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1. Introduction. In the introduction and the major part of the paper we focus13

on the three-dimensional setting. However, our results are valid in two dimensions14

and we comment on that at the end of the paper. We assume Ω ⊂ R3 is a convex15

polyhedral domain, on which we consider the following Stokes problem:16

−∆~u+∇p = ~f in Ω,(1.1a)17

∇ · ~u = 0 in Ω,(1.1b)18

~u = ~0 on ∂Ω,(1.1c)1920

with ~f = (f1, f2, f3) be such that ~u ∈ (H1
0 (Ω)∩L∞(Ω))3 or respectively ~u ∈ (H1

0 (Ω)∩21

W 1,∞(Ω))3 and p ∈ L∞(Ω). The solution p is unique up to a constant, we choose22

p ∈ L2
0(Ω), i.e. p has zero mean.23

This paper is the first paper in our program to establish best approximation re-24

sults for the fully discrete approximations for transient Stokes systems in L∞ and25

W 1,∞ norms. Similar program was carried out by the last two authors for the par-26

abolic problems in a series of papers [15, 16, 17, 18]. The approach there relies on27

stability of the Ritz projection, resolvent estimates in L∞ and W 1,∞ norms and dis-28

crete maximum parabolic regularity. We intend to derive corresponding results for29

the Stokes systems. In this paper, we give a new L∞ stability result of the form30

(1.2) ‖~uh‖L∞(Ω) ≤ C|lnh|
(
|lnh|‖~u‖L∞(Ω) + h‖p‖L∞(Ω)

)
.31

In a second step we prove respective local versions of (1.2) and of the corresponding32

W 1,∞ results from [12, 13]. These estimates take the form33
34

(1.3) ‖∇~uh‖L∞(D1) + ‖ph‖L∞(D1)35

≤ C
(
‖∇~u‖L∞(D2) + ‖p‖L∞(D2)

)
+ Cd

(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

)
36
37
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2 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

and38

39

(1.4) ‖~uh‖L∞(D1) ≤ C|lnh|
(
|lnh|‖~u‖L∞(D2) + h‖p‖L∞(D2)

)
40

+ Cd|lnh|
(
‖~u‖L2(Ω) + h‖~u‖H1(Ω) + h‖p‖L2(Ω)

)
,41

42

where for x̃ ∈ Ω, D1 = Br(x̃) ∩ Ω, D2 = Br̃(x̃) ∩ Ω, r̃ > r > 0 and Cd depends on43

d = |r − r̃| > κ̄h.44

Global pointwise error estimates for the Stokes system similarly to (1.2) have45

been thoroughly discussed in recent years. The three-dimensional W 1,∞ case was first46

discussed in [2, 11] under smoothness assumptions on the domain or limiting angles47

in non-smooth domains. Later on, using new results on convex polyhedral domains,48

e.g. from [19, 21, 26], the limitations on the domain were weakened in [12, 13]. The49

L∞ bounds were first discussed for Ω ⊂ R2 in [8] and for dimensions greater than50

one and smooth domains in [2] but with the W 1,∞ norm appearing on the right-hand51

side and using weighted norms, which is not sufficient for the applications we have in52

mind.53

Interior (or local) maximum norm estimates are well-known for elliptic equations,54

see, e.g., [14, 28], and are particularly useful when dealing with scenarios where the55

solution has low regularity close to the boundary or on local subsets of Ω, e.g. for56

optimal control problems with pointwise state constraints, sparse optimal control and57

pointwise best approximation results for the time dependent problem, see [5, 16, 24].58

For the Stokes system, the only pointwise interior error estimates are available on59

regular translation invariant meshes in two dimensions [22]. To our best knowledge,60

the interior results presented here are novel and have not been discussed before.61

Let us quickly comment on one property specific to the Stokes problem. Regu-62

larity results typically appear as velocity-pressure pair where the pressure has lower63

norm, e.g. ‖∇~u‖L∞(Ω) and ‖p‖L∞(Ω). This pair can then be estimated as in [12, 13].64

Thus, we only supply estimates for ‖~uh‖L∞(Ω) in the max-norm estimate since bounds65

for ‖ph‖W−1,∞(Ω) would add another layer of complexity and to our knowledge have66

no apparent advantages.67

In three dimensions our proof of the local estimates is essentially based on L168

and weighted estimates of regularized Green’s functions. For W 1,∞ it is enough to69

slightly adapt the results from [13] for the Green’s function of velocity and pressure.70

In the case of L∞, we prove the respective estimates using the local energy esti-71

mates given in [13] and estimates for Green’s matrix of the Stokes system, see, e.g.,72

[21]. Furthermore, another important element of the proof for L∞ is a pointwise73

estimate of the Ritz projection [15]. Using the stability result proven there, we are74

able to carry out our proof without the need to discuss the behavior of the discrete75

solution along finite element boundaries.76

In two dimensions our approach for the local estimates follows along the lines of77

the three-dimensional case. Here the estimates for the regularized Green’s functions78

and the Ritz projection are all known from the literature, see [8, 11, 27]. The results79

from [8, 11] are derived using an alternative technique, the global weighted approach80

as introduced in [23, 25]. For the global weighted approach we need similar but slightly81

different assumptions on the finite element space than for the local energy estimate82

technique in the three-dimensional setting. Thus, to keep the notation simple, we83

deal with the two dimensional case in a separate section at the end of this work.84

Several important applications from Navier-Stokes free surface flows to the nu-85

merical analysis of finite-element schemes for non-Newtonian flows have already been86
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noted in [11]. As mentioned, interior estimates play a role specifically for optimal87

control problems with state constraints, e.g. in [6]. Stokes optimal control problems88

are also closely related to subproblems in optimal control of Navier-Stokes systems89

where for Newton iterations one has to solve linearized optimal control subproblems90

in each step, see, e.g. [4].91

An outline of this paper is as follows. In Section 2, we introduce notation and92

state assumptions on the approximation operators as well as the main results of our93

analysis. Section 3 gives key arguments for the proof of the main theorems for the94

velocity and reduces them to the estimates of regularized Green’s functions, which are95

derived in Section 4. Based on these results, we deal with bounds for the pressure in96

Section 5. Finally, in the last section we show the local estimates in two dimensions.97

2. Assumptions and main results in three dimensions.98

2.1. Notation. We now introduce basic notation. Throughout this paper, we99

use the usual notation for the Lebesgue, Sobolev and Hölder spaces. These spaces100

can be extended in a straightforward manner to vector functions, with the same101

notation but with the following modification for the norm in the non-Hilbert case: if102

~u = (u1, u2, u3), we then set103

‖~u‖Lr(Ω) =

[∫
Ω

|~u(~x)|rd~x
]1/r

104

where | · | denotes the Euclidean vector norm for vectors or the Frobenius norm for105

tensors.106

We denote by (·, ·) the L2(Ω) inner product and specify subdomains by subscripts107

in the case they are not equal to the whole domain. In the analysis, we also make108

use of the weight σ = σ~x0,h(~x) =

√
|~x− ~x0|2 + (κh)2 for which ~x0, κ and h will be109

defined later on.110

2.2. Basic estimates. Next we want to recall some results for solutions to111

(1.1a)–(1.1c). Existence and uniqueness of the solutions to the problem on bounded112

domains are shown in [10]. For the proof of the respective regularity estimates on113

convex polyhedral domains we refer to [3, 20]. For ~f ∈ H−1(Ω)3 there holds114

‖~u‖H1(Ω) + ‖p‖L2(Ω) ≤ C‖~f‖H−1(Ω).115

Furthermore, for ~f ∈ L2(Ω), (~u, p) are elements of (H1
0 (Ω)∩H2(Ω))3 ×H1(Ω) and it116

holds117

(2.1) ‖~u‖H2(Ω) + ‖p‖H1(Ω) ≤ C‖~f‖L2(Ω).118

2.2.1. Local H2 stability estimates. In the following analysis we will also119

require the following localized H2 stability estimates.120

Lemma 2.1. Let A1 = Br(x̃) ∩ Ω, A2 = Br̃(x̃) ∩ Ω for x̃ ∈ Ω and r̃ > r > 0. We121

denote the difference of the radii by d = |r̃− r|. Furthermore let (~u, p) be the solution122

to (1.1a)–(1.1c). Then, it holds123

‖~u‖H2(A1) + ‖p‖H1(A1) ≤ C
(
‖~f‖L2(A2) +

1

d
‖∇~u‖L2(A2) +

1

d2
‖~u‖L2(A2) +

1

d
‖p‖L2(A2)

)
.124
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4 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

Proof. Let ω ∈ C∞(Ω) be a smooth cut-off function with ω = 1 on A1 and ω = 0125

on Ω\A2 such that126

(2.2) |∇kω| ∼ 1

dk
for k = 0, 1, 2.127

We consider ũ = ω~u and p̃ = ωp. Then, we get the following weak formulation for128

~ϕ ∈ H1
0 (Ω)3129

(∇ũ,∇~ϕ) = (∇ω ⊗ ~u+ ω∇~u,∇~ϕ)130

= −(∇ · (∇ω ⊗ ~u), ~ϕ) + (∇~u,∇(ω~ϕ))− (∇~u,∇ω ⊗ ~ϕ)131

= −(∇ · (∇ω ⊗ ~u), ~ϕ) + (~f, ω~ϕ) + (p,∇ · (ω~ϕ))− (∇~u,∇ω ⊗ ~ϕ)132

= −(∇ · (∇ω ⊗ ~u), ~ϕ) + (~f, ω~ϕ) + (ωp,∇ · ~ϕ) + (∇ωp, ~ϕ)− (∇~u∇ω, ~ϕ),133134

where we used (1.1a) and in addition we get ∇ · ũ = ∇ω · ~u. Thus, ũ and p̃ solve the135

following boundary value problem in the weak sense136

−∆ũ+∇p̃ = ~f −∇ · (∇ω ⊗ ~u) +∇ωp−∇~u∇ω in A2,137

∇ · ũ = ∇ω · ~u in A2,138

ũ = ~0 on ∂A2.139140

By construction we have that A2 is convex and ∇ω · ~u vanishing on the boundary141

∂A2. Thus, according to [3, Thm. 9.20] and the fact that ∇ · ũ is zero on ∂A2, the142

H2 regularity result (2.1) holds in this situation as well, and we obtain143

‖ũ‖H2(A2)+‖p̃‖H1(A2)144

≤ C
(
‖~f‖L2(A2) + ‖∇ω∇~u‖L2(A2) + ‖∇2ω~u‖L2(A2) + ‖∇ωp‖L2(A2)

)
145

≤ C
(
‖~f‖L2(A2) +

1

d
‖∇~u‖L2(A2) +

1

d2
‖~u‖L2(A2) +

1

d
‖p‖L2(A2)

)
,146

147

where we used (2.2). We get148

149

(2.4) ‖~u‖H2(A1) + ‖p‖H1(A1) = ‖ũ‖H2(A1) + ‖p̃‖H1(A1) ≤ ‖ũ‖H2(A2) + ‖p̃‖H1(A2)150

≤ C
(
‖~f‖L2(A2) +

1

d
‖∇~u‖L2(A2) +

1

d2
‖~u‖L2(A2) +

1

d
‖p‖L2(A2)

)
.151

152

Using a covering argument (see Corollary 2.16 for details), we may show the following153

corollary.154

Corollary 2.2. Let Ω1 ⊂ Ω2 ⊂ Ω with dist(Ω̄1, ∂Ω2) ≥ d, then holds for (~u, p)155

the solution to (1.1a)–(1.1c) that156

‖~u‖H2(Ω1) + ‖p‖H1(Ω1) ≤ C
(
‖~f‖L2(Ω2) +

1

d
‖∇~u‖L2(Ω2) +

1

d2
‖~u‖L2(Ω2) +

1

d
‖p‖L2(Ω2)

)
.157

2.2.2. Green’s matrix estimate. We also need estimates of the respective158

Green’s matrix for the Stokes problem. For this, refer to [21, Section 11.5]. Let159

φ ∈ C∞(Ω̄) be vanishing in a neighborhood of the edges and
∫

Ω
φ(~x)d~x = 1. The160

matrix G(~x, ~y) = (Gi,j(~x, ~y))i,j=1,2,3,4 is the Green’s matrix for problem (1.1a)–(1.1c)161
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if the vector functions ~Gj = (G1,j , G2,j , G3,j)
T and G4,j are solutions of the problem162

−∆x
~Gj(~x, ~y) +∇xG4,j(~x, ~y) = δ(~x− ~y)(δ1,j , δ2,j , δ3,j)

t for ~x, ~y ∈ Ω163

−∇x · ~Gj(~x, ~y) = (δ(~x− ~y)− φ(~x))δ4,j for ~x, ~y ∈ Ω,164

~Gj(~x, ~y) = ~0 for ~x ∈ ∂Ω, ~y ∈ Ω165166

and G4,j satisfies the condition167 ∫
Ω

~G4,j(~x, ~y)φ(~x)d~x = 0 for ~y in Ω, j = 1, 2, 3, 4.168

For the existence and uniqueness of such a matrix, we again refer to [21]. If now169

f ∈ H−1(Ω)3 and the uniquely determined solutions of the Stokes system given by170

(~u, p) ∈ H1
0 (Ω)3 × L2(Ω) satisfy the condition171

(2.5)

∫
Ω

p(~x)φ(~x)d~x = 0172

then the components of (~u, p) admit the representations173

(2.6) ~ui(~x) =

∫
Ω

~f(~ξ) · ~Gi(~ξ, ~x)d~ξ, i = 1, 2, 3, p(~x) =

∫
Ω

~f(~ξ) · ~G4(~ξ, ~x)d~ξ.174

To apply this result to our case, we need to find a suitable φ̄ such that (2.5) holds.175

We show this is possible for p ∈ C0,α(Ω) ∩ L2
0(Ω). By [21, Theorem 11.3.2] this is176

fulfilled for data in C−1,α(Ω). For our use cases in later sections we consider at least177

continuous right-hand sides, so this is applicable.178

Without loss of generality, we assume p 6= 0. Thus, since the mean value of p is179

zero, there exist non-empty open sets A,B b Ω such that p > 0 on A and p < 0 on180

B. We then can choose φ̄ such that φ̄ = 0 on Ω\(A∪B) and φ̄ > 0 on A, B and thus181

φ̄ vanishing close to the edges of Ω. Through suitable scaling on A and B, we get182 ∫
A

p(~x)φ̄(~x)d~x = −
∫
B

p(~x)φ̄(~x)d~x183

and hence we can conclude that (2.5) holds for φ̄(~x). Finally, since by assumption184

φ̄ > 0, we normalize φ̄ with respect to the L1(Ω) norm to complete the construction.185

This shows that we can apply the results for the Green’s matrix to (~u, p). Furthermore,186

we can also use the available results from [13].187

We state estimates for the Green’s matrix specific to convex polyhedral domains188

as it can be found in [21, Theorem 11.5.5, Corollary 11.5.6].189

Proposition 2.3. Let Ω be a convex polyhedral type domain. Then, the elements190

of the matrix G(~x, ~ξ) satisfy the estimate191

|∂θx∂
β
ξGi,j(~x,

~ξ)| ≤ c|~x− ~ξ|−1−δi,4−δj,4−|θ|−|β|
192

for |θ| ≤ 1− δi,4 and |β| ≤ 1− δj,4. Furthermore, the following Hölder type estimate193

holds in this setting194

|∂θξGi,j(~x, ~ξ)− ∂θξGi,j(~y, ~ξ)|
|~x− ~y|α

≤ C
(
|~x− ~ξ|−1−α−δj,4−|θ| + |~y − ~ξ|−1−α−δj,4−|θ|

)
.195
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6 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

2.3. Finite element approximation. Let Th be a regular, quasi-uniform fam-196

ily of triangulations of Ω̄, made of closed tetrahedra T , where h is the global mesh-size197

and L2
0(Ω) the space of L2(Ω) functions with zero-mean value. Let ~Vh ⊂ H1

0 (Ω)3 and198

Mh ⊂ L2
0(Ω) be a pair of finite element spaces satisfying a uniform discrete inf-sup199

condition,200

sup
~vh∈~Vh

(qh,∇ · ~vh)

‖∇~vh‖L2(Ω)
≥ β‖qh‖L2(Ω) ∀qh ∈Mh,201

with a constant β̃ > 0 independent of h. The respective discrete solution associated202

with the velocity-pressure pair (~u, p) ∈ H1
0 (Ω)3×L2

0(Ω) is defined as the pair (~uh, ph) ∈203

~Vh ×Mh that solves the weak form of (1.1a)–(1.1c) given by the bilinear form a(·, ·)204

which is defined as205

(2.7) a((~uh, ph), (~vh, qh)) = (∇~uh,∇~vh)− (ph,∇ · ~vh) + (∇ · ~uh, qh)206

and the equation207

(2.8) a((~uh, ph), (~vh, qh)) = (~f,~vh) ∀(~vh, qh) ∈ ~Vh ×Mh.208

2.4. Assumptions. Next, we make assumptions on the finite element spaces.209

We assume, there exist approximation operators Ph and rh as in [13], i.e. Ph and210

rh fulfill the following properties. Let Q ⊂ Qd ⊂ Ω, with d ≥ κ̄h, for some fixed211

κ̄ sufficiently large and Qd = {~x ∈ Ω : dist(~x,Q) ≤ d}. For Ph ∈ L(H1
0 (Ω)3;Vh)212

and rh ∈ L(L2(Ω); M̄h) with M̄h corresponding to Mh without the zero-mean value213

constraint, we assume the following assumptions hold.214

Assumption 2.4 (Stability of Ph in H1(Ω)3). There exists a constant C inde-215

pendent of h such that216

‖∇Ph(~v)‖L2(Ω) ≤ C‖∇~v‖L2(Ω), ∀~v ∈ H1
0 (Ω)3.217

Assumption 2.5 (Preservation of discrete divergence for Ph). It holds218

(∇ · (~v − Ph(~v)), qh) = 0, ∀qh ∈ M̄h, ∀~v ∈ H1
0 (Ω)3.219

Assumption 2.6 (Inverse Inequality). There is a constant C independent of h220

such that221

‖~vh‖W 1,p(Q) ≤ Ch
−1‖~vh‖Lp(Qd) ∀~vh ∈ ~Vh, 1 ≤ p ≤ ∞.222

Assumption 2.7 (L2 approximation). For any ~v ∈ H2(Ω)3 and any q ∈ H1(Ω)223

exists C independent of h, ~v and q such that224

‖Ph(~v)− ~v‖L2(Q) + h‖∇(Ph(~v)− ~v)‖L2(Q) ≤ Ch
2‖∇2~v‖L2(Qd),225

‖rh(q)− q‖L2(Q) ≤ Ch‖∇q‖L2(Qd).226
227

In the following, ~ei denotes the i-th standard basis vector in R3.228

Assumption 2.8 (Approximation in the Hölder spaces).229

For ~v ∈
(
C1,α(Ω) ∩H1

0 (Ω)
)3

and q ∈ C0,α(Ω), it holds230

‖∇(Ph(~v)− ~v)‖L∞(Q) ≤ Ch
α‖~v‖C1,α(Qd),231

‖rh(q)− q‖L∞(Q) ≤ Ch
α‖q‖C0,α(Qd),232

233
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where234

‖~v‖C1+α(Q) = ‖~v‖C1(Q) + sup
~x,~y∈Q
i∈{1,2,3}

|~ei · ∇(~v(~x)− ~v(~y))|
|~x− ~y|α

.235

Assumption 2.9 (Super-Approximation I). Let ~vh ∈ ~Vh and ω ∈ C∞0 (Qd) a236

smooth cut-off function such that ω ≡ 1 on Q and237

|∇sω| ≤ Cd−s, s = 0, 1,238

where Qd = {~x ∈ Ω : dist(~x, ∂Q) ≥ d}. We assume239

‖∇(ω2~vh − Ph(ω2~vh))‖L2(Q) ≤ Cd
−1‖~vh‖L2(Qd).240

For qh ∈ M̄h, we assume241

‖ω2qh − rh(ω2qh)‖L2(Q) ≤ Chd
−1‖qh‖L2(Qd).242

One common example of a finite element space satisfying the above assumptions243

are the Taylor-Hood finite elements of order greater or equal than three. For more244

details on these spaces and the respective approximation operators, we refer to [1, 11,245

12].246

Remark 2.10. Here we restrict ourselves to Taylor-Hood finite element spaces247

since in the following arguments we use results for finite element approximations of248

elliptic problems. These results are available for the usual space of Lagrange finite249

elements and can possibly be extended to other elements used for the Stokes problem,250

like e.g. the “mini” element, which also fulfills the assumptions above.251

Next, we state a well-known energy error estimate for an approximation of the252

Stokes system. For details on the proof, see e.g. [9, Proposition 4.14].253

Proposition 2.11. Let (~u, p) solve (1.1a)–(1.1c) and (~uh, ph) be its finite element254

approximation defined by (2.8). Under the assumptions above, there exists a constant255

C independent of h such that,256

‖~u− ~uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C min
(~vh,qh)∈~Vh×Mh

(
‖~u− ~vh‖H1(Ω) + ‖p− qh‖L2(Ω)

)
.257

2.5. Local energy estimates. An important tool in our analysis are the local258

energy estimates from [13, Thm. 2].259

Proposition 2.12. Suppose (~v, q) ∈ H1
0 (Ω)3 × L2(Ω) and (~vh, qh) ∈ ~Vh × Mh260

satisfy261

a((~v − ~vh, q − qh), (~χ,w)) = 0 ∀(~χ,w) ∈ ~Vh ×Mh262

for the bilinear form a(·, ·) given in (2.7). Then, there exists a constant C such that263

for every pair of sets A1 ⊂ A2 ⊂ Ω such that dist(Ā1, ∂A2\∂Ω) ≥ d ≥ κ̄h (for some264

fixed constant κ̄ sufficiently large) the following bound holds for every ε > 0265

266

‖∇(~v − ~vh)‖L2(A1) ≤ C‖∇(~v − Ph(~v))‖L2(A2) + C‖q − rh(q)‖L2(A2)267

+
C

εd
‖~v − Ph(~v)‖L2(A2) + ε‖∇(~v − ~vh)‖L2(A2) +

C

εd
‖~v − ~vh‖L2(A2).268

269
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2.6. Main results. In the following statements, the constant C is independent270

of ~u, p and h, but may depend on the parameter α related to the largest interior angle271

of ∂Ω. We start with the W 1,∞ error estimates. The global stability result272

‖∇~uh‖L∞(Ω) + ‖ph‖L∞(Ω) ≤ C
(
‖∇~u‖L∞(Ω) + ‖p‖L∞(Ω)

)
,273

on convex polyhedral domains was established in [13] (see also [12]). Here, we establish274

a localized version of it. In the our results Br(x̃) denotes a ball of radius r centered275

at x̃ ∈ Ω.276

Theorem 2.13 (Interior W 1,∞ estimate for the velocity and L∞ estimate for277

the pressure). Let the assumptions of Subsection 2.3 and Subsection 2.4 hold. Put278

D1 = Br(x̃)∩Ω, D2 = Br̃(x̃)∩Ω, r̃ > r > κ̄h (with κ̄ large enough), d = r̃− r ≥ κ̄h.279

If (~u, p) ∈ (W 1,∞(D2)3×L∞(D2))∩(H1
0 (Ω)3×L2

0(Ω)) is the solution to (1.1a)–(1.1c),280

and (~uh, ph) is the solution to (2.8), then281

282

‖∇~uh‖L∞(D1) + ‖ph‖L∞(D1)283

≤ C
(
‖∇~u‖L∞(D2) + ‖p‖L∞(D2)

)
+ Cd

(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

)
.284

285

Here, the constant Cd depends on the distance of Br(x̃) from ∂Br̃(x̃).286

Next we state similar results for the velocity in L∞ norm.287

Theorem 2.14 (Global L∞ estimate for the velocity). Under the assumptions of288

Subsection 2.3 and Subsection 2.4, for (~u, p) ∈ (L∞(Ω)3×L∞(Ω))∩(H1
0 (Ω)3×L2

0(Ω))289

the solution to (1.1a)–(1.1c) and (~uh, ph) the solution to (2.8), it holds290

‖~uh‖L∞(Ω) ≤ C|lnh|
(
|lnh|‖~u‖L∞(Ω) + h‖p‖L∞(Ω)

)
.291

The additional logarithmic factor in front of the velocity is probably not optimal, it292

appears when applying a pointwise estimate for the Ritz projection. We also get the293

respective local estimates.294

Theorem 2.15 (Interior L∞ error estimate for the velocity). Under the assump-295

tions of Subsection 2.3 and Subsection 2.4, with D1 = Br(x̃) ∩ Ω, D2 = Br̃(x̃) ∩ Ω,296

r̃ > r > κ̄h (with κ̄ large enough), d = r̃ − r ≥ κ̄h and for (~u, p) ∈ (L∞(D2)3 ×297

L∞(D2)) ∩ (H1
0 (Ω)3 × L2

0(Ω)) the solution to (1.1a)–(1.1c) and (~uh, ph) the solution298

to (2.8), it holds299

300

‖~uh‖L∞(D1) ≤ C|lnh|
(
|lnh|‖~u‖L∞(D2) + h‖p‖L∞(D2)

)
301

+ Cd|lnh|
(
h‖~u‖H1(Ω) + ‖~u‖L2(Ω) + h‖p‖L2(Ω)

)
.302

303

Here, the constant Cd depends on the distance of Br(x̃) from ∂Br̃(x̃).304

Based on these theorems, we can derive the following corollaries for general subdo-305

mains Ω1 ⊂ Ω2 ⊂ Ω with dist(Ω̄1, ∂Ω2) ≥ d ≥ κ̄h.306

Corollary 2.16 (Interior W 1,∞ estimate for the velocity and L∞ estimate for307

the pressure). Under the assumptions of Subsection 2.3 and Subsection 2.4, Ω1 ⊂308

Ω2 ⊂ Ω with dist(Ω̄1, ∂Ω2) ≥ d ≥ κ̄h and for (~u, p) ∈ (W 1,∞(Ω2)3 × L∞(Ω2)) ∩309

(H1
0 (Ω)3 × L2

0(Ω)) the solution to (1.1a)–(1.1c) and (~uh, ph) the solution to (2.8), we310
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have311
312

‖∇~uh‖L∞(Ω1) + ‖ph‖L∞(Ω1) ≤ C
(
‖∇~u‖L∞(Ω2) + ‖p‖L∞(Ω2)

)
313

+ Cd

(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

)
.314

315

Here, the constant Cd depends on the distance to Ω1 from ∂Ω2.316

Proof. We can construct a covering {Ki}Mi=1 of Ω1, with Ki = Br̃i(x̃i) ∩ Ω1 such317

that318

(1) Ω1 ⊂
⋃M
i=1Ki.319

(2) x̃i ∈ Ω̄1 for 1 ≤ i ≤M .320

(3) Let Li = Bri(x̃i)∩Ω2 where ri = r̃i + d. There exists a fixed number N such321

that each point ~x ∈
⋃M
i=1 Li is contained in at most N sets from {Lj}Mj=1.322

Now, since dist(Ω̄1, ∂Ω2) ≥ d and (2), we have that
⋃M
i=1 ⊂ Ω2. We can apply323

Theorem 2.13 to the pairs Ki ⊂ Li:324

‖∇~uh‖L∞(Ω1) + ‖ph‖L∞(Ω1) ≤
M∑
i=1

‖∇~uh‖L∞(Ki)
+ ‖ph‖L∞(Ki)

325

≤
M∑
i=1

(
C
(
‖∇~u‖L∞(Li)

+ ‖p‖L∞(Li)

)
+ Cd

(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

) )
326

≤ N
(
C
(
‖∇~u‖L∞(Ω2) + ‖p‖L∞(Ω2)

)
+ Cd

(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

) )
,327

328

where we used (3) in the third line.329

Similarly, the following corollary follows with dist(Ω̄1, ∂Ω2) ≥ d.330

Corollary 2.17 (Interior L∞ error estimate for the velocity). Under the as-331

sumptions of Subsection 2.3 and Subsection 2.4, Ω1 ⊂ Ω2 ⊂ Ω with dist(Ω̄1, ∂Ω2) ≥332

d ≥ κ̄h and for (~u, p) ∈ (L∞(Ω2)3 × L∞(Ω2)) ∩ (H1
0 (Ω)3 × L2

0(Ω)) the solution to333

(1.1a)–(1.1c) and (~uh, ph) the solution to (2.8), we have334
335

‖~uh‖L∞(Ω1) ≤ C|lnh|
(
|lnh|‖~u‖L∞(Ω2) + h‖p‖L∞(Ω2)

)
336

+ Cd|lnh|
(
h‖~u‖H1(Ω) + ‖u‖L2(Ω) + h‖p‖L2(Ω)

)
.337

338

Here, the constant Cd depends on the distance to Ω1 from ∂Ω2.339

Remark 2.18. We may also write the results above in terms of best approximation340

estimates. For example for L∞ global bounds:341

‖~u− ~uh‖L∞(Ω) ≤ inf
(~vh,qh)∈~Vh×Mh

C|lnh|
(
|lnh|‖~u− ~vh‖L∞(Ω) + h‖p− qh‖L∞(Ω)

)
.342

Naturally, this also applies for other results in this section.343

Remark 2.19. Using the weighted discrete inf-sup condition from [7] it is pos-344

sible to extend the the global estimate to the compressible case. However, for the345

applications we have in mind the incompressible Stokes system is sufficient.346

3. Proof of main theorems. In this section, we reduce the proofs of Theo-347

rems 2.13 to 2.15 for the velocity to certain estimates for the regularized Green’s348

functions. The estimates for the pressure are given in Section 5. To introduce the349

regularized Green’s function we first need to introduce a regularized delta function.350

In addition we will require a certain weight function.351
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10 N. BEHRINGER, D. LEYKEKHMAN AND B. VEXLER

3.1. Regularized delta function and the weight function. Let R > 0 such352

that for any ~x ∈ Ω the ball BR(~x) contains Ω. Furthermore, let ~x0 be an arbitrary353

point of Ω̄ and T~x0
∈ Th. In the following sections, we estimate |∂xj~uh,i(~x0)|, |~uh,i(~x0)|354

for arbitrary 1 ≤ i, j,≤ 3 and |p(~x0)|.355

Next we introduce the parameters for the weight function σ(~x). Parameter κ > 1356

is a constant that is chosen to be large enough. Furthermore, let h be suitably small357

such that κh ≤ R (see also [11, Remark 1.4]). In the following, we use a regularized358

Green’s function to express the L∞(Ω) norm such that the problem is reduced to359

estimating the discretization error of the Green’s function in the L1(Ω) norm as in360

[12, 13]. To that end, we define a smooth delta function δh ∈ C1
0 (T~x0

), which satisfies361

for every ~vh ∈ ~Vh:362

~vh,i(~x0) = (~vh, δh~ei)T~x0
(3.1)363

‖δh‖Wk
q (T~x0

) ≤ Ch
−k−3(1−1/q), 1 ≤ q ≤ ∞, k = 0, 1, . . .(3.2)364

365

The construction of such a δh can be found in [29, Appendix]. We recall some prop-366

erties for σ and δh. By construction, it follows367

(3.3) inf
~x∈Ω

σ(~x) ≥ κh.368

Next, we provide an estimate for the L2(Ω) norm of the product of δh and σ.369

Lemma 3.1. There exists a constant C such that for ν > 0370

‖σν∇kδh‖L2(Ω) ≤ 2ν/2Cκνhν−k−3/2 k = 0, 1.371

Proof. This follows from the fact that δh is only non-zero on T~x0
, σ is bounded372

on T~x0
by
√

2κh and (3.2).373

The general strategy for proving the local results is to partition the domain into374

the local part and its complement. Then, we use regularized Green’s function esti-375

mates in the L1 norm on the local part and weighted L2 norm on the complement.376

For the L∞ error estimates we additionally require a certain estimate for the Ritz377

projection.378

3.2. Estimates for W 1,∞(Ω). The proof of local W 1,∞(Ω) error estimates is379

similar to the global case [12, 13] and is obtained by introducing a regularized Green’s380

function.381

3.2.1. Regularized Green’s function. For the W 1,∞ error estimates, we de-382

fine the regularized Green’s function (~g1, λ1) ∈ H1
0 (Ω)3 × L2

0(Ω) as the solution to383

384

−∆~g1 +∇λ1 = (∂xjδh)~ei in Ω,(3.4a)385

∇ · ~g1 = 0 in Ω,(3.4b)386

~g1 = ~0 on ∂Ω.(3.4c)387388

We also define the finite element approximation (~g1,h, λ1,h) ∈ ~Vh ×Mh by389

(3.5) a((~g1 − ~g1,h, λ1 − λ1,h), (~vh, qh)) = 0 ∀(~vh, qh) ∈ ~Vh ×Mh.390
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3.2.2. Auxiliary results for (~g1, λ1) and (~g1,h, λ1,h). To show our main inte-391

rior W 1,∞ result, we need the regularized Green’s function error estimate in L1(Ω)392

norm which is given in [13, Lemma 5.2].393

Lemma 3.2. There exists a constant C independent of h and ~g1 such that394

‖∇(~g1 − ~g1,h)‖L1(Ω) ≤ C.395

In addition, we also need the following weighted estimate, the proof of which follows396

by a minor modification of the proof in [13, Lemma 5.2].397

Corollary 3.3. There exists a constant C independent of h and ~g1 such that398

‖σ3/2∇(~g1 − ~g1,h)‖L2(Ω) ≤ C.399

The details on the proof of this corollary are given in Section 4 where we introduce400

the respective dyadic decomposition.401

Remark 3.4. The results in Lemma 3.2 and Corollary 3.3 also follow in a straight-402

forward manner from the arguments in [12] but are not available in our setting since403

we make different assumptions on the finite element space which we find similar but404

not directly compatible to the assumptions made in [12].405

3.2.3. Localization. We reduce the proof to estimates involving ~g1 and ~g1,h.406

Proof of Theorem 2.13 (velocity). Using the regularized Green’s function as de-407

fined in (3.4a)–(3.4c), for ~x0 ∈ T~x0
⊂ D1, we have as in [13]408

− ∂xj (~uh)i(~x0) = (~uh, (∂xjδh)~ei)(by (3.1))409

= (~uh,−∆~g1 +∇λ1)(by (3.4a))410

= (∇~uh,∇~g1) + (~uh,∇λ1)411

= (∇~uh,∇~g1) + (~uh,∇λ1,h) + (∇~uh,∇(~g1,h − ~g1))(by (3.5))412

= (∇~uh,∇~g1,h)(discrete divergence)413

= (∇~u,∇~g1,h) + (p− ph,∇ · ~g1,h)(by (1.1a) and (2.8))414

= (∇~u,∇~g1,h) + (p,∇ · ~g1,h)(by (3.5) and (3.4b))415

= (∇~u,∇(~g1,h − ~g1)) + (∇~u,∇~g1) + (p,∇ · (~g1,h − ~g1))(continuous divergence)416

:= I1 + I2 + I3.417418

To treat I2 we use integration by parts, the Hölder estimate, and (3.2)419

I2 = (~u,−∆~g1) + (~u,∇λ1) = (~u, (∂xjδh)~ei) = (−∂xj~u, δh~ei) ≤ C‖∇~u‖L∞(T~x0
).420

Since r − r̃ > κ̄h this proves the result for I2.421

For the other two terms, we split the domain into D2 and Ω\D2. Using that422

σ−1 > (κ̄(r̃ − r))−1 on Ω\D2 and the Hölder estimates, we have423

I1 + I3 ≤ C
(
‖∇~u‖L∞(D2) + ‖p‖L∞(D2)

)
‖∇(~g1,h − ~g1)‖L1(Ω)424

+ C
(
‖σ−3/2∇~u‖L2(Ω\D2) + ‖σ−3/2p‖L2(Ω\D2)

)
‖σ3/2∇(~g1,h − ~g1)‖L2(Ω)425

≤ C
(
‖∇~u‖L∞(D2) + ‖p‖L∞(D2)

)
‖∇(~g1,h − ~g1)‖L1(Ω)426

+ C(r̃ − r)−3/2
(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

)
‖σ3/2∇(~g1,h − ~g1)‖L2(Ω).427

428

The result then follows from Lemma 3.2 and Corollary 3.3.429
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3.3. Estimates for L∞(Ω). For this case we use the stability of the Ritz pro-430

jection in L∞(Ω) norm as shown in [15].431

3.3.1. Regularized Green’s function. This time we define the approximate432

Green’s function (~g0, λ0) ∈ H1
0 (Ω)3 × L2

0(Ω) as the solution to433

−∆~g0 +∇λ0 = δh~ei in Ω,(3.6a)434

∇ · ~g0 = 0 in Ω,(3.6b)435

~g0 = ~0 on ∂Ω.(3.6c)436437

Here, ~ei is as before the i-th standard basis vector in R3. We also define the finite438

element approximation (~g0,h, λ0,h) ∈ ~Vh ×Mh by439

(3.7) a((~g0 − ~g0,h, λ0 − λ0,h), (~vh, qh)) = 0 ∀(~vh, qh) ∈ ~Vh ×Mh.440

Compared to (3.4a)–(3.4c), the right-hand side of (3.6a) is less singular, which means441

we can expect faster convergence.442

3.3.2. Auxiliary results for (~g0, λ0), (~g0,h, λ0,h) and the Ritz projection.443

Similarly to the W 1,∞ case, we need certain error estimates for the discretization of444

the regularized Green’s function (~g0, λ0). However in contrast to (~g1, λ1), we could445

not locate such results in the literature. For our purpose we need to establish the446

following results, for which the proofs are given in Section 4.447

Lemma 3.5. Let (~g0, λ0) be the solution of (3.6a)–(3.6c) and (~g0,h, λ0,h) the re-448

spective discrete solution. Then, it holds449

‖∇(~g0 − ~g0,h)‖L1(Ω) ≤ Ch|lnh|.450

The weighted norm estimate follows essentially from Lemma 3.5.451

Corollary 3.6. Let (~g0, λ0) be the solution of (3.6a)–(3.6c) and (~g0,h, λ0,h) the452

respective discrete solution. Then, it holds453

‖σ3/2∇(~g0 − ~g0,h)‖L2(Ω) ≤ Ch|lnh|.454

As mentioned before, the proof is based on local and global max-norm estimates455

for the Ritz projection Rh~z of ~z ∈ H1
0 (Ω)3 which is given by456

(∇Rh~z,∇~vh) = (∇~z,∇~vh) ∀~vh ∈ ~Vh.457

We state the slightly modified results [15, Theorem 12] and [14, Theorem 4.4] for the458

convenience of the reader.459

Proposition 3.7. There exists a constant C independent of h such that, for ~z ∈460

H1
0 (Ω)3 ∩ L∞(Ω)3 the solution of the Laplace equation, it holds that461

‖Rh~z‖L∞(Ω) ≤ C|lnh|‖~z‖L∞(Ω).462

Proposition 3.8. Let D ⊂ Dd ⊂ Ω, where Dd = {x ∈ Ω : dist(x,D) ≤ d}.463

Then, for ~z ∈ H1
0 (Ω)3 ∩ L∞(Ω)3 the solution of the Laplace equation, there exists a464

constant C, independent of h, such that465

‖Rh~z‖L∞(D) ≤ |lnh|‖~z‖L∞(Dd) + Cdh‖~z‖H1(Ω),466

where Cd ∼ d−3/2.467
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We will also require the following result.468

Lemma 3.9. Let (~g0, λ0) be the solution of (3.6a)–(3.6c). Then, it holds469

‖∇λ0‖L1(Ω) ≤ C|lnh|1/2‖σ3/2∇λ0‖L2(Ω) ≤ C|lnh|.470

The respective proof is given in Section 4.471

3.3.3. Max-norm estimate. With these tools at hand, we can go ahead with472

the proof of the theorem.473

Proof of Theorem 2.14 (velocity). We make the ansatz for ~x0 ∈ Ω̄474

~uh,i(~x0) = a((~uh, ph), (~g0,h, λ0,h)) = a((~u, p), (~g0,h, λ0,h))(by orthogonality)475

= (∇~u,∇~g0,h)− (p,∇ · ~g0,h).476477

Since ~g0,h ∈ ~Vh we have (∇~u,∇~g0,h) = (∇Rh~u,∇~g0,h) and hence by using ∇ · ~g0 = 0478

~uh,i(~x0) = (∇Rh~u,∇~g0,h)− (p,∇ · ~g0,h) = (∇Rh~u,∇~g0,h)− (p,∇ · (~g0,h − ~g0)).479

We can use an inverse estimate on ∇Rh~u. Thus,480

(∇Rh~u,∇~g0,h) = (∇Rh~u,∇(~g0,h − ~g0))− (Rh~u,∆~g0)481

= (∇Rh~u,∇(~g0,h − ~g0))− (Rh~u,−δh~ei +∇λ0)482

≤ h−1‖Rh~u‖L∞(Ω)‖∇(~g0,h − ~g0)‖L1(Ω)483

+ C‖Rh~u‖L∞(Ω)

(
1 + ‖∇λ0‖L1(Ω)

)
.484485

For the second term, we get by estimating the divergence by the gradient:486

(p,∇ · (~g0,h − ~g0)) ≤ C‖p‖L∞(Ω)‖∇(~g0,h − ~g0)‖L1(Ω).487

Now we can apply our auxiliary result for ‖∇(~g0,h − ~g0)‖L1(Ω). Thus, we have by488

Lemma 3.5 combined with Proposition 3.7 and Lemma 3.9489

|~uh,i(~x0)| ≤ C|lnh|‖~u‖L∞(Ω)h
−1‖∇(~g0,h − ~g0)‖L1(Ω) + ‖p‖L∞(Ω)‖∇(~g0,h − ~g0)‖L1(Ω)490

≤ C
(
|lnh|2‖~u‖L∞(Ω) + |lnh|h‖p‖L∞(Ω)

)
.491

492

3.3.4. Localization. The approach for the localization in the L∞ case is similar493

to W 1,∞ but different in the sense that we again use the stability of Rh in L∞ norm.494

495

Proof of Theorem 2.15 (velocity). We only consider ~x0 ∈ T~x0
⊂ D1. As before,496

using (2.7), (2.8), and (3.7) gives497

~uh,i(~x0) = a((~uh, ph), (~g0,h, λ0,h)) = a((~u, p), (~g0,h, λ0,h))(by orthogonality)498

= (∇~u,∇~g0,h)− (p,∇ · ~g0,h) := I1 + I2.499500

Using the properties of the Ritz projection we first consider501

I1 = (∇Rh~u,∇~g0,h)502

= (∇Rh~u,∇~g0) + (∇Rh~u,∇(~g0,h − ~g0))503

= −(Rh~u,∆~g0) + (∇Rh~u,∇(~g0,h − ~g0))504

= (Rh~u, δh~ei −∇λ0) + (∇Rh~u,∇(~g0,h − ~g0))505506
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Next, we apply (3.1) and split the domain into D2 and Ω\D2507

I1 ≤ ‖Rh~u‖L∞(T~x0
) + ‖Rh~u‖L∞(D2)‖∇λ0‖L1(Ω) + ‖∇Rh~u‖L∞(D2)‖∇(~g0,h − ~g0)‖L1(Ω)508

+ ‖σ−3/2Rh~u‖L2(Ω\D2)‖σ
3/2∇λ0‖L2(Ω)509

+ ‖σ−3/2∇Rh~u‖L2(Ω\D2)‖σ
3/2∇(~g0,h − ~g0)‖L2(Ω).510

511

Using the properties of σ and applying an inverse inequality gives512

I1 ≤ C‖Rh~u‖L∞(D2)

(
1 + ‖∇λ0‖L1(Ω) + h−1‖∇(~g0,h − ~g0)‖L1(Ω)

)
513

+ Cd‖Rh~u‖L2(Ω)

(
‖σ3/2∇λ0‖L2(Ω) + h−1‖σ3/2∇(~g0,h − ~g0)‖L2(Ω)

)
.514515

To estimate Rh~u in the L∞ and L2 norm we can apply Proposition 3.8 and an estimate516

for ‖Rh~u − ~u‖L2(Ω) to see together with Lemma 3.5, Corollary 3.6 and Lemma 3.9517

that518

I1 ≤ C|lnh|‖~u‖L∞(D2)(1 + |lnh|) + Cd|lnh|
(
‖~u‖L2(Ω) + h‖~u‖H1(Ω)

)
519

≤ Cd|lnh|2‖~u‖L∞(D2) + Cd|lnh|
(
‖~u‖L2(Ω) + h‖~u‖H1(Ω)

)
.520

521

Using similar arguments we get for522

I2 = −(p,∇ · (~g0,h − ~g0))523

≤ C‖p‖L∞(D2)‖∇(~g0,h − ~g0)‖L1(Ω) + Cd‖p‖L2(Ω)‖σ3/2∇(~g0,h − ~g0)‖L2(Ω)524

≤ C|lnh|‖p‖L∞(D2) + Cd|lnh|‖p‖L2(Ω),525
526

which concludes the proof of the theorem.527

4. Estimates for the regularized Green’s function. In this section we prove528

Corollaries 3.3 and 3.6 and Lemmas 3.5 and 3.9 which we need in order to establish529

the main theorems.530

4.1. Dyadic decomposition. For the proof of our results, we use a dyadic de-531

composition of the domain Ω, which we will introduce next. Without loss of generality,532

we assume that the diameter of Ω is less than 1. We put dj = 2−j and consider the533

decomposition Ω = Ω∗ ∪
⋃J
j=0 Ωj , where534

Ω∗ = {~x ∈ Ω : |~x− ~x0| ≤ Kh}, Ωj = {~x ∈ Ω : dj+1 ≤ |~x− ~x0| ≤ dj},535

K is a sufficiently large constant to be chosen later and J is an integer such that536

(4.1) 2−(J+1) ≤ Kh ≤ 2−J .537

We keep track of the explicit dependence on K. Furthermore, we consider the follow-538

ing enlargements of Ωj539

Ω′j = {~x ∈ Ω : dj+2 ≤ |~x− ~x0| ≤ dj−1},540

Ω′′j = {~x ∈ Ω : dj+3 ≤ |~x− ~x0| ≤ dj−2},541

Ω′′′j = {~x ∈ Ω : dj+4 ≤ |~x− ~x0| ≤ dj−3}.542543
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Lemma 4.1. There exists a constant C independent of dj such that for any ~x ∈
Ωj,

|∇~g0(~x)|+ d−1
j |~g0(~x)|+ |λ0(~x)| ≤ Cd−2

j .

Proof. Due to (2.6) and Proposition 2.3, it holds for ~x ∈ Ωj544

|λ0(~x)| =
∣∣∣ ∫

Ω

G4(~x, ~y) · δh(~y)~eid~y
∣∣∣ ≤ ∫

T~x0

|Gi,4(~x, ~y)||δh(~y)|d~y545

≤ C
∫
T~x0

|δh(~y)|
|~x− ~y|2

d~y ≤ Cd−2
j ‖δh‖L1(Ω) ≤ Cd−2

j ,546

547

where we used that dist(x0,Ωj) ≥ Cdj . Similarly, without loss of generality, consid-548

ering the k-th component, 1 ≤ k ≤ 3, we have for549

|∂x~g0,k(~x)| =
∣∣∣ ∫

Ω

∂xGk(~x, ~y) · δh(~y)~eid~y
∣∣∣ ≤ ∫

T~x0

|∂xGi,k(~x, ~y)||δh(~y)|d~y550

≤
∫
T~x0

|δh(~y)|
|~x− ~y|2

d~y ≤ Cd−2
j .551

552

The estimate for ~g0,k(~x) is similar.553

As an immediate application of the above result and Corollary 2.2 we obtain the554

following result.555

Corollary 4.2.

‖~g0‖H2(Ωj)
+ ‖∇λ0‖L2(Ωj)

≤ Cd−3/2
j .

Proof. By Corollary 2.2, the Hölder estimates, and Lemma 4.1 (with Ω′j instead
of Ωj), we obtain

‖~g0‖H2(Ωj)
+ ‖∇λ0‖L2(Ωj)

≤ Cd−1
j

(
‖λ0‖L2(Ω′j)

+ ‖∇~g0‖L2(Ω′j)
+ d−1

j ‖~g0‖L2(Ω′j)

)
≤ Cd1/2

j

(
‖λ0‖L∞(Ω′j)

+ ‖∇~g0‖L∞(Ω′j)
+ d−1

j ‖~g0‖L∞(Ω′j)

)
≤ Cd−3/2

j .

4.2. L1(Ω) interpolation estimate for λ0.556

Theorem 4.3. For (~g0, λ0) the solution of (3.6a)–(3.6c), it holds557

‖λ0 − rh(λ0)‖L1(Ω) ≤ Ch|lnh|.558

Proof. Using the dyadic decomposition and the Cauchy-Schwarz inequality559

‖λ0 − rh(λ0)‖L1(Ω) ≤ ‖λ0 − rh(λ0)‖L1(Ω∗)
+

J∑
j=1

‖λ0 − rh(λ0)‖L1(Ωj)
560

≤ (Kh)3/2‖λ0 − rh(λ0)‖L2(Ω∗)
+ C

J∑
j=1

d
3/2
j ‖λ0 − rh(λ0)‖L2(Ωj)

.(4.2)561

562

We apply Assumption 2.7 and the H2 regularity as in (2.1), which give563

‖λ0 − rh(λ0)‖L2(Ω) ≤ Ch‖∇λ0‖L2(Ω) ≤ Ch‖δh‖L2(Ω) ≤ Ch−1/2.564
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This implies for the first term in (4.2)565

(Kh)3/2‖λ0 − rh(λ0)‖L2(Ω∗)
≤ CK3/2h.566

For the second term, by the approximation estimate Assumption 2.7 and Corollary 4.2567

it follows568

‖λ0 − rh(λ0)‖L2(Ωj)
≤ Ch‖∇λ0‖L2(Ω′j)

≤ Chd−3/2
j .569

Hence, we can conclude570

J∑
j=1

d
3/2
j ‖λ0 − rh(λ0)‖L2(Ωj)

≤
J∑
j=1

Ch ≤ ChJ.571

From (4.1), we see that J scales logarithmically in h and thus get the claimed result.572

4.3. Local duality argument. In the following theorem, we again consider the573

sub-domains Ωj from the dyadic decomposition in a duality argument. For the error574

‖~g0 − ~g0,h‖L2(Ω′j)
= sup
‖~v‖L2(Ω)≤1

~v∈C∞0 (Ω′j)

(~g0 − ~g0,h, ~v)575

we can make a duality argument using the dual problem576

(4.3) −∆~w +∇ϕ = ~v in Ω, ∇ · ~w = 0 in Ω, ~w = 0 on ∂Ω.577

Theorem 4.4. For (~g0, λ0) the solution of (3.6a)–(3.6c) and α ∈ (0, 1) it holds578

‖~g0 − ~g0,h‖L2(Ω′j)
≤ Ch‖∇(~g0 − ~g0,h)‖L2(Ω′′′j ) + Chαd

−1/2−α
j ‖∇(~g0 − ~g0,h)‖L1(Ω)579

+Ch1+αd
−1/2−α
j |lnh|.580

581

Proof. By using (4.3) and that ~g0 and ~gh,0 are divergence free for rh(ϕ), the582

bilinear form a(·, ·) from (2.7) and Assumption 2.5, it follows583

(~g0 − ~g0,h, ~v) = (∇(~g0 − ~g0,h),∇~w)− (ϕ,∇ · (~g0 − ~g0,h))584

= (∇(~g0 − ~g0,h),∇(~w − Ph(~w)))585

+ (∇(~g0 − ~g0,h),∇Ph(~w))− (ϕ− rh(ϕ),∇ · (~g0 − ~g0,h))586

= (∇(~g0 − ~g0,h),∇(~w − Ph(~w)))587

+ (λ0 − λ0,h,∇ · Ph(~w))− (ϕ− rh(ϕ),∇ · (~g0 − ~g0,h))588

= (∇(~g0 − ~g0,h),∇(~w − Ph(~w)))589

+ (λ0 − rh(λ0),∇ · (Ph(~w)− ~w))− (ϕ− rh(ϕ),∇ · (~g0 − ~g0,h))590

:= τ1 + τ2 + τ3.591592

For τ1, we split the term593

τ1 = (∇(~g0 − ~g0,h),∇(~w − Ph(~w)))Ω′′′j
+ (∇(~g0 − ~g0,h),∇(~w − Ph(~w)))Ω\Ω′′′j594

:= τ11 + τ12.595596
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We then can estimate τ11 using Assumption 2.7 for Ph597

τ11 ≤ ‖∇(~g0 − ~g0,h)‖L2(Ω′′′j )‖∇(~w − Ph(~w))‖L2(Ω)598

≤ Ch‖∇(~g0 − ~g0,h)‖L2(Ω′′′j )‖~w‖H2(Ω) ≤ Ch‖∇(~g0 − ~g0,h)‖L2(Ω′′′j ).599
600

Now we use [13, (5.11)] and Assumption 2.8 to see that601

τ12 ≤ Chα‖∇(~g0 − ~g0,h)‖L1(Ω)‖~w‖C1+α(Ω\Ω′′j ) ≤ Ch
αd
−1/2−α
j ‖∇(~g0 − ~g0,h)‖L1(Ω).602

Analogously, we split τ2603

τ2 = −(λ0 − rh(λ0),∇ · (~w − Ph(~w))Ω′′′j
− (λ0 − rh(λ0),∇ · (~w − Ph(~w))Ω\Ω′′′j604

:= τ21 + τ22.605606

Then again, we use approximation results and Corollary 4.2, to see607

τ21 ≤ Ch2‖∇λ0‖L2(Ω′′j )‖~w‖H2(Ω) ≤ Ch
2‖∇λ0‖L2(Ω′′j ) ≤ Ch

2d
−3/2
j .608

For the second term, we apply again the Hölder estimate, Theorem 4.3 and [13, (5.11)]609
610

(4.4) τ22 ≤ ‖λ0 − rh(λ0)‖L1(Ω)‖∇(~w − Ph(~w))‖L∞(Ω\Ω′′′j )611

≤ Ch1+α|lnh|‖~w‖C1+α(Ω\Ω′′j ) ≤ Ch
1+αd

−1/2−α
j |lnh|.612

613

It remains to deal with τ3, we split again614

τ3 ≤ |(ϕ− rh(ϕ),∇ · (~g0 − ~g0,h))Ω′′′j
|+ |(ϕ− rh(ϕ),∇ · (~g0 − ~g0,h))Ω\Ω′′′j | := τ31 + τ32.615

Analogously to before, we estimate616

τ31 ≤ ‖ϕ− rh(ϕ)‖L2(Ω′′′j )‖∇(~g0 − ~g0,h)‖L2(Ω′′′j ) ≤ Ch‖∇(~g0 − ~g0,h)‖L2(Ω′′′j ) and617

τ32 ≤ ‖ϕ− rh(ϕ)‖L∞(Ω\Ω′′′j )‖∇(~g0 − ~g0,h)‖L1(Ω) ≤ Chαd
−1/2−α
j ‖∇(~g0 − ~g0,h)‖L1(Ω).618

619

The estimate for ‖ϕ− rh(ϕ)‖L∞(Ω\Ω′′′j ) is given in [13, p. 17]. Summing up, we have620

621

‖~g0 − ~g0,h‖L2(Ωj)
≤ Ch‖∇(~g0 − ~g0,h)‖L2(Ω′′′j ) + Chαd

−1/2−α
j ‖∇(~g0 − ~g0,h)‖L1(Ω)622

+ h2d
−3/2
j + Ch1+αd

−1/2−α
j |lnh|.623

624

Now, because h ≤ dj due to (4.1) and α ≤ 1, it holds h2d
−3/2
j ≤ h1+αd

−1/2−α
j . Thus,625

we arrive at the conclusion of the theorem.626

4.4. L1(Ω) estimate and weighted estimate. Now we can proceed with the627

proof of Lemma 3.5.628

Proof of Lemma 3.5. We again use the dyadic decomposition and the Cauchy-629

Schwarz inequality to see630

‖∇(~g0−~g0,h)‖L1(Ω) ≤ ‖∇(~g0 − ~g0,h)‖L1(Ω∗)
+

J∑
j=1

‖∇(~g0 − ~g0,h)‖L1(Ωj)
631

≤ (Kh)3/2‖∇(~g0 − ~g0,h‖L2(Ω) + C

J∑
j=1

d
3/2
j ‖∇(~g0 − ~g0,h)‖L2(Ωj)

.(4.5)632

633
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Applying Proposition 2.11, Assumption 2.7, H2 regularity as stated in (2.1) and (3.2)634

leads to the following estimate for the first term635

h3/2‖∇(~g0 − ~g0,h)‖L2(Ω) ≤ Ch5/2
(
‖~g0‖H2(Ω) + ‖λ0‖H1(Ω)

)
636

≤ Ch5/2‖δh‖L2(T~x0
) ≤ Ch.637

638

In the following, we consider the second term for which we want to apply the local639

energy estimate from Proposition 2.12:640

‖∇(~g0 − ~g0,h)‖L2(Ωj)
≤ C

(
‖∇(~g0 − Ph(~g0))‖L2(Ω′j)

+ ‖λ0 − rh(λ0)‖L2(Ω′j)

)
641

+ C(εdj)
−1‖~g0 − Ph(~g0)‖L2(Ω′j)

+ ε‖∇(~g0 − ~g0,h)‖L2(Ω′j)
642

+ C(εdj)
−1‖~g0 − ~g0,h‖L2(Ω′j)

.(4.6)643
644

For the first two terms we use approximation results and Corollary 4.2, to obtain645

‖∇(~g0 − Ph(~g0))‖L2(Ω′j)
+ ‖λ0 − rh(λ0)‖L2(Ω′j)

≤ Ch
(
‖~g0‖H2(Ω′′j ) + ‖λ0‖H1(Ω′′j )

)
646

≤ Chd−3/2
j .647

648

The contribution to the sum is given by649

J∑
j=1

d
3/2
j (‖∇(~g0 − Ph(~g0))‖L2(Ω′j)

+ ‖λ0 − rh(λ0)‖L2(Ω′j)
) ≤ ChJ ≤ Ch|lnh|,650

where due to (4.1) we see that J ∼ |lnh|. Similarly, we see651

(4.7) (εdj)
−1‖~g0 − Ph(~g0)‖L2(Ω′j)

≤ C h

εdj
hd
−3/2
j .652

For α > 0, it holds653

(4.8)

J∑
j=1

(
h

dj

)α
≤ hα

J∑
j=1

2jα ≤ Chα2αJ ≤ CK−α.654

Thus, we get by summing up (4.7) and using (4.8) with α = 1 that
∑J
j=1 C

h
εdj
h ≤655

C(Kε)−1h. To summarize our results so far, we define Mj = d
3/2
j ‖∇(~g0−~g0,h)‖L2(Ωj)

,656

M ′j = d
3/2
j ‖∇(~g0 − ~g0,h)‖L2(Ω′j)

and substitute into (4.6)657

J∑
j=1

Mj ≤ Ch|lnh|+ C(Kε)−1h+ ε

J∑
j=1

M ′j + C

J∑
j=1

(εdj)
−1d

3/2
j ‖~g0 − ~g0,h‖L2(Ω′j)

.658

Next, we apply Theorem 4.4 to the last term659

660
J∑
j=1

Mj ≤ Ch|lnh|+ C(Kε)−1h+ ε

J∑
j=1

M ′j661

+Cε−1
J∑
j=1

(
d

1/2
j h‖∇(~g0−~g0,h)‖L2(Ω′′′j )+

[
h

dj

]α
‖∇(~g0−~g0,h)‖L1(Ω)+h

[
h

dj

]α
|lnh|

)
.662

663
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We expand the sum over the last three terms so that we get664
665

J∑
j=1

Mj ≤ C
(
h|lnh|+ (Kε)−1h+ ε

J∑
j=1

M ′j +
h

dJ
ε−1

J∑
j=1

d
3/2
j ‖∇(~g0 − ~g0,h)‖L2(Ω′′′j )

)
666

+ Cε−1
J∑
j=1

[
h

dj

]α
‖∇(~g0 − ~g0,h)‖L1(Ω) + Chε−1

J∑
j=1

[
h

dj

]α
|lnh|.667

668

Now we can again use (4.8) on the last two summands to arrive at669
670

J∑
j=1

Mj ≤ Ch|lnh|+ Cε

J∑
j=1

M ′j + CK−αε−1
(
‖∇(~g0 − ~g0,h)‖L1(Ω) + h|lnh|

)
671

+ C(Kε)−1
J∑
j=1

d
3/2
j ‖∇(~g0 − ~g0,h)‖L2(Ω′′′j ),672

673

where we also used that h/dJ ≤ K−1 and K > 1. Now for the second and last term,674

we easily see675

J∑
j=1

M ′j +

J∑
j=1

d
3/2
j ‖∇(~g0 − ~g0,h)‖L2(Ω′′′j ) ≤ C

J∑
j=1

Mj + C(Kh)3/2‖∇(~g0 − ~g0,h‖L2(Ω∗)
,676

where the last term is again bounded by CK3/2h. Combined, this means we have for677

constant K > 1 and ε > 0678
679

J∑
j=1

Mj ≤ Ch|lnh|+ C((Kε)−1 + ε)

J∑
j=1

Mj + CK3/2εh+ CK1/2ε−1h680

+ CK−αε−1
(
‖∇(~g0 − ~g0,h)‖L1(Ω) + h|lnh|

)
.681

682

We make Cε < 1/4 and C(Kε)−1 < 1/4 by choosing ε small and K big enough. After683

kicking back the sum to the left-hand side this leads to684

J∑
j=1

Mj ≤ CK,εh|lnh|+ CK−αε−1‖∇(~g0 − ~g0,h)‖L1(Ω).685

We now treat ε as a constant. Finally substituting this into (4.5)686

(4.9) ‖∇(~g0 − ~g0,h)‖L1(Ω) ≤ CK,εh|lnh|+ CK−α‖∇(~g0 − ~g0,h)‖L1(Ω)687

and choosing K large enough such that CK−α < 1/2, we get the result.688

As a corollary to the theorem, we get the respective estimate for weighted norms.689

Proof of Corollary 3.6. This corollary directly follows using the same techniques690

as above and the fact σ(~x) ∼ dj on Ωj . We start by splitting the left-hand side691

according to the dyadic decomposition692

‖σ3/2∇(~g0−~g0,h)‖L2(Ω) ≤ ‖σ3/2∇(~g0 − ~g0,h)‖L2(Ω∗)
+

J∑
j=1

‖σ3/2∇(~g0 − ~g0,h)‖L2(Ωj)
693

≤ C(κh)3/2‖∇(~g0 − ~g0,h)‖L2(Ω∗)
+ C

J∑
j=1

d
3/2
j ‖∇(~g0 − ~g0,h)‖L2(Ωj)

.694

695
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Without loss of generality, we can assume κ = K. After going through the same steps696

as in the proof of Lemma 3.5, particularly (4.5), we end up with the right-hand side697

of (4.9)698

‖σ3/2∇(~g0 − ~g0,h)‖L2(Ω) ≤ Ch|lnh|+ CK−α‖∇(~g − ~gh)‖L1(Ω).699

Now applying Lemma 3.5 to estimate ‖∇(~g − ~gh)‖L1(Ω) we arrive at the result.700

Similarly we can conclude the following result.701

Proof of Corollary 3.3. Again using the fact σ(~x) ∼ dj on Ωj , we start by splitting702

the left-hand side according to the dyadic decomposition703

704

‖σ3/2∇(~g1 − ~g1,h)‖L2(Ω)705

≤ C(κh)3/2‖∇(~g1 − ~g1,h)‖L2(Ω∗)
+ C

J∑
j=1

d
3/2
j ‖∇(~g1 − ~g1,h)‖L2(Ωj)

.706

707

As before, we can assume κ = K. This is equal to the term introduced by the dyadic708

decomposition in the proof of [13]. Again, following the same steps as there, we get709

‖σ3/2∇(~g1 − ~g1,h)‖L2(Ω) ≤ C + C‖∇(~g − ~gh)‖L1(Ω),710

where C depends the constants introduced in the proof of [13]. Nonetheless, applying711

Lemma 3.2 to estimate ‖∇(~g − ~gh)‖L1(Ω) we arrive at the result.712

4.5. Proof of Lemma 3.9.713

Proof of Lemma 3.9. We use the dyadic decomposition introduced in the begin-714

ning of Section 4 to get the following estimate due to σ ∼ dj on Ωj (σ ∼ Kh on715

Ω∗)716

‖σ3/2∇λ0‖2L2(Ω) ≤ Ch
3‖∇λ0‖2L2(Ω) +

J∑
j=1

d3
j‖∇λ0‖2L2(Ωj)

.717

The first summand is bounded by a constant C due to (2.1) and (3.2). By Corollary718

4.2 we see that ‖∇λ0‖2L2(Ωj)
≤ Cd−3

j and as a result719

J∑
j=1

d3
j‖∇λ0‖2L2(Ωj)

≤ C
J∑
j=1

1 = CJ ≤ C|lnh|.720

This proves the result for the weighted case and by ‖σ−3/2‖L2(Ω) ≤ |lnh|1/2 the L1721

estimate.722

5. Estimates for the pressure. We now consider estimates for the remaining723

component of our Stokes system, the pressure. Similarly to before, let δh denote a724

smooth delta function on the tetrahedron where the maximum for the pressure is725

attained. We may define the following regularized Green’s function to deal with the726

pressure727

(5.1) −∆~G+∇Λ = 0 in Ω, ∇ · ~G = δh − φ in Ω, ~G = 0 on ∂Ω.728

By construction we have
∫

Ω
δh(~x)− φ(~x)d~x = 0. This also allows us to apply similar729

arguments as in [12, 13], only with different bounds for the appearing ~uh terms.730
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The global case has already been discussed in [12, 13], thus we now focus on731

localized estimates. As before, we need some auxiliary results which we state now.732

Proposition 5.1.

‖∇(Ph(~G)− ~G)‖L1(Ω) + ‖rh(Λ)− Λ‖L1(Ω) ≤ C.733

A proof of this is given in [13, Lemma 5.4]. The following corollary follows by the734

same arguments as Corollary 3.3 and Corollary 3.6.735

Corollary 5.2.

‖σ3/2∇(Ph(~G)− ~G)‖L2(Ω) + ‖σ3/2(rh(Λ)− Λ)‖L2(Ω) ≤ C.736

Proof of Theorem 2.13 (pressure). For this we again split the domain into D2 and737

Ω\D2 and only consider ~x0 ∈ T~x0
⊂ D1.738

The pointwise estimate of ph can be expanded in the following way739

ph(~x0) = (ph, δh) = (ph, δh − φ) + (ph, φ) = (ph, δh − φ) + (ph − p, φ) + (p, φ).740

The the last two terms we may estimate using Proposition 2.11741

(ph−p, φ)+(p, φ) ≤ C‖φ‖L2(Ω)

(
‖p−ph‖L2(Ω)+‖p‖L2(Ω)

)
≤ C

(
‖∇~u‖L2(Ω)+‖p‖L2(Ω)

)
.742

By assumption φ is bounded on Ω. For the first term, we can see by Assumption 2.5743

that744

(ph, δh − φ) = (ph,∇ · ~G) = (ph,∇ · Ph(~G))745

= (p,∇ · Ph(~G)) + (ph − p,∇ · Ph(~G)) := I1 + I2.746747

For I1, we get the following estimate748

I1 = (p,∇ · (Ph(~G)− ~G)) + (p, δh − φ)749

≤ ‖p‖L∞(D2)

(
‖∇(Ph(~G)− ~G)‖L1(Ω) + ‖φ‖L1(Ω) + ‖δh‖L1(Ω)

)
750

+ Cd‖p‖L2(Ω)

(
‖σ3/2∇(Ph(~G)− ~G)‖L2(Ω) + ‖σ3/2φ‖L2(Ω) + ‖σ3/2δh‖L2(Ω)

)
751

≤ C‖p‖L∞(D2) + Cd‖p‖L2(Ω).752
753

To arrive at this bound, we used Lemma 3.1 and that754

‖σ3/2φ‖L2(Ω) ≤ ‖φ‖L2(Ω)‖σ3/2‖L∞(Ω) ≤ C. Using (2.8) and (5.1) we see for I2755

I2 = (∇(~u− ~uh),∇Ph(~G)) = (∇(~u− ~uh),∇~G) + (∇(~u− ~uh),∇(Ph(~G)− ~G))756

= −(Λ,∇ · (~u− ~uh)) + (∇(~u− ~uh),∇(Ph(~G)− ~G))757

= −(Λ− rh(Λ),∇ · (~u− ~uh)) + (∇(~u− ~uh),∇(Ph(~G)− ~G))758

≤
(
‖∇~u‖L∞(D∗) + ‖∇~uh‖L∞(D∗))(‖Λ− rh(Λ)‖L1(Ω) + ‖∇(Ph(~G)− ~G)‖L1(Ω)

)
759

+ Cd

(
‖∇(~u− ~uh)‖L2(Ω))(‖σ3/2(Λ− rh(Λ))‖L2(Ω) + ‖σ3/2∇(Ph(~G)− ~G)‖L2(Ω)

)
.760

761
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Here again we use that σ−1 is bounded by d on Ω\D2 and choose D∗ appropriately762

such that we can apply Theorem 2.13 for the velocity, e.g. D∗ = B(x̃)r∗ ∩ Ω with763

r∗ = r + d/2. Finally H1 stability for ~uh follows by Proposition 2.11 and we get764

I2 ≤ C
(
‖∇~u‖L∞(D2) + ‖p‖L∞(D2)

)
+ Cd

(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

)
.765

6. Assumptions and main results in two dimensions. In this section we766

give a short derivation of the respective local estimates in L∞ and W 1,∞ for the767

two dimensional case. Note that the localization arguments made in the three di-768

mensional case are independent of the dimension apart from the auxiliary estimates.769

For two dimensions the respective estimates of the regularized Green’s functions and770

the Ritz projection are all available from the literature albeit under slightly different771

assumptions on the finite element space.772

In the following, we state the required assumptions, the necessary auxiliary re-773

sults, their references and finally the local estimates. From now on let Ω ⊂ R2, a774

convex polygonal domain, and consider the two dimensional analogs ~u, p, ~f and their775

finite element discretization as well as the respective two dimensional function and776

finite element spaces. The basic results and requirements for the continuous problem777

from Subsections 2.2 and 2.3 still apply, as referenced in these sections.778

As stated in [11], assume that we have approximation operators779

Ph ∈ L(H1
0 (Ω)2;Vh) and rh ∈ L(L2(Ω); M̄h) which fulfill the two dimensional ver-780

sions of Assumptions 2.4 to 2.7 and in addition the following super-approximation781

properties.782

Assumption 6.1 (Super-Approximation II). Let µ ∈ [2, 3], ~vh ∈ ~Vh and ~ψ =783

σµ~vh, then784

‖σ−µ/2∇(~ψ − Ph(~ψ))‖L2(Ω) ≤ C‖σµ/2~vh‖L2(Ω) ∀~vh ∈ ~Vh785

and if qh ∈ M̄h and ξ = σµqh, then786

‖σ−µ/2(ξ − rh(ξ))‖L2(Ω) ≤ Ch‖σµ/2qh‖L2(Ω) ∀qh ∈ M̄h.787

As in the three dimensional case, this holds for Taylor-Hood finite element spaces,788

see, e.g. [11]. Apart from this, we need to adapt the estimates for δh and σ. For the789

two dimensional versions we get790

‖δh‖Wk
q (T~x0

) ≤ Ch
−k−2(1−1/q), 1 ≤ q ≤ ∞, k = 0, 1, . . . , ν > 0 and791

‖σν∇kδh‖L2(Ω) ≤ 2ν/2Cκνhν−k−1 k = 0, 1.792793

Let (~g1, λ1) and (~g0, λ0) denote the two dimensional regularized Green’s functions,794

defined as in Section 3 but for two dimensions. Then we get the following convergence795

estimates for their discrete counterparts. The estimates needed when deriving W 1,∞796

velocity estimates,797

‖∇(~g1 − ~g1,h)‖L1(Ω) ≤ C, ‖σ∇(~g1 − ~g1,h)‖L2(Ω) ≤ C798

follow from [11, Theorem 8.1] using (3.3) and similarly for the pressure estimates799

where we need800

‖∇(Ph(~G)− ~G)‖L1(Ω) + ‖rh(Λ)− Λ‖L1(Ω) ≤ C,801

‖σ∇(Ph(~G)− ~G)‖L2(Ω) + ‖σ(rh(Λ)− Λ)‖L2(Ω) ≤ C802803
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which can be found in [11, p. 328]. In the L∞ case for the velocity we get804

‖∇(~g0 − ~g0,h)‖L1(Ω) ≤ Ch|lnh|, ‖σ∇(~g0 − ~g0,h)‖L2(Ω) ≤ Ch|lnh|1/2805

from [8, Theorem 4.1, Proof of Theorem 4.2]. The equivalent version of Lemma 3.9806

is given by [8, Lemma 3.1]. Finally the estimate for the Ritz projection Rh in two807

dimensions808

‖Rh~z‖L∞(Ω) ≤ C|lnh|‖~z‖L∞(Ω)809

is given in [27]. Note that the local maximum norm estimates for L∞ from [14] hold810

as well in two dimensions. Thus, using the same techniques as in Section 3 we get the811

following theorems for Ω ⊂ R2.812

Theorem 6.2 (Interior W 1,∞ estimate for the velocity and L∞ estimate for the813

pressure). Under the assumptions above, Ω1 ⊂ Ω2 ⊂ Ω with dist(Ω̄1, ∂Ω2) ≥ d ≥ κ̄h814

and if (~u, p) ∈ (W 1,∞(Ω2)2 × L∞(Ω2)) ∩ (H1
0 (Ω)2 × L2

0(Ω)) is the solution to (1.1a)–815

(1.1c), then it holds for (~uh, ph) the solution to (2.8):816

817

‖∇~uh‖L∞(Ω1) + ‖ph‖L∞(Ω1)818

≤ C
(
‖∇~u‖L∞(Ω2) + ‖p‖L∞(Ω2)

)
+ Cd

(
‖∇~u‖L2(Ω) + ‖p‖L2(Ω)

)
.819

820

Here, the constant Cd depends on the distance to Ω1 from ∂Ω2.821

Theorem 6.3 (Interior L∞ error estimate for the velocity). Under the assump-822

tions above, Ω1 ⊂ Ω2 ⊂ Ω with dist(Ω̄1, ∂Ω2) ≥ d ≥ κ̄h and if (~u, p) ∈ (L∞(Ω2)2 ×823

L∞(Ω2))∩ (H1
0 (Ω)2×L2

0(Ω)) is the solution to (1.1a)–(1.1c), then it holds for (~uh, ph)824

the solution to (2.8):825

826

‖~uh‖L∞(Ω1) ≤ C|lnh|
(
|lnh|‖~u‖L∞(Ω2) + h‖p‖L∞(Ω2)

)
827

+ Cd|lnh|1/2
(
h‖~u‖H1(Ω) + ‖~u‖L2(Ω) + h‖p‖L2(Ω)

)
.828

829

Here, the constant Cd depends on the distance to Ω1 from ∂Ω2.830
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