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GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES FOR
FINITE ELEMENT APPROXIMATIONS TO THE STOKES
PROBLEM ON CONVEX POLYHEDRA*

NIKLAS BEHRINGER', DMITRIY LEYKEKHMAN?, AND BORIS VEXLER'

Abstract. The main goal of the paper is to show new stability and localization results for the
finite element solution of the Stokes system in W1 and L° norms under standard assumptions on
the finite element spaces on quasi-uniform meshes in two and three dimensions. Although interior
error estimates are well-developed for the elliptic problem, they appear to be new for the Stokes sys-
tem on unstructured meshes. To obtain these results we extend previously known stability estimates
for the Stokes system using regularized Green’s functions.
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1. Introduction. In the introduction and the major part of the paper we focus
on the three-dimensional setting. However, our results are valid in two dimensions
and we comment on that at the end of the paper. We assume 2 C R? is a convex
polyhedral domain, on which we consider the following Stokes problem:

(1.1a) ~Ai+Vp=f inQ,
(1.1b) V-i=0 ing,
(1.1c) i=0 on 9%,

with f = (f1, f2, f3) be such that @ € (HZ(Q)NL>(2))? or respectively @ € (HL(Q)N
W(Q))? and p € L*>(Q2). The solution p is unique up to a constant, we choose
p € L3(), i.e. p has zero mean.

This paper is the first paper in our program to establish best approximation re-
sults for the fully discrete approximations for transient Stokes systems in L°° and
W1 norms. Similar program was carried out by the last two authors for the par-
abolic problems in a series of papers [15, 16, 17, 18]. The approach there relies on
stability of the Ritz projection, resolvent estimates in L> and W'* norms and dis-
crete maximum parabolic regularity. We intend to derive corresponding results for
the Stokes systems. In this paper, we give a new L stability result of the form

(12) il oy < Cltn bl ([ B3] ) + Bl o))

In a second step we prove respective local versions of (1.2) and of the corresponding
W12 results from [12, 13]. These estimates take the form

(L3) VEnll o) + 1Pl )
< C (V1 (g + 1P ey ) + Ca (19T 220 + Ipllz2(o)
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2 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

and

(1.4) ||ﬁh||L°°(D1) < Clln A (|1nh|”ﬁHL°O(D2) + th||L°°(D2))
+ Caltn | (1@ z2(0) + P 11 0y + Pl z2) )

where for £ € Q, D; = B.(Z)NQ, Dy = Br(2) N Q, 7 > r > 0 and C,; depends on
d=|r—7|>FEh.

Global pointwise error estimates for the Stokes system similarly to (1.2) have
been thoroughly discussed in recent years. The three-dimensional W1 case was first
discussed in [2, 11] under smoothness assumptions on the domain or limiting angles
in non-smooth domains. Later on, using new results on convex polyhedral domains,
e.g. from [19, 21, 26], the limitations on the domain were weakened in [12, 13]. The
L bounds were first discussed for  C R? in [8] and for dimensions greater than
one and smooth domains in [2] but with the W1> norm appearing on the right-hand
side and using weighted norms, which is not sufficient for the applications we have in
mind.

Interior (or local) maximum norm estimates are well-known for elliptic equations,
see, e.g., [14, 28], and are particularly useful when dealing with scenarios where the
solution has low regularity close to the boundary or on local subsets of €2, e.g. for
optimal control problems with pointwise state constraints, sparse optimal control and
pointwise best approximation results for the time dependent problem, see [5, 16, 24].
For the Stokes system, the only pointwise interior error estimates are available on
regular translation invariant meshes in two dimensions [22]. To our best knowledge,
the interior results presented here are novel and have not been discussed before.

Let us quickly comment on one property specific to the Stokes problem. Regu-
larity results typically appear as velocity-pressure pair where the pressure has lower
norm, e.g. ||Vi||peq) and ||p||L(q)y. This pair can then be estimated as in [12, 13].
Thus, we only supply estimates for ||t || () in the max-norm estimate since bounds
for ||ph||W,1,oo(Q) would add another layer of complexity and to our knowledge have
no apparent advantages.

In three dimensions our proof of the local estimates is essentially based on L!
and weighted estimates of regularized Green’s functions. For W1 it is enough to
slightly adapt the results from [13] for the Green’s function of velocity and pressure.

In the case of L, we prove the respective estimates using the local energy esti-
mates given in [13] and estimates for Green’s matrix of the Stokes system, see, e.g.,
[21]. Furthermore, another important element of the proof for L is a pointwise
estimate of the Ritz projection [15]. Using the stability result proven there, we are
able to carry out our proof without the need to discuss the behavior of the discrete
solution along finite element boundaries.

In two dimensions our approach for the local estimates follows along the lines of
the three-dimensional case. Here the estimates for the regularized Green’s functions
and the Ritz projection are all known from the literature, see [8, 11, 27]. The results
from [8, 11] are derived using an alternative technique, the global weighted approach
as introduced in [23, 25]. For the global weighted approach we need similar but slightly
different assumptions on the finite element space than for the local energy estimate
technique in the three-dimensional setting. Thus, to keep the notation simple, we
deal with the two dimensional case in a separate section at the end of this work.

Several important applications from Navier-Stokes free surface flows to the nu-
merical analysis of finite-element schemes for non-Newtonian flows have already been

This manuscript is for review purposes only.
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STOKES GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES 3

noted in [11]. As mentioned, interior estimates play a role specifically for optimal
control problems with state constraints, e.g. in [6]. Stokes optimal control problems
are also closely related to subproblems in optimal control of Navier-Stokes systems
where for Newton iterations one has to solve linearized optimal control subproblems
in each step, see, e.g. [4].

An outline of this paper is as follows. In Section 2, we introduce notation and
state assumptions on the approximation operators as well as the main results of our
analysis. Section 3 gives key arguments for the proof of the main theorems for the
velocity and reduces them to the estimates of regularized Green’s functions, which are
derived in Section 4. Based on these results, we deal with bounds for the pressure in
Section 5. Finally, in the last section we show the local estimates in two dimensions.

2. Assumptions and main results in three dimensions.

2.1. Notation. We now introduce basic notation. Throughout this paper, we
use the usual notation for the Lebesgue, Sobolev and Holder spaces. These spaces
can be extended in a straightforward manner to vector functions, with the same
notation but with the following modification for the norm in the non-Hilbert case: if
U = (uy,ug,us), we then set

1/r
il ey = [ / |ﬁ<f)|rdf}

where | - | denotes the Euclidean vector norm for vectors or the Frobenius norm for
tensors.

We denote by (-, -) the L?(€) inner product and specify subdomains by subscripts
in the case they are not equal to the whole domain. In the analysis, we also make

use of the weight o = oz, (%) = \/\3‘3’— Zo|? + (kh)? for which %o, x and h will be
defined later on.

2.2. Basic estimates. Next we want to recall some results for solutions to
(1.1a)—(1.1c). Existence and uniqueness of the solutions to the problem on bounded
domains are shown in [10]. For the proof of the respective regularity estimates on
convex polyhedral domains we refer to [3, 20]. For feH ~1(Q)3 there holds

@l 2y + Pl L2 (0) < Clfll-100)-

Furthermore, for f € L2(Q2), (&, p) are elements of (HZ () N H2())3 x HY(Q) and it
holds

(2.1) ]l g2 () + 1Pl g1 ) < Cll2()-

2.2.1. Local H? stability estimates. In the following analysis we will also
require the following localized H? stability estimates.

LEMMA 2.1. Let Ay = B.(2)NQ, Ay =Br(Z)NQ forz € Q and 7 >r > 0. We
denote the difference of the radii by d = | — r|. Furthermore let (d,p) be the solution
to (1.1a)—(1.1c). Then, it holds

R i 1, 1, . 1
Nl rzcayy + 1Pl grayy < C<||f||L2(A2) + g”vu”p(Az) + ﬁ”U”LZ(AQ) + g”pHLZ(AQ))'

This manuscript is for review purposes only.
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4 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

Proof. Let w € C*°(Q2) be a smooth cut-off function with w =1 on A; and w =0
on O\ A, such that

1
(2.2) |VEw| ~ o fork=0,1,2.

We consider @ = wil and p = wp. Then, we get the following weak formulation for
¢ € Hj(Q)?

(Vi,Vg) = (Vw @ 4+ wVi, V)
=—(V-(Vw® i),y + (Vi, V(wg)) — (Vi, Vw ® @)
=—(V-(Vw®1),d) + (f.wd) + (V- (wP)) — (ViI, Vw @ §)
= —(V- (Vw @ @), §) + (f,wf) + (wp, V- @) + (Vwp, §) — (ViVw, ),

where we used (1.1a) and in addition we get V - & = Vw - 4. Thus, @ and p solve the
following boundary value problem in the weak sense

—Au+Vp=f-V-(Vw®id)+ Vwp— ViVw in Ay,
V.i=Vw-i in A,
=0 on OAs.

By construction we have that As is convex and Vw - ¢ vanishing on the boundary
0Ay. Thus, according to [3, Thm. 9.20] and the fact that V - @ is zero on dA,, the
H? regularity result (2.1) holds in this situation as well, and we obtain

Nl gz ag) DM g2 a,)
< Ol z2an) + IV Vil 2 + V208 2ty + VP2 )
. 1 . 1, . 1
< C<||f||L2(A2) + oIVl pagay) + 1Tl L2 ay) + EHpHL?(Ag))’

where we used (2.2). We get

(24) Nl g2gayy + 120 grcayy = @l gzeayy + 101 g ayy < lallg2ay) + 181 g cay)

_ 1 1 1
<C <||f|L2(A2) + o lIVallpeag) + 1l 24,y + dp||L2(A2)) - O

Using a covering argument (see Corollary 2.16 for details), we may show the following
corollary.

COROLLARY 2.2. Let Q1 C Qo C Q with dist(Qq,002) > d, then holds for (i, p)
the solution to (1.1a)—(1.1c) that

. = 1 N 1. 1
Nl g2,y + 11PN a1y < C<Hf||L2(92) + oIVl L2, + L2, + EHPHL?(QZ))'

2.2.2. Green’s matrix estimate. We also need estimates of the respective
Green’s matrix for the Stokes problem. For this, refer to [21, Section 11.5]. Let

¢ € C*(Q) be vanishing in a neighborhood of the edges and [, ¢(#)dZ = 1. The
matrix G(Z,Y) = (G ;(Z,¥))i j=1,2,3,4 is the Green’s matrix for problem (1.1a)-(1.1c)

This manuscript is for review purposes only.
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STOKES GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES 5

if the vector functions G; = (G4, G2, Gs ;)T and Gy ; are solutions of the problem

A, G(Z,§) + Vo Gaj(Z,7) = 8(T — §)(01, 02,5, 035)" for 7,7 € Q

~V. - Gi(&§) = (6(F - §) — ¢(&)da;  for F§€Q,
G(Z,7) =0 for & € 90,7 € Q

and Gy, ; satisfies the condition
/ G (Z,9)¢(F)dE =0 for §Fin Q,j=1,2,3,4.
Q

For the existence and uniqueness of such a matrix, we again refer to [21]. If now
f € H71(Q)? and the uniquely determined solutions of the Stokes system given by
(@,p) € HE(2)? x Lo(Q) satisfy the condition

(25) | r@otaraz = o
then the components of (i, p) admit the representations
(26) (@)= A f&)-Gi€@de, i=1,2,3, p(@)= /Qf() - Ga(&, 7)dE.

To apply this result to our case, we need to find a suitable ¢ such that (2.5) holds.
We show this is possible for p € C%*(Q) N L3(Q). By [21, Theorem 11.3.2] this is
fulfilled for data in C~1(Q). For our use cases in later sections we consider at least
continuous right-hand sides, so this is applicable.

Without loss of generality, we assume p # 0. Thus, since the mean value of p is
zero, there exist non-empty open sets A, B € (2 such that p > 0 on A and p < 0 on
B. We then can choose ¢ such that ¢ =0 on Q\(AUB) and ¢ > 0 on A, B and thus
¢ vanishing close to the edges of 2. Through suitable scaling on A and B, we get

/A P(2)(F)dT = - /B P(2)B(3)di

and hence we can conclude that (2.5) holds for ¢(Z). Finally, since by assumption
# > 0, we normalize ¢ with respect to the L!(£2) norm to complete the construction.
This shows that we can apply the results for the Green’s matrix to (@, p). Furthermore,
we can also use the available results from [13].

We state estimates for the Green’s matrix specific to convex polyhedral domains
as it can be found in [21, Theorem 11.5.5, Corollary 11.5.6].

PROPOSITION 2.3. Let Q be a convex polyhedral type domain. Then, the elements
of the matriz G(Z,€) satisfy the estimate

0007 G (7,€)| < | — [P

for 0] <1—96;4 and |B| <1 —0;4. Furthermore, the following Hélder type estimate
holds in this setting

G, ;(Z, 9LG (7, - . " .
| 3 J( 5) g vJ(y 3l SC(|5_§|—17Q75,,4*\9| +|g’_£‘*170¢*6%47|9‘).

This manuscript is for review purposes only.
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6 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

2.3. Finite element approximation. Let 7} be a regular, quasi-uniform fam-
ily of triangulations of Q, made of closed tetrahedra T, where b is the global mesh-size
and L2(Q) the space of L2(Q) functions with zero-mean value. Let Vj, ¢ HZ(Q)? and
M;, C L3(Q) be a pair of finite element spaces satisfying a uniform discrete inf-sup
condition,

sup M > Bllgnllz2)  Van € My,

ety IVl L2 @)
with a constant B > (0 independent of h. The respective discrete solution associated
with the velocity-pressure pair (i, p) € H}(Q)3 x L3(12) is defined as the pair (in, pn) €
Vi, x M, that solves the weak form of (1.1a)—(1.1¢) given by the bilinear form a(, -)
which is defined as

(2.7) a((@n,pn), (Un,aqn)) = (Vii, VU,) — (P, V - Un) + (V - i, qn)
and the equation
(2.8) a((@n, pr), (Tnsan)) = (Fr0h)  V(Bh.an) € Vi x M.

2.4. Assumptions. Next, we make assumptions on the finite element spaces.
We assume, there exist approximation operators P, and r, as in [13], i.e. P, and
rp, fulfill the following properties. Let Q@ C Qg4 C 2, with d > Kh, for some fixed
& sufficiently large and Qq = {7 € Q : dist(Z,Q) < d}. For P, € L(HZ ()3 V)
and 7, € L(L*(Q); My,) with M,, corresponding to M), without the zero-mean value
constraint, we assume the following assumptions hold.

ASSUMPTION 2.4 (Stability of P, in H*(Q)3). There exists a constant C' inde-
pendent of h such that

IVPL(@) ] 2g0) < CIVTl (@), ¥ € HYQ)®

ASSUMPTION 2.5 (Preservation of discrete divergence for Py). It holds

(V(giph(g)),qh) :Oa VQh GMh, Vﬁe Hol(Q)3

ASSUMPTION 2.6 (Inverse Inequality). There is a constant C' independent of h
such that

||77h||W1»p(Q) < Ch71||17h\|Lp(Qd) Vi, € Vi, 1 <p < o0.

ASSUMPTION 2.7 (L? approximation). For any ¥ € H?(Q)3 and any q € H*(2)
exists C independent of h, U and q such that

1Pw (@) = T 2y + RIV(Pa(®) = D) 12y < CPAIV0ll 120,
[ra(q) — qHL2(Q) < ChHVCIHL?(Qd)'

In the following, €; denotes the i-th standard basis vector in R3.

ASSUMPTION 2.8 (Approximation in the Holder spaces).
For 7 € (CH*(Q) N Hé(Q))3 and g € C%*(Q), it holds

IV(Ph(0) = D)l oo () < Ch(IV] 1.
Iraq) — Q||Loo(Q) < ChQHqHCO’a(Qd)’

This manuscript is for review purposes only.
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STOKES GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES 7

where

1T creaiq) = I0llorgy + sup
1 (@) RGN

1€{1,2,3}

ASSUMPTION 2.9 (Super-Approximation I). Let 0 € Vi, and w € C§°(Qaq) a
smooth cut-off function such that w =1 on Q and

[Viw| < Cd™®, s=0,1,
where Qq = {Z € Q: dist(Z,0Q) > d}. We assume

IV (@2 — Pu(@?3) |2y < Cd 1l 2(g-

For q;, € My, we assume

lw?an = ra(w?an)ll 12(q) < Chd ™ lanll 2.,

One common example of a finite element space satisfying the above assumptions
are the Taylor-Hood finite elements of order greater or equal than three. For more
details on these spaces and the respective approximation operators, we refer to [1, 11,
12].

Remark 2.10. Here we restrict ourselves to Taylor-Hood finite element spaces
since in the following arguments we use results for finite element approximations of
elliptic problems. These results are available for the usual space of Lagrange finite
elements and can possibly be extended to other elements used for the Stokes problem,
like e.g. the “mini” element, which also fulfills the assumptions above.

Next, we state a well-known energy error estimate for an approximation of the
Stokes system. For details on the proof, see e.g. [9, Proposition 4.14].

PROPOSITION 2.11. Let (@, p) solve (1.1a)—(1.1c) and (@p, pr) be its finite element
approximation defined by (2.8). Under the assumptions above, there exists a constant
C independent of h such that,

||@ — ﬁh“Hl(Q) +lp —thL2(Q) <C min <||ﬁ_ ﬁh”Hl(Q) +lp— (Ih”Lz(Q)) .
(Tn,qn) EVi x My,

2.5. Local energy estimates. An important tool in our analysis are the local

energy estimates from [13, Thm. 2].
PROPOSITION 2.12. Suppose (U,q) € H&(Q)?’ x L2(Q) and (U, qn) € Vh x My,
satisfy
a’((ﬁ_ ﬁh7q - Qh)7 ()Za ’l,l))) =0 V()Z,U)) € ‘7}1 X Mh

for the bilinear form a(-,-) given in (2.7). Then, there exists a constant C' such that
for every pair of sets Ay C Ay C Q such that dist(Ay,0A2\00) > d > kh (for some
fized constant & sufficiently large) the following bound holds for every e > 0

IV@ = )l 20a,) < CIV(T = Pa(0)ll 2 (a,) + Clla = rr(@)l L2y

c, . . L c,.. .
+ ;dHU - Ph(v)||L2(A2) + el V(7 - Uh)HLZ(Az) + QHU - Uh||L2(A2)'

This manuscript is for review purposes only.



8 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

2.6. Main results. In the following statements, the constant C' is independent
of i, p and h, but may depend on the parameter « related to the largest interior angle
of Q. We start with the W1 error estimates. The global stability result

1981 gy + P8l ey < € (198 1m0y + P o))

on convex polyhedral domains was established in [13] (see also [12]). Here, we establish
a localized version of it. In the our results B,(Z) denotes a ball of radius r centered
at T € €.

THEOREM 2.13 (Interior W1 estimate for the velocity and L* estimate for
the pressure). Let the assumptions of Subsection 2.3 and Subsection 2.4 hold. Put
Dy =B,.(2)NQ, Dy = Bx(Z)NQ, 7 > r > kh (with & large enough), d = 7 —r > Rh.
If (@, p) € (WH°(Dy3)3 x L>=(D3))N(Hg ()3 x LE(Q)) is the solution to (1.1a)—(1.1c),
and (@p, pr) is the solution to (2.8), then

IVl g (p,y + PRl L~ (py)
< O (IVtll o) + 1Pl 0y ) + Ca( IV 200 + Ipllzce) ).

Here, the constant Cyq depends on the distance of B,.(Z) from 0B#(Z).
Next we state similar results for the velocity in L°° norm.

THEOREM 2.14 (Global L*° estimate for the velocity). Under the assumptions of
Subsection 2.3 and Subsection 2.4, for (i, p) € (L ()3 x L=(Q))N(H ()3 x LE(Q))
the solution to (1.1a)—(1.1c) and (@p,pn) the solution to (2.8), it holds

lnlz= @) < Cltn bl (I bl il = @) + Blplle (e )-

The additional logarithmic factor in front of the velocity is probably not optimal, it
appears when applying a pointwise estimate for the Ritz projection. We also get the
respective local estimates.

THEOREM 2.15 (Interior L™ error estimate for the velocity). Under the assump-
tions of Subsection 2.3 and Subsection 2.4, with D1 = B,.(Z) N Q, Dy = Bx(Z) N Q,
7 > r > Kh (with k large enough), d = ¥ —r > kh and for (ii,p) € (L>°(D3)3 x
L>(D3)) N (HE ()3 x L3(2)) the solution to (1.1a)—(1.1c) and (iin,pn) the solution
0 (2.8), it holds

|y < Cln bl ([0 Bl e ) + BIPN e )
+ Calln b (h”ﬁHHl(Q) + [l 2 () + h||p||L2(Q)) :

Here, the constant Cyq depends on the distance of By (Z) from 0By(T).
Based on these theorems, we can derive the following corollaries for general subdo-
mains 1 C Qy C Q with dist(Q1,092) > d > kh.

COROLLARY 2.16 (Interior W estimate for the velocity and L> estimate for
the pressure). Under the assumptions of Subsection 2.3 and Subsection 2.4, Oy C
Qo C Q with dist(Qy,002) > d > Eh and for (ii,p) € (WH>(Q2)3 x L=(Q2)) N
(H () x L3(Q)) the solution to (1.1a)—(1.1c) and (in,pr) the solution to (2.8), we

This manuscript is for review purposes only.
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have
19l e ) + IPalzoe ) < € (19 ooy + 10l e ) )

+ Ca( IVl 20 + Il 2.
Here, the constant Cyq depends on the distance to 0y from 0.

Proof. We can construct a covering {K;}M, of Qy, with K; = Bj,(Z;) Ny such
that

1) @ c U, K.

(2) e for 1 <i< M.

(3) Let L; = B,,(Z;) Ny where r; = 7; + d. There exists a fixed number N such

that each point ¥ € Uf\il L; is contained in at most N sets from {L;}}L;.

Now, since dist(Q,0Q2) > d and (2), we have that Uf\il C Qo. We can apply
Theorem 2.13 to the pairs K; C L;:

M
”VﬂhHLOO(Ql) + ”ph”LOO(Ql) < ZHVﬁhHLW(Ki) + th”Loo(K,-,)
i=1

M
<> (C (Voo + 1Pl e z)) + Ca (19l 22(0) + Ipllz2)) )
=1

< N(C (IVtll ) + 1Pl w2y ) + Ct (IVll 2260 + 1Pl 22) )
where we used (3) in the third line. d
Similarly, the following corollary follows with dist(Qy,98s) > d.

COROLLARY 2.17 (Interior L* error estimate for the velocity). Under the as-
sumptions of Subsection 2.3 and Subsection 2.4, Qy C Qg C Q with dist(y,00,) >
d > kh and for (i,p) € (L>®(2)® x L>®(Q2)) N (HL(Q)? x L3(2)) the solution to
(1.1a)—~(1.1c) and (dn,pr) the solution to (2.8), we have

Vil ey < Cl I (B8] e+ Pl e )

+ Caltn 1| (R 1 gy + Il 220 + Pl 2o ).
Here, the constant Cyq depends on the distance to Q1 from 0Qs.

Remark 2.18. We may also write the results above in terms of best approximation
estimates. For example for L>° global bounds:

@l < it Clahl(WAlE = Gl o) + kP~ aall=o) ).
(Th,qn)EVn X Mp

Naturally, this also applies for other results in this section.

Remark 2.19. Using the weighted discrete inf-sup condition from [7] it is pos-
sible to extend the the global estimate to the compressible case. However, for the
applications we have in mind the incompressible Stokes system is sufficient.

3. Proof of main theorems. In this section, we reduce the proofs of Theo-
rems 2.13 to 2.15 for the velocity to certain estimates for the regularized Green’s
functions. The estimates for the pressure are given in Section 5. To introduce the
regularized Green’s function we first need to introduce a regularized delta function.
In addition we will require a certain weight function.

This manuscript is for review purposes only.
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3.1. Regularized delta function and the weight function. Let R > 0 such
that for any & € Q the ball Br(Z) contains . Furthermore, let Z; be an arbitrary
point of Q and Ty, € Tp,. In the following sections, we estimate |0y, @h,i (Zo)|, |@n,i (Zo)]
for arbitrary 1 <, 5, < 3 and |p(Zy)|.

Next we introduce the parameters for the weight function o(&). Parameter £ > 1
is a constant that is chosen to be large enough. Furthermore, let i be suitably small
such that kh < R (see also [11, Remark 1.4]). In the following, we use a regularized
Green’s function to express the L>°(£) norm such that the problem is reduced to
estimating the discretization error of the Green’s function in the L!(£2) norm as in
[12, 13]. To that end, we define a smooth delta function &5, € C}(T%,), which satisfies
for every vj € Vh:

(3.1) Un,i(Zo) = (Un, On€3) s,
(32) ||6hHWk(TfO) S Ch_k_g(l_l/(n) 1 S q S 00, k= 0) 17 e

The construction of such a dp, can be found in [29, Appendix]. We recall some prop-
erties for o and ¢,. By construction, it follows

(3.3) inf o(Z) > kh.
e

Next, we provide an estimate for the L?(Q) norm of the product of 6, and o.

LEMMA 3.1. There exists a constant C such that for v > 0
0"V 6| 12y < 27/2CK R TF732 |k =0,1.

Proof. This follows from the fact that d;, is only non-zero on T%,, o is bounded
on Tz, by v/2kh and (3.2). d

The general strategy for proving the local results is to partition the domain into
the local part and its complement. Then, we use regularized Green’s function esti-
mates in the L' norm on the local part and weighted L? norm on the complement.
For the L error estimates we additionally require a certain estimate for the Ritz
projection.

3.2. Estimates for W1 (). The proof of local W1°°(Q) error estimates is
similar to the global case [12, 13] and is obtained by introducing a regularized Green’s
function.

3.2.1. Regularized Green’s function. For the W1 error estimates, we de-
fine the regularized Green’s function (g, A1) € H(2)® x LZ(Q) as the solution to

(34&) 7Ag'1 + V)\l = (8r] 5h)é; in Q,
(3.4b) V-51=0 in Q,
(3.4c) =0 on 9.

We also define the finite element approximation (g n, A1,n) € Vi x My, by

(3.5) a((§i = Gips M = Ain)s (Tnqn)) =0 (T, qn) € Vi X M.

This manuscript is for review purposes only.
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3.2.2. Auxiliary results for (¢i, A1) and (g1, A1,5). To show our main inte-
rior W1 result, we need the regularized Green’s function error estimate in L'(Q)
norm which is given in [13, Lemma 5.2].

LEMMA 3.2. There exists a constant C independent of h and gy such that

V(g1 — gin)llL o) < C.
In addition, we also need the following weighted estimate, the proof of which follows

by a minor modification of the proof in [13, Lemma 5.2].

COROLLARY 3.3. There exists a constant C independent of h and gy such that

102V (g1 — Gi.n) |20y < C-
The details on the proof of this corollary are given in Section 4 where we introduce

the respective dyadic decomposition.

Remark 3.4. The results in Lemma 3.2 and Corollary 3.3 also follow in a straight-
forward manner from the arguments in [12] but are not available in our setting since
we make different assumptions on the finite element space which we find similar but
not directly compatible to the assumptions made in [12].

3.2.3. Localization. We reduce the proof to estimates involving g and g 5.
Proof of Theorem 2.13 (velocity). Using the regularized Green’s function as de-
fined in (3.4a)—(3.4c), for &y € Tz, C D1, we have as in [13]
(by (3.1)) — Ou, (1n)i(To) = (Un, (O, 0n)€:)
(by (3.4a)) = (Up, —Ag1 + VA1)
Viip, Vi) 4 (tin, VA1)
Viin, Vi) + (in, VA1n) + (Vi V(G1n — G1))
Viin, Vi n)
@,Vgin)+ (P —pr V- gin)
Vi, Vgin) + (0, V- gin)
Vi, V(gin — g1)) + (VE, Va) + (0, V- (G1,n — g1))
=0 + I+ Is.

(3.5))

discrete divergence)

(by
(
(by (1.1a) and (2.8))
(by (3.5) and (3.4b))
(

continuous divergence)

= (
= (
= (
=(V
= (
= (

To treat I we use integration by parts, the Holder estimate, and (3.2)

Iy = (@, —=Agh) + (€, VA1) = (@, (0z,;01)€3) = (=0,1,6n6;) < C||V|| oo, )’

Since r — 7 > Kh this proves the result for Is.
For the other two terms, we split the domain into Dy and Q\Dsy. Using that
o=t > (R(F — 7))~ on Q\ D, and the Holder estimates, we have

L+I<C <||V77|\Loo(pz) + ||p||L°°(D2)> IV (g1, — G1)ll1 o)
+ C(||U_3/2Vﬁ||L2(Q\D2) + ||U_3/2p||L2(Q\D2)> ||03/2V(§1,h =)l
< C IVl e gy + Ipll e ) ) IV G = ) 23

+ G )2 (Vi 2@ + el ) 102V @ — 3022
The result then follows from Lemma 3.2 and Corollary 3.3. O

This manuscript is for review purposes only.
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12 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

3.3. Estimates for L>°(2). For this case we use the stability of the Ritz pro-
jection in L*°(£2) norm as shown in [15].

3.3.1. Regularized Green’s function. This time we define the approximate
Green’s function (g, A\o) € H}(2)? x L3(£) as the solution to

(363.) —Ago + V)\o = 5h€z in Q,
(3.6b) V-3o=0 in Q,
(3.6¢) Go=0 on 0Q.

Here, €; is as before the i-th standard basis vector in R3. We also define the finite
element approximation (go.n, Ao,n) € Vi x My, by
(3.7) a((Go — Go.ns Mo — Mon)s (Than)) =0 Y(Uh,qn) € Vi x M.

Compared to (3.4a)—(3.4c), the right-hand side of (3.6a) is less singular, which means
we can expect faster convergence.

3.3.2. Auxiliary results for (§o, Ao), (§o,n, Xo,n) and the Ritz projection.
Similarly to the W case, we need certain error estimates for the discretization of
the regularized Green’s function (go, Ag). However in contrast to (g1, A1), we could
not locate such results in the literature. For our purpose we need to establish the
following results, for which the proofs are given in Section 4.

LEMMA 3.5. Let (go, o) be the solution of (3.6a)—(3.6¢) and (go.n, No,n) the re-
spective discrete solution. Then, it holds
IV (go — Go.n)llr () < Ch|Inhl|.
The weighted norm estimate follows essentially from Lemma 3.5.
COROLLARY 3.6. Let (go, Xo) be the solution of (3.6a)—(3.6¢) and (gon, Ao,n) the

respective discrete solution. Then, it holds
|0°/2% (Go = Go.n) | L2(@) < Chlnhl.
As mentioned before, the proof is based on local and global max-norm estimates
for the Ritz projection R,Z of Z € H(2)? which is given by
(VRhZ, Vﬁh) = (VZ, Vﬁh) Vﬁh S ‘7}1.

We state the slightly modified results [15, Theorem 12] and [14, Theorem 4.4] for the
convenience of the reader.

PROPOSITION 3.7. There exists a constant C' independent of h such that, for z' €
HY(Q)2 N L>(Q)3 the solution of the Laplace equation, it holds that

| RiZl| Lo () < Cllnhl||Z]| Lo (q)-

PROPOSITION 3.8. Let D C Dg C Q, where Dy = {x € Q : dist(x,D) < d}.
Then, for Z € HE(2)3 N L>(Q)3 the solution of the Laplace equation, there exists a
constant C, independent of h, such that

[1BRZ] oo (py < A2 Lo (p,y) + CalillZ ]| 1 (s

where Cy ~ d~3/2.

This manuscript is for review purposes only.



168

475

15

479
480

481
482

183

STOKES GLOBAL AND LOCAL POINTWISE ERROR ESTIMATES 13

We will also require the following result.
LEMMA 3.9. Let (go, Ao) be the solution of (3.6a)—(3.6¢). Then, it holds

[V Xollzi) < Clnh|2(6%/2V X0l 12(q) < C|lnhl.
The respective proof is given in Section 4.

3.3.3. Max-norm estimate. With these tools at hand, we can go ahead with
the proof of the theorem.

Proof of Theorem 2.14 (velocity). We make the ansatz for ¥y €

(by orthogonality) @ ;(Zo) = a((@n,pn), (Jo,n, Xo,n)) = a((@,p), (Go,ns Mo,n))
= (V’J, VjO,h) - (pv V. gO,h)'

Since go» € Vi, we have (Vi,Vgon) = (VRyi, Vo) and hence by using V- gy =0

tp,i(Zo) = (VR Vgon) — (0, V - Gon) = (VR Vgo,n) — (9, V - (Go,n — Go))-
We can use an inverse estimate on VR,u. Thus,
(VRui,Vgon) = (VRL, V(Go,n — Go)) — (Rnil, Ago)
= (VRyi, V(Go,n — Go)) — (Ruti, —0ne; + Vo)
< WY Ryd|| o () IV (Go,n — Fo)ll L1 (o)
+ Cl[ Ryl L0y (1 + [V Aol (@) -

For the second term, we get by estimating the divergence by the gradient:

(2, V- (go,n — o)) < ClipllLes ) IV (Go,n — go)ll L1 (02)-

Now we can apply our auxiliary result for ||V (go,n — Go)llz1(). Thus, we have by
Lemma 3.5 combined with Proposition 3.7 and Lemma 3.9

|in,i(Zo)| < Clnh|||@]| pe @y [V (Go.n — Go)llr ) + 1Pl 2o @)V (Fo.n — Go)ll L1
< C (I P oy + I A e ) ). 0

3.3.4. Localization. The approach for the localization in the L* case is similar
to W1 but different in the sense that we again use the stability of R, in L® norm.

Proof of Theorem 2.15 (velocity). We only consider Zy € Tz, C Dy. As before,
using (2.7), (2.8), and (3.7) gives

(by orthogonality) ﬁh,i(fO) = a((ﬁfuph)? (go,ha >‘O,h)) = CL((’J, p)7 (go,ha >‘O,h))
= (Vﬁv Vgo,h) - (pa V. go,h) = Il + 12-

Using the properties of the Ritz projection we first consider
I = (VRpi, Vo,n)
(VRy, Vo) + (VR V(Jo,n — Go))
—(Rnt, Ago) + (VRU, V(go,n — Go))
= (Rpt,6ne; — Vo) + (VRyE, V(go,n — Go))

This manuscript is for review purposes only.
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Next, we apply (3.1) and split the domain into Dy and Q\ Ds

I < [Rnt| ooy ) + BRG] Lo (D) IV Aol L1 (0) + IV RRE oo (0, 1V (o0 = Go)ll 1)
+ ||0—73/2RhﬁHL2(Q\D2)||03/2V)‘0”L2(Q)

+ |0~ PV Ryl 120 pyy 10V (G0, — G0) | L2 (<)-
Using the properties of o and applying an inverse inequality gives

Iy < C||Rptll| oo py) (L+ V2ol + 2 IV (Gon — Fo)llr )
+ Cal| R 20 (10%*V Mol L2 ) + B~ 0%V (Go.n — o)l 2 () -

To estimate Ry, in the L and L? norm we can apply Proposition 3.8 and an estimate
for |[Rpti — ]| 12(q) to see together with Lemma 3.5, Corollary 3.6 and Lemma 3.9
that

I < O A o ) (1 + M) + Coltn bl (1] 2200y + AT 11 )
< Caltn || o ) + Caltn bl (I 2+ T 3 )-
Using similar arguments we get for

I = =(p,V - (Jon — Go))
< Clpll oo (o) IV (Go.n = G0) |1 @) + Callpll 2@ llo® >V (Go,n — G0) | 22
< Clhll[pll e (py) + Calln hf[Ipll L2(0),
which concludes the proof of the theorem. 0

4. Estimates for the regularized Green’s function. In this section we prove
Corollaries 3.3 and 3.6 and Lemmas 3.5 and 3.9 which we need in order to establish
the main theorems.

4.1. Dyadic decomposition. For the proof of our results, we use a dyadic de-
composition of the domain €2, which we will introduce next. Without loss of generality,
we assume that the diameter of € is less than 1. We put d; = 277 and consider the

decomposition 2 = Q, U Uj:o Q;, where

Q. ={FeQ:|¥—- 7y < Kh}, Q={FeQ:djy1 <|T— Ty <d;},
K is a sufficiently large constant to be chosen later and J is an integer such that
(4.1) 2~ < Kh <277,

We keep track of the explicit dependence on K. Furthermore, we consider the follow-
ing enlargements of €);

Q; = {fe Q: dj+2 < |f_50‘ < dj—l}’
QO ={Fe€Q:dj 3 <|T—To| <dja},
Q;.// = {fE Q: dj+4 S |f*50‘ S dj—3}'

This manuscript is for review purposes only.
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LEMMA 4.1. There exists a constant C independent of d; such that for any & €
Q;,
Vo (Z)| + d;1|§70(f)| + Ao (Z)] < C’d;Q.
Proof. Due to (2.6) and Proposition 2.3, it holds for & € §;

M@= | [ Gata- szl < [ 16t plsld7

“c |I5h( >|| dj < Cd;?||6n 1oy < Cd; 2,
P

where we used that dist(xg, ;) > Cd;. Similarly, without loss of generality, consid-
ering the k-th component, 1 < k < 3, we have for

o.d00@)| = | [ 0:Gu(@i) - 613

7 s/# 10,G 1 (7, 91100 (9)|dF
16,(5)] .
g/_ | oIV dy < 0d;?

—

F— g
The estimate for go (%) is similar. 0

As an immediate application of the above result and Corollary 2.2 we obtain the
following result.

COROLLARY 4.2.
-3 2
1Goll 20, + IV ol 2y < Clj ™

Proof. By Corollary 2.2, the Holder estimates, and Lemma 4.1 (with Q; instead
of Q;), we obtain

19012 + 19y < €7 (1ol + V0l + 45 10l 2(a )
1/2 7t g
< cdy/ (H)\oHLw(QQ) +1VGoll = @y + d; 1H90”L°°(Q9)>

<cd; .

4.2. L'(Q) interpolation estimate for ).
THEOREM 4.3. For (go, Ao) the solution of (3.6a)—(3.6¢), it holds

H)\O — T'h()\())HLl(Q) < Ch|ln h|

Proof. Using the dyadic decomposition and the Cauchy-Schwarz inequality

J
A0 = ra(Xo)llLre) < Ao = (X))l p1 o) + ZH>\0 = rr(Xo)ll 11 (q,)
j=1
J
3/2
(4.2) < (K2 Ao = m(X0) g2y + C Y d (1A = 74 (M)l 12

Jj=1

We apply Assumption 2.7 and the H? regularity as in (2.1), which give

Ao = ra(Xo)ll 2 < ChIVAollL2() < Chllon]r2(0) < Cch~Y/2,

This manuscript is for review purposes only.
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16 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER
This implies for the first term in (4.2)
(KR)*2|| X0 = 2 (M)l 2,y < CK®?h.

For the second term, by the approximation estimate Assumption 2.7 and Corollary 4.2
it follows

1% = 4(30)l 2(ay) < CHIV ol 2y < Ched; .

Hence, we can conclude
ng/ 10 = 71(A0) | L2 (g, ) < Z Ch < ChJ.
Jj=1

From (4.1), we see that J scales logarithmically in h and thus get the claimed result.0

4.3. Local duality argument. In the following theorem, we again consider the
sub-domains 2; from the dyadic decomposition in a duality argument. For the error

llgo — §O,h||L2(Q/.) = sup (Jo — Go,n, D)
! ”'U”LZ(Q)SI
TECE ()

we can make a duality argument using the dual problem
(4.3) —AW+Ve=9 inQ, V-&d=0 inQ, @#=0 ondQ.
THEOREM 4.4. For (go, Ao) the solution of (3.6a)—(3.6¢) and o € (0,1) it holds
190 = Go.nll 2y < CAIV(Go = Foun)ll 2y + Chod; =1V (o = Gon) 1)
+ORM P I h.

Proof. By using (4.3) and that go and g o are divergence free for rp(y), the
bilinear form a(-,-) from (2.7) and Assumption 2.5, it follows

(Go — Go,n, V) = (V(go — go,n), VW) — (¢, V - (Go — Go,n))
= (V(Jo — Go,n), V(W — Pp()))
+ (V(go — Go,n), VPu(W)) — (¢ — (), V - (o — Go,n))
= (V(go — go,n), V(W — Pp()))

+ (Ao = Ao,ns V- Pr(@)) — (0 = m1(0), V - (o — Go,n))
= (V(go — Go,n), V(& — Pp,(w)))

+ (Ao = 7a(X0), V - (Pr (W) — @) — (¢ — rn(9), V - (Go — Go,n))
=T+ T2 + T3.

For 7, we split the term

71 = (V(do — Jo.n), V(& = Pu(w)))ay + (V(Go — Jo,n), V(& = Pr(0))) o\

= T11 + T12-
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We then can estimate 711 using Assumption 2.7 for P,
11 < [V(Jo = Fo.n)ll 2y V(@ = Pa(@)) 12 (o)
< ChIV (o — Go) 2 1Tz < CRIV @o = Go)l 2 ey

Now we use [13, (5.11)] and Assumption 2.8 to see that

o - - — a —1/2—« - -
T12 < Ch®||V(go — gO,h)”Ll(Q)||w||cl+a(Q\Q;/) < Ch%d,; 2719 (g0 — go.n)llLr (-
Analogously, we split 7o
72 = —(Ao = ra(X), V- (& = Py(d)) o — (Ao = ru(Xo), V - (0 — Pu(@)) oz
= T21 + Ta2.
Then again, we use approximation results and Corollary 4.2, to see
- —3/2
721 < CW? Vol 2 1] 122y < CH 1V R0l 2y < CR2d; 2.
For the second term, we apply again the Holder estimate, Theorem 4.3 and [13, (5.11)]
(4-4) 722 < [|Ao = 7 (o)l L2 (@ IV (@ = Ph(@)) ]| Lo (r02p)
a . a 1—1/2—«a
< ORI A& cavaorqy) < CRTd; 2= p).
It remains to deal with 73, we split again
73 < (e = rale), V- (Go = Gon))ay | + (e = rale), V- (Go — Go.n))ovey| = Ts1 + Ta2.
Analogously to before, we estimate

731 < o = (@)l 20 IV (Go = Go.n) | 2y < CRIV(Go = o)l 12y and

732 < [l — Th(@)HLoo(Q\Q;”)HV(ﬁo —Gon)llzre) < Chad;l/zfanv(g*o — go.n)llLr )

The estimate for || — 74 ()|l oo (\ 7y IS given in [13, p. 17]. Summing up, we have

- - a 1—1/2—a - -
|22(0,) < ChIIV(Go = Gor)ll 20y + Chd; PNV (Go — Go)lzr e
+ k2 ontred A ).

lgo — o

Now, because h < d; due to (4.1) and o < 1, it holds h2alj_3/2 < hHo‘dj_l/z_O‘. Thus,
we arrive at the conclusion of the theorem. 0

4.4. L'(Q) estimate and weighted estimate. Now we can proceed with the
proof of Lemma 3.5.

Proof of Lemma 3.5. We again use the dyadic decomposition and the Cauchy-
Schwarz inequality to see

J
IV (Go—Go.n)ll () < V(G0 = Go.n)ll ey + DNV (Go = Gon) 11 o)
j=1
J
— — 3/2 - —
(4.5) < (Kh)*?||V(Go — GonllL2y +C Y dj/ V(g0 — Go,n)ll 12;)-

j=1
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18 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

Applying Proposition 2.11, Assumption 2.7, H? regularity as stated in (2.1) and (3.2)
leads to the following estimate for the first term

W29 Go = Gom) 2@y < B2 (1ol ey + ol s )

< OR*2||61)l 2z, ) < O

In the following, we consider the second term for which we want to apply the local
energy estimate from Proposition 2.12:

19 = Fon)l e,y < VG = P@)lzaery + 10 = 70 (00) | 2 )
+C(edj) o — Pulgo)l 2y +€lV(Go = Gon)ll 2 (o)
(4.6) +Cled;) ™ |go — Gounll 2 a)-
For the first two terms we use approximation results and Corollary 4.2, to obtain
IV @ = Pu(do)) 2y + IR0 = mn(00) ey < Ch(IGoll iz + IR0l )
< Chd;*".

The contribution to the sum is given by

J
> a1 — Pu(o)l2ary + 120 = ra(Xo)ll 12 () < ChJ < Chilnhl,
j=1

where due to (4.1) we see that J ~ |Inh|. Similarly, we see
(4.7) (ed;) 1o = Pr(Go)ll 2 () < C—hd‘?’/2

For a > 0, it holds

J a J
h ;
(48) Z <d> < he ZQJQ < ChOtQQJ < CK™©.
j=1 N i=1
Thus, we get by summing up (4.7) and using (4.8) with « = 1 that Z}T:1 C’%ﬂ_h <
C(Ke)~'h. To summarize our results so far, we define M; = d?m IV (Go = Go,n)ll L2 (0, )
3/2 o= = . .
Mj = dj/ IV(go — go7h)||L2(Q,‘) and substitute into (4.6)

ZM < Ch|lnh|+ C(Ke)~ 1h+sZM’+OZ (ed;) 1d?/2|\§0—§0,h||L2(Q;).
Jj=1 Jj=1

Next, we apply Theorem 4.4 to the last term

J
< Chllnh| + C(Ke) 'h+¢eY_ M]
j=1
J e

_ h
12( d;/” h(IV(go—do h)||L2(Q”’)+|: ]

M-
=

~
I
—

h (073
vaowmmpnﬁh[}|mﬂ)
.7
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We expand the sum over the last three terms so that we get

J J J
- h L
DMy < C (Rl + (K)ot e 3 M5+ et S 19 = ol ey
j=1 j=1 =
J o a
h
1§ ,[ ] IV (Go — Gon)llLr(o) + Che™! E { } [In A.
j=1 j=1 J

Now we can again use (4.8) on the last two summands to arrive at

J J
S M, < Chllnh|+Ce > M, + CK e (||V(g’0 —Gom)llic) + h|lnh|)

j=1 j=1

J
- 3/2 S o
+C(Ke) ™Y &2V (G0 — Gouw)ll 2y
j=1
where we also used that h/d; < K ~1and K > 1. Now for the second and last term,
we easily see

J J J
3/2 - - N N
> M+ Y A1V Go - Go)l a2 gary < C Y M+ CER(V(Go = Fonl2(q. -
j=1 j=1 j=1

where the last term is again bounded by CK?/2h. Combined, this means we have for
constant K > 1 and e >0

J J
> M; < Chllnh|+ C((Ke)™' +¢) Y M; + CK*?ch + CK'/?™'h

j=1 j=1
+ CK == (9o = Go) sy + hlln b))

We make Ce < 1/4 and C(Ke)~! < 1/4 by choosing € small and K big enough. After
kicking back the sum to the left-hand side this leads to

< CK75h|ln h| + OK7a€71||V(§0 - gO,h)”LWQ)-

1M-
=

We now treat ¢ as a constant. Finally substituting this into (4.5)

(49) IV — Gou)llzi (@) < Creehlinh] + CK ¥ (G — o)l

and choosing K large enough such that CK~% < 1/2, we get the result. O
As a corollary to the theorem, we get the respective estimate for weighted norms.

Proof of Corollary 3.6. This corollary directly follows using the same techniques
as above and the fact o(Z) ~ d; on Q;. We start by splitting the left-hand side
according to the dyadic decomposition

J
lo*/2¥ (Go—Go.n)ll2() < 6%V (Go = Gon) | 2y + D 10* 2V (Go = Fon)ll 2(a,)
j=1

J
< C(shY9 (G0 — Gou) |2y + C S A1V o — Gon)ll 12 -
j=1
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Without loss of generality, we can assume k = K. After going through the same steps
as in the proof of Lemma 3.5, particularly (4.5), we end up with the right-hand side
of (4.9)

1%/ (Go — Gon) |l 220y < Ch|lnh| + CK V(5 — Gu)ll11 (5)-

Now applying Lemma 3.5 to estimate ||V (5 — gn)||z1 () we arrive at the result. O
Similarly we can conclude the following result.

Proof of Corollary 3.3. Again using the fact o(Z) ~ d; on Q;, we start by splitting
the left-hand side according to the dyadic decomposition

1032V (51 — Gin) |l 22

J
— — 3/2 — -
< IV (@~ Gl gy + C S A1V @G — Gl oo,

j=1

As before, we can assume x = K. This is equal to the term introduced by the dyadic
decomposition in the proof of [13]. Again, following the same steps as there, we get

1*2V (g1 = Gun)llzz@) < C+CIV(G — )l @),
where C' depends the constants introduced in the proof of [13]. Nonetheless, applying
Lemma 3.2 to estimate ||V(§ — gn)| r1(q) we arrive at the result. d
4.5. Proof of Lemma 3.9.

Proof of Lemma 3.9. We use the dyadic decomposition introduced in the begin-
ning of Section 4 to get the following estimate due to ¢ ~ d; on Q; (0 ~ Kh on

Q)

J
2 2
1032V Xol[72(0y < CR? IV Aol 720y + D IV A0l 720, -

j=1

The first summand is bounded by a constant C' due to (2.1) and (3.2). By Corollary
4.2 we see that HV)\OHiQ(Qj) < Cd;3 and as a result

J J
D AVl Fz,) SC D 1=CJ <Clnhl|.
j=1 j=1

This proves the result for the weighted case and by |0=%/2|12(q) < [Inh|'/? the L
estimate. O

5. Estimates for the pressure. We now consider estimates for the remaining
component of our Stokes system, the pressure. Similarly to before, let §;, denote a
smooth delta function on the tetrahedron where the maximum for the pressure is
attained. We may define the following regularized Green’s function to deal with the
pressure

(5.1) ~AG+VA=0 inQ, V-G=6,—-¢ inQ, G=0 on .

By construction we have [, 8, (%) — ¢(Z)dZ = 0. This also allows us to apply similar
arguments as in [12, 13], only with different bounds for the appearing ), terms.
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The global case has already been discussed in [12, 13], thus we now focus on
localized estimates. As before, we need some auxiliary results which we state now.

PROPOSITION 5.1.
IV(Pu(G) = G)llLrey + Irn(A) = All ey < C.

A proof of this is given in [13, Lemma 5.4]. The following corollary follows by the
same arguments as Corollary 3.3 and Corollary 3.6.

COROLLARY 5.2.
102V (Po(G) = G)l|z2(0) + l0* 2 (rn(A) = M) L2() < C.
Proof of Theorem 2.13 (pressure). For this we again split the domain into Dy and

O\ Dy and only consider %y € Tz, C D;.
The pointwise estimate of p;, can be expanded in the following way

Pr(Zo) = (P, 0n) = (Pn, 00 — @) + (Prs @) = (P, 00 — @) + (Pn — p, @) + (P, @).

The the last two terms we may estimate using Proposition 2.11
(on=p,8)+(1,6) < Clldll 2 (Ip=pnll (@) + Pl 20 ) < C IVl 2+l 2@ )-

By assumption ¢ is bounded on 2. For the first term, we can see by Assumption 2.5
that

(Ph,0n — &) = (1, V - G) = (p1, V - Pi(G))
= (p,V-Po(G)) + (ph —p, V- Po(G)) := I + L.

For I, we get the following estimate

L=, V- (Pu(G) = G) + (p,6n — )
< Ipll ey (I9CPA(G) = G)laiay + 16l + 19nlr e )
+ Callpll () (||U3/2V(Ph(é) = Iz + 1026 ] L2 () + H03/25h||L2(Q)>
< Cllpllp~(p, + Callpll2 (o)

To arrive at this bound, we used Lemma 3.1 and that
03/2¢| 120y < |18l L2 |0%/?| L0y < C. Using (2.8) and (5.1) we see for I

—

I = (V(@ — i), VPy(G)) = (V(@ — @), VG) + (V(@ — in), V(P (G) — G))
= —(A, V- (i — in)) + (Vi — in), V(Pu(G) - G))

—(A = (M), V- (@) + (Vi — @), V(Pa(G) — G))

< (||V17||Loo + IVirll oo (o)) (1A = ra(A) [ 1) + V(P Py(G) - é)”Ll(Q))

+ Ca(IV(@ = @n)llza) (1020 = (M)l 20y + 10%29(Pu(G) = G) 12(e) )
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Here again we use that o1 is bounded by d on Q\D, and choose D* appropriately
such that we can apply Theorem 2.13 for the velocity, e.g. D* = B(Z),~ N Q with
r* =7 +d/2. Finally H' stability for i, follows by Proposition 2.11 and we get

I < C(HVUHLoo(Dz) + ||p||Loc(D2)> + Cd(HVﬂHL?(Q) + Hp||L2(Q)>-

6. Assumptions and main results in two dimensions. In this section we
give a short derivation of the respective local estimates in L> and W for the
two dimensional case. Note that the localization arguments made in the three di-
mensional case are independent of the dimension apart from the auxiliary estimates.
For two dimensions the respective estimates of the regularized Green’s functions and
the Ritz projection are all available from the literature albeit under slightly different
assumptions on the finite element space.

In the following, we state the required assumptions, the necessary auxiliary re-
sults, their references and finally the local estimates. From now on let Q C R? a
convex polygonal domain, and consider the two dimensional analogs , p, f and their
finite element discretization as well as the respective two dimensional function and
finite element spaces. The basic results and requirements for the continuous problem
from Subsections 2.2 and 2.3 still apply, as referenced in these sections.

As stated in [11], assume that we have approximation operators
Py, € L(HY Q)% V) and r, € L(L?(Q); My,) which fulfill the two dimensional ver-
sions of Assumptions 2.4 to 2.7 and in addition the following super-approximation
properties.

ASSUMPTION 6.1 (Super-Approximation II). Let p € [2,3], @ € Vi, and ¢ =
oMy, then
lo™#/2V (¢ = Pu()lL2() < Cllo™/*Thllz2@)  Vh € Vi
and if qn, € My, and & = o*qy, then

lo=/2(6 = ru(©) 12y < Chllo™ 2aull 20y Van € M

As in the three dimensional case, this holds for Taylor-Hood finite element spaces,
see, e.g. [11]. Apart from this, we need to adapt the estimates for &5, and o. For the
two dimensional versions we get

||(Sh||Wk(TiO) <ChF20-YD 0 1 <g<00,k=0,1,..., v>0 and
0" Vidnll 2y < 2/2Ck" R K1 k=0,1.

Let (g1, A1) and (g, A\g) denote the two dimensional regularized Green’s functions,
defined as in Section 3 but for two dimensions. Then we get the following convergence
estimates for their discrete counterparts. The estimates needed when deriving W1
velocity estimates,

V(g1 — g1.n)llr ) < C, loV(g1 — Gin)llLz) < C

follow from [11, Theorem 8.1] using (3.3) and similarly for the pressure estimates
where we need

IV (Pr(G) — Gz @) + llrn(A) = All i) < C,
[oV(Pu(G) = G)lL2(0) + llo(rn(A) = A2 < C
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which can be found in [11, p. 328]. In the L case for the velocity we get

V(G0 — Go.n)llLr () < Chllnhl, loV(go — Gon)llL2(0) < Chlln h|/?

from [8, Theorem 4.1, Proof of Theorem 4.2]. The equivalent version of Lemma 3.9
is given by [8, Lemma 3.1]. Finally the estimate for the Ritz projection Rj in two
dimensions

[1BnZl|Loe () < Cln ||| 2] o ()

is given in [27]. Note that the local maximum norm estimates for L> from [14] hold
as well in two dimensions. Thus, using the same techniques as in Section 3 we get the
following theorems for Q C R2.

THEOREM 6.2 (Interior W1 estimate for the velocity and L> estimate for the
pressure). Under the assumptions above, 3 C Qo C Q with dist(Qy,08) > d > Fh
and if (ii,p) € (WH(Q2)% x L>®(Q)) N (HE(Q)? x L3(2)) is the solution to (1.1a)—
(1.1c), then it holds for (dp,pn) the solution to (2.8):

IVan | oo ) + IP8 ]l oo (0
< C(IVl e ) + el ) ) + Ca (1Y@ 220 + lpllzzcen)-

Here, the constant Cy depends on the distance to Q1 from 0.

THEOREM 6.3 (Interior L> error estimate for the velocity). Under the assump-
tions above, Q1 C Qo C Q with dist(Q1,002) > d > kh and if (@,p) € (L°>°(2)? x
L% ()N (HE ()2 x L3(Q)) is the solution to (1.1a)—(1.1c), then it holds for (i, pn)
the solution to (2.8):

il ) < Cln bl (Il ) + Bl e ) )
+ Caltn M2 (Bl 12y + 2y + BlIpl 220 )-

Here, the constant Cy depends on the distance to Q1 from 0.
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