be non-degenerate, we also need to assume that

u(x,0) < ∞ for some x > 0. (2.6)

Remark 2.5 Conditions (2.1) and (2.6) are necessary for the expected utility maximi-
sation problem to be non-degenerate. Note that we only impose them for δ = 0.

As in the works of Kramkov and Sîrbu [22, 23], an important role is played by the
probability measure R(x,0) given by

dR(x,0)

dP
:= X̂T (x,0)ŶT (y,0)

xy
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for x > 0 and y = ux(x,0). As Example 6.1 below demonstrates, we need to impose
an integrability condition. First, let us define

ζ(c, δ) := exp
(
c
(|(ν · J δ)T | + 〈ν · J δ〉T

))
, (c, δ) ∈R

2. (2.7)

Assumption 2.6 Let x > 0 be fixed. There exists a c > 0 such that

E
R(x,0) [ζ(c,0)] < ∞.

We discuss Assumption 2.6 and give sufficient conditions in Sect. 7. We also set

Lδ := E
( − (δν) · J 0)

T
, δ ∈ R. (2.8)

Here and below, E denotes the Doléans-Dade exponential. One can see that Lδ is the
terminal value of an element of X (1,0) for every δ ∈R.

2.5 Expansion theorems

In Theorem 2.7, we prove finiteness of the value functions and first-order derivatives
with respect to δ.

Let us set

F := (ν · J 0)T and G := (ν2 · 〈M〉)T . (2.9)

Theorem 2.7 Let x > 0 be fixed, assume that (2.1) and (2.6) as well as Assump-
tions 2.2 and 2.6 hold, and define y = ux(x,0) which is well defined by the abstract
theorems in [20]. Then there exists a δ0 > 0 such that for every δ ∈ (−δ0, δ0), we have

u(x, δ) ∈ R, x > 0, and v(y, δ) ∈ R, y > 0.

In addition, u and v are jointly differentiable (and consequently continuous) at (x,0)

and (y,0), respectively. We also have

∇u(x,0) =
(

y

uδ(x,0)

)
and ∇v(y,0) =

( −x

vδ(y,0)

)
, (2.10)

where

uδ(x,0) = vδ(y,0) = xyER(x,0)[F ].

In order to characterise the second-order derivatives of the value functions, we
need the following notations. Let SX(x,0) be the price process of the traded securities

under the numéraire X̂(x,0)
x

, i.e.,

SX(x,0) =
(

x

X̂(x,0)
,
xE(J 0)

X̂(x,0)

)
.
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For every x > 0, let H2
0(R(x,0)) denote the space of square-integrable martingales

under R(x,0) starting from 0. Let us define

M2(x,0) := {
M ∈ H2

0

(
R(x,0)

) : M = H · SX(x,0) for some S-integrable H
}
,

N 2(y,0) := {
N ∈ H2

0

(
R(x,0)

) : MN is an R(x,0)-martingale for every

M ∈M2(x,0)
}
, where y = ux(x,0).

2.6 Auxiliary minimisation problems

As in [22], for x > 0, let us consider the quadratic optimisation problems

a{x,x} := inf
M∈M2(x,0)

E
R(x,0)

[
A

(
X̂T (x,0)

)
(1 + MT )2], (2.11)

b{y,y} := inf
N∈N 2(y,0)

E
R(x,0)

[
B

(
ŶT (y,0)

)
(1 + NT )2], y = ux(x,0), (2.12)

where A is the relative risk aversion and B the relative risk tolerance of U . It is shown
in [22, Lemmas 2 and 6] that (2.11) and (2.12) admit unique solutions M0(x,0) and
N0(y,0), respectively, and

uxx(x,0) = −y

x
a{x,x},

vyy(y,0) = x

y
b{y,y},

a{x,x}b{y,y} = 1,

A
(
X̂T (x,0)

)(
1 + M0

T (x,0)
) = a{x,x}

(
1 + N0

T (y,0)
)
. (2.13)

In order to characterise the derivatives of the value functions with respect to δ, we
recall F and G from (2.9) and consider the quadratic minimisation problems

a{δ,δ} := inf
M∈M2(x,0)

E
R(x,0)

[
A

(
X̂T (x,0)

)
(MT + xF)2

− 2xFMT − x2(F 2 + G)
]
, (2.14)

b{δ,δ} := inf
N∈N 2(y,0)

E
R(x,0)

[
B

(
ŶT (y,0)

)
(NT − yF)2

+ 2yFNT − y2(F 2 − G)
]
. (2.15)

Along the lines of [22, Lemma 2], one can show that there exist unique solutions
M1(x,0) and N1(y,0) to (2.14) and (2.15), respectively. We also set

a{x,δ} := E
R(x,0)

[
A

(
X̂T (x,0)

)(
1 + M0

T (x,0)
)(

xF + M1
T (x,0)

)

− xF
(
1 + M0

T (x,0)
)]

, (2.16)
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b{y,δ} := E
R(x,0)

[
B

(
ŶT (y,0)

)(
1 + N0

T (y,0)
)(

N1
T (y,0) − yF

)

+ yF
(
1 + N0

T (y,0)
)]

. (2.17)

Theorems 2.8, 2.10 and 2.12 below contain the second-order expansions of the value
functions, derivatives of the optimisers, and properties of such derivatives.

Theorem 2.8 Let x > 0 be fixed. Assume all conditions of Theorem 2.7 hold, with
y = ux(x,0). Define

Hu(x,0) := −y

x

(
a{x,x} a{x,δ}
a{x,δ} a{δ,δ}

)
, (2.18)

where a{x,x}, a{δ,δ}, a{x,δ} are specified in (2.11), (2.14), (2.16), and

Hv(y,0) := x

y

(
b{y,y} b{y,δ}
b{y,δ} b{δ,δ}

)
, (2.19)

where b{y,y}, b{δ,δ}, b{y,δ} are specified in (2.12), (2.15), (2.17). Then the value func-
tions u and v admit respective second-order expansions around (x,0) and (y,0)

given by

u(x + �x, δ) = u(x,0) + (�x δ)∇u(x,0)

+ 1

2
(�x δ)Hu(x,0)

(
�x

δ

)
+ o(�x2 + δ2) (2.20)

and

v(y + �y, δ) = v(y,0) + (�y δ)∇v(y,0)

+ 1

2
(�y δ)Hv(y,0)

(
�y

δ

)
+ o(�y2 + δ2). (2.21)

Remark 2.9 In (2.20) and (2.21) above, we only have second-order expansions (and
make no claims about the existence of the second-order derivatives uxδ, uδδ , vyδ ,
vδδ). Nevertheless, we may abuse the language and call Hu(x,0) and Hv(y,0) the
Hessians of u and v. This causes no confusion; see the discussion e.g. in [25, Sect. 1].
The meaning of the partial derivatives uxx(x,0), uxδ(x,0) and so on then becomes
apparent by identifying entries in these Hessian matrices.

Theorem 2.10 Let x > 0 be fixed. Assume all conditions of Theorem 2.7 hold, with
y = ux(x,0). Then we have

(
a{x,x} 0

a{x,δ} − x
y

)(
b{y,y} 0

b{y,δ} − y
x

)
= I2, (2.22)
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where I2 denotes the 2 × 2 identity matrix. Moreover,

y

x
a{δ,δ} + x

y
b{δ,δ} = a{x,δ}b{y,δ}, (2.23)

U ′′ (X̂T (x,0)
)
X̂T (x,0)

(
1 + M0

T (x,0)

xF + M1
T (x,0)

)

= −
(

a{x,x} 0

a{x,δ} − x
y

)
ŶT (y,0)

(
1 + N0

T (y,0)

yF − N1
T (y,0)

)
, (2.24)

V ′′ (ŶT (y,0)
)
ŶT (y,0)

(
1 + N0

T (y,0)

−yF + N1
T (y,0)

)

=
(

b{y,y} 0

b{y,δ} − y
x

)
X̂T (x,0)

(
1 + M0

T (x,0)

xF + M1
T (x,0)

)
,

and the product of any of X̂(x,0), X̂(x,0)M0(x,0), X̂(x,0)M1(x,0) and any of
Ŷ (y,0), Ŷ (y,0)N0(y,0), Ŷ (y,0)N1(y,0) is a martingale under P, where M0

T (x,0),
M0

T (x,0), N0
T (y,0), N1

T (y,0) are the solutions to (2.11), (2.14), (2.12), (2.15), re-
spectively.

Remark 2.11 Continuing the discussion in Remark 2.9, (2.22) implies that

(
uxx(x,0) 0
uxδ(x,0) 1

)(
vyy(y,0) 0
vyδ(y,0) −1

)
= −I2,

where
(

uxx(x,0) 0
uxδ(x,0) 1

)
= −y

x

(
a{x,x} 0
a{x,δ} − x

y

)
,

(
vyy(y,0) 0
vyδ(y,0) −1

)
= x

y

(
b{y,y} 0
b{y,δ} − y

x

)
.

Likewise, (2.23) gives

−uδδ(x,0) + vδδ(y,0) = −uxδ(x,0)vyδ(y,0).

Theorem 2.12 Let x > 0 be fixed. Assume all conditions of Theorem 2.7 hold,
with y = ux(x,0). Then the terminal values of the wealth processes M0(x,0) and
M1(x,0), which are the solutions to (2.11) and (2.14), respectively, satisfy

lim|�x|+|δ|→0

1

|�x| + |δ|
∣∣∣∣X̂T (x + �x, δ)

− X̂T (x,0)

x

(
x + �x

(
1 + M0

T (x,0)
) + δM1

T (x,0)
) 1

Lδ

∣∣∣∣
= 0, (2.25)
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where the convergence takes place in P-probability and Lδ is defined in (2.8). Like-
wise, the terminal values of N0(y,0) and N1(y,0), which are the solutions to (2.12)
and (2.15), respectively, satisfy

lim|�y|+|δ|→0

1

|�y| + |δ|
∣∣∣∣ŶT (y + �y, δ)

− ŶT (y,0)

y

(
y + �y

(
1 + N0

T (y,0)
) + δN1

T (y,0)
)
Lδ

∣∣∣∣ = 0,

where the convergence takes place in P-probability.

One can obtain the following corollary.

Corollary 2.13 Let x > 0 be fixed. Assume all conditions of Theorem 2.7 hold, with
y = ux(x,0). Then if we define

X′
T (x,0) := X̂T (x,0)

x

(
1 + M0

T (x,0)
)
, Y ′

T (y,0) := ŶT (y,0)

y

(
1 + N0

T (y,0)
)

and

Xδ
T (x,0) := X̂T (x,0)

x

(
M1

T (x,0)+xF
)
, Y δ

T (y,0) := ŶT (y,0)

y

(
N1

T (y,0)−yF
)
,

we have

lim|�x|+|δ|→0

|X̂T (x + �x, δ) − X̂T (x,0) − �xX′
T (x,0) − δXδ

T (x,0)|
|�x| + |δ| = 0,

lim|�y|+|δ|→0

|ŶT (y + �y, δ) − ŶT (y,0) − �yY ′
T (y,0) − δY δ

T (y,0)|
|�y| + |δ| = 0,

where the convergence takes place in P-probability.

Remark 2.14 Even though Corollary 2.13 gives a more explicit form of the deriva-
tives of the terminal wealth, the approximation given in (2.25) turns out to be more
useful for example in the construction of optimal trading strategies in Sect. 3.

3 Approximation of the optimal trading strategies

Throughout this section, we suppose that x > 0 is fixed. Let us denote

MR := J 0 − π̂(x,0) · 〈M〉, (3.1)

where π̂ (x,0) = (π̂t (x,0))t∈[0,T ] is the optimal proportion invested in stock corre-
sponding to initial wealth x and δ = 0. Note that for every pair of predictable pro-

cesses G1 and G2 such that both integrals G1 · ( x

X̂(x,0)
) and G2 · (

xE(J 0)

X̂(x,0)
) are well
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defined, we can find by direct computations a process G such that

G1 ·
(

x

X̂(x,0)

)
+ G2 ·

(
xE(J 0)

X̂(x,0)

)
= G · MR.

Let γ 0 and γ 1 be such that

γ 0 · MR = M0(x,0)

x
, γ 1 · MR = M1(x,0)

x
. (3.2)

We define for ε > 0 the families of stopping times

σε := inf
{
t ∈ [0, T ] : |M0

t (x,0)| ≥ x

ε
or 〈M0(x,0)〉t ≥ x

ε

}
,

τε := inf
{
t ∈ [0, T ] : |M1

t (x,0)| ≥ x

ε
or 〈M1(x,0)〉t ≥ x

ε

}
.

We also set, for ε > 0,

γ 0,ε = γ 01�0,σε �, γ 1,ε = γ 11�0,τε �.

Theorem 3.1 Assume that x > 0 is fixed and the assumptions of Theorem 2.7 hold.
For every (�x, δ, ε) ∈ (−x,∞) ×R× (0,∞), let us define

X�x,δ,ε := (x + �x)E
((

π̂ (x,0) + �xγ 0,ε + δ(ν + γ 1,ε)
) · J δ

)
. (3.3)

Then there exists a function ε = ε(�x, δ) > 0, (�x, δ) ∈ (−x,∞) ×R, such that

E[U(X
�x,δ,ε(�x,δ)
T )] = u(x + �x, δ) − o(�x2 + δ2).

Remark 3.2 Theorem 3.1 shows how to correct the optimal proportion in order to
match the primal value function up to the second order jointly in (�x, δ).

Remark 3.3 Using the proportions of optimal wealth invested in stock and not the
number of shares of stock allows a nicer (or shorter) representation via (3.3) for
nearly optimal wealth processes that match the indirect utility up to the second order.
The result in Theorem 3.1 complements, in the context of a one-dimensional and
continuous stock model, the results in Kramkov and Sîrbu [22] and (in a different
additive random endowment framework) those in Kramkov and Sîrbu [23].

4 Abstract version of the expansion theorems

4.1 Abstract version for the 0-model

We begin with the formulation of the abstract version of the expansion theorems for
the 0-model. Let (�,F ,P) be a probability space. We define L0 to be the vector space
of (equivalence classes of) real-valued random variables on (�,F ,P), topologised
by the convergence in P-probability; L0+ is the positive orthant of L0. We consider
subsets C and D of L0+ that satisfy the following assumption.
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Assumption 4.1 Both C and D contain a strictly positive element and

ξ ∈ C if and only if E[ξη] ≤ 1 for every η ∈ D,

as well as

η ∈ D if and only if E[ξη] ≤ 1 for every ξ ∈ C.

Note that Assumption 4.1 is the abstract version of the no-unbounded-profit-with-
bounded-risk condition (2.1). We also set C(x,0) := xC and D(x,0) := xD, x > 0.
Now we can state the abstract primal and dual problems as

u(x,0) := sup
ξ∈C(x,0)

E [U(ξ)] , x > 0, (4.1)

v(y,0) := inf
η∈D(y,0)

E[V (η)], y > 0, (4.2)

where we follow the standard practice (see e.g. [20]) of denoting the abstract and
“concrete” value functions by the same letters. Under finiteness of both primal and
dual value functions on (0,∞), existence and uniqueness of solutions to (4.1) and
(4.2) follow from [29, Theorem 3.2].

4.2 Abstract version for the δ-models

For some random variables G ≥ 0 and F , let us set

Lδ := exp

(
−

(
δF + 1

2
δ2G

))
,

C(x, δ) := C(x,0)
1

Lδ
, D(y, δ) := D(y,0)Lδ, δ ∈R. (4.3)

Now we can state the abstract versions of the perturbed optimisation problems as

u(x, δ) := sup
ξ∈C(x,δ)

E [U(ξ)]

= sup
ξ∈C(x,0)

E

[
U

(
ξ

1

Lδ

)]
, (x, δ) ∈ (0,∞) ×R, (4.4)

v(y, δ) := inf
η∈D(y,δ)

E[V (η)]

= inf
η∈D(y,0)

E[V (ηLδ)], (y, δ) ∈ (0,∞) ×R. (4.5)

Under an appropriate integrability assumption specified below, existence and unique-
ness of solutions to (4.4) and (4.5) as well as conjugacy relations between u(·, δ) and
v(·, δ) for every δ sufficiently close to 0 will follow from [29, Theorem 3.2].
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4.3 Condition on perturbations

Let ξ̂ (x, δ) and η̂(y, δ) denote the solutions to (4.4) and (4.5), respectively, if such
solutions exist. By R(x,0), we denote the probability measure on (�,F) whose
Radon–Nikodým derivative with respect to P is given by

dR(x,0)

dP
:= ξ̂ (x,0)̂η(y,0)

xy
,

where x > 0 and y = ux(x,0). Note that R(x,0) is well defined for every x > 0.

Assumption 4.2 There exists a constant c > 0 such that

E
R(x,0)

[
exp

(
c(|F | + G)

)]
< ∞.

4.4 Auxiliary sets A and B

Let us now suppose that (4.1) satisfies the standard assertions of the utility maximi-
sation theory (see e.g. [20, Theorems 2.1 and 2.2]) that in turn hold e.g. under the
conditions of Theorem 4.4 below. As in Kramkov and Sîrbu [22], we fix x > 0 and
for δ = 0, we define

A∞(x,0) := {α ∈ L∞ : ξ̂ (x,0)(1 ± cα) ∈ C(x,0) for some c = c(α) > 0}.

Likewise, for y > 0 and δ = 0, we set

B∞(y,0) := {β ∈ L∞ : η̂(y,0)(1 ± cβ) ∈ D(y,0) for some c = c(β) > 0}.

Then A∞(x,0) and B∞(ux(x,0),0) are orthogonal linear subspaces of

L2
0

(
R(x,0)

) := {
ζ ∈ L0 : ER(x,0)[ζ ] = 0 and E

R(x,0)[ζ 2] < ∞}
,

where one can see that the elements of A∞ and B∞ have R(x,0)-expectation zero
by rewriting such an expectation under the measure P and recalling the definitions of
the primal and dual domains.

Let us denote by A2(x,0) and B2(y,0) the respective closures of A∞(x,0) and
B∞(y,0) in L2

0(R(x,0)). One can see that A2(x,0) and B2(y,0) are closed orthogo-
nal linear subspaces of L2

0(R(x,0)). In order to make these sets related to the concrete
versions of the expansion theorems, we need the following assumption.

Assumption 4.3 For δ = 0 and x > 0, with y = ux(x,0), the sets A2(x,0) and
B2(y,0) are complementary linear subspaces in L2

0(R(x,0)), i.e.,

α ∈ A2(x,0) iff α ∈ L2
0

(
R(x,0)

)
and E

R(x,0)[αβ] = 0 for every β ∈ B2(y,0),

β ∈ B2(y,0) iff β ∈ L2
0

(
R(x,0)

)
and E

R(x,0)[αβ] = 0 for every α ∈A2(x,0).

The following theorem shows joint differentiability and is a consequence of the
second-order expansion (as can be seen from Lemma 4.19 below).
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Theorem 4.4 Let x > 0 be fixed. Suppose that Assumptions 2.2 and 4.1–4.3 hold,
u(x,0) < ∞ and y = ux(x,0), which is well defined by the abstract theorems in
[20]. Then there exists δ0 > 0 such that for every δ ∈ (−δ0, δ0), we have

u(x, δ) ∈R, x > 0, and v(y, δ) ∈R, y > 0.

In addition, u and v are jointly differentiable (and consequently continuous) at (x,0)

and (y,0), respectively. We also have

∇u(x,0) =
(

y

uδ(x,0)

)
and ∇v(y,0) =

( −x

vδ(y,0)

)
, (4.6)

where

uδ(x,0) = vδ(y,0) = xyER(x,0) [F ] .

Remark 4.5 It is possible to prove Theorem 4.4 without Assumption 4.3. We do not
present such a proof for brevity of exposition.

4.5 Auxiliary minimisation problems

As in [22], for x > 0, let us consider

a{x,x} := inf
α∈A2(x,0)

E
R(x,0)

[
A

(̂
ξ(x,0)

)
(1 + α)2], (4.7)

b{y,y} := inf
β∈B2(y,0)

E
R(x,0)

[
B

(
η̂(y,0)

)
(1 + β)2], y = ux(x,0), (4.8)

where A is the relative risk aversion and B the relative risk tolerance of U . It is proved
in [22, Lemma 2] that

uxx(x,0) = −y

x
a{x,x},

vyy(y,0) = x

y
b{y,y},

a{x,x}b{y,y} = 1,

A
(
ξ(x,0)

)(
1 + α(x,0)

) = a{x,x}
(
1 + β(y,0)

)
, (4.9)

where α(x,0) and β(y,0) are the unique solutions to (4.7) and (4.8), respectively.
In order to characterise the derivatives of the value functions with respect to δ, we
consider the minimisation problems

a{δ,δ} := inf
α∈A2(x,0)

E
R(x,0)

[
A

(̂
ξ(x,0)

)
(α + xF)2 − 2xFα − x2(F 2 + G)

]
, (4.10)

b{δ,δ} := inf
β∈B2(y,0)

E
R(x,0)

[
B

(̂
η(y,0)

)
(β − yF)2 + 2yFβ − y2(F 2 − G)

]
. (4.11)
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Denoting by αd(x,0) and βd(y,0) the unique solutions to (4.10) and (4.11), respec-
tively, we also set

a{x,δ} := E
R(x,0)

[
A

(̂
ξ(x,0)

)(
1 + α(x,0)

)(
xF + αd(x,0)

)

− xF
(
1 + α(x,0)

)]
, (4.12)

b{y,δ} := E
R(x,0)

[
B

(̂
η(y,0)

)(
1 + β(y,0)

)( − yF + βd(y,0)
)

+ yF
(
1 + β(y,0)

)]
. (4.13)

4.6 Expansion theorems

We are ready to state the following theorems.

Theorem 4.6 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). Define

Hu(x,0) := −y

x

(
a{x,x} a{x,δ}
a{x,δ} a{δ,δ}

)
, (4.14)

where a{x,x}, a{δ,δ}, a{x,δ} are specified in (4.7), (4.10), (4.12), respectively, and

Hv(y,0) := x

y

(
b{y,y} b{y,δ}
b{y,δ} b{δ,δ}

)
, (4.15)

where b{y,y}, b{δ,δ}, b{y,δ} are specified in (4.8), (4.11), (4.13), respectively. Using the
formula (4.6) for the gradients, the second-order expansions of the value functions
are given by

u(x + �x, δ) = u(x,0) + (�x δ)∇u(x,0)

+ 1

2
(�x δ)Hu(x,0)

(
�x

δ

)
+ o(�x2 + δ2) (4.16)

and

v(y + �y, δ) = v(y,0) + (�y δ)∇v(y,0)

+ 1

2
(�y δ)Hv(y,0)

(
�y

δ

)
+ o(�y2 + δ2). (4.17)

Theorem 4.7 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). Let ξ = ξ̂ (x,0) and η = η̂(y,0) denote the solutions to (4.1) and (4.2),
and α = α(x,0), β = β(y,0), αd = αd(x,0), βd = βd(y,0) the solutions to (4.7),
(4.8), (4.10), (4.11), respectively. Then we have

(
a{x,x} 0
a{x,δ} − x

y

)(
b{y,y} 0
b{y,δ} − y

x

)
= I2. (4.18)
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Moreover,

y

x
a{δ,δ} + x

y
b{δ,δ} = a{x,δ}b{y,δ} (4.19)

and

A(ξ)

(
1 + α

xF + αd

)
=

(
a{x,x} 0
a{x,δ} − x

y

)(
1 + β

−yF + βd

)
, (4.20)

or equivalently,

B (η)

(
1 + β

−yF + βd

)
=

(
b{y,y} 0
b{y,δ} − y

x

)(
1 + α

xF + αd

)
. (4.21)

Theorem 4.8 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold. Then the
random variables α and αd which are the solutions to (4.7) and (4.10), respectively,
are the partial derivatives of the solution ξ̂ (x, δ) to (4.4) evaluated at (x,0), that is,

lim|�x|+|δ|→0

1

|�x| + |δ|
∣∣∣∣̂ξ(x + �x, δ)

− ξ̂ (x,0)

x

(
x + �x

(
1 + α(x,0)

) + δαd(x,0)
) 1

Lδ

∣∣∣∣
= 0, (4.22)

where the convergence takes place in P-probability. Likewise, β and βd which are the
solutions to (4.8) and (4.11), respectively, are the partial derivatives of the solution
η̂(y, δ) to (4.5) evaluated at (y,0), where y = ux(x,0), that is,

lim|�y|+|δ|→0

1

|�y| + |δ|
∣∣∣∣̂η(y + �y, δ)

− η̂(y,0)

y

(
y + �y

(
1 + β(y,0)

) + δβd(y,0)
)
Lδ

∣∣∣∣
= 0, (4.23)

where the convergence takes place in P-probability.

From Theorem 4.8, we obtain the following corollary.

Corollary 4.9 Under the conditions of Theorem 4.8, (4.22) is equivalent to

lim|�x|+|δ|→0

1

|�x| + |δ|
∣∣∣∣ξ̂ (x + �x, δ) − ξ̂ (x,0)

− ξ̂ (x,0)

x

(
�x

(
α(x,0) + 1

) + δ
(
αd(x,0) + xF

))∣∣∣∣ = 0.
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Likewise, (4.23) holds if and only if

lim|�y|+|δ|→0

1

|�y| + |δ|
∣∣∣∣̂η(y + �y, δ) − η̂(y,0)

− η̂(y,0)

y

(
�y

(
β(y,0) + 1

) + δ
(
βd(y,0) − yF

))∣∣∣∣ = 0.

Both convergences take place in P-probability.

4.7 Proofs

We begin the proofs with technical lemmas.

Lemma 4.10 Let Assumption 2.2 hold and d ∈ (max(exp(−1/c2), exp(−c1)),1].
Then for every x > 0, we have

U ′(dx) ≤ 1

1 + c2 logd
U ′(x),

−V ′(dx) ≤ 1

1 + 1
c1

logd

( − V ′(x)
)
.

Proof Fix x > 0 and d as above. Then using Assumption 2.2 and the monotonicity
of U ′, we get

U ′(dx) − U ′(x) =
∫ 1

d

( − U ′′(tx)
)
xdt =

∫ 1

d

( − U ′′(tx)
)
tx

dt

t

≤ c2

∫ 1

d

U ′(tx)
dt

t
≤ c2U

′(dx)(− logd).

Therefore, we obtain U ′(dx)(1 + c2 logd) ≤ U ′(x), which implies the first assertion
of the lemma. The second can be shown analogously. �

Corollary 4.11 Under the conditions of Lemma 4.10, for every k ∈N, we have

U ′(dkx) ≤ 1

(1 + c2 logd)k
U ′(x),

−V ′(dkx) ≤ 1

(1 + 1
c1

logd)k

( − V ′(x)
)
.

Below, 1E denotes the indicator function of a set E.

Lemma 4.12 Let Assumption 2.2 hold. Then for every z ∈ (0,1] and x > 0, we have

U ′(zx) ≤ z−c2U ′(x),

−V ′(zx) ≤ z
− 1

c1
( − V ′(x)

)
.
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Proof Fix d ∈ (exp(−1/c2),1). For every z ∈ (0,1] and x > 0, we get

U ′(zx) =
∞∑

k=1

U ′(zx)1{z∈(dk,dk−1]}

≤
∞∑

k=1

U ′(dkx)1{z∈(dk,dk−1]}

≤ U ′(x)

∞∑
k=1

1

(1 + c2 logd)k
1{z∈(dk,dk−1]}. (4.24)

Let us set

a1(d) := 1

1 + c2 logd
> 1, a2(d) := log (1 + c2 logd)

logd
= − log(a1(d))

logd
> 0.

As a1(d) > 1 and, for every k ∈N,

dk < z ≤ dk−1 is equivalent to
log z

logd
< k ≤ log z

logd
+ 1,

we deduce that for every z ∈ (0,1], we have

1

(1 + c2 logd)k
1{z∈(dk,dk−1]} ≤ a1(d)a1(d)

log z
logd 1{z∈(dk,dk−1]}

= a1(d)
(
a1(d)

1
logd

)log z1{z∈(dk,dk−1]}

= a1(d)z−a2(d)1{z∈(dk,dk−1]}. (4.25)

Plugging (4.25) in (4.24), we get

U ′(zx) ≤ U ′(x)

∞∑
k=1

a1(d)z−a2(d)1{z∈(dk,dk−1]} = a1(d)z−a2(d)U ′(x)

for every z ∈ (0,1] and x > 0. As lim
d↑1

a1(d) = 1 and

lim
d↑1

a2(d) = lim
d↑1

log(1 + c2 logd)

logd
= lim

y↑0

log(1 + c2y)

y
= lim

y↑0

c2

1 + c2y
= c2,

taking the limit in the latter inequality, we obtain that

U ′(zx) ≤ lim
d↑1

a1(d)z−a2(d)U ′(x) = z−c2U ′(x),

for every z ∈ (0,1] and x > 0. The other assertion can be proved similarly. This
completes the proof of the lemma. �
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Corollary 4.13 Under Assumption 2.2, for every z > 0 and x > 0, we have

U ′(zx) ≤ max(z−c2 ,1)U ′(x) ≤ (z−c2 + 1)U ′(x),

−V ′(zx) ≤ max(z
− 1

c1 ,1)
( − V ′(x)

) ≤ (z
− 1

c1 + 1)
( − V ′(x)

)
.

4.8 Proof of the second-order expansion

Lemma 4.14 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). For arbitrary α0 and α1 in A∞(x,0), let us define, for (s, t) ∈R

2,

ψ(s, t) := 1

x

(
x + s(1 + α0) + tα1) 1

Lt
,

w(s, t) := E
[
U

(
ξψ(s, t)

)]
,

where ξ = ξ̂ (x,0) is the solution to (4.4) corresponding to x > 0 and δ = 0. Then w

admits at (0,0) the second-order expansion

w(s, t) = w(0,0) + (s t)∇w(0,0) + 1

2
(s t)Hw

(
s

t

)
+ o(s2 + t2),

where

ws(0,0) = ux(x,0),

wt (0,0) = xyER(x,0)[F ]
and

Hw :=
(

wss(0,0) wst (0,0)

wst (0,0) wtt (0,0)

)
,

where the second-order partial derivatives of w at (0,0) are given by

wss(0,0) = −y

x
E
R(x,0)[A(ξ)(1 + α0)2],

wst (0,0) = −y

x
E
R(x,0)[A(ξ)(1 + α0)(xF + α1) − xF(1 + α0)],

wtt (0,0) = −y

x
E
R(x,0)[A(ξ)(α1 + xF)2 − 2xFα1 − x2(F 2 + G)].

Proof As α0 and α1 are in A∞, there exists a constant ε ∈ (0,1) such that

|α0| + |α1| ≤ x

6ε
− 1 P-a.s. (4.26)

Fix an arbitrary (s, t) ∈ Bε(0,0) and define

ψ̃(z) := ψ(zs, zt), z ∈ (−1,1).
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Note that
2

3
≤ ψ̃(z)Lzt ≤ 4

3
, z ∈ (−1,1). (4.27)

As

ψt(s, t) = α1

xLt
+ ψ(s, t)(F + tG) and ψs(s, t) = 1 + α0

xLt
,

we get

ψ̃ ′(z) = ψs(sz, tz)s + ψt(sz, tz)t

= 1 + α0

xLzt
s +

(
α1

xLzt
+ ψ̃(z) (F + ztG)

)
t. (4.28)

Similarly, since ψss(s, t) = 0 and

ψtt (s, t) = 2α1

xLt
(F + tG) + ψ(s, t)

(
(F + tG)2 + G

)
,

ψst (s, t) = 1 + α0

xLt
(F + tG) ,

we obtain

ψ̃ ′′(z) = ψtt (zs, zt)t
2 + 2ψst (zs, zt)ts + ψss(zs, zt)s

2

=
(

2α1

xLzt
(F + ztG) + ψ̃(z)

(
(F + ztG)2 + G

))
t2

+ 2
1 + α0

xLzt
(F + ztG) ts.

Setting W(z) := U(ξψ̃(z)), z ∈ (−1,1), we get by direct computations that

W ′(z) = U ′(ξψ̃(z)
)
ξψ̃ ′(z), (4.29)

W ′′(z) = U ′′(ξψ̃(z)
)(

ξψ̃ ′(z)
)2 + U ′(ξψ̃(z)

)
ξψ̃ ′′(z). (4.30)

Let us define

a2 := 2c2+2 and J := 1 + |F | + G.

From (4.28), using (4.26) and (4.27), we get

|ψ̃ ′(z)| ≤ 2J exp(εJ ), ψ̃(z)−c2 + 1 ≤ 2c2+1 exp(c2εJ ), z ∈ (−1,1).

Therefore, from (4.29) using Corollary 4.13, we obtain

sup
z∈(−1,1)

|W ′(z)| ≤ sup
z∈(−1,1)

U ′(ξ)ξ
((

ψ̃(z)
)−c2 + 1

)
|ψ̃ ′(z)|

≤ a2U
′(ξ)ξJ exp

(
(c2 + 1)εJ

) ≤ a2U
′(ξ)ξJ exp(a2εJ ). (4.31)
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Similarly, from (4.30), applying Assumption 2.2 and Corollary 4.13, we deduce the
existence of a constant a3 > 0 such that

sup
z∈(−1,1)

|W ′′(z)| ≤ a3U
′(ξ)ξJ 2 exp(a3εJ ). (4.32)

Combining (4.31) and (4.32), we obtain

sup
z∈(−1,1)

(|W ′(z)| + |W ′′(z)|) ≤ U ′(ξ)ξ
(
a2J exp(a2εJ ) + a3J

2 exp(a3εJ )
)
.

Consequently, as 1 ≤ J ≤ J 2, by setting a1 := max(a2, a3), we get for every z1 and
z2 in (−1,1) that

∣∣∣∣
W(z1) − W(z2)

z1 − z2

∣∣∣∣ +
∣∣∣∣
W ′(z1) − W ′(z2)

z1 − z2

∣∣∣∣ ≤ 4a1U
′(ξ)ξJ 2 exp(a1εJ ). (4.33)

By passing to a smaller ε if necessary and by applying Hölder’s inequality, we deduce
from Assumption 4.2 that the right-hand side of (4.33) integrable. As the right-hand
side of (4.33) depends only on ε (and not on (s, t)), the assertion of the lemma follows
from the dominated convergence theorem. �

Corollary 4.15 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). Then we have

u(x + �x, δ) ≥ u(x,0) + y�x + δxyER(x,0) [F ]

+ 1

2
(�x δ)Hu(x,0)

(
�x

δ

)
+ o(�x2 + δ2),

where Hu(x,0) is given by (4.14).

Proof The result follows from Lemma 4.14 via an approximation of the solutions to
(4.7) and (4.10), which are elements of A2(x,0), by elements of A∞(x,0). �

Similarly to Lemma 4.14 and Corollary 4.15, we can establish the following re-
sults.

Lemma 4.16 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). For arbitrary β0 and β1 in B∞(y,0), let us define, for (s, t) ∈R

2,

φ(s, t) := 1

y

(
y + s(1 + β0) + tβ1

)
Lt ,

w̄(s, t) := E
[
V

(
ηφ(s, t)

)]
,

where η = η̂(y,0) is the solution to (4.5) corresponding to y > 0 and δ = 0. Then w̄

admits at (0,0) the second-order expansion

w̄(s, t) = w̄(0,0) + (s t)∇w̄(0,0) + 1

2
(s t)Hw̄

(
s

t

)
+ o(s2 + t2),
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where

w̄s(0,0) = vy(y,0),

w̄t (0,0) = xyER(x,0) [F ]

and

Hw̄ :=
(

w̄ss(0,0) w̄st (0,0)

w̄st (0,0) w̄tt (0,0)

)
,

where the second-order partial derivatives of w̄ at (0,0) are given by

w̄ss(0,0) = x

y
E
R(x,0)[B(η)(1 + β0)2],

w̄st (0,0) = x

y
E
R(x,0)[B(η)(1 + β0)(−yF + β1) + yF(1 + β0)],

w̄tt (0,0) = x

y
E
R(x,0)[B(η)(β1 − yF)2 + 2yFβ1 − y2(F 2 − G)].

Lemma 4.17 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). Then we have

v(y + �y, δ) ≤ v(y,0) − x�y + δxyER(x,0) [F ]

+ 1

2
(�y δ)Hv(y,0)

(
�y

δ

)
+ o(�y2 + δ2),

where Hv(y,0) is given by (4.15).

4.9 Closing the duality gap

We begin with the proof of Theorem 4.7.

Proof of Theorem 4.7 It follows from [22, Lemma 2] that

A(ξ) (1 + α) = a{x,x}(1 + β),

B (η) (1 + β) = b{y,y}(1 + α).
(4.34)

Using standard techniques from calculus of variations, we can show that the solutions
to (4.10) and (4.11) satisfy

A(ξ) (αd + xF) − xF = c + β̃,

B (η) (βd − yF) + yF = d + α̃,
(4.35)

where β̃ ∈ B2(y,0), α̃ ∈ A2(x,0), and c and d are some constants. We characterise
β̃ , α̃ and d below. Let us set

˜̃α := α̃ − dα ∈ A2(x,0). (4.36)
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It follows from the second equation in (4.35) that

βd − yF = A(ξ)(d − yF + α̃)

= A(ξ)(d + dα − yF + α̃ − dα)

= da{x,x}(1 + β) + A(ξ)(−yF + ˜̃α),

where we have used (4.34) in the last equality. Multiplying by − x
y

, we obtain

A(ξ)

(
xF − x

y
˜̃α
)

= −x

y
(βd − yF) + x

y
da{x,x}(1 + β),

and thus

A(ξ)

(
xF − x

y
˜̃α
)

− xF = d̃ + ˜̃
β,

where

d̃ = x

y
da{x,x} ∈ R and ˜̃

β = x

y
da{x,x}β − x

y
βd ∈ B2(y,0).

It follows from the characterisation in (4.35) of the unique solution to (4.10) that

−x

y
˜̃α = αd, equivalently ˜̃α = −y

x
αd.

From (4.36), we obtain

α̃ = ˜̃α + dα = −y

x
αd + dα.

Plugging this back into the second equality in (4.35), we get

B (η) (βd − yF) = d(1 + α) − y

x
(αd + xF).

Multiplying by x
y
A(ξ), we obtain

A(ξ) (αd + xF) = x

y
da{x,x}(1 + β) − x

y
(βd − yF). (4.37)

Setting d ′ := x
y
da{x,x}, we claim that

d ′ = a{x,δ}, (4.38)

where a{x,δ} is defined in (4.12). Multiplying both sides of (4.37) by 1 + α, taking
expectations under R(x,0) and using orthogonality of the elements of A2(x,0) and
B2(y,0), we get

E
R(x,0) [A(ξ) (αd + xF)(1 + α)] = d ′

E
R(x,0)

[
(1 + β)(1 + α)

]

− x

y
E
R(x,0)

[
(βd − yF)(1 + α)

]

= d ′ +E
R(x,0) [xF(1 + α)] .
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Therefore,

d ′ = E
R(x,0) [A(ξ) (αd + xF)(1 + α) − xF(1 + α)] = a{x,δ},

where in the last equality we have used (4.12). Thus, (4.38) holds. Now (4.37)
with x

y
da{x,x} = a{x,δ} and (4.35) prove (4.20). (4.21) can be shown similarly. As

A(ξ) = 1
B(η)

, (4.20) and (4.21) imply (4.18).
It remains to prove (4.19). Let us set

β̄ := β + 1, ᾱ := α + 1,

β̄d := βd − yF, ᾱd := αd + xF.

Then from (4.10) using (4.20), we get

y

x
a{δ,δ} = E

R(x,0)

[
y

x
a{x,δ}β̄ᾱd − β̄d ᾱd

]

− y

x
E
R(x,0)[2xFαd ] − xyER(x,0)[F 2 + G]. (4.39)

Likewise, from (4.11) via (4.39), we obtain

x

y
b{δ,δ} = E

R(x,0)

[
x

y
b{y,δ}ᾱβ̄d − β̄d ᾱd + 2βdxF − xy(F 2 − G)

]
. (4.40)

Let us define

T1 := E
R(x,0)

[
y

x
a{x,δ}β̄ᾱd + x

y
b{y,δ}ᾱβ̄d

]
,

T2 := E
R(x,0)[−2β̄d ᾱd − 2yFαd + 2xFβd − 2xyF 2].

Then adding (4.39) and (4.40), we deduce that

y

x
a{δ,δ} + x

y
b{δ,δ} = T1 + T2. (4.41)

Let us rewrite T2 as

T2 = E
R(x,0)[−2β̄d ᾱd − 2yFαd + 2xFβd − 2xyF 2]

= E
R(x,0)[−2(βd − yF)(αd + xF) − 2yFαd + 2xFβd − 2xyF 2]

= E
R(x,0)[−2βdαd − 2βdxF + 2yFαd + 2xyF 2 − 2yFαd + 2xFβd − 2xyF 2]

= E
R(x,0)[−2βdαd ] = 0, (4.42)

as all the terms under the expectation cancel except for −2βdαd , which has still
0 expectation by orthogonality of A2(x,0) and B2(y,0). Let us consider T1. First,
from (4.18), we get

x

y
b{y,δ} = a{x,δ}

a{x,x}
= a{x,δ}b{y,y}.
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Therefore, we can rewrite T1 as

T1 = E
R(x,0)

[
y

x
a{x,δ}β̄ᾱd + a{x,δ}b{y,y}ᾱβ̄d

]

= a{x,δ}ER(x,0)

[
y

x
β̄ᾱd + b{y,y}ᾱβ̄d

]
. (4.43)

On the other hand, from (4.13), we can express b{y,δ} in terms of β̄ , β̄d , ᾱ, ᾱd as

b{y,δ} = E
R(x,0)

[
B (η) β̄d β̄ + y

x
β̄ᾱd

]
= E

R(x,0)

[
b{y,y}ᾱβ̄d + y

x
β̄ᾱd

]
, (4.44)

where in the last equality we have used (4.34). Comparing (4.44) with (4.43), we get

T1 = a{x,δ}b{y,δ}.

Plugging this into (4.41) and using (4.42), we deduce that

y

x
a{δ,δ} + x

y
b{δ,δ} = a{x,δ}b{y,δ},

i.e., (4.19) holds. This completes the proof of the theorem. �

Lemma 4.18 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). Then for

�y = − y

xb{y,y}

(
x

y
b{y,δ}δ + �x

)
, (4.45)

we have

(�y δ)Hv(y,0)

(
�y

δ

)
+ 2�x�y = (�x δ)Hu(x,0)

(
�x

δ

)
. (4.46)

Proof First note that b{y,y} > 0 in (4.45). By direct computations, proving (4.46) is
equivalent to establishing the equality

− y

xb{y,y}

(
x

y
b{y,δ}δ + �x

)2

= (�x δ)Hu(x,0)

(
�x

δ

)
− x

y
b{δ,δ}δ2. (4.47)

Now let us consider the right-hand side of (4.47). By direct computations, it can be
rewritten as

− y

x
�x2a{x,x} + 2�xδ

(
− y

x
a{x,δ}

)
− δ2

(
y

x
a{δ,δ} + x

y
b{δ,δ}

)

= − y

xb{y,y}
�x2 + 2�xδ

(
− y

x
a{x,δ}

)
− δ2a{x,δ}b{y,δ}, (4.48)
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where the last equality follows from (4.9) and (4.19). We deduce from (4.18) that

a{x,δ} = x

y

b{y,δ}
b{y,y}

. (4.49)

Plugging (4.49) into (4.48), we can rewrite the right-hand side of (4.48) as

− y

xb{y,y}
�x2 − 2�xδ

b{y,δ}
b{y,y}

− δ2 x

y

(b{y,δ})2

b{y,y}
= − y

xb{y,y}

(
�x + x

y
b{y,δ}δ

)2

,

which is precisely the left-hand side of (4.47). We have just shown that (4.47) holds.
By the argument preceding (4.47), this implies that (4.46) is valid as well. This com-
pletes the proof of the lemma. �

Lemma 4.19 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0). Then we have

u(x + �x, δ) = u(x,0) + y�x + δxyER(x,0) [F ]

+ 1

2
(�x δ)Hu(x,0)

(
�x

δ

)
+ o(�x2 + δ2), (4.50)

where Hu(x,0) is given by (4.14). Likewise,

v(y + �y, δ) = v(y,0) − x�y + δxyER(x,0) [F ]

+ 1

2
(�y δ)Hv(y,0)

(
�y

δ

)
+ o(�y2 + δ2), (4.51)

where Hv(y,0) is given by (4.15).

Proof For small �x and δ and with �y given by (4.45), we get from conjugacy of u

and v (which follows from the abstract theorems in [20]) and Lemma 4.17 that

u(x + �x, δ) ≤ v(y + �y, δ) + (x + �x)(y + �y)

≤ v(y,0) − x�y + δxyER(x,0) [F ] + 1

2
(�y δ)Hv(y,0)

(
�y

δ

)

+ xy + y�x + x�y + �x�y + o(�y2 + δ2), (4.52)

where Hv(y,0) is given in (4.15). As y = ux(x,0) and x = −vy(y,0), collecting
terms on the right-hand side of (4.52), we obtain

u(x + �x, δ) ≤ u(x,0) + y�x + δxyER(x,0) [F ] + �x�y

+ 1

2
(�y δ)Hv(y,0)

(
�y

δ

)
+ o(�x2 + δ2). (4.53)
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Likewise, using Corollary 4.15, we get

u(x + �x, δ) ≥ u(x,0) + y�x + δxyER(x,0) [F ]

+ 1

2
(�x δ)Hu(x,0)

(
�x

δ

)
+ o(�x2 + δ2). (4.54)

By Lemma 4.18, the quadratic terms in (4.53) and (4.54) are equal. Therefore, (4.53)
and (4.54) imply that u admits a second-order expansion at (x,0) given by (4.50).
Similarly we can prove (4.51). �

Proof of Theorem 4.4 The assertions of Theorem 4.4 follow from Lemma 4.19. �

Proof of Theorem 4.6 The expansions (4.16) and (4.17) follow from Lemma 4.19 and
Theorem 4.4. �

4.10 Derivatives of the optimisers

We begin with a technical lemma.

Lemma 4.20 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0), and let (δn)n∈N be a sequence which converges to 0. Then we have

lim
n→∞E

[
V

(̂
η(y,0)Lδn)] = v(y,0).

Proof The proof goes along the lines of the proof of Lemma 4.14; it is therefore
skipped. �

Lemma 4.21 Let x > 0 be fixed. Assume all conditions of Theorem 4.4 hold, with
y = ux(x,0), and let (yn, δn)n∈N be a sequence which converges to (y,0). Then
ηn := η̂(yn, δn), n ∈ N, converges to η := η̂(y,0) in probability, and V (ηn), n ∈ N,
converges to V (η) in L1(P).

Proof In view of Theorem 4.4, we may assume without loss of generality that
v(yn, δn) is finite for every n ∈ N. Let us assume by contradiction that (ηn)n∈N does
not converge in probability to η. Then there exists ε > 0 such that

lim sup
n→∞

P
[|ηn − η| > ε

]
> ε.

Let us define θn := ηn

Lδn , n ∈ N, and ȳ := supn∈N yn. As (θn)n∈N ⊆ D(ȳ,0) and

(Lδn
)n∈N converges to 1 in probability (therefore, in particular, (Lδn

)n∈N is bounded
in L0), we may assume by possibly passing to a smaller ε that

lim sup
n→∞

P

[
|ηn − η| > ε, |θn − η|Lδn ≤ 1

ε

]
> ε.
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Let us define

hn := 1

2
(θn + η)Lδn = 1

2
(ηn + ηLδn

) ∈ D
(

yn + y

2
, δn

)
, n ∈N.

From convexity of V , we have

V (hn) ≤ 1

2

(
V (ηn) + V (ηLδn

)
)
,

and from the strict convexity of V , we deduce the existence of a positive constant ε0
such that

lim sup
n→∞

P

[
V (hn) ≤ 1

2

(
V (ηn) + V (ηLδn

)
) − ε0

]
> ε0.

Therefore, using Lemma 4.20, we obtain

lim sup
n→∞

E[V (hn)] ≤ 1

2
lim sup
n→∞

E[V (ηn)] + 1

2
lim sup
n→∞

E[V (ηLδn

)] − ε2
0

= 1

2
lim sup
n→∞

v(yn, δn) + 1

2
v(y,0) − ε2

0

= v(y,0) − ε2
0, (4.55)

where in the last equality, we have also used continuity of v at (y,0), which follows
from Theorem 4.4. On the other hand, as hn ∈D(

yn+y
2 , δn), n ∈N, we get

lim sup
n→∞

v

(
yn + y

2
, δn

)
≤ lim sup

n→∞
E[V (hn)]. (4.56)

Combining (4.55) and (4.56) and using continuity of v at (y,0) again, we get

v(y,0) = lim sup
n→∞

v

(
yn + y

2
, δn

)
≤ lim sup

n→∞
E[V (hn)] ≤ v(y,0) − ε2

0,

which is a contradiction as ε0 
= 0. Thus (ηn)n∈N converges to η in probability. In
turn, this and continuity of v at (y,0) imply the other assertion of the lemma. �

Proof of Theorem 4.8 We only prove (4.23) as (4.22) can be shown similarly. In view
of Theorem 4.4, we assume without loss of generality that for every n ∈ N, u(·, δn)

and v(·, δn) are finite-valued functions. The rest of the proof goes along the lines
of the proof of [22, Theorem 2]. Let (yn, δn)n∈N be a sequence which converges to
(y,0), where y = ux(x,0) > 0. Let η̂n = η̂(yn, δn), n ∈ N, denote the corresponding
dual optimisers and set

φ1 := 1

2
min

(
η̂(y,0), inf

n∈N η̂n
)

> 0 P-a.s.,

φ2 := 2 max
(
η̂(y,0), sup

n∈N
η̂n

)
< ∞ P-a.s.,

θ := inf
φ1≤t≤φ2

V ′′(t).
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Note that the construction of φ1 and φ2 implies that θ > 0 P-a.s. Let us also fix β0

and β1 in B∞(y,0) and define

ηn := η̂(y,0)

y

(
y + �yn(β0 + 1) + δnβ1)Lδn ∈ D(yn, δn), n ∈ N,

where �yn := yn − y. As β0 and β1 are bounded, we assume without loss of gener-
ality that

1

2
η̂(y,0) ≤ ηn ≤ 2η̂(y,0), n ∈ N,

which implies that

φ1 ≤ ηn ≤ φ2.

Using the definition of θ , we get

V (ηn) − V (̂ηn) ≥ V ′(̂ηn)(ηn − η̂n) + θ(ηn − η̂n)2. (4.57)

By [29, Theorem 3.2], −V ′ (̂ηn) = ξ̂ (xn, δn) is the solution to (4.4) at the point
xn = −vy(y

n, δn) so that

E[̂ξ(xn, δn)̂ηn] = xnyn.

Moreover, the bipolar construction of the sets C(xn, δn) and D(yn, δn) implies that

E[̂ξ(xn, δn)ηn] ≤ xnyn.

Therefore, we obtain

E[V ′(̂ηn)(ηn − η̂n)] ≥ 0.

Combining this with (4.57), we get

E[θ(ηn − η̂n)2] ≤ E[V (ηn)] − v(yn, δn). (4.58)

From Lemma 4.16, we deduce

E[V (ηn)] = v(y,0) − x�yn + vδ(y,0)δn

+ 1

2
(�yn δn)Hw̄

(
�yn

δn

)
+ o

(
(�yn)2 + (δn)2).

Combining this with (4.58) and using the expansion for v from Theorem 4.6, we
obtain

lim sup
n→∞

1

(�yn)2 + (δn)2

(
E[ηn] − v(yn, δn)

) ≤ 1

2
|Hw̄ − Hv(y,0)|. (4.59)

In view of Lemma 4.16 (by the choice of β0 and β1), we can make the right-hand
side of (4.59) arbitrarily small. Combining this with (4.58), we deduce that

lim sup
n→∞

1

(�yn)2 + (δn)2
E[θ(ηn − η̂n)2]
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can also be made arbitrarily small. As θ > 0 P-a.s., the assertion of the theorem
follows. �

5 Proofs of Theorems 2.7, 2.8, 2.10, 2.12 and 3.1

In order to link the abstract theorems to their concrete counterparts, we first have to
establish some structural properties of the perturbed primal and dual admissible sets.

The following lemma gives a useful characterisation of the primal and dual admis-
sible sets after perturbations.

Lemma 5.1 Under assumption (2.1), for every δ ∈R, we have

Y(1, δ) = Y(1,0)E
( − (δν) · J 0),

X (1, δ) = X (1,0)
1

E(−(δν) · J 0)
.

Proof Fix δ ∈ R and set Xδ := E(π · J δ) for any predictable and J δ-integrable
process π . Then Xδ ∈ X (1, δ). Let us consider X0 := XδE(−(δν) · J 0). One can
see that X0 ∈ X (1,0). The remainder of the proof is straightforward and therefore
skipped. �

Proof of Theorem 2.7 Condition (2.1) implies that the respective closures of the con-
vex solid hulls of {XT : X ∈X (1,0)} and {YT : Y ∈ Y(1,0)} satisfy the abstract As-
sumption 4.1. In view of Lemma 5.1, we have for δ ∈ R that

{
XT

Lδ
: X ∈X (1,0)

}
= {XT : X ∈X (1, δ)} ,

{YT Lδ : Y ∈ Y(1,0)} = {YT : Y ∈ Y(1, δ)}.
Therefore, the respective closures of the convex solid hulls of {XT : X ∈ X (1, δ)} and
{YT : Y ∈ Y(1, δ)} satisfy the abstract condition (4.3). The relationship between the
abstract Assumption 4.2 and Assumption 2.6 is apparent. It remains to show that the
sets M2(x) and N 2(x) satisfy the abstract Assumption 4.3. However, this follows
from continuity of J 0 and [22, Lemma 6]. Therefore, the assertions of Theorem 2.7
follow from the abstract Theorem 4.4. �

Proof of Theorem 2.8 As in the proof of Theorem 2.7, the assertions of Theorem 2.8
follow from the abstract Theorem 4.6. �

Proof of Theorem 2.10 Similarly to the proof of Theorem 2.8, the assertions of The-
orem 2.10 follow from the abstract Theorem 4.7. �

Proof of Theorem 2.12 As above, the affirmations of this theorem follow from the
abstract Theorem 4.8. �
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For the proof of Theorem 3.1, we need the following technical lemma. First, for
(δ,�x, ε) ∈ R× (−x,∞) × (0,∞), let us set

f (δ,�x, ε) := 1

�x2 + δ2

(
u(x,0) + (�x δ)∇u(x,0)

+ 1

2
(�x δ)Hu(x,0)

(
�x

δ

)
−E[U(X

�x,δ,ε
T )]

)
, (5.1)

where ∇u(x,0), Hu(x,0), X�x,δ,ε are defined in (2.10), (2.18), (3.3), respectively.

Lemma 5.2 Assume that x > 0 is fixed and the assumptions of Theorem 2.7 hold.
Then for f defined in (5.1), there exists a monotone function g such that

g(ε) ≥ lim|�x|+|δ|→0
f (δ,�x, ε), ε > 0, (5.2)

and

lim
ε→0

g(ε) = 0. (5.3)

Proof This goes along the lines of the proof of Lemma 4.14. We only outline the
main steps for brevity of exposition. For a fixed ε > 0 and (�x, δ) ∈R

2, let us define

ψ(�x, δ) := x + �x

x
exp

((
(�xγ 0,ε + δγ 1,ε) · MR

)
T

− 1

2

(
(�xγ 0,ε + δγ 1,ε)2 · 〈M〉)

T

)
1

Lδ
,

w(�x, δ) := E
[
U

(
X̂T (x,0)ψ(�x, δ)

)]
,

where MR is defined in (3.1). Now first fix ε′ > 0, then fix (�x, δ) ∈ Bε′(0,0) and set

ψ̃(z) := ψ(z�x, zδ), z ∈ (−1,1).

By direct computations, we get

ψ̃ ′(z) = ψ�x(z�x, zδ)�x + ψδ(z�x, zδ)δ,

where

ψ�x(�x, δ) = ψ(�x, δ)

(
1

x + �x
+

((
(�xγ 0,ε) · MR

)
T

−
((

(�xγ 0,ε + δγ 1,ε)γ 0,ε
) · 〈M〉

)
T

))
,

ψδ(�x, δ) = ψ(�x, δ)

(
(γ 1,ε · MR)T

−
((

(�xγ 0,ε + δγ 1,ε)γ 1,ε
) · 〈M〉

)
T

+ F + δG

)
,
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and F and G are defined in (2.9). Similarly, we obtain

ψ̃ ′′(z) = ψ�x�x(z�x, zδ)�x2 + 2ψ�xδ(z�x, zδ)�xδ + ψδδ(z�x, zδ)δ2,

where

ψ�x�x(�x, δ) = ψ(�x, δ)

(
1

x + �x
+ (

(�xγ 0,ε) · MR
)
T

−
((

(�xγ 0,ε + δγ 1,ε)γ 0,ε
) · 〈M〉

)
T

)2

+ ψ(�x, δ)

(
(γ 0,ε · MR)T + (

(γ 0,ε)2 · 〈M〉)
T

− 1

(x + �x)2

)
,

ψ�xδ(�x, δ) = ψ(�x, δ)

(
1

x + �x
+ (

(�xγ 0,ε) · MR
)
T

−
((

(�xγ 0,ε + δγ 1,ε)γ 0,ε
) · 〈M〉

)
T

)

×
(

(γ 1,ε · MR)T −
((

(�xγ 0,ε + δγ 1,ε)γ 1,ε
) · 〈M〉

)
T

+ F + δG

)

+ ψ(�x, δ)
(
(γ 1,εγ 0,ε) · 〈M〉T

)
,

ψδδ(�x, δ) = ψ(�x, δ)

((
(γ 1,ε) · MR

)
T

−
((

(�xγ 0,ε + δγ 1,ε)γ 1,ε
) · 〈M〉

)
T

+ F + δG

)2

+ ψ(�x, δ)
((

(γ 1,ε)2 · 〈M〉)
T

+ G
)
.

Setting W(z) := U(X̂T (x,0)ψ̃(z)), z ∈ (−1,1), we get by direct computations that

W ′(z) = U ′ (X̂T (x,0)ψ̃(z)
)
X̂T (x,0)ψ̃ ′(z),

W ′′(z) = U ′′ (X̂T (x,0)ψ̃(z)
) (

X̂T (x,0)ψ̃ ′(z)
)2

+ U ′ (X̂T (x,0)ψ̃(z)
)
X̂T (x,0)ψ̃ ′′(z).

As in Lemma 4.14, from boundedness of (γ 0,ε ·MR)T , (γ 1,ε ·MR)T , ((γ 0,ε)2 ·〈M〉)T
and ((γ 1,ε)2 · 〈M〉)T , one can show via Corollary 4.13 and Assumption 4.2 that

∣∣∣∣
W(z1) − W(z2)

z1 − z2

∣∣∣∣ +
∣∣∣∣
W ′(z1) − W ′(z2)

z1 − z2

∣∣∣∣ ≤ �
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for some random variable � which depends on ε′ and is integrable for sufficiently
small ε′. By direct computations, the derivatives of W plugged inside the expecta-
tion lead to ∇u(x,0) and a family of Hessians, which converge to Hu(x,0). This
results in the existence of a function g satisfying (5.2). Now letting ε → 0 leads to
Hε

u(x,0) → Hu(x,0), and therefore we obtain (5.3). Finally, one can choose g to be
monotone. �

Proof of Theorem 3.1 First, for f defined in (5.1), we deduce via Lemma 5.2 the
existence of a monotone function g such that (5.2) and (5.3) hold. Let us define

φ(ε) := {(δ,�x) : f (tδ, t�x, ε) ≤ 2g(ε) for every t ∈ [0,1]}, ε > 0,

r(ε) := 1

2
sup {r ≤ ε : Br(0,0) ⊆ φ(ε)} , ε > 0.

Note that r(ε) > 0 for every ε > 0. With

ε(δ,�x) := inf
{
ε : r(ε) ≥

√
�x2 + δ2

}
, (δ,�x) ∈ R× (−x,∞),

we have

lim|�x|+|δ|→0

u(x + �x, δ) −E[U(X
�x,δ,ε(δ,�x)
T )]

�x2 + δ2
= 0. �

6 Counterexample

In the following example, we show that even when the 0-model is nice, but Assump-
tion 2.6 fails, we might have

u(z, δ) = v(z, δ) = ∞ for every δ 
= 0 and z > 0.

Example 6.1 Consider the 0-model where

T = 1, M = B, λ ≡ 1 and U(x) = xp

p
, p ∈ (0,1).

Let us assume that B is a Brownian motion defined on a probability space (�,F ,P),
where the filtration (Ft )t∈[0,T ] is the usual augmentation of the filtration generated

by B . We recall that the convex conjugate for U is V (y) = y−q

q
, where q = p

1−p
. Let

Z0 denote the martingale deflator for J 0. Then direct computations yield

E[(Z0
1)−q ] = exp

(
1

2
q(q + 1)

)
∈ R.

Therefore by the results of Kramkov and Schachermayer [21], the standard conclu-
sions of the utility maximisation theory hold. The primal and dual optimisers are

X̂1(x,0) = x exp

(
(q + 1)B1 + 1

2
(1 − q2)

)
, Ŷ1(y,0) = y exp

(
− B1 − 1

2

)
.



Sensitivity analysis of the expected utility maximisation problem 629

Now let us consider a process ν such that

(ν · B)1 = B3
1 P-a.s. (6.1)

Let us denote It := t , t ∈ [0,1]. As

dR(x,0)

dP
= exp

(
−q(q + 1)

2

)
exp

(
qB1 + q

1

2

)
= exp

(
qB1 − q2

2

)
, x > 0,

we get, with the notations (2.9), for every c > 0 that

E
R(x,0)

[
exp

(
c(|F | + G)

)]

= E

[
exp

(
qB1 − q2

2

)
exp

(
c|(ν · B)1 + (ν · I )1| + c(ν2 · I )1

)]

= E

[
exp

(
qB1 − q2

2
+ c|B3

1 + (ν · I )1| + c(ν2 · I )1

)]

≥ E

[
exp

(
qB1 − q2

2
+ c|B3

1 | − c(|ν| · I )1 + c(ν2 · I )1

)]

≥ exp

(
− q2

2
− c

4

)
E

[
exp

(
qB1 + c|B3

1 | + c
((|ν| − 1

2

)2 · I
)

1

)]

≥ exp

(
− q2

2
− c

4

)
E[exp(qB1 + c|B3

1 |)]

= exp

(
− q2

2
− c

4

)
1√
2π

∫

R

exp(qy + c|y3| − y2/2)dy = ∞,

i.e., Assumption 2.6 does not hold.
For every δ ∈R, we can express the local martingale deflator Zδ as

Zδ
t = exp

(
− (

(λ + δν) · B)
t
− 1

2

(
(λ + δν)2 · I)

t

)
, t ∈ [0,1].

For p ∈ (0,1), as q > p > 0, we have

E[(Zδ
1)

−q ] = E

[
exp

(
q
(
(λ + δν) · B)

1 + q

2

(
(λ + δν)2 · I)

1

)]

≥ E

[
exp

(
q
(
(λ + δν) · B)

1

)]
.

Therefore, using (6.1), we get

E[(Zδ
1)

−q ] ≥ E

[
exp

(
q
(
(λ + δν) · B)

1

)]

= E
[

exp
(
q(B1 + δB3

1 )
)]

=
∫

R

1√
2π

exp

(
−y2

2
+ q(y + δy3)

)
dy = ∞



630 O. Mostovyi, M. Sîrbu

for every δ 
= 0. Consequently, v(1, δ) = ∞ for every δ 
= 0. Moreover, one can find
a constant D > 0 such that

u(1, δ) ≥ E

[
U

(
X̂0

1(1,0) exp
(
δF + 1

2
δ2G

))]

= DE

[
exp

(
qB1 + q

2

)
exp

(
pδ(ν · B)1 + pδ(ν · I )1 + p

2
δ2(ν2 · I )1

)]

= DE

[
exp

(
qB1 + pδB3

1 + q − p

2
+ p

2

(
(δν + 1)2 · I)

1

)]
.

As q − p and p
2 ((δν + 1)2 · I )1 are nonnegative, we get

u(1, δ) ≥ DE[exp(qB1 + pδB3
1 )] = D

1√
2π

∫

R

exp(qy + pδy3 − y2/2)dy = ∞

for every δ 
= 0.

7 On sufficient conditions for Assumption 2.6

We now discuss Assumption 2.6. Recall that ζ(c, δ) was defined in (2.7).

Remark 7.1 The stronger condition

sup
(x′,δ)∈Bε(x,0)

E
R(x′,δ) [ζ(c, δ)] < ∞, (7.1)

for some ε > 0 and c > 0, where Bε(x,0) denotes the ball in R
2 of radius ε centred

at (x,0), implies local semiconcavity of the value function u(x, δ). Consequently, in
the quadratic expansions of u and v given by (2.20) and (2.21), the matrices Hu(x,0)

and Hv(y,0) defined in (2.18) and (2.19), respectively, are Hessian matrices, i.e., are
derivatives of gradients. This follows from Lemma 4.14. However, the very restrictive
condition (7.1) is an assumption that depends on the solutions for δ 
= 0 and is thus
usually impossible to check.

Remark 7.2 A stronger condition that implies Assumption 2.6 is the existence of a
wealth process X̃ under the numéraire X̂(x,0) and a constant c > 0 such that

exp
(
c
(|(ν · J 0)T | + (ν2 · 〈M〉)T

)) ≤ X̃T a.s.

This can be seen by taking the expectation under R(x,0) and by representing the
integrand under the measure P.

Remark 7.3 Let us assume that c1 > 1 in (2.3), i.e., that the relative risk aversion of
U is strictly greater than 1. (For example this holds if U(x) = xp

p
with p < 0.) In

this case, a sufficient condition for Assumption 2.6 to hold is the existence of some
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positive exponential moments under P of |(ν · J 0)T | and (ν2 · 〈M〉)T . This can be
shown as follows. Let us set

qi := −
(

1 − 1

ci

)
, i = 1,2.

As c2 ≥ c1 > 1, we deduce that qi ∈ (−1,0), i = 1,2. Using Lemma 4.12, one can
find a constant C > 0 such that

−V ′(y)y ≤ C(y−q1 + y−q2), y > 0. (7.2)

To prove (7.2), observe that from Lemma 4.12, we get for every z ∈ (0,1] that

U ′(z) ≤ z−c2U ′(1),

−V ′(z) ≤ z
− 1

c1
( − V ′(1)

)
. (7.3)

As (U ′)−1 = −V ′, the first inequality implies that there exists z0 such that

−V ′(z) ≤ (
U ′(1)

) 1
c2 z

− 1
c2 for every z ≥ z0.

Combining this inequality with (7.3) and since

sup
z∈[min(z0,1),max(z0,1)]

| − V ′(z)z| < ∞,

we obtain (7.2). Thus if some positive exponential moments of |ν · J 0
T | and ν2 · 〈M〉T

exist under P, using Hölder’s inequality, one can find a positive constant a such that

E [ζ(a,0)] < ∞, (7.4)

where ζ(a,0) is defined in (2.7). Let us set

c := a(1 + q2)

and note that c
1+q1

= a
1+q2
1+q1

≤ a. With y = ux(x,0), using again Hölder’s inequality

(note that 1
1+qi

are the Hölder conjugates of 1
−qi

, i = 1,2) and (7.2), we get

xyER(x,0) [ζ(c,0)] ≤ CE

[((
ŶT (y,0)

)−q1 + (
ŶT (y,0)

)−q2
)
ζ(c,0)

]

≤ CE[ŶT (y,0)]−q1E

[
ζ

(
c

1 + q1
,0

)]1+q1

+ CE[ŶT (y,0)]−q2E

[
ζ

(
c

1 + q2
,0

)]1+q2

≤ Cy−q1E[ζ(a,0)]1+q1 + Cy−q2E[ζ(a,0)]1+q2 < ∞,

where the last inequality follows from the supermartingale property of Ŷ (y,0) and
(7.4). Thus Assumption 2.6 holds.
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Remark 7.4 Assumption 2.6 is related to the condition [23, Assumption 4] on the
random endowment via the following argument. Assume that for some x′ > 0 and
c > 0, there exists a wealth process X ∈ X (x′,0) such that

ζ(c,0) ≤ XT

X̂T (x,0)
, (7.5)

where X̂(x,0) is the solution to (2.4). By rewriting the expectation under P, one can
see that Assumption 2.6 is satisfied. The wealth process X

X̂(x,0)
under the numéraire

X̂(x,0) in condition (7.5) is a local martingale under R(x,0). In [23, Assumption 4],
it is assumed that X

X̂(x,0)
is a square-integrable martingale under R(x,0).

8 Relationship to the risk-tolerance wealth process

Following Kramkov and Sîrbu [23], we recall that for an initial wealth x > 0
and δ = 0, the risk-tolerance wealth process is a maximal wealth process R(x,0)

such that

RT (x,0) = − U ′(X̂T (x,0))

U ′′(X̂T (x,0))
, (8.1)

i.e., it is a replication process for the random payoff given by the right-hand side of
(8.1). In general, the risk-tolerance wealth process R(x,0) need not exist. It is shown
in [23, Theorems 8 and 9] that the existence of the risk-tolerance wealth process is
closely related to some important properties of the marginal utility-based prices and
to the validity of second-order expansions of the value functions under the presence
of a random endowment. Below we establish a relationship between the existence of
R(x,0) and the second-order expansions of the value functions in the present context.

The following theorem is a version of [23, Theorem 4], which we present without a
proof as the one from [23, Theorem 4] goes through; see the discussion in Remark 2.3
above.

Theorem 8.1 Let x > 0 be fixed, assume that (2.1), (2.6) and Assumption 2.2 hold,
and denote y = ux(x,0). Then the following assertions are equivalent:

1) The risk-tolerance wealth process R(x,0) exists.
2) The value function u(x, δ) admits the expansion (2.20) at the point (x,0), and

uxx(x,0) = − y
x
a{x,x} satisfies

(ux(x,0))2

uxx(x,0)
= E

[
(U ′(X̂T (x,0)))2

U ′′(X̂T (x,0))

]
,

uxx(x,0) = E

[
U ′′(X̂T (x,0)

)(RT (x,0)

R0(x,0)

)2]
.

3) The value function v(y, δ) admits the expansion (2.21) at the point (y,0), and
vyy(y,0) = x

y
b{y,y} satisfies

y2vyy(y,0) = E
[(

ŶT (y,0)
)2

V ′′(ŶT (y,0)
)] = xyER(x,0)

[
B

(
ŶT (y,0)

)]
.
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In addition, if these assertions are valid, then the initial value of R(x,0) is given by

R0(x,0) = − ux(x,0)

uxx(x,0)
= x

a{x,x}
,

the product R(x,0)Y (y,0) is a uniformly integrable martingale and

lim
�x→0

X̂T (x + �x,0) − X̂T (x,0)

�x
= RT (x,0)

R0(x,0)
, (8.2)

lim
�y→0

ŶT (y + �y,0) − ŶT (y,0)

�y
= ŶT (y,0)

y
, (8.3)

where the limits in (8.2) and (8.3) take place in P-probability.

As in [23], for x > 0 and with y = ux(x,0), let us define

dR̃(x,0)

dP
:= RT (x,0)ŶT (y,0)

R0(x,0)y

and choose R(x,0)
R0(x,0)

as a numéraire, i.e., let us set

SR(x,0) :=
(

R0(x,0)

R(x,0)
,
R0(x,0)E(J 0)

R(x,0)

)
.

We define the space of martingales

M̃2(x,0) := {
M ∈ H2

0

(
R̃(x,0)

) : M = H · SR(x,0)

for some SR(x,0)-integrable process H
}
,

and Ñ 2(y,0) as its orthogonal complement in H2
0(R̃(x,0)). We start with a simple

lemma (stated without a proof) relating the change of numéraire to the structure of
martingales.

Lemma 8.2 Let x > 0 be fixed. Assume all conditions of Theorem 8.1 hold, with
y = ux(x,0). Then we have

M ∈M2(x,0) if and only if M
X̂T (x,0)
RT (x,0)

∈ M̃2(x,0),

and

N ∈N 2(y,0) if and only if N ∈ Ñ 2(y,0).

The following theorem describes the structural properties of the approximations in
Theorems 2.8, 2.10 and 2.12 under the assumption that the risk-tolerance wealth pro-
cess exists. In words, the second-order approximation of the value function amounts
to a Kunita–Watanabe decomposition under the changes of measure and numéraire
described above.
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Theorem 8.3 Let x > 0 be fixed. Assume all conditions of Theorem 8.1 hold, with
y = ux(x,0). Let us also assume that the risk-tolerance wealth process R(x,0) exists.
Consider the Kunita–Watanabe decomposition of the square-integrable martingale

Pt := E
R̃(x,0)

[(
A

(
X̂T (x,0)

) − 1
)
xF

∣∣∣Ft

]
, t ∈ [0, T ],

given by

P = P0 − M̃1 − Ñ1, where M̃1 ∈ M̃2(x,0), Ñ1 ∈ Ñ 2(y,0),P0 ∈R. (8.4)

Then the solutions M1(x,0) and N1(y,0) of the quadratic optimisation problems
(2.14) and (2.15) can be obtained from (8.4) by reverting to the original numéraire,
according to Lemma 8.2, through the identities

M̃1
t = X̂t (x,0)

Rt (x,0)
M1

t (x,0), Ñ1
t = x

y
N1

t (y,0), t ∈ [0, T ]. (8.5)

In addition, the Hessian terms in the quadratic expansions of u, v can be identified
as

a{δ,δ} = R0(x,0)

x
inf

M̃∈M̃2(x,0)

E
R̃(x,0)

[(
M̃T + xF

(
A

(
X̂T (x,0)

) − 1
))2]

+ Ca

= R0(x,0)

x
E
R̃(x,0)[(Ñ1

T )2] + R0(x,0)

x
P 2

0 + Ca, (8.6)

where

Ca := x2
E
R(x,0)

[
F 2 A(X̂T (x,0)) − 1

A(X̂T (x,0))
− G

]
, (8.7)

and

b{δ,δ} = R0(x,0)

x
inf

Ñ∈N 2(y,0)
E
R̃(y,0)

[(
ÑT + yF

(
A

(
X̂T (x,0)

) − 1
))2]

+ Cb

= R0(x,0)

x

(
y

x

)2

E
R̃(y,0)[(M̃1

T )2] + R0(x,0)

x

(
y

x

)2

P 2
0 + Cb,

where

Cb := y2
E
R(x,0)

[
G + F 2

(
1 − A

(
X̂T (x,0)

))]
. (8.8)

The terms ax,δ from (2.16) and by,δ from (2.17) can be represented as

a{x,δ} = P0,

b{y,δ} = y

x

P0

a{x,x}
.

With these identifications, all the conclusions of Theorem 2.8 and Corollary 2.13 hold
true.
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Proof Let us prove (8.5) first. Completing the square in (2.14), we get

a{δ,δ} = inf
M∈M2(x,0)

E
R(x,0)

[
A

(
X̂T (x,0)

)(
MT + xF

(
1 − 1

A(X̂T (x,0))

))2]
+ Ca,

where Ca is defined in (8.7). As

dR(x,0)

dR̃(x,0)
= A(X̂T (x,0))R0(x,0)

x
= X̂T (x,0)R0(x,0)

RT (x,0)x
,

using Lemma 8.2, we can reformulate (8.6) as

a{δ,δ} = inf
M∈M2(x,0)

E
R̃(x,0)

[(
MT

X̂T (x,0)

RT (x,0)
+ xF

(
A

(
X̂T (x,0)

) − 1
))2]

× R0(x,0)

x
+ Ca

= R0(x,0)

x
inf

M̃∈M̃2(x,0)

E
R̃(x,0)

[(
M̃T + xF

(
A

(
X̂T (x,0)

) − 1
))2]

+ Ca.

(8.9)

Likewise, completing the square in (2.15), we obtain

b{δ,δ} = inf
N∈N 2(y,0)

E
R(y,0)

[
B

(
ŶT (y,0)

)(
NT + yF

1 − B(ŶT (y,0)

B(ŶT (y,0)

)2]
+ Cb

= R0(x,0)

x
inf

N∈N 2(y,0)
E
R̃(y,0)

[(
NT + yF

(
A

(
X̂T (x,0)

) − 1
))2]

+ Cb,

(8.10)

where Cb is defined in (8.8). Now the decomposition (8.5) (where the constant P0

is still to be determined) results from (8.9), (8.10) and optimality of M1(x,0) and

N1(y,0) for (2.14) and (2.15), respectively. As A(X̂T (x,0)) = X̂T (x,0)
RT (x,0)

, taking the

expectation in (2.24) under R̃(x,0), we deduce that P0 = a{x,δ}. Therefore, using
(2.22), we deduce that b{y,δ} = y

x
P0

a{x,x} . �

Remark 8.4 Applying Itô’s formula, one can find expressions for the corrections
of the optimal proportions of the total wealth invested in the stock in terms of the
Kunita–Watanabe decomposition when using the risk-tolerance wealth process as
numéraire, in the spirit of (3.3) in Theorem 3.1. However, in the general case when
we have R(x,0)

R0(x,0)
= X′(x,0) 
= X̂(x,0)/x, such a correction to the proportions also

contains the terms X̂(x,0)/R(x,0) and M̃1(x,0).
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Example 8.5 We suppose that B and W are independent Brownian motions on the
probability space (�,P,F), where the filtration (Ft )t∈[0,T ] is generated by B and W

(made right-continuous and complete). Let us assume that the family of returns is
given by

dJ δ
t = (μ + δνt )dt + σdBt , δ ∈ R,

where μ ∈R and σ > 0 are constant and the perturbation process ν is predictable and
such that (2.2) and Assumption 2.6 hold. In other words, the base model δ = 0 has
constant volatility and market prices of risk and is driven by one Brownian motion B ,
but the perturbed model is genuinely incomplete, as the market price of risk depends
non-trivially on another source of randomness W .

We additionally suppose that the agent is trying to maximise his/her expected util-
ity, where U satisfies Assumption 2.2. Fix x > 0. Using duality, one can see that the
solution to the base model does not take into account the information provided by
the additional Brownian motion W . More precisely, although the filtration sees W ,
all the optimal dual elements are given by Ŷ (y,0) = yY , y > 0, for

dYt = −μ

σ
YtdBt , Y0 = 1.

The reader may note that this is the density of the minimal martingale measure intro-
duced in [6] for the base model considered with the large filtration generated by B

and W .
First, the dual value function is

v(y,0) =
∫

R

V

(
y exp

(
− μ

σ

√
T z − 1

2

μ2

σ 2
T

))
1√
2π

exp

(
− z2

2

)
dz, y > 0,

and u(·,0) can be represented in a similar manner.
As the optimal investment strategy and the risk-tolerance wealth process depend

exclusively on J 0 (or B), we obtain their corresponding representations below. It
appears more convenient to express X̂(x,0) and R(x,0) via replication of claims
of the type f (J 0

T ), for an appropriate function f . The reader may note that YT is
given by a deterministic function of J 0

T , so one can use the Black–Scholes pricing
and hedging argument, rather than the dynamic programming approach relying on
the feedback representation.

Using the replication approach, the optimal investment strategy and the risk-
tolerance wealth process be represented as follows. With

K(z, t) := 1√
2πσ 2t

exp

(
− z2

2σ 2t

)
,

ḡ(z) := −V ′
(

ux(x,0) exp
(μ(μT − 2z)

2σ 2

))
, z ∈ R,

the optimal proportion for δ = 0 is given by

π̂t (x,0) =
∫
R

Kx(J
0
t − y,T − t)ḡ(y)dy

X̂t (x,0)
1[0,T )(t), t ∈ [0, T ],
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where Kx denotes the derivative of K with respect to the first argument. Moreover,
for x > 0, the risk-tolerance wealth process exists and evolves as

dRt(x,0) =
(∫

R

Kx(J
0
t − y,T − t)h̄(y)dy

)
dJ 0

t ,

where

h̄(z) := ux(x,0) exp

(
μ(μT − 2z)

2σ 2

)
V ′′

(
ux(x,0) exp

(μ(μT − 2z)

2σ 2

))
, z ∈R.

For the characterisation of the corrections to the optimal trading strategies below, it
is convenient to represent R(x,0) in terms of proportions, i.e.,

dRt(x,0) = Rt(x,0)ρtdJ 0
t ,

where the initial condition is given via the assertion of Theorem 8.1 and the propor-
tion ρ invested in the stock is

ρt =
∫
R

Kx(J
0
t − y,T − t)h̄(y)dy

Rt (x,0)
1[0,T )(t), t ∈ [0, T ].

Keeping the original numéraire, we switch to the minimal martingale measure

Q̂ given by dQ̂
dP

= YT . Under this measure, 1
σ
J 0 and W are independent Brownian

motions. Consider the Q̂-martingale L defined as

L̄t := E
Q̂
[(

X̂T (x,0) − RT (x,0)
)
x(ν · J 0)T

∣∣Ft

]
, t ∈ [0, T ].

It can be decomposed as

L̄ = L̄0 + ᾱ · J 0 + β̄ · W. (8.11)

This is the Föllmer–Schweizer decomposition of L̄T (see Föllmer and Schweizer [6]
and the discussion in Choulli et al. [3]), but it can also be thought of as the replication
of L̄T in the market which is fictitiously completed by a security with the return
process W .

Now we change numéraire to the risk-tolerance wealth process and adjust the
measure accordingly. First, the process P defined in Theorem 8.3 is the “price pro-
cess” L̄ changed to the numéraire R(x,0), i.e., P = L̄/R(x,0). Second, let us set
MR̃ := J 0 − ∫ ·

0 ρsds. We note that 1
σ
MR̃ and W are independent Brownian motions

under the measure R̃(x,0). The martingale MR̃ drives the return of the traded secu-
rity under the numéraire R(x,0). The decomposition (8.4) can be written as

P = P0 − ϕ · MR̃ − β · W (8.12)

for some processes ϕ,β . We first identify M̃1 = ϕ · MR̃ and then, by direct compu-
tations, show that using (8.5), we conclude that γ 1 in (3.2) equals

γ 1
t = Rt(x,0)

X̂t (x,0)

(
M̃1

t (ρt − πt ) + ϕt

) 1

x
, t ∈ [0, T ], (8.13)
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where ϕ in both (8.12) and (8.13) is given by

ϕt = Ptρt − ᾱt

Rt (x,0)
, t ∈ [0, T ],

for ᾱ coming from the representation (8.11). To make an even more explicit repre-
sentation of γ 1, one needs the perturbation process ν to satisfy extra conditions. In
the power utility setting with negative power, if ν is of a certain (very specific) form,
the perturbations to Kim and Omberg [18] and Kraft [19] are characterised in [24,
Sect. 5] (where in Example 5.2, both base and perturbed models are from Kim and
Omberg [18], and in Example 5.3, the base model corresponds to Kraft [19] and the
perturbed models are of the form considered in Guasoni and Robertson [10]).

In turn, using (2.25) and (8.2) and direct computations, we deduce that γ 0 from
(3.2) is given by

γ 0
t = Rt(x,0)

X̂t (x,0)R0(x,0)
(ρt − πt ), t ∈ [0, T ].

Remark 8.6 Theorem 8.3 gives an interpretation of a{x,δ} as a utility-based price. Let
us start by observing that

a{x,δ} = E
R̃(x,0)

[(
A

(
X̂T (x,0)

) − 1
)
xF

]

= E

[
(X̂T (x,0) − RT (x,0))

R0(x,0)
xF

ŶT (y,0)

y

]
.

If there exists a wealth process X′ such that

X′
T ≥ ∣∣(X̂T (x,0) − RT (x,0)

)
F

∣∣ (8.14)

and X′Ŷ is a uniformly integrable martingale,1 then according to Hugonnier and
Kramkov [13] and Hugonnier et al. [14], a{x,δ} represents the marginal utility-based
price of the “random endowment”

(X̂T (x,0) − RT (x,0))

R0(x,0)
xF.
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In this case, X′ = C(R(x,0) + X̂(x,0)) satisfies (8.14) and X′Ŷ (y,0) is a P-martingale by Theorem 8.1.
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