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OPTIMAL INVESTMENT WITH INTERMEDIATE CONSUMPTION
AND RANDOM ENDOWMENT

OLEKSII MOSTOVYI

Department of Mathematics, The University of Texas at Austin

We consider an optimal investment problem with intermediate consumption and
random endowment, in an incomplete semimartingale model of the financial market.
We establish the key assertions of the utility maximization theory, assuming that both
primal and dual value functions are finite in the interiors of their domains and that
the random endowment at maturity can be dominated by the terminal value of a
self-financing wealth process. In order to facilitate the verification of these conditions,
we present alternative, but equivalent conditions, under which the conclusions of the
theory hold.
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1. INTRODUCTION

Existing work. The problem of utility maximization in incomplete markets is of central
importance in mathematical finance. The theory was developed, among others, by He
and Pearson (1991a, b), Karatzas et al. (1991), Karatzas and Shreve (1998), Kramkov
and Schachermayer (1999, 2003), Karatzas and Žitković (2003), and Žitković (2005).

In this paper, we consider the problem of an agent, who in addition to initial wealth re-
ceives a random endowment. The agent’s goal is to consume and invest so as to maximize
expected utility. In complete market settings, this problem is considered by Karatzas and
Shreve (1998), Chapter 4. Using a replication argument, the authors were able to reduce
the problem to one without endowment. As replication might not be possible in in-
complete markets, alternative methods have been used. For example, Cuoco (1997) used
martingale techniques to reformulate the dynamic optimization problem as an equivalent
static one. In Markovian settings, one possible approach is to use a Hamilton–Jacobi–
Bellman equation for the value function, see Duffie and Zariphopoulou (1993) and
Duffie et al. (1997). Cvitanić, Schachermayer, and Wang (2001) considered the optimal
investment problem of terminal wealth for an agent with random endowment in an in-
complete semimartingale market. Using the space (L∞)∗ of finitely additive measures as
the domain of the dual problem, they were able to characterize the value function and
the optimal terminal wealth in terms of the solution to the dual problem.

In contrast to Cvitanić et al. (2001), Hugonnier and Kramkov (2004) treated both
the initial capital and the number of shares of random endowment as the variables of
the value function. Although it increased the dimensionality of the problem, such an
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approach permitted the relaxation of some technical assumptions. Stability of this utility
maximization problem was investigated by Kardaras and Žitković (2011). Karatzas and
Žitković (2003) as well as Žitković (2005) extended the results of Cvitanić et al. (2001) to
include intermediate consumption.

Mostovyi (2015) considered the problem of optimal investment with intermediate
consumption under the condition that both primal and dual value functions are finite in
their domains and has shown that such conditions are both necessary and sufficient for
the validity of the “key” conclusions of the theory.

Our contributions. We consider a problem of optimal investment with intermediate
consumption and random endowment, in an incomplete semimartingale market with a
finite time horizon. This extends the model in Mostovyi (2015) by incorporating a random
endowment process (in the finite time horizon settings), and expands the framework
of Hugonnier and Kramkov (2004) by adding intermediate consumption. The results,
in particular, enable us to reduce the number of technical conditions on the utility
in Karatzas and Žitković (2003) and Žitković (2005). In addition, our formulation avoids
the use of finitely additive measures in the construction of the dual domain and (as a
consequence) gives a unique minimizer to the dual problem (and not just a minimizer,
which is unique up to a singular part).

Our approach is based on a formulation of the primal and dual problems that shifts the
ideas of the proofs toward multidimensional convex analytic techniques. As in Hugonnier
and Kramkov (2004), we consider the number of shares of random endowment to be
an additional variable of the value function. Such an increase of dimensionality enables
us to obtain existence and uniqueness results assuming that both primal and dual value
functions are finite in the interiors of their domains. In order to facilitate the verification
of this condition, following Mostovyi (2015), we present an equivalent criterion in terms
of the finiteness of the value functions without the endowment. The endowment process
at maturity is assumed to be dominated by the terminal value of a nonnegative self-
financing wealth process (as in Hugonnier and Kramkov 2004). This condition can also
be formulated in several equivalent ways, which we specify as well.

In addition to the usual conclusions of the utility maximization theory, it is pos-
sible to establish certain properties of the value functions on the boundaries of their
domains, such as upper semi-continuity of the primal value function and lower semi-
continuity of the dual value function. Note that, in the setting of optimal investment
from terminal wealth, semi-continuity and boundary behavior were studied in Siorpaes
(2016).

We would like to stress that the motivations behind this work are the extension of
the utility-based pricing theory (see, e.g., Kramkov and Sı̂rbu 2006) to the stochastic
utility framework and the investigation of existence and uniqueness of equilibria in
incomplete continuous-time markets. Note that random utilities naturally arise in optimal
investment problems under standard transformations, such as changes of numéraire.
Example 4.2 illustrates this phenomenon and shows how existence and uniqueness results
can be established not only for the “usual” utility maximization problem, but also for
a utility maximization under a new (bounded away from zero) numéraire, via a simple
application of Theorem 2.4 and Lemma 2.6 below. In Example 4.1, we obtain the standard
conclusions of the theory in the setting, where the agent is not allowed to invest in
stocks.

The organization of the paper. In Section 2, we describe the mathematical model
and state our main results, whose proofs are contained in Section 3. The examples are
presented in Section 4.
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2. MAIN RESULTS

We consider a financial market model with finite time horizon [0, T] and a zero interest
rate. The price process S = (Si )d

i=1 of the stocks is assumed to be a semimartingale on a
complete stochastic basis

(
�,F, (Ft)t∈[0,T] , P

)
, where F0 is trivial. We assume that there

are nontraded contingent claims with payment processes (Fi )N
i=1 = F . If (qi )N

i=1 = q are
the numbers of such claims, then the cumulative payoff of this portfolio is

q F �
N∑

i=1

qi Fi =
(

N∑
i=1

qi Fi
t

)
t∈[0,T]

.

The random variable q Ft represents the cumulative amount of endowment received by
a holder of q claims during the time interval [0, t]. Both processes S and F are given
exogenously.

As in Mostovyi (2015), we define a stochastic clock as a nondecreasing, càdlàg, adapted
process such that

κ0 = 0, P [κT > 0] > 0, and κT ≤ A(2.1)

for some finite constant A.
Define a portfolio � as a quadruple (x, q, H, c), where the constant x is the initial

value of the portfolio, vector q gives the number of shares of illiquid contingent claims,
H = (Hi )d

i=1 is a predictable S-integrable process that specifies the amount of each stock in
the portfolio, and c = (ct)t∈[0,T] is the consumption rate, which we assume to be optional
and nonnegative.

The wealth process V = (Vt)t∈[0,T] generated by the portfolio is

Vt = x +
∫ t

0
Hsd Ss −

∫ t

0
csdκs + q Ft, t ∈ [0, T].

A portfolio � with c ≡ 0 and q = 0 is called self-financing. The collection of nonnegative
wealth processes generated by self-financing portfolios with initial value x ≥ 0 is denoted
by X (x), i.e.,

X (x) �
{

X ≥ 0 : Xt = x +
∫ t

0
Hsd Ss, t ∈ [0, T]

}
, x ≥ 0.

A probability measure Q is an equivalent local martingale measure if Q is equivalent to
P and every X ∈ X (1) is a local martingale under Q. We denote the family of equivalent
local martingale measures by M and assume that

M 	= ∅.(2.2)

This condition is equivalent to the absence of arbitrage opportunities in the market, see
Delbaen and Schachermayer (1994, 1998) as well as Karatzas and Kardaras (2007) for
the exact statements and further references.

To rule out doubling strategies in the presence of random endowment, we need to
impose additional restrictions. Following Delbaen and Schachermayer (1997a), we say
that a nonnegative process in X (x) is maximal if its terminal value cannot be dominated
by that of any other process in X (x).

As in Delbaen and Schachermayer (1997a), we define an acceptable process to be a
process of the form X = X′ − X′′, where X′ is a nonnegative wealth process generated



OPTIMAL INVESTMENT WITH INTERMEDIATE CONSUMPTION AND RANDOM ENDOWMENT 99

by a self-financing portfolio and X′′ is maximal. Following Hugonnier and Kramkov
(2004), we denote by X (x, q) the set of acceptable processes with initial values x, whose
terminal values dominate the random payoff −q FT:

X (x, q) � {X : X is acceptable, X0 = x and XT + q FT ≥ 0} .(2.3)

The set X (x, q) may be empty for some (x, q) ∈ RN+1. We are interested in the values of
x and q, for which X (x, q) 	= ∅, and define

K � int
{
(x, q) ∈ RN+1 : X (x, q) 	= ∅} .(2.4)

Hereafter, we shall impose the following conditions on the endowment process.

ASSUMPTION 2.1. (Fi
T)i=1,...,N are FT-measurable functions. There exists a maximal

nonnegative wealth process X′ generated by a self-financing portfolio, such that

X′
T ≥

N∑
i=1

|Fi
T|.(2.5)

Lemma 6 in Hugonnier and Kramkov (2004) shows that

clK = {
(x, q) ∈ RN+1 : X (x, q) 	= ∅} ,

where clK denotes the closure of the set K in RN+1.
We restrict our attention to the wealth processes with nonnegative terminal values.

Thus for each (x, q) ∈ clK we set

A(x, q) �
{
c = (ct)t∈[0,T] : c is nonnegative, optional,

and there existsX ∈ X (x, q)s.t.XT −
∫ T

0
ctdκt + q FT ≥ 0

}
.

(2.6)

Note that c ≡ 0 belongs to A(x, q) for every (x, q) ∈ clK.

REMARK 2.2. As the endowment process F in definition (2.6) enters only via its
terminal value, it is natural to impose a condition on FT (and not on the whole F), as
in Assumption 2.1. For conditions equivalent to (2.5), see lemma 1 in Hugonnier and
Kramkov (2004).

The preferences of an economic agent are modeled with a utility stochastic fieldU =
U(t, ω, x) : [0, T] × � × [0, ∞) → R ∪ {−∞}. As in Mostovyi (2015), we assume that U
satisfies the conditions below.

ASSUMPTION 2.3. For every (t, ω) ∈ [0, T] × �, the function x → U(t, ω, x) is strictly
concave, increasing, continuously differentiable on (0, ∞) and satisfies the Inada conditions:

lim
x↓0

U ′(t, ω, x) = +∞ and lim
x→∞ U ′(t, ω, x) = 0,(2.7)

where U ′ denotes the partial derivative with respect to the third argument. At x = 0 we
suppose, by continuity, U(t, ω, 0) = lim

x↓0
U(t, ω, x), which may be −∞. For every x ≥ 0 the

stochastic process U (·, ·, x) is optional.
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The agent can control investment and consumption. The goal is to maximize expected
utility. The value function u is defined as:

u(x, q) � sup
c∈A(x,q)

E

[∫ T

0
U(t, ω, ct)dκt

]
, (x, q) ∈ clK.(2.8)

We use the convention

E

[∫ T

0
U(t, ω, ct)dκt

]
� −∞ if E

[∫ T

0
U−(t, ω, ct)dκt

]
= +∞.

Here and below, W− and W+ denote the negative and positive parts of a stochastic field
W, respectively.

We are primarily interested in the following questions.

(i) Under what conditions on the market model and on the utility stochastic field U
does the maximizer to the problem (2.8) exist for every (x, q) ∈ {u > −∞}?

(ii) What are the properties of the function u?
(iii) What is the corresponding dual problem?

We employ duality techniques to answer these questions and define a convex conjugate
stochastic field

V(t, ω, y) � sup
x>0

(U(t, ω, x) − xy) , (t, ω, y) ∈ [0, T] × � × [0, ∞).

Observe that −V satisfies Assumption 2.3. In order to construct the feasible set of the
dual problem, we define the set L as the relative interior of the polar cone of −K:

L � ri
{
(y, r ) ∈ RN+1 : xy + qr ≥ 0 for all (x, q) ∈ K} .(2.9)

It is proven that L is an open set in RN+1 if and only if for every q 	= 0 the random
variable q FT is nonreplicable (see lemma 7 in Hugonnier and Kramkov 2004 for the
exact statement).

By Z, we denote the set of càdlàg densities of equivalent local martingale measures:

Z �
{(

dQt

dPt

)
t∈[0,T]

: Q ∈ M
}

,

and for each y ≥ 0 we define

Y(y) � cl
{
Y : Yis càdlàg adapted and

0 ≤ Y ≤ yZ (dκ × P) a.e. for some Z ∈ Z} ,(2.10)

where the closure is taken in the topology of convergence in measure (dκ × P) on the
space of optional processes. Now we are ready to set the domain of the dual problem:

Y(y, r ) �
{

Y ∈ Y(y) : E

[∫ T

0
ctYtdκt

]
≤ xy + qr

for every (x, q) ∈ clK and c ∈ A(x, q)
}

, (y, r ) ∈ clL,
(2.11)
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and to state the dual optimization problem itself:

v(y, r ) � inf
Y∈Y(y,r )

E

[∫ T

0
V(t, ω, Yt)dκt

]
, (y, r ) ∈ clL,(2.12)

where we use the convention:

E

[∫ T

0
V(t, ω, Yt)dκt

]
� +∞ if E

[∫ T

0
V+(t, ω, Yt)dκt

]
= +∞.

The following theorem constitutes the main result of this work.

THEOREM 2.4. Assume that (2.1), (2.2), Assumptions 2.1 and 2.3 hold, as well as

u(x, q) > −∞ for every (x, q) ∈ K and

v(y, r ) < +∞ for every (y, r ) ∈ L.(2.13)

Then we have:

(i) The functions u and v are finite on K and L, respectively. u and v satisfy biconjugacy
relations:

u(x, q) = inf
(y,r )∈clL

(v(y, r ) + xy + qr ) , (x, q) ∈ clK;

v(y, r ) = sup
(x,q)∈clK

(u(x, q) − xy − qr ) , (y, r ) ∈ clL.
(2.14)

(ii) The function u is upper semi-continuous, u(x, q) < +∞ for every (x, q) ∈ clK. For
every (x, q) ∈ {u > −∞} there exists a unique maximizer to the problem (2.8).
The function v is lower semi-continuous, v(y, r ) > −∞ for every (y, r ) ∈ clL. For
every (y, r ) ∈ {v < +∞} there exists a unique minimizer to the problem (2.12).

(iii) For every (x, q) ∈ K, the subdifferential of u at (x, q) is nonempty, (y, r ) ∈ ∂u(x, q)
if and only if the following conditions hold:

Ŷt(y, r ) = U ′ (t, ω, ĉt(x, q)) , (t, ω) ∈ [0, T] × �,(2.15)

E

[∫ T

0
Ŷt(y, r )ĉt(x, q)dκt

]
= xy + qr ,(2.16)

|v(y, r )| < +∞,(2.17)

where Ŷ(y, r ) and ĉ(x, q) are optimizers to problems (2.12) and (2.8), respectively.

Let 1E denote the indicator function of a set E.

REMARK 2.5. Item (ii) of Theorem 2.4 asserts the existence of the optimal solution to
(2.8) at the points (x, q) that might lie on the boundary of K. It turns out that one cannot
establish subdifferentiability of u on the boundary of K in general, as the following
example demonstrates.

Consider maximization of the expected utility from terminal wealth, i.e., κ(t) =
1[T](t), t ∈ [0, T], in the market with no stocks and one contingent claim uniformly
distributed on [−1, 1], with a power utility of exponent α ∈ (−1, 0), i.e., U(t, w, x) = xα

α
.

Then K = {(x, q) ∈ R2 : x > |q|}, dom(u) = clK\{0}, but dom(∂u) = K.
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Condition (2.13) might be difficult to verify. The following lemma provides an equiv-
alent criterion in terms of the functions

w(x) � u(x, 0) = sup
c∈A(x,0)

E

[∫ T

0
U (t, ω, ct) dκt

]
, x > 0,(2.18)

and

w̃(y) � inf
Y∈Y(y)

E

[∫ T

0
V (t, ω, Yt) dκt

]
, y > 0.(2.19)

LEMMA 2.6. Let conditions (2.1) and (2.2) as well as Assumptions 2.1 and 2.3 hold true.
Then condition (2.13) holds if and only if

w(x) > −∞ for every x > 0 and

w̃(y) < +∞ for every y > 0.(2.20)

As pointed out in Mostovyi (2015), w(x) > −∞ for every x > 0 if U is uniformly
in (t, ω) bounded from below by a finite-valued function. Note that Lemma 2.6 is a
generalization of lemma 2 in Hugonnier and Kramkov (2004) to our setting and (2.20)
is the condition that was used in Mostovyi (2015) in the statement of the main theorem.

3. PROOFS

The proof of Theorem 2.4 follows Hugonnier and Kramkov (2004). However, our setting
and results, which in contrast to Hugonnier and Kramkov (2004) include intermediate
consumption, stochastic utility, and properties of the primal and dual value functions
on the boundaries of their domains, require special treatment. On the technical side, the
proof of Theorem 2.4 relies on the results of Mostovyi (2015). Also, in some proofs below,
we will assume that the set L is open in RN+1. As explained in remark 6 of Hugonnier
and Kramkov (2004), we do not lose generality by doing so. We begin with a proposition
that gives a useful characterization of the primal and dual domains.

PROPOSITION 3.1. Under the conditions (2.1), (2.2), and Assumption 2.1, the families
(A(x, q))(x,q)∈clK and (Y(y, r ))(y,r )∈clL defined in (2.6) and (2.11) have the following proper-
ties:

(i) For any (x, q) ∈ K, the set A(x, q) contains a strictly positive constant process. For
every (x, q) ∈ clK a nonnegative optional process c belongs to A(x, q) if and only if

E

[∫ T

0
ctYtdκt

]
≤ xy + qr

for every (y, r ) ∈ clL and Y ∈ Y(y, r ).
(3.1)
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(ii) For every (y, r ) ∈ L, the set Y(y, r ) contains a strictly positive process. For every
(y, r ) ∈ clL, a nonnegative process Y belongs to Y(y, r ) if and only if

E
[∫ T

0 ctYtdκt

]
≤ xy + qr

for every (x, q) ∈ clK and c ∈ A(x, q).(3.2)

The proof of Proposition 3.1 is based on several lemmas. As in Hugonnier and
Kramkov (2004), we define P to be the set of points at the intersection of L and the
hyperplane y ≡ 1, that is,

P � {p ∈ RN : (1, p) ∈ L}.(3.3)

Note that under (2.2) and Assumption 2.1, it follows from lemma 1 in Hugonnier and
Kramkov (2004), that the set P is bounded.

Let M′ be the set of equivalent local martingale measures Q, such that the process X′

(in Assumption 2.1) is a uniformly integrable martingale under Q. According to theorem
5.2 in Delbaen and Schachermayer (1997a), M′ is a nonempty, convex subset of M,
which is dense in M with respect to the variation norm. Note that the results in Delbaen
and Schachermayer (1997a) were proven under the assumption that S is locally bounded,
however they still hold in our settings, see, e.g., remark 3.4 in Hugonnier, Kramkov, and
Schachermayer (2005).

For every p ∈ P , we denote

M′(p) � {Q ∈ M′ : ˜EQ [FT] = p}.
It follows from lemma 8 in Hugonnier and Kramkov (2004) that (under condition (2.2)
and Assumption 2.1) M′(p) is nonempty for every p ∈ P and⋃

p∈P
M′(p) = M′,(3.4)

LEMMA 3.2. Let the assumptions of Proposition 3.1 hold true and p ∈ P . Then, the
càdlàg density process of any Q ∈ M′(p) belongs to Y(1, p). For every (x, q) ∈ clK and
c ∈ A(x, q), we have

x + qp ≥ EQ

[∫ T

0
ctdκt

]
= E

[∫ T

0

dQt

dPt
ctdκt

]
.(3.5)

Proof. Fix an arbitrary (x, q) ∈ clK, c ∈ A(x, q), and X ∈ X (x, q) such that
XT + q FT ≥ ∫ T

0 ctdκt ≥ 0. By lemma 4 in Hugonnier and Kramkov (2004), X is a
supermartingale under Q. Therefore, taking expectation under Q ∈ M′(p) and using
localization and proposition I.4.49 in Jacod and Shiryaev (1980), we get (3.5) (note that
this part of the proof parallels the proof of proposition 3.1 in Žitković 2005). �

LEMMA 3.3. Let the assumptions of Proposition 3.1 hold true. Then, for every (x, q) ∈
clK, a nonnegative optional process c belongs to A(x, q) if and only if

EQ

[∫ T

0
ctdκt

]
≤ x + qp for every p ∈ P and Q ∈ M′(p).(3.6)
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Proof. If c ∈ A(x, q) for (x, q) ∈ clK, then the validity of (3.6) is proven in Lemma
3.2. Vice versa, let c be a nonnegative optional process such that (3.6) holds. Let

h �
∫ T

0
ctdκt − q FT, M � max

1≤i≤N
|qi |.

Then h ≥ −MX′
T and

α(h) � sup
Q∈M′

EQ [h] = sup
p∈P

sup
Q∈M′(p)

EQ [h]

= sup
p∈P

sup
Q∈M′(p)

(
EQ

[∫ T
0 ctdκt

]
− qp

)
≤ x,

where, in the second equality, we used (3.4). Lemma 5 in Hugonnier and Kramkov
(2004) implies the existence of an acceptable process X such that X0 = α(h) and XT ≥ h.

It follows that

XT + q FT ≥
∫ T

0
ctdκt.

Therefore c ∈ A(α(h), q) ⊆ A(x, q). �

Proof of Proposition 3.1. We prove item (i ) first. Fix (x, q) ∈ K. As K is an open
set, there exists δ > 0 such that (x − δ, q) ∈ K. Take X ∈ X (x − δ, q) then Z � X + δ ∈
X (x, q). Consequently

ZT + q FT ≥ δ ≥
∫ T

0
(δ/A) dκt,

where A is the constant in (2.1). Therefore, the process that takes the constant value δ/A
belongs to A(x, q).

Let c be a nonnegative optional process such that (3.1) holds. For every p ∈ P , it
follows from Lemma 3.2 that the càdlàg density process of any Q ∈ M′(p) is in Y(1, p).
Consequently, c satisfies (3.6). It follows from Lemma 3.3 that c ∈ A(x, q). The other
direction follows from the definition of the set Y(y, r ). This concludes the proof of item
(i ).

To prove the assertion of item (i i ), let us observe that

aY(y, r ) = Y(ay, ar ) for every a > 0 and (y, r ) ∈ L.

Therefore it suffices to prove the existence of a strictly positive process for (y, r ) = (1, p),
p ∈ P . Fix an arbitrary p ∈ P . By lemma 8 in Hugonnier and Kramkov (2004), we
deduce the existence of Q ∈ M′(p). By lemma 3.2, the càdlàg density process ( dQt

dPt
)t∈[0,T]

is in Y(1, p). Since Q is equivalent to P, ( dQt
dPt

)t∈[0,T] is strictly positive P a.s.
Similarly, it suffices to consider (y, r ) ∈ clL with y = 1. For every (1, p) ∈ clL, if

Y ∈ Y(1, p), condition (3.2) follows from the definition of the set Y(1, p). Conversely, let
Y be a nonnegative process such that (3.2) holds for y = 1 and r = p. Then

E

[∫ T

0
ctYtdκt

]
≤ 1 for all c ∈ A(1, 0).
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Note thatA(1, 0) is nonempty by lemma 1 in Hugonnier and Kramkov (2004). Therefore,
by proposition 4.4 in Mostovyi (2015), Y belongs to the set Y(1) and is such that (3.2)
holds, i.e., Y ∈ Y(1, p). �

LEMMA 3.4. Under the conditions of Theorem 2.4, for every (x, q) ∈ clK and (y, r ) ∈ clL,
we have

u(x, q) ≤ v(y, r ) + xy + qr .(3.7)

As a result, u and v are real-valued functions on K and L, u < +∞ and v > −∞ on clK
and clL, respectively.

Proof. Fix (x, q) ∈ clK and (y, r ) ∈ clL. Take an arbitrary c ∈ A(x, q) and Y ∈ Y(y, r ).
It follows from the definition of the set Y(y, r ) and Fenchel’s inequality that

E

[∫ T

0
U(t, ω, ct)dκt

]
≤ E

[∫ T

0
U(t, ω, ct)dκt

]
+ xy + qr − E

[∫ T

0
ctYtdκt

]
≤ E

[∫ T

0
V(t, ω, Yt)dκt

]
+ xy + qr .

This implies inequality (3.7). The remaining assertions of the lemma follow from
(2.13). �

Let L0 = L0 (dκ × P) be the vector space of optional processes on the stochastic basis(
�,F, (Ft)t∈[0,T], P

)
equipped with the topology of convergence in measure (dκ × P).

The following lemma establishes semi-continuity of the value functions. Note that,
in the setting of optimal investment from terminal wealth, upper semi-continuity of the
primal value function is proven in theorem 6.3 of Siorpaes (2016).

LEMMA 3.5. Let the conditions of Theorem 2.4 hold true. Then the function u is
upper semi-continuous. For every (x, q) ∈ {u > −∞}, there exists a unique maximizer
to the problem (2.8). Likewise, the function v is lower semi-continuous. For every
(y, r ) ∈ {v < +∞}, there exists a unique minimizer to the problem (2.12).

Proof. Let (yn, rn)n≥1 be a sequence in L converging to a point (y, r ) ∈ {v < +∞}.
Without loss of generality, assume that v(yn, rn) < ∞, n ≥ 1. Let

L � lim inf
n→∞ v(yn, rn).(3.8)

Passing, if necessary, to a subsequence, which we still denote (yn, rn)n≥1, we can assume
that

L = lim
n→∞ v(yn, rn).(3.9)

Let Yn ∈ Y(yn, rn) be such that

E

[∫ T

0
V
(
t, ω, Yn

t

)
dκt

]
≤ v(yn, rn) + 1

n
, n ≥ 1.
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By lemma A1.1 in Delbaen and Schachermayer (1994), there exists a sequence of convex
combinations Ỹn ∈ conv(Yn, Yn+1, . . .), n ≥ 1, and an element Ŷ ∈ L0, such that

(
Ỹn
)

n≥1

converges to Ŷ (dκ × P) a.e. From the convexity of V, we have

sup
n≥m

E

[∫ T

0
V(t, ω, Yn

t )dκt

]
≥ sup

n≥m
E

[∫ T

0
V(t, ω, Ỹn

t )dκt

]
.(3.10)

For every (x, q) ∈ clK and c ∈ A(x, q), using Fatou’s lemma, we get:

E

[∫ T

0
Ŷtctdκt

]
≤ lim inf

n→∞ E

[∫ T

0
ctỸn

t dκt

]
≤ xy + qr .

Consequently, using Proposition 3.1, we deduce that Ŷ ∈ Y(y, r ).
By Lemma 2.6, the functions w and w̃ satisfy the assumptions of theorem 3.2

in Mostovyi (2015). Let ȳ � supn≥1 |yn|, then
(
Ỹn
)

n≥1 ⊆ Y(ȳ). Therefore, from lemma
3.5 in Mostovyi (2015), we deduce that the sequence (V−(t, ω, Ỹn

t ))n≥1 is uniformly inte-
grable. Consequently, from (3.9) and (3.10), using Fatou’s lemma, we obtain

v(y, r ) ≤ E

[∫ T

0
V(t, ω, Ŷt)dκt

]
≤ lim inf

n→∞ E

[∫ T

0
V(t, ω, Ỹn

t )dκt

]
≤ lim sup

n→∞
E

[∫ T

0
V(t, ω, Yn

t )dκt

]
≤ L,

(3.11)

which, in view of (3.8), implies lower semi-continuity of v . Note that v > −∞ holds
everywhere in its domain, by Lemma 3.4. Now for every (y, r ) ∈ {v < +∞}, taking
(yn, rn) = (y, r ), n ≥ 1, we deduce from (3.11) the existence of a minimizer to the dual
problem (2.12), whose uniqueness follows from the strict convexity of V. The proof of
the corresponding assertions for the function u is similar. �

Proof of Theorem 2.4. (i) Concavity of u follows from the concavity of U. Fix (y, r ) ∈ L
and define the following sets:

A(y, r ) � {(x, q) ∈ clK : xy + qr ≤ 1} ,(3.12)

C(y, r ) �
⋃

(x,q)∈A(y,r )

A(x, q).(3.13)

Note that A(y, r ) is closed and bounded in RN+1 (note that the proof of the boundedness
of A(y, r ) in similar settings can be found in lemma 5.2 in Siorpaes 2016), C(y, r ) is closed
with respect to the topology of convergence in measure (dκ × P).

For every z > 0, let us set

ū(z) � sup
c∈C(y,r )

E

[∫ T

0
U(t, ω, zct)dκt

]
= sup

(x,q)∈zA(y,r )
u(x, q) > −∞,(3.14)
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where the latter inequality follows from (2.13). Using Proposition 3.1, we get

Y ∈ Y(y, r ) ⇔ E

[∫ T

0
ctYtdκt

]
≤ 1 for all c ∈ C(y, r ).

We deduce that the sets C(y, r ) and Y(y, r ) satisfy the assumption of Theorem 3.2 in
Mostovyi (2015). In view of (2.13) and (3.14), the same theorem implies that

v(y, r ) = sup
z>0

(ū(z) − z) = sup
(x,q)∈clK

(u(x, q) − xy − qr ) .

As −u and v are proper closed convex functions (by Lemma 3.5), the latter equality
implies the biconjugacy relations (2.14), see Rockafellar (1970), section 12.

(ii) The assertions of this item follow from Lemma 3.5.
(iii) By item (ii), u is a proper concave function, which is finite onK. Therefore, by theo-

rem 23.4 in Rockafellar (1970), ∂u(x, q) is nonempty for every (x, q) ∈ K. The conjugacy
relations (2.14) imply (by corollary 23.5.1 in Rockafellar 1970) that ∂u(x, q) ⊆ clL.

Let (x, q) ∈ K and (y, r ) ∈ clL be such that (2.15), (2.16), and (2.17) hold, where ĉ(x, q)
and Ŷ(y, r ) are the optimizers to (2.8) and (2.12), respectively, whose existence follows
from item (ii). Using conjugacy of U and V we get:

0 = E

[∫ T

0
(V(t, ω, Ŷt(y, r )) − U(t, ω, ĉt(x, q)) + ĉt(x, q)Ŷt(y, r ))dκt

]
= v(y, r ) − u(x, q) + xy + qr .

Therefore by theorem 23.5 in Rockafellar (1970), the biconjugacy relations (2.14) imply
that (y, r ) ∈ ∂u(x, q).

Conversely, fix (x, q) ∈ K, and let (y, r ) ∈ ∂u(x, q). As −u and v are closed convex
functions (by item (ii)) that satisfy (2.14) (by item (i)), using Theorem 23.5 in Rockafellar
(1970), we get

− u(x, q) + v(y, r ) + xy + qr ≤ 0.(3.15)

Lemma 3.4 gives finiteness of u(x, q), which via (3.15) and another application of
Lemma 3.4 implies finiteness of v(y, r ) and thus (by item (ii)) the existence of Ŷ(y, r ), a
unique minimizer to the problem (2.12). Analogously, we deduce that there exists ĉ(x, q),
a unique maximizer to the problem (2.8). Using Proposition 3.1, we obtain from (3.15):

E

[∫ T

0

∣∣∣V(t, ω, Ŷt(y, r )) + ĉt(x, q)Ŷt(y, r ) − U (t, ω, ĉt(x, q))
∣∣∣ dκt

]
= E

[∫ T

0

(
V
(

t, ω, Ŷt(y, r )
)

+ ĉt(x, q)Ŷt(y, r ) − U (t, ω, ĉt(x, q))
)

dκt

]
≤ v(y, r ) + xy + qr − u(x, q) ≤ 0,

which gives (2.15) and (2.16). �

Proof of Lemma 2.6. Assume that (2.20) holds. Fix (x, q) ∈ K. It follows from As-
sumption 2.1 and lemma 1 in Hugonnier and Kramkov (2004) that (x, 0) ∈ K for every
x > 0. As K is an open convex cone, there exists a point (x1, q1) ∈ K, such that
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(x, q) = λ(x1, q1) + (1 − λ)(x2, 0)

for some λ ∈ (0, 1) and x2 > 0.Take c ∈ A(x2, 0), such that

E

[∫ T

0
U(t, ω, (1 − λ)ct)dκt

]
> −∞.(16)

Note that process c exists by assumption (2.20). Fix g ∈ A(x1, q1). Then

λg + (1 − λ)c ∈ A(x, q).

As U is increasing, we obtain from (16):

u(x, q) ≥ E

[∫ T

0
U(t, ω, λgt + (1 − λ)ct)dκt

]
≥

≥ E

[∫ T

0
U(t, ω, (1 − λ)ct)dκt

]
> −∞.

In order to prove that v is finite on L, define the set

E � {(y, r ) ∈ clL : v(y, r ) < +∞} .

First, we show that E is nonempty and establish some properties of E . Let

B � {(y, r ) ∈ clL : y ≤ 1} ,

D �
⋃

(y,r )∈B
Y(y, r ).

Notice that D is convex, solid (in the terminology of Brannath and Schachermayer 1999),
and closed in L0, and we have

D ⊆ Y(1).(3.17)

We claim that D = Y(1). By theorem 5.2 in Delbaen and Schachermayer (1997a), M′ is
dense in M in the total-variation norm. Therefore, by Lemma 3.2 and Proposition 3.1,
we obtain that Z ⊂ D. In turn, by the bipolar theorem of Brannath and Schachermayer,
this implies that

Zoo ⊆ D.(3.18)

On the other hand, from lemma 4.2 and proposition 4.4 in Mostovyi (2015), we conclude

Zoo = Y(1),

which produces (via (3.17) and (3.18)) D = Y(1).
Using proposition 4.4 in Mostovyi (2015), one can also see that the sets A(1, 0) and

D satisfy the assumptions of theorem 3.2 in Mostovyi (2015), which in particular assert
that for every x > 0 there exists ĉ(x), the unique maximizer to (2.18). Thus, for every
x > 0, we define
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Yt(x) � U ′ (t, ω, ĉt(x)) , t ∈ [0, T].

It follows from the same theorem that w is a continuously differentiable function that
satisfies the Inada conditions and

Y(x) ∈ w ′(x)D.

Therefore, there exists (y, r ) ∈ w ′(x)clB, such that Y(x) ∈ Y(y, r ). As

E

[∫ T

0
V (t, ω, Yt(x)) dκt

]
< +∞

(by the same theorem), we conclude that E 	= ∅. Moreover, as x can be taken arbitrarily
large and w satisfies the Inada conditions, we deduce that the closure of E contains origin.
One can also see that the set E is convex and

E ⊇
⋃
λ≥1

λE .

Second, we prove that L ⊆ E . Fix an arbitrary (y, r ) ∈ L and let δ > 0 be such that
Bδ(y, r ) ⊂ L, where Bδ(y, r ) denotes the ball in RN+1 of radius δ centered at (y, r ).
Because the origin is in the closure of E , there exists (ỹ2, r̃2) ∈ E ∩ Bδ/2(0). Let

(ỹ1, r̃1) � (y − ỹ2, r − r̃2).

Then (ỹ1, r̃1) ∈ Bδ/2(y, r ). One can choose λ ∈ (0, 1) such that

(y1, r1) � 1
λ

(ỹ1, r̃1) ∈ Bδ(y, r ).

Set (y2, r2) � 1
1−λ

(ỹ2, r̃2), then

(y, r ) = λ(y1, r1) + (1 − λ)(y2, r2).

Fix a process Y′ ∈ Y(y1, r1). As (ỹ2, r̃2) ∈ E , there exists a process Y′′ ∈ Y(y2, r2), such
that

E

[∫ T

0
V(t, ω, (1 − λ)Y′′

t )dκt

]
< +∞.

As V is decreasing and (λY′ + (1 − λ)Y′′) ∈ Y(y, r ), we deduce

v(y, r ) ≤ E

[∫ T

0
V(t, ω, λY′

t + (1 − λ)Y′′
t )dκt

]

≤ E

[∫ T

0
V(t, ω, (1 − λ)Y′′

t )dκt

]
< +∞.

Conversely, if (2.13) holds then for every p ∈ P , as Y(y, yp) is a subset of Y(y), we
have
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w̃(y) ≤ v(y, yp) < +∞, y > 0.

Let us recall that w(x) = u(x, 0). Therefore, the other assertion of (2.20) follows
trivially. �

4. EXAMPLES

The following example is a generalization of example 4.2 in Karatzas and Žitković (2003).
We would like to stress the simplicity with which we prove existence and uniqueness for
problems (4.1) and (4.4) below by application of Lemma 2.6. Note that verification of
the assumptions of Lemma 2.6 is essentially reduced to checking (4.2) and (4.3).

EXAMPLE 4.1 (Optimal consumption from random endowment). Consgider a market
with no stocks and an agent who receives a cumulative endowment F satisfying Assump-
tion 2.1, which in the absence of stocks implies boundedness of FT. Let us assume that
the objective has the form

u(x, q) � sup
c∈A(x,q)

E

[∫ T

0
e−νtŪ(ct)dt

]
, (x, q) ∈ clK,(4.1)

where ν ≥ 0 is an impatience rate and Ū is an Inada utility, i.e., a strictly increasing,
strictly concave, continuously differentiable function that satisfies the Inada conditions
and such that Ū(0) = lim

x→0
Ū(x). Notice that we do not require Ū to satisfy the asymptotic

elasticity condition (e.g., Ū can be of the form Ū(x) = x
log x for large values of x and such

that Ū is an Inada utility function). Problem (4.1) is a particular case of (2.8) if we let
the stochastic clock be κt = t, t ∈ [0, T], so that κ satisfies (2.1) with A = T. The set K
in our case is given by

K = int {(x, q) : x + q FT ≥ 0} .

For problem (4.1), verification of existence and uniqueness for every (x, q) ∈ K be-
comes an application of Lemma 2.6. Let

C �
{

1−e−νT

ν
, if ν > 0,

T, if ν = 0.

Then, for every x > 0, as the constant consumption c ≡ (x/T)t∈[0,T] is in A(x, 0), we have

w(x) = sup
c∈A(x,0)

E

[∫ T

0
e−νtŪ(ct)dt

]
≥ CŪ(x/T) > −∞.(4.2)

As for the dual problem, because there are no stocks, every probability measure Q ∼ P

is an equivalent local martingale measure. In particular, the constant process 1 ∈ Y(1).
Therefore condition (2.2) holds, and we get for every y > 0

w̃(y) = inf
Y∈Y(y)

E

[∫ T

0
e−νt V̄(Yt)dt

]
≤ CV̄(y) < +∞,(4.3)

where V̄ is the conjugate to Ū. Conditions (4.2) and (4.3) (together with (2.1) and (2.2) as
well as Assumptions 2.1 and 2.3 ) imply via Lemma 2.6 that the assumptions of Theorem
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2.4 are satisfied, and therefore that the conclusions of Theorem 2.4 are valid for u and v ,
where the dual value function is

v(y, r ) � inf
Y∈Y(x,q)

E

[∫ T

0
e−νt V̄(Yt)dt

]
, (y, r ) ∈ clL.(4.4)

If, in addition, Ū is bounded from below, i.e.,

Ū(0) > −∞,

then we can extend the existence of a solution to (4.1) to the closure of K, because for
every (x, q) ∈ clK the consumption c ≡ 0 is admissible, i.e., belongs to A(x, q), and

u(x, q) ≥ E

[∫ T

0
e−νtŪ(0)dt

]
= CŪ(0) > −∞.

Likewise, if Ū is bounded from above, i.e.,

lim
x→∞ Ū(x) = V̄(0) < +∞,

then, because for every (y, r ) ∈ clL the process Y ≡ 0 is in Y(y, r ), we deduce

v(y, r ) ≤ E

[∫ T

0
e−νt V̄(0)dt

]
= CV̄(0) < +∞, g

which implies the existence of a solution to (4.4) for every (y, r ) ∈ clL.

One of the advantages of working with a stochastic utility is the flexibility that
this framework exhibits with respect to some standard transformations in mathemat-
ical finance, such as a change of numéraire. In the following example, we show how
Theorem 2.4 and Lemma 2.6 provide existence and uniqueness results for a utility max-
imization problem under a different numéraire.

EXAMPLE 4.2. Consider the problem of optimal investment from terminal wealth
(κ(t) = 1[T](t), t ∈ [0, T]), where S is a locally bounded semimartingale, U is a constant
with respect to (t, ω) utility, i.e.,

U(t, ω, x) = Ū(x), (t, ω, x) ∈ [0, T] × � × [0, ∞),

for some Inada utility function Ū (i.e., Ū is the same as in Example 4.1). Assume that
(2.2) and Assumption 2.1 hold for an endowment process F and

w̃(y) < +∞, y > 0,(4.5)

where w̃ is defined in (2.19). Then, the conditions of Lemma 2.6 are satisfied and therefore
the conclusions of Theorem 2.4 hold for u and v . Observe the relationship with lemma 2
and theorem 2 in Hugonnier and Kramkov (2004). Let

N be a maximal process inX (1), such that NT ≥ 1
M

(4.6)

for some constant M > 1. We will show that the conclusions of Theorem 2.4 can be
established for a (different) utility maximization problem under the numéraire N.
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Let S̃ �
( S

N , 1
N

)
, F̃ = F

N and define the sets X̃ (x) and X̃ (x, q) analogously to X (x) and
X (x, q), respectively, for the processes S̃ and F̃ instead of S and F . Using corollary 14
in Delbaen and Schachermayer (1997b), one can show that{

XT : X ∈ X̃ (x, q)
} =

{
XT

NT
: X ∈ X (x, q)

}
, (x, q) ∈ clK.

In particular, we have

int
{
(x, q) ∈ RN+1 : X̃ (x, q) 	= ∅} = K.

The value function under the numéraire N is defined as

ũ(x, q) � sup
X∈X̃ (x,q)

E
[
Ū(XT + q F̃T)

]
, (x, q) ∈ clK.(4.7)

Let us introduce

Ũ(ω, x) � Ū
(

x
NT(ω)

)
, x ≥ 0, ω ∈ �.

Then, the optimization problem (4.7) can be rewritten in the following form:

ũ(x, q) = sup
X∈X (x,q)

E[Ũ (XT + q FT)], (x, q) ∈ clK.(4.8)

REMARK 4.3. One can extend Ū and Ũ to become utility stochastic fields satisfying
Assumption 2.3. However, due to the form of the stochastic clock, only the values of the
utility at time T matter in this example. With slight abuses of notation we will say that
Assumption 2.3 holds for Ū and Ũ.

Let V̄ and Ṽ denote the conjugates to Ū and Ũ, respectively. In particular, this implies
that

Ṽ(ω, y) = V̄(yNT(ω)), y ≥ 0, ω ∈ �.

Now, we can formulate the dual problem as follows:

ṽ(y, r ) � inf
Y∈Y(y,r )

E
[
Ṽ (YT)

]
, (y, r ) ∈ clL.(4.9)

LEMMA 4.4. Let Ū satisfy Assumption 2.3, and let (2.2), (4.5), (4.6), and Assumption 2.1
hold. Then, the conclusions of Theorem 2.4 are valid for the value functions defined in (4.7)
and (4.9).

Proof. Consider the primal problem for the numéraire N in the form (4.8).
For every x > 0, because xN ∈ X (x), we have

ũ(x, 0) = sup
X∈X (x)

E

[
Ū
(

XT

NT

)]
≥ Ū (x) > −∞.

Likewise, for every y > 0, we deduce

inf
Y∈Y(y)

E[Ṽ (YT)] = inf
Y∈Y(y)

E[V̄ (YT NT)] ≤ w̃
( y

M

)
< +∞.

Now the conclusions of Theorem 2.4 follow from Lemma 2.6. �
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CVITANIĆ, J., W. SCHACHERMAYER, and H. WANG (2001): Utility Maximization in Incomplete
Markets with Random Endowment, Finance Stoch. 5, 259–272.

DELBAEN, F., and W. SCHACHERMAYER (1994): A General Version of the Fundamental Theorem
of Asset Pricing, Math. Ann. 300, 463–520.

DELBAEN, F., and W. SCHACHERMAYER (1997a): The Banach Space of Workable Contingent
Claims in Arbitrage Theory, Ann. Inst. H. Pincaré Statist. Probab. 33, 113–144.
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KARATZAS, I., and G. ŽITKOVIĆ (2003): Optimal Consumption from Investment and Random
Endowment in Incomplete Semi-Martingale Markets, Ann. Probab. 31, 1821–1858.

KARATZAS, I., J. P. LEHOCZKY, S. E. SHREVE, and G. L. XU (1991): Martingale and Duality
Methods for Utility Maximization in an Incomplete Market, SIAM J. Control Optim. 29,
702–730.
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