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Abstract. In this paper we consider a parabolic optimal control problem with a pointwise (Dirac
type) control in space, but variable in time, in two space dimensions. To approximate the problem
we use the standard continuous piecewise linear approximation in space and the piecewise constant
discontinuous Galerkin method in time. Despite low regularity of the state equation, we show almost
optimal ℎ2 + 𝑘 convergence rate for the control in 𝐿2 norm. This result improves almost twice the
previously known estimate in [23].
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1. Introduction. In this paper we provide numerical analysis for the following
optimal control problem:

min
𝑞,𝑢

𝐽(𝑞, 𝑢) :=
1
2

∫︁ 𝑇

0

‖𝑢(𝑡)− ̂︀𝑢(𝑡)‖2𝐿2(Ω)𝑑𝑡+
𝛼

2

∫︁ 𝑇

0

|𝑞(𝑡)|2𝑑𝑡 (1.1)

subject to the second order parabolic equation

𝑢𝑡(𝑡, 𝑥)−∆𝑢(𝑡, 𝑥) = 𝑞(𝑡)𝛿𝑥0(𝑥), (𝑡, 𝑥) ∈ 𝐼 × Ω, (1.2a)
𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐼 × 𝜕Ω, (1.2b)
𝑢(0, 𝑥) = 0, 𝑥 ∈ Ω (1.2c)

and subject to pointwise control constraints

𝑞𝑎 ≤ 𝑞(𝑡) ≤ 𝑞𝑏 a. e. in 𝐼. (1.3)

Here 𝐼 = [0, 𝑇 ], Ω ⊂ R2 is a convex polygonal domain, 𝑥0 ∈ Int Ω fixed, and 𝛿𝑥0 is the
Dirac delta function. The parameter 𝛼 is assumed to be positive and the desired statê︀𝑢 fulfills ̂︀𝑢 ∈ 𝐿2(𝐼;𝐿∞(Ω)). The control bounds 𝑞𝑎, 𝑞𝑏 ∈ R ∪ {±∞} fulfill 𝑞𝑎 < 𝑞𝑏.
The precise functional-analytic setting is discussed in the next section.

This setup is a model for problems with pointwise control that can vary in time.
For simplicity we consider here the case of only one point source. However, all pre-
sented results extend directly to the case of 𝑙 ≥ 1 point sources

∑︀𝑙
𝑖=1 𝑞𝑖(𝑡)𝛿𝑥𝑖

(𝑥).
There are several applications in the context of optimal control as well as of

inverse problems leading to pointwise control. The main mathematical difficulty is
low regularity of the state variable for such problems. We refer to [13, 34] for pointwise
control in the context of Burgers type equations and to [9, 16] for pointwise control
of parabolic systems. Moreover, a recent approach to sparse control problems utilizes
a formulation with control variable from measure spaces, see [7, 8, 10, 33].
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For the discretization, we consider the standard continuous piecewise linear finite
elements in space and piecewise constant discontinuous Galerkin method in time. This
is a special case (𝑟 = 0, 𝑠 = 1) of so called dG(𝑟)cG(𝑠) discretization, see e.g. [19] for
analysis of the method for parabolic problems and e.g. [31, 32] for error estimates in
the context of optimal control problems. Throughout, we will denote by ℎ the spatial
mesh size and by 𝑘 the time step, see Section 3 for details.

The numerical analysis of the problem under the consideration is challenging due
to low regularity of the state equation. On the other hand the corresponding adjoint
(dual) state is more regular, which is exploited in our analysis. In contrast, optimal
control problems with state constraints leads to optimality systems with lower regular-
ity of the adjoint state and more regular state, see [14, 30] for a priori error estimates
for discretization of state-constrained problems governed by parabolic equations.

Although, numerical analysis for elliptic problems with rough right hand side
was considered in a number of papers [2, 3, 6, 18, 39], there are few papers that
consider parabolic problems with rough sources. We are only aware of the paper [22],
where 𝐿2(𝐼;𝐿2(Ω)) error estimates are considered. Based on the results of this paper,
suboptimal error estimates of order 𝒪(𝑘

1
2 + ℎ) for the optimal control problem under

the consideration were derived in [23]. However, the numerical results in the same
paper strongly suggest better convergence rates. Examining the error analysis in [23],
one can notice that the authors worked with 𝐿2 norm in space for both the state
and the adjoint equations. Looking at these equations separately, one can see that
only the state equation has a singularity at 𝑥0, the adjoint equation does not. As
a result the solutions to these equations have different regularity. To obtain better
order estimates, one must choose the functional spaces for the error analysis more
carefully. Roughly speaking, performing an error analysis in 𝐿1(Ω) norm is space and
𝐿2 norm in time for the state equation as well as an error analysis in 𝐿∞ in space and
𝐿2 norm in time for the adjoint equation, we are able to improve the error estimates
for the control to the almost optimal order 𝒪(𝑘 + ℎ2). The main result in the paper
is the following.

Theorem 1.1. Let 𝑞 be optimal control for the problem (1.1)-(1.2) and 𝑞𝑘ℎ be
the optimal dG(0)cG(1) solution. Then there exists a constant 𝐶 independent of ℎ
and 𝑘 such that

‖𝑞 − 𝑞𝑘ℎ‖𝐿2(𝐼) ≤ 𝐶𝛼−1𝑑−1|lnℎ| 72
(︀
𝑘 + ℎ2

)︀
,

where 𝑑 is the radius of the largest ball centered at 𝑥0 that is contained in Ω.
We would also like to point out that in addition to almost optimal order esti-

mates our analysis does not require any relationship between the size of the space
discretization ℎ and the time steps 𝑘. In our opinion any relation between ℎ and
𝑘 is not natural for the method since the piecewise constant discontinuous Galerkin
method is just a variation of Backward Euler method and is unconditionally stable.

The main ingredients of our analysis are the global and local pointwise in space
error estimates, Theorem 3.1 and Theorem 3.5, respectively. In these theorems the
discretization error is estimated with respect to the 𝐿∞(Ω;𝐿2(𝐼))-norm. These results
have an independent interest since the error estimates in such a norm are somewhat
nonstandard and are not considered in the finite element literature. We are not aware
of any results in this direction. The local estimate in Theorem 3.5 is based on the
global result from Theorem 3.1 and uses a localization technique from [36]. This local
estimate is essential for our analysis since on the one hand only local error of the
adjoint state at point 𝑥0 plays a role (see the proof of Theorem 1.1) and on the other
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hand the required regularity of the adjoint state can only be expected in the interior
of Ω, cf. Proposition 2.3.

Due to substantial technicalities, this paper treats the two dimensional case only.
The technique of the proof does not immediately extend to three space dimensions.
Moreover we believe that in three space dimensions, due to stronger singularity, the
optimal order estimates can not hold without special mesh refinement near the sin-
gularity. This is a subject of the future work.

Throughout the paper we use the usual notation for Lebesgue and Sobolev spaces.
We denote by (·, ·)Ω the inner product in 𝐿2(Ω) and by (·, ·)𝐽×Ω with some subinterval
𝐽 ⊂ 𝐼 the inner product in 𝐿2(𝐽 ;𝐿2(Ω)).

The rest of the paper is organized as follows. In Section 2 we discuss the functional
analytic setting of the problem, state the optimality system and prove regularity
results for the state and for the adjoint state. In Section 3 we establish important
global and local error estimates with respect to the 𝐿∞(Ω;𝐿2(𝐼))-norm for the heat
equation. Finally in Section 4 we prove our main result.

2. Optimal control problem and regularity. In order to state the functional
analytic setting for the optimal control problem, we first introduce an axillary problem

𝑣𝑡(𝑡, 𝑥)−∆𝑣(𝑡, 𝑥) = 𝑓(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐼 × Ω,
𝑣(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐼 × 𝜕Ω,
𝑣(0, 𝑥) = 0, 𝑥 ∈ Ω

(2.1)

with a right-hand side 𝑓 ∈ 𝐿2(𝐼;𝐿𝑝(Ω)) for some 1 < 𝑝 <∞. This equation possesses
a unique solution

𝑣 ∈ 𝐿2(𝐼;𝐻1
0 (Ω)) ∩𝐻1(𝐼;𝐻−1(Ω)).

Due to the convexity of the polygonal domain Ω the solution 𝑣 possesses an additional
regularity for 𝑝 = 2:

𝑣 ∈ 𝐿2(𝐼;𝐻2(Ω) ∩𝐻1
0 (Ω)) ∩𝐻1(𝐼;𝐿2(Ω)),

with the corresponding estimate

‖𝑣‖𝐿2(𝐼;𝐻2(Ω)) + ‖𝑣𝑡‖𝐿2(𝐼;𝐿2(Ω)) ≤ 𝑐‖𝑓‖𝐿2(𝐼;𝐿2(Ω)), (2.2)

see, e.g., [20]. Moreover, there holds the following regularity result.
Lemma 2.1. If 𝑓 ∈ 𝐿2(𝐼;𝐿𝑝(Ω)) for an arbitrary 𝑝 > 1, then 𝑣 ∈ 𝐿2(𝐼;𝐶(Ω))

and

‖𝑣‖𝐿2(𝐼;𝐶(Ω)) ≤ 𝐶𝑝‖𝑓‖𝐿2(𝐼;𝐿𝑝(Ω)),

where 𝐶𝑝 ∼ 1
𝑝−1 , as 𝑝→ 1.

Proof. This lemma follows from the maximal regularity result [24] that says that
if 𝑓 ∈ 𝐿2(𝐼;𝐿𝑝(Ω)) for any 𝑝 > 1, then ∆𝑣 ∈ 𝐿2(𝐼;𝐿𝑝(Ω)) and 𝑣𝑡 ∈ 𝐿2(𝐼;𝐿𝑝(Ω)) with
the following estimate

‖𝑣𝑡‖𝐿2(𝐼;𝐿𝑝(Ω)) + ‖∆𝑣‖𝐿2(𝐼;𝐿𝑝(Ω)) ≤ 𝐶‖𝑓‖𝐿2(𝐼;𝐿𝑝(Ω)), (2.3)

where the constant 𝐶 does not depend on 𝑝. Since by our assumption Ω is polygonal
and convex, there exists some 𝑝Ω > 2, see [25], such that

‖𝑣‖𝐿2(𝐼;𝑊 2,𝑝(Ω)) ≤ 𝐶𝑝‖∆𝑣‖𝐿2(𝐼;𝐿𝑝(Ω))



4 DMITRIY LEYKEKHMAN AND BORIS VEXLER

for all 1 < 𝑝 ≤ 𝑝Ω, where 𝐶𝑝 ∼ 1
𝑝−1 as 𝑝→ 1. The exact form of the constant can be

traced for example from Theorem 9.9 in [21]. By the embedding 𝑊 2,1(Ω) →˓ 𝐶(Ω)
we have 𝑣 ∈ 𝐿2(𝐼;𝐶(Ω)) and the desired estimate follows.

We will also need the following local regularity result. Here, and in what follows
we will denote an open ball of radius 𝑑 centered at 𝑥0 by 𝐵𝑑 = 𝐵𝑑(𝑥0).

Lemma 2.2. If 𝐵2𝑑 ⊂ Ω and 𝑓 ∈ 𝐿2(𝐼;𝐿2(Ω)) ∩ 𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) for some 2 ≤
𝑝 < ∞, then 𝑣 ∈ 𝐿2(𝐼;𝑊 2,𝑝(𝐵𝑑)) ∩ 𝐻1(𝐼;𝐿𝑝(𝐵𝑑)) and there exists a constant 𝐶
independent of 𝑝 and 𝑑 such that

‖𝑣𝑡‖𝐿2(𝐼;𝐿𝑝(𝐵𝑑)) + ‖𝑣‖𝐿2(𝐼;𝑊 2,𝑝(𝐵𝑑)) ≤ 𝐶𝑝(‖𝑓‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) + 𝑑−1‖𝑓‖𝐿2(𝐼;𝐿2(Ω))).

Proof. To obtain the local estimate we introduce a smooth cut-off function 𝜔 with
the properties that

𝜔(𝑥) ≡ 1, 𝑥 ∈ 𝐵𝑑(𝑥0) (2.4a)
𝜔(𝑥) ≡ 0, 𝑥 ∈ Ω∖𝐵2𝑑(𝑥0) (2.4b)

|∇𝜔| ≤ 𝐶𝑑−1, |∇2𝜔| ≤ 𝐶𝑑−2. (2.4c)

Define

𝑣(𝑡) =
1

|𝐵2𝑑|

∫︁
𝐵2𝑑

𝑣(𝑡, 𝑥)𝑑𝑥.

By the Cauchy-Schwarz inequality we have

𝑣𝑡 ≤
1

|𝐵2𝑑|
|𝐵2𝑑|1/2‖𝑣𝑡‖𝐿2(𝐵2𝑑) ≤ 𝐶𝑑−1‖𝑣𝑡‖𝐿2(𝐵2𝑑). (2.5)

We set 𝑣 = (𝑣 − 𝑣)𝜔. There holds:

∆𝑣 = 𝜔∆𝑣 +∇𝑣 · ∇𝜔 + (𝑣 − 𝑣)∆𝜔

and therefore 𝑣 satisfies the following equation

𝑣𝑡 −∆𝑣 = 𝑔, 𝑣(0, 𝑥) = 0,

on 𝐵2𝑑 with homogeneous Dirichlet boundary conditions, where

𝑔 = (𝑣𝑡 −∆𝑣)𝜔 −∇𝑣 · ∇𝜔 − (𝑣 − 𝑣)∆𝜔 − 𝑣𝑡𝜔

= 𝑓𝜔 −∇𝑣 · ∇𝜔 − (𝑣 − 𝑣)∆𝜔 − 𝑣𝑡𝜔.

We have

‖𝑔‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) ≤ 𝐶
(︁
‖𝑓‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) + 𝑑−1‖∇𝑣‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑))

+𝑑−2‖𝑣 − 𝑣‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) + ‖𝑣𝑡‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑))

)︁
.

Using the Sobolev embedding theorem and (2.2), we have

‖∇𝑣‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) ≤ 𝐶‖𝑣‖𝐿2(𝐼;𝐻2(𝐵2𝑑)) ≤ 𝐶‖𝑓‖𝐿2(𝐼;𝐿2(Ω)).

Similarly, using the Poincare inequality first, we obtain

‖𝑣 − 𝑣‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) ≤ 𝐶𝑑‖∇𝑣‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) ≤ 𝐶𝑑‖𝑓‖𝐿2(𝐼;𝐿2(Ω)).
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Also by (2.5) we have

‖𝑣𝑡‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) ≤ 𝐶𝑑
2
𝑝−1‖𝑣𝑡‖𝐿2(𝐼;𝐿2(𝐵2𝑑)). (2.6)

By the maximum regularity estimate [24] we obtain

‖𝑣𝑡‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) + ‖∆𝑣‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑)) ≤ 𝐶‖𝑔‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑))

≤ 𝐶
(︀
𝑑−1‖𝑓‖𝐿2(𝐼;𝐿2(Ω)) + ‖𝑓‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑))

)︀
,

and due to the fact that 𝐵2𝑑 has a smooth boundary we also have

‖𝑣‖𝐿2(𝐼;𝑊 2,𝑝(𝐵2𝑑)) ≤ 𝐶𝑝‖∆𝑣‖𝐿2(𝐼;𝐿𝑝(𝐵2𝑑))

for any 2 ≤ 𝑝 < ∞. Observing that ∇2𝑣 = ∇2𝑣 on 𝐵𝑑 we obtain the desired
estimate for ‖𝑣‖𝐿2(𝐼;𝑊 2,𝑝(𝐵𝑑)). The estimate for ‖𝑣𝑡‖𝐿2(𝐼;𝐿𝑝(𝐵𝑑)) follows by the fact
that 𝑣𝑡 = 𝑣𝑡 + 𝑣𝑡 on 𝐵𝑑, estimate (2.6) and by the triangle inequality. This completes
the proof.

To introduce a weak solution of the state equation (1.2) we use the method of
transposition, cf. [29]. For a given control 𝑞 ∈ 𝑄 = 𝐿2(𝐼) we denote by 𝑢 = 𝑢(𝑞) ∈
𝐿2(𝐼;𝐿2(Ω)) a weak solution of (1.2), if for all 𝜙 ∈ 𝐿2(𝐼;𝐿2(Ω)) there holds

(𝑢, 𝜙)𝐼×Ω =
∫︁

𝐼

𝑤(𝑡, 𝑥0)𝑞(𝑡) 𝑑𝑡,

where 𝑤 ∈ 𝐿2(𝐼;𝐻2(Ω) ∩𝐻1
0 (Ω)) ∩𝐻1(𝐼;𝐿2(Ω)) is the weak solution of the adjoint

equation

−𝑤𝑡(𝑡, 𝑥)−∆𝑤(𝑡, 𝑥) = 𝜙(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐼 × Ω,
𝑤(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐼 × 𝜕Ω,
𝑤(𝑇, 𝑥) = 0, 𝑥 ∈ Ω.

(2.7)

The existence of this weak solution 𝑢 = 𝑢(𝑞) follows by the Riesz representation
theorem using the embedding 𝐿2(𝐼;𝐻2(Ω)) →˓ 𝐿2(𝐼;𝐶(Ω)). Using Lemma 2.1 we
can prove additional regularity for the state variable 𝑢 = 𝑢(𝑞).

Proposition 2.1. Let 𝑞 ∈ 𝑄 = 𝐿2(𝐼) be given and 𝑢 = 𝑢(𝑞) be the solution of
the state equation (1.2). Then 𝑢 ∈ 𝐿2(𝐼;𝐿𝑝(Ω)) for any 𝑝 < ∞ and the following
estimate holds for 𝑝→∞ with a constant 𝐶 independent of 𝑝,

‖𝑢‖𝐿2(𝐼;𝐿𝑝(Ω)) ≤ 𝐶𝑝‖𝑞‖𝐿2(𝐼).

Proof. To establish the result we use a duality argument. There holds

‖𝑢‖𝐿2(𝐼;𝐿𝑝(Ω)) = sup
‖𝜙‖𝐿2(𝐼;𝐿𝑠(Ω))=1

(𝑢, 𝜙)𝐼×Ω, where
1
𝑝

+
1
𝑠

= 1.

Let 𝑤 be the solution to (2.7) for 𝜙 ∈ 𝐿2(𝐼;𝐿𝑠(Ω)) with ‖𝜙‖𝐿2(𝐼;𝐿𝑠(Ω)) = 1. From
Lemma 2.1, 𝑤 ∈ 𝐿2(𝐼;𝐶(Ω)) and the following estimate holds

‖𝑤‖𝐿2(𝐼;𝐶(Ω)) ≤
𝐶

𝑠− 1
‖𝜙‖𝐿2(𝐼;𝐿𝑠(Ω)) =

𝐶

𝑠− 1
≤ 𝐶𝑝, as 𝑝→∞.
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Thus

‖𝑢‖𝐿2(𝐼;𝐿𝑝(Ω)) = sup
‖𝜙‖𝐿2(𝐼;𝐿𝑠(Ω))=1

(𝑢, 𝜙)𝐼×Ω

=
∫︁

𝐼

𝑤(𝑡, 𝑥0)𝑞(𝑡) 𝑑𝑡 ≤ ‖𝑞‖𝐿2(𝐼)‖𝑤‖𝐿2(𝐼;𝐶(Ω)) ≤ 𝐶𝑝‖𝑞‖𝐿2(𝐼).

A further regularity result for the state equation follows from [17].
Proposition 2.2. Let 𝑞 ∈ 𝑄 = 𝐿2(𝐼) be given and 𝑢 = 𝑢(𝑞) be the solution of

the state equation (1.2). Then for each 3
2 < 𝑠 < 2 and 𝜀 > 0 there holds

𝑢 ∈ 𝐿2(𝐼;𝑊 1,𝑠
0 (Ω)), 𝑢𝑡 ∈ 𝐿2(𝐼;𝑊−1,𝑠(Ω)) and 𝑢 ∈ 𝐶(𝐼;𝑊−𝜀,𝑠(Ω))

for any 𝜀 > 0. Moreover, the state 𝑢 fulfills the following weak formulation

⟨𝑢𝑡, 𝜙⟩+ (∇𝑢,∇𝜙) =
∫︁

𝐼

𝜙(𝑡, 𝑥0)𝑞(𝑡) 𝑑𝑡 for all 𝜙 ∈ 𝐿2(𝐼;𝑊 1,𝑠′(Ω)),

where 1
𝑠′ + 1

𝑠 = 1 and ⟨·, ·⟩ is the duality product between 𝐿2(𝐼;𝑊−1,𝑠(Ω)) and
𝐿2(𝐼;𝑊 1,𝑠′

0 (Ω)).
Proof. For 𝑠 < 2 we have 𝑠′ > 2 and therefore 𝑊 1,𝑠′

0 (Ω) is embedded into 𝐶(Ω̄).
Therefore the right-hand side 𝑞(𝑡)𝛿𝑥0 of the state equation can be identified with an
element in 𝐿2(𝐼;𝑊−1,𝑠(Ω)). Using the result from [17, Theorem 5.1] on maximal
parabolic regularity and exploiting the fact that −∆: 𝑊 1,𝑠

0 (Ω) → 𝑊−1,𝑠(Ω) is an
isomorphism, see [27], we obtain

𝑢 ∈ 𝐿2(𝐼;𝑊 1,𝑠
0 (Ω)) and 𝑢𝑡 ∈ 𝐿2(𝐼;𝑊−1,𝑠(Ω)).

The assertion 𝑢 ∈ 𝐶(𝐼;𝑊−𝜀,𝑠(Ω)) follows then by embedding and interpolation, see [1,
Ch. III, Theorem 4.10.2]. Given the above regularity the corresponding weak formu-
lation is fulfilled by a standard density argument.

As the next step we introduce the reduced cost functional 𝑗 : 𝑄→ R on the control
space 𝑄 = 𝐿2(𝐼) by

𝑗(𝑞) = 𝐽(𝑞, 𝑢(𝑞)),

where 𝐽 is the cost function in (1.1) and 𝑢(𝑞) is the weak solution of the state equa-
tion (1.2) as defined above. The optimal control problem can then be equivalently
reformulated as

min 𝑗(𝑞), 𝑞 ∈ 𝑄ad, (2.8)

where the set of admissible controls is defined according to (1.3) by

𝑄ad = { 𝑞 ∈ 𝑄 | 𝑞𝑎 ≤ 𝑞(𝑡) ≤ 𝑞𝑏 a. e. in 𝐼 } . (2.9)

By standard arguments this optimization problem possesses a unique solution 𝑞 ∈
𝑄 = 𝐿2(𝐼) with the corresponding state 𝑢̄ = 𝑢(𝑞) ∈ 𝐿2(𝐼;𝐿𝑝(Ω)), see Proposition 2.1
for the regularity of 𝑢̄. Due to the fact, that this optimal control problem is convex,
the solution 𝑞 is equivalently characterized by the optimality condition

𝑗′(𝑞)(𝛿𝑞 − 𝑞) ≥ 0 for all 𝛿𝑞 ∈ 𝑄ad. (2.10)
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The (directional) derivative 𝑗′(𝑞)(𝛿𝑞) for given 𝑞, 𝛿𝑞 ∈ 𝑄 can be expressed as

𝑗′(𝑞)(𝛿𝑞) =
∫︁

𝐼

(𝛼𝑞(𝑡) + 𝑧(𝑡, 𝑥0)) 𝛿𝑞(𝑡) 𝑑𝑡,

where 𝑧 = 𝑧(𝑞) is the solution of the adjoint equation

−𝑧𝑡(𝑡, 𝑥)−∆𝑧(𝑡, 𝑥) = 𝑢(𝑡, 𝑥)− ̂︀𝑢(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐼 × Ω, (2.11a)
𝑧(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐼 × 𝜕Ω, (2.11b)
𝑧(𝑇, 𝑥) = 0, 𝑥 ∈ Ω, (2.11c)

and 𝑢 = 𝑢(𝑞) on the right-hand side of (2.11a) is the solution of the state equa-
tion (1.2). The adjoint solution, which corresponds to the optimal control 𝑞 is denoted
by 𝑧 = 𝑧(𝑞).

The optimality condition (2.10) is a variational inequality, which can be equiva-
lently formulated using the pointwise projection

𝑃𝑄ad : 𝑄→ 𝑄ad, 𝑃𝑄ad(𝑞)(𝑡) = min
(︀
𝑞𝑏,max(𝑞𝑎, 𝑞(𝑡))

)︀
.

The resulting condition reads:

𝑞 = 𝑃𝑄ad

(︂
− 1
𝛼
𝑧(·, 𝑥0)

)︂
. (2.12)

In the next proposition we provide an important regularity result for the solution
of the adjoint equation.

Proposition 2.3. Let 𝑞 ∈ 𝑄 be given, let 𝑢 = 𝑢(𝑞) be the corresponding state
fulfilling (1.2) and let 𝑧 = 𝑧(𝑞) be the corresponding adjoint state fulfilling (2.11).
Then,

(a) 𝑧 ∈ 𝐿2(𝐼;𝐻2(Ω) ∩𝐻1
0 (Ω)) ∩𝐻1(𝐼;𝐿2(Ω)) and the following estimate holds

‖∇2𝑧‖𝐿2(𝐼;𝐿2(Ω)) + ‖𝑧𝑡‖𝐿2(𝐼;𝐿2(Ω)) ≤ 𝑐(‖𝑞‖𝐿2(𝐼) + ‖𝑢̂‖𝐿2(𝐼;𝐿2(Ω))).

(b) If 𝐵2𝑑 ⊂ Ω, then 𝑧 ∈ 𝐿2(𝐼;𝑊 2,𝑝(𝐵𝑑))∩𝐻1(𝐼;𝐿𝑝(𝐵𝑑)) for all 2 ≤ 𝑝 <∞ and
the following estimate holds

‖∇2𝑧‖𝐿2(𝐼;𝐿𝑝(𝐵𝑑)) + ‖𝑧𝑡‖𝐿2(𝐼;𝐿𝑝(𝐵𝑑)) ≤ 𝑐𝑝2𝑑−1(‖𝑞‖𝐿2(𝐼) + ‖𝑢̂‖𝐿2(𝐼;𝐿∞(Ω))).

Proof.
(a) The right-hand side of the adjoint equation fulfills 𝑢 − ̂︀𝑢 ∈ 𝐿2(𝐼;𝐿𝑝(Ω)) for

all 1 < 𝑝 <∞, see Proposition 2.1. Due to the convexity of the domain Ω we
directly obtain 𝑧 ∈ 𝐿2(𝐼;𝐻2(Ω) ∩𝐻1

0 (Ω)) ∩𝐻1(𝐼;𝐿2(Ω)) and the estimate

‖∇2𝑧‖𝐿2(𝐼;𝐿2(Ω)) + ‖𝑧𝑡‖𝐿2(𝐼;𝐿2(Ω)) ≤ 𝑐‖𝑢− ̂︀𝑢‖𝐿2(𝐼;𝐿2(Ω)).

The result from Proposition 2.1 leads directly to the first estimate.
(b) From Lemma 2.2 for 𝑝 ≥ 2 we have

‖∇2𝑧‖𝐿2(𝐼;𝐿𝑝(𝐵𝑑)) + ‖𝑧𝑡‖𝐿2(𝐼;𝐿𝑝(𝐵𝑑)) ≤ 𝐶𝑝𝑑−1‖𝑢− 𝑢̂‖𝐿2(𝐼;𝐿𝑝(Ω)).

Hence, by the triangle inequality and Proposition 2.1 we obtain

‖𝑢− 𝑢̂‖𝐿2(𝐼;𝐿𝑝(Ω)) ≤ 𝐶
(︀
𝑝‖𝑞‖𝐿2(𝐼) + ‖𝑢̂‖𝐿2(𝐼;𝐿∞(Ω))

)︀
.

That completes the proof.
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Remark 2.3. From Proposition 2.3 one concludes that 𝑧 ∈ 𝐻1−𝜀(𝐼;𝐶(𝐵𝑑)) for
all 𝜀 > 0 using an embedding result from [12, Chapter XVIII, page 494, Theorem
6]. Hence, there holds 𝑧(·, 𝑥0) ∈ 𝐻1−𝜀(𝐼). Using the pointwise representation (2.12)
of the optimal control 𝑞 and the fact, that this projection operator preserves 𝐻𝑠-
regularity for 0 ≤ 𝑠 ≤ 1, see [28, Lemma 3.3], we obtain 𝑞 ∈ 𝐻1−𝜀(𝐼). We do not
need this regularity for the proof of our error estimates, but the order of convergence
in Theorem 1.1 is consistent with this regularity result.

3. Discretization and the best approximation results for parabolic prob-
lem.

3.1. Space-time discretization and notation. For the discretization of the
problem under the consideration we introduce a partitions of 𝐼 = [0, 𝑇 ] into subinter-
vals 𝐼𝑚 = (𝑡𝑚−1, 𝑡𝑚] of length 𝑘𝑚 = 𝑡𝑚 − 𝑡𝑚−1, where 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑀−1 <
𝑡𝑀 = 𝑇 . The maximal time step is denoted by 𝑘 = max𝑚 𝑘𝑚. The semidiscrete space
𝑋0

𝑘 of piecewise constant functions in time is defined by

𝑋0
𝑘 = {𝑣𝑘 ∈ 𝐿2(𝐼;𝐻1

0 (Ω)) : 𝑣𝑘|𝐼𝑚
∈ 𝒫0(𝐻1

0 (Ω)), 𝑚 = 1, 2, . . . ,𝑀},

where 𝒫0(𝑉 ) is the space of constant functions in time with values in 𝑉 . We will
employ the following notation for functions in 𝑋0

𝑘

𝑣+
𝑚 = lim

𝜀→0+
𝑣(𝑡𝑚+𝜀) := 𝑣𝑚+1, 𝑣−𝑚 = lim

𝜀→0+
𝑣(𝑡𝑚−𝜀) = 𝑣(𝑡𝑚) := 𝑣𝑚, [𝑣]𝑚 = 𝑣+

𝑚−𝑣−𝑚.
(3.1)

Let 𝒯 denote a quasi-uniform triangulation of Ω with a mesh size ℎ, i.e., 𝒯 = {𝜏}
is a partition of Ω into triangles 𝜏 of diameter ℎ𝜏 such that for ℎ = max𝜏 ℎ𝜏 ,

diam(𝜏) ≤ ℎ ≤ 𝐶|𝜏 | 12 , ∀𝜏 ∈ 𝒯

hold. Let 𝑉ℎ be the set of all functions in 𝐻1
0 (Ω) that are linear on each 𝜏 , i.e. 𝑉ℎ is

the usual space of linear finite elements. We will use the usual nodewise interpolation
𝜋ℎ : 𝐶0(Ω) → 𝑉ℎ, the Clement intepolation 𝜋ℎ : 𝐿1(Ω) → 𝑉ℎ and the 𝐿2-Projection
𝑃ℎ : 𝐿2(Ω) → 𝑉ℎ defined by

(𝑃ℎ𝑣, 𝜒)Ω = (𝑣, 𝜒)Ω, ∀𝜒 ∈ 𝑉ℎ. (3.2)

To obtain the fully discrete approximation we consider the space-time finite element
space

𝑋0,1
𝑘,ℎ = {𝑣𝑘ℎ ∈ 𝑋0

𝑘 : 𝑣𝑘ℎ|𝐼𝑚
∈ 𝒫0(𝑉ℎ), 𝑚 = 1, 2, . . . ,𝑀}. (3.3)

We will also need the following semidiscrete projection 𝜋𝑘 : 𝐶(𝐼;𝐻1
0 (Ω)) → 𝑋0

𝑘 defined
by

𝜋𝑘𝑣|𝐼𝑚 = 𝑣(𝑡𝑚), 𝑚 = 1, 2, . . . ,𝑀.

To introduce the dG(0)cG(1) discretization we define the following bilinear form

𝐵(𝑣, 𝜙) =
𝑀∑︁

𝑚=1

⟨𝑣𝑡, 𝜙⟩𝐼𝑚×Ω + (∇𝑣,∇𝜙)𝐼×Ω +
𝑀∑︁

𝑚=2

([𝑣]𝑚−1, 𝜙
+
𝑚−1)Ω + (𝑣+

0 , 𝜙
+
0 )Ω, (3.4)
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where ⟨·, ·⟩𝐼𝑚×Ω is the duality product between 𝐿2(𝐼𝑚;𝑊−1,𝑠(Ω)) and 𝐿2(𝐼𝑚;𝑊 1,𝑠′

0 (Ω)).
We note, that the first sum vanishes for 𝑣 ∈ 𝑋0

𝑘 . Rearranging the terms we obtain an
equivalent (dual) expression of 𝐵:

𝐵(𝑣, 𝜙) = −
𝑀∑︁

𝑚=1

⟨𝑣, 𝜙𝑡⟩𝐼𝑚×Ω + (∇𝑣,∇𝜙)𝐼×Ω −
𝑀−1∑︁
𝑚=1

(𝑣−𝑚, [𝜙𝑘]𝑚)Ω + (𝑣−𝑀 , 𝜙−𝑀 )Ω. (3.5)

In the two following subsections we establish global and local pointwise in space
best approximation type results for the error between the solution 𝑣 of the axillary
equation (2.1) and its dG(0)cG(1) approximation 𝑣𝑘ℎ ∈ 𝑋0,1

𝑘,ℎ defined as

𝐵(𝑣𝑘ℎ, 𝜙𝑘ℎ) = (𝑓, 𝜙𝑘ℎ)𝐼×Ω + (𝑣0, 𝜙+
𝑘ℎ,0)Ω for all 𝜙𝑘ℎ ∈ 𝑋0,1

𝑘,ℎ (3.6)

and 𝑣0 = 0. Since dG(0)cG(1) method is a consistent discretization we have the
following Galerkin orthogonality relation:

𝐵(𝑣 − 𝑣𝑘ℎ, 𝜙𝑘ℎ) = 0 for all 𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ.

3.2. Global pointwise in space error estimate. In this section we prove the
following global approximation result with respet to the 𝐿∞(Ω;𝐿2(𝐼))-norm.

Theorem 3.1 (Global best approximation). Assume 𝑣 and 𝑣𝑘ℎ satisfy (2.1) and
(3.6) respectively. Then there exists a constant 𝐶 independent of 𝑘 and ℎ such that
for any 1 ≤ 𝑝 ≤ ∞,

sup
𝑦∈Ω

∫︁ 𝑇

0

|(𝑣 − 𝑣𝑘ℎ)(𝑡, 𝑦)|2𝑑𝑡

≤ 𝐶|lnℎ|2 inf
𝜒∈𝑋0,1

𝑘,ℎ

(︁
‖𝑣 − 𝜒‖2𝐿2(𝐼;𝐿∞(Ω)) + ℎ−

4
𝑝 ‖𝜋𝑘𝑣 − 𝜒‖2𝐿2(𝐼;𝐿𝑝(Ω))

)︁
.

Proof. To establish the result we use a duality argument. Let 𝑦 ∈ Ω be fixed, but
arbitrary. First, we introduce a smoothed Delta function [38, Appendix], which we
will denote by 𝛿 = 𝛿𝑦 = 𝛿ℎ

𝑦 . This function is supported in one cell, denoted by 𝜏𝑦, and
satisfies

(𝜒, 𝛿)𝜏𝑦 = 𝜒(𝑦), ∀𝜒 ∈ P1(𝜏𝑦).

In addition we also have

‖𝛿‖𝑊 𝑠
𝑝 (Ω) ≤ 𝐶ℎ−𝑠−2(1− 1

𝑝 ), 1 ≤ 𝑝 ≤ ∞, 𝑠 = 0, 1. (3.7)

Thus in particular ‖𝛿‖𝐿1(Ω) ≤ 𝐶, ‖𝛿‖𝐿2(Ω) ≤ 𝐶ℎ−1, and ‖𝛿‖𝐿∞(Ω) ≤ 𝐶ℎ−2.
We define 𝑔 to be a solution to following backward parabolic problem

−𝑔𝑡(𝑡, 𝑥)−∆𝑔(𝑡, 𝑥) = 𝑣𝑘ℎ(𝑡, 𝑦)𝛿𝑦(𝑥) (𝑡, 𝑥) ∈ 𝐼 × Ω,
𝑔(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐼 × 𝜕Ω,
𝑔(𝑇, 𝑥) = 0, 𝑥 ∈ Ω.

(3.8)

Let 𝑔𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ be dG(0)cG(1) solution defined by

𝐵(𝜙𝑘ℎ, 𝑔𝑘ℎ) = (𝑣𝑘ℎ(𝑡, 𝑦)𝛿𝑦, 𝜙𝑘ℎ)𝐼×Ω, ∀𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ. (3.9)
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Then using that dG(0)cG(1) method is consistent, we have∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡 = 𝐵(𝑣𝑘ℎ, 𝑔𝑘ℎ) = 𝐵(𝑣, 𝑔𝑘ℎ)

= (∇𝑣,∇𝑔𝑘ℎ)𝐼×Ω −
𝑀∑︁

𝑚=1

(𝑣𝑚, [𝑔𝑘ℎ]𝑚)Ω,
(3.10)

where we have used the dual expression for the bilinear form 𝐵 (3.5) and the fact that
the last term in (3.5) can be included in the sum by setting 𝑔𝑘ℎ,𝑀+1 = 0 and defining
consequently [𝑔𝑘ℎ]𝑀 = −𝑔𝑘ℎ,𝑀 . The first sum in (3.5) vanishes due to 𝑔𝑘ℎ ∈ 𝑋0,1

𝑘,ℎ.
For each 𝑡, integrating by parts elementwise and using that 𝑔𝑘ℎ is linear in the spacial
variable, by the Hölder’s inequality we have

(∇𝑣,∇𝑔𝑘ℎ)Ω =
1
2

∑︁
𝜏

(𝑣, [[𝜕𝑛𝑔𝑘ℎ]])𝜕𝜏 ≤ 𝐶‖𝑣‖𝐿∞(Ω)

∑︁
𝜏

‖[[𝜕𝑛𝑔𝑘ℎ]]‖𝐿1(𝜕𝜏), (3.11)

where [[𝜕𝑛𝑔𝑘ℎ]] denotes the jumps of the normal derivatives across the element faces.
Next we introduce a weight function

𝜎(𝑥) =
√︀
|𝑥− 𝑦|2 + ℎ2. (3.12)

One can easily check that 𝜎 satisfies the following properties,

‖𝜎−1‖𝐿2(Ω) ≤ 𝐶|lnℎ| 12 , (3.13a)
|∇𝜎| ≤ 𝐶, (3.13b)

|∇2𝜎| ≤ 𝐶|𝜎−1|. (3.13c)

From Lemma 2.4 in [35] we have∑︁
𝜏

‖[[𝜕𝑛𝑔𝑘ℎ]]‖𝐿1(𝜕𝜏) ≤ 𝐶|lnℎ| 12
(︀
‖𝜎∆ℎ𝑔𝑘ℎ‖𝐿2(Ω) + ‖∇𝑔𝑘ℎ‖𝐿2(Ω)

)︀
.

To estimate the term involving the jumps in (3.10), we first use the Hölder’s inequality
and the inverse estimate to obtain

𝑀∑︁
𝑚=1

(𝑣𝑚, [𝑔𝑘ℎ]𝑚)Ω ≤ 𝑐

𝑀∑︁
𝑚=1

𝑘
1
2
𝑚‖𝑣𝑚‖𝐿𝑝(Ω)𝑘

− 1
2

𝑚 ℎ−
2
𝑝 ‖[𝑔𝑘ℎ]𝑚‖𝐿1(Ω). (3.14)

Now we use the fact that the equation (3.9) can be rewritten on the each time level
as

(∇𝜙𝑘ℎ,∇𝑔𝑘ℎ)𝐼𝑚×Ω − (𝜙𝑘ℎ,𝑚, [𝑔𝑘ℎ]𝑚)Ω = (𝑣𝑘ℎ(𝑡, 𝑦)𝛿𝑦, 𝜙𝑘ℎ)𝐼𝑚×Ω,

or equivalently as

− 𝑘𝑚∆ℎ𝑔𝑘ℎ,𝑚 − [𝑔𝑘ℎ]𝑚 = 𝑘𝑚𝑣𝑘ℎ,𝑚(𝑦)𝑃ℎ𝛿𝑦, (3.15)

where 𝑃ℎ : 𝐿2(Ω) → 𝑉ℎ is the 𝐿2-projection, see (3.2) and ∆ℎ : 𝑉ℎ → 𝑉ℎ is the discrete
Laplace operator. We test equation (3.15) with 𝜙 = −sgn([𝑔𝑘ℎ]𝑚) and obtain

‖[𝑔𝑘ℎ]𝑚‖𝐿1(Ω) ≤ 𝑘𝑚‖∆ℎ𝑔𝑘ℎ,𝑚‖𝐿1(Ω) + 𝑘𝑚‖𝑃ℎ𝛿‖𝐿1(Ω)|𝑣𝑘ℎ,𝑚(𝑦)|.



Parabolic pointwise optimal control 11

Using that the 𝐿2-projection is stable in 𝐿1-norm (cf. [11]), we have

‖𝑃ℎ𝛿‖𝐿1(Ω) ≤ 𝐶‖𝛿‖𝐿1(Ω) ≤ 𝐶.

Inserting the above estimate into (3.14), we obtain

𝑀∑︁
𝑚=1

(𝑣𝑚, [𝑔𝑘ℎ]𝑚)Ω ≤ 𝐶ℎ−
2
𝑝

𝑀∑︁
𝑚=1

𝑘
1
2
𝑚‖𝑣𝑚‖𝐿𝑝(Ω)𝑘

1
2
𝑚

(︀
‖∆ℎ𝑔𝑘ℎ,𝑚‖𝐿1(Ω) + |𝑣𝑘ℎ,𝑚(𝑦)|

)︀
≤ 𝐶ℎ−

2
𝑝

(︃
𝑀∑︁

𝑚=1

𝑘𝑚‖𝑣𝑚‖2𝐿𝑝(Ω)

)︃ 1
2
(︃

𝑀∑︁
𝑚=1

𝑘𝑚‖∆ℎ𝑔𝑘ℎ,𝑚‖2𝐿1(Ω) + 𝑘𝑚|𝑣𝑘ℎ,𝑚(𝑦)|2
)︃ 1

2

≤ 𝐶ℎ−
2
𝑝 ‖𝜋𝑘𝑣‖𝐿2(𝐼;𝐿𝑝(Ω))

(︃∫︁ 𝑇

0

|lnℎ|‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω) + |𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡

)︃ 1
2

.

Combining (3.10) with the above estimate we have∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡 ≤ 𝐶|lnℎ| 12
(︁
‖𝑣‖𝐿2(𝐼;𝐿∞(Ω)) + ℎ−

2
𝑝 ‖𝜋𝑘𝑣‖𝐿2(𝐼;𝐿𝑝(Ω))

)︁
×(︃∫︁ 𝑇

0

‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω) + ‖∇𝑔𝑘ℎ‖2𝐿2(Ω) + |𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡

)︃ 1
2

.

(3.16)

To complete the proof of the theorem we need to show that∫︁ 𝑇

0

(︁
‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω) + ‖∇𝑔𝑘ℎ‖2𝐿2(Ω)

)︁
𝑑𝑡 ≤ 𝐶| lnℎ|

∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡. (3.17)

The above result will follow from the series of lemmas. The first lemma treats the
term ‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(𝐼;𝐿2(Ω)).

Lemma 3.2. For any 𝜀 > 0 there exists 𝐶𝜀 such that∫︁ 𝑇

0

‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω)𝑑𝑡 ≤ 𝐶𝜀

∫︁ 𝑇

0

(︁
|𝑣𝑘ℎ(𝑡, 𝑦)|2 + ‖∇𝑔𝑘ℎ‖2𝐿2(Ω)

)︁
𝑑𝑡+𝜀

𝑀∑︁
𝑚=1

𝑘−1
𝑚 ‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω).

Proof. The equation (3.9) for each time interval 𝐼𝑚 can be rewritten as (3.15).
Testing (3.15) with 𝜙 = −𝜎2∆ℎ𝑔𝑘ℎ we have∫︁

𝐼𝑚

‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω)𝑑𝑡 = −([𝑔𝑘ℎ]𝑚, 𝜎2∆ℎ𝑔𝑘ℎ,𝑚)Ω − (𝑣𝑘ℎ(𝑡, 𝑦)𝑃ℎ𝛿𝑦, 𝜎
2∆ℎ𝑔𝑘ℎ)𝐼𝑚×Ω

= −([𝜎2𝑔𝑘ℎ]𝑚,∆ℎ𝑔𝑘ℎ,𝑚)Ω − (𝑣𝑘ℎ(𝑡, 𝑦)𝑃ℎ𝛿𝑦, 𝜎
2∆ℎ𝑔𝑘ℎ)𝐼𝑚×Ω

= ([∇(𝜎2𝑔𝑘ℎ)]𝑚,∇𝑔𝑘ℎ,𝑚)Ω + ([∇(𝑃ℎ − 𝐼)𝜎2𝑔𝑘ℎ]𝑚,∇𝑔𝑘ℎ,𝑚)Ω

− (𝑣𝑘ℎ(𝑡, 𝑦)𝑃ℎ𝛿𝑦, 𝜎
2∆ℎ𝑔𝑘ℎ)𝐼𝑚×Ω = 𝐽1 + 𝐽2 + 𝐽3.

We have

𝐽1 = 2(𝜎∇𝜎[𝑔𝑘ℎ]𝑚,∇𝑔𝑘ℎ,𝑚)Ω + (𝜎[∇𝑔𝑘ℎ]𝑚, 𝜎∇𝑔𝑘ℎ,𝑚)Ω = 𝐽11 + 𝐽12.

By the Cauchy-Schwarz inequality and using (3.13b) we get

𝐽11 ≤ 𝐶‖𝜎[𝑔𝑘ℎ]𝑚‖𝐿2(Ω)‖∇𝑔𝑘ℎ,𝑚‖𝐿2(Ω).
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Using the identity

([𝑤𝑘ℎ]𝑚, 𝑤𝑘ℎ,𝑚)Ω =
1
2
‖𝑤𝑘ℎ,𝑚+1‖2𝐿2(Ω) −

1
2
‖𝑤𝑘ℎ,𝑚‖2𝐿2(Ω) −

1
2
‖[𝑤𝑘ℎ]𝑚‖2𝐿2(Ω), (3.18)

we have

𝐽12 =
1
2
‖𝜎∇𝑔𝑘ℎ,𝑚+1‖2𝐿2(Ω) −

1
2
‖𝜎∇𝑔𝑘ℎ,𝑚‖2𝐿2(Ω) −

1
2
‖𝜎[∇𝑔𝑘ℎ]𝑚‖2𝐿2(Ω).

Using the generalized geometric-arithmetic mean inequality for 𝐽11 and neglecting
− 1

2‖𝜎[∇𝑔𝑘ℎ]𝑚‖2𝐿2(Ω) in 𝐽12 we obtain

𝐽1 ≤
1
2
‖𝜎∇𝑔𝑘ℎ,𝑚+1‖2𝐿2(Ω)−

1
2
‖𝜎∇𝑔𝑘ℎ,𝑚‖2𝐿2(Ω)+𝐶𝜀𝑘𝑚‖∇𝑔𝑘ℎ,𝑚‖2𝐿2(Ω)+

𝜀

𝑘𝑚
‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω).

(3.19)
To estimate 𝐽2, first by the Cauchy-Schwarz inequality and the approximation theory
we have

𝐽2 =
∑︁

𝜏

([∇(𝑃ℎ − 𝐼)𝜎2𝑔𝑘ℎ]𝑚,∇𝑔𝑘ℎ,𝑚)𝜏

≤ 𝐶ℎ
∑︁

𝜏

‖[∇2(𝜎2𝑔𝑘ℎ)]𝑚‖𝐿2(𝜏)‖∇𝑔𝑘ℎ,𝑚‖𝐿2(𝜏).

Using that 𝑔𝑘ℎ is piecewise linear we have

∇2(𝜎2𝑔𝑘ℎ) = ∇2(𝜎2)𝑔𝑘ℎ +∇(𝜎2) · ∇𝑔𝑘ℎ on 𝜏.

There holds 𝜕𝑖𝑗(𝜎2) = (𝜕𝑖𝜎)(𝜕𝑗𝜎)+𝜎𝜕𝑖𝑗𝜎 and ∇(𝜎2) = 2𝜎∇𝜎. Thus by the properties
of 𝜎 (3.13b) and (3.13c), we have

|∇2(𝜎2)| ≤ 𝑐 and |∇(𝜎2)| ≤ 𝑐 𝜎.

Using these estimates, the fact that ℎ ≤ 𝜎 and the inverse inequality we obtain

𝐽2 ≤ 𝐶‖𝜎[𝑔𝑘ℎ]𝑚‖𝐿2(Ω)‖∇𝑔𝑘ℎ,𝑚‖𝐿2(Ω) ≤ 𝐶𝜀𝑘𝑚‖∇𝑔𝑘ℎ,𝑚‖2𝐿2(Ω) +
𝜀

𝑘𝑚
‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω).

(3.20)
To estimate 𝐽3 we first show that

‖𝜎𝑃ℎ𝛿‖𝐿2(Ω) ≤ 𝐶. (3.21)

By the triangle inequality we get

‖𝜎𝑃ℎ𝛿‖𝐿2(Ω) ≤ ‖𝜎𝛿‖𝐿2(Ω) + ‖𝜎(𝑃ℎ − 𝐼)𝛿‖𝐿2(Ω).

Using that the support of 𝛿𝑦 is in a single element 𝜏𝑦 and using (3.7), we have

‖𝜎𝛿‖2𝐿2(Ω) =
∫︁

𝜏𝑦

|𝜎𝛿|2𝑑𝑥 ≤ ‖𝛿‖2𝐿∞(Ω)

∫︁
𝜏𝑦

(|𝑥− 𝑦|2 + ℎ2)𝑑𝑥 ≤ 𝐶ℎ−4ℎ2|𝜏𝑦| ≤ 𝐶.

Similarly using that ‖𝜎(𝑃ℎ − 𝐼)𝛿‖𝐿2(Ω) ≤ 𝐶ℎ‖𝜎∇𝛿‖𝐿2(Ω) and (3.7), we have

‖𝜎∇𝛿‖2𝐿2(Ω) =
∫︁

𝜏𝑦

|𝜎∇𝛿|2𝑑𝑥 ≤ ‖∇𝛿‖2𝐿∞(Ω)

∫︁
𝜏𝑦

(|𝑥−𝑦|2 +ℎ2)𝑑𝑥 ≤ 𝐶ℎ−6ℎ2|𝜏𝑦| ≤ 𝐶ℎ−2.
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This establishes (3.21). By the Cauchy-Schwarz inequality, (3.21), and the arithmetic-
geometric mean inequality we obtain

𝐽3 ≤ 𝐶

∫︁
𝐼𝑚

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡+
1
2

∫︁
𝐼𝑚

‖𝜎∆ℎ𝑔𝑘ℎ,𝑚‖2𝐿2(Ω)𝑑𝑡. (3.22)

Using the estimates (3.19), (3.20), and (3.22) we have∫︁
𝐼𝑚

‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω)𝑑𝑡 ≤ 𝐶𝜀

∫︁
𝐼𝑚

(︁
|𝑣𝑘ℎ(𝑡, 𝑦)|2 + ‖∇𝑔𝑘ℎ‖2𝐿2(Ω)

)︁
𝑑𝑡

+
𝜀

𝑘𝑚
‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω) +

1
2
‖𝜎∇𝑔𝑘ℎ,𝑚+1‖2𝐿2(Ω) −

1
2
‖𝜎∇𝑔𝑘ℎ,𝑚‖2𝐿2(Ω).

Summing over 𝑚 and using that 𝑔𝑘ℎ,𝑀+1 = 0 we obtain the lemma.
The second lemma treats the term involving jumps.
Lemma 3.3. There exists a constant 𝐶 such that

𝑀∑︁
𝑚=1

𝑘−1
𝑚 ‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω) ≤ 𝐶

∫︁ 𝑇

0

(︁
‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω) + |𝑣𝑘ℎ(𝑡, 𝑦)|2

)︁
𝑑𝑡.

Proof. We test (3.15) with 𝜙 = 𝜎2[𝑔𝑘ℎ]𝑚 and obtain

‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω) = −(∆ℎ𝑔𝑘ℎ, 𝜎
2[𝑔𝑘ℎ]𝑚)𝐼𝑚×Ω − (𝑣𝑘ℎ(𝑡, 𝑦)𝑃ℎ𝛿, 𝜎

2[𝑔𝑘ℎ]𝑚)𝐼𝑚×Ω. (3.23)

The first term on the right hand side of (3.23) using the geometric-arithmetic mean
inequality can be easily estimated as

(∆ℎ𝑔𝑘ℎ, 𝜎
2[𝑔𝑘ℎ]𝑚)𝐼𝑚×Ω ≤ 𝐶𝑘𝑚

∫︁
𝐼𝑚

‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω)𝑑𝑡+
1
4
‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω).

The last term on the right hand side of (3.23) can easily be estimated using (3.21) as

(𝑣𝑘ℎ(𝑡, 𝑦)𝑃ℎ𝛿, 𝜎
2[𝑔𝑘ℎ]𝑚)𝐼𝑚×Ω ≤ 𝐶𝑘𝑚

∫︁
𝐼𝑚

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡+
1
4
‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω).

Combining the above two estimates we obtain

‖𝜎[𝑔𝑘ℎ]𝑚‖2𝐿2(Ω) ≤ 𝐶𝑘𝑚

∫︁
𝐼𝑚

(︁
‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω) + |𝑣𝑘ℎ(𝑡, 𝑦)|2

)︁
𝑑𝑡.

Summing over 𝑚 we obtain the lemma.
Lemma 3.4. There exists a constant 𝐶 such that

‖∇𝑔𝑘ℎ‖2𝐿2(𝐼;𝐿2(Ω)) ≤ 𝐶|lnℎ|
∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡.

Proof. Adding the primal (3.4) and the dual (3.5) representation of the bilinear
form 𝐵(·, ·) one immediately arrive at

‖∇𝑣‖2𝐼×Ω ≤ 𝐵(𝑣, 𝑣) for all 𝑣 ∈ 𝑋0
𝑘 ,
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see e.g. [31]. Applying this inequality together with the discrete Sobolev inequality,
see [5, Lemma 4.9.2], results in

‖∇𝑔𝑘ℎ‖2𝐼×Ω ≤ 𝐵(𝑔𝑘ℎ, 𝑔𝑘ℎ) = (𝑣𝑘ℎ(𝑡, 𝑦)𝛿𝑦, 𝑔𝑘ℎ)𝐼×Ω =
∫︁ 𝑇

0

𝑣𝑘ℎ(𝑡, 𝑦)𝑔𝑘ℎ(𝑡, 𝑦) 𝑑𝑡

≤

(︃∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2 𝑑𝑡

)︃ 1
2

‖𝑔𝑘ℎ‖𝐿2(𝐼;𝐿∞(Ω))

≤ 𝑐|lnℎ| 12
(︃∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2 𝑑𝑡

)︃ 1
2

‖∇𝑔𝑘ℎ‖𝐼×Ω.

This gives the desired estimate.
We proceed with the proof of Theorem 3.1. From Lemma 3.2, Lemma 3.3, and

Lemma 3.4. It follows that∫︁ 𝑇

0

(︁
‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω) + ‖∇𝑔𝑘ℎ‖2𝐿2(Ω)

)︁
𝑑𝑡 ≤ 𝐶𝜀|lnℎ|

∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡

+ 𝐶𝜀

∫︁ 𝑇

0

‖𝜎∆ℎ𝑔𝑘ℎ‖2𝐿2(Ω)𝑑𝑡.

Taking 𝜀 sufficiently small we have (3.17). From (3.16) we can conclude that∫︁ 𝑇

0

|𝑣𝑘ℎ(𝑡, 𝑦)|2𝑑𝑡 ≤ 𝐶|lnℎ|2
(︁
‖𝑣‖2𝐿2(𝐼;𝐿∞(Ω)) + ℎ−

4
𝑝 ‖𝜋𝑘𝑣‖2𝐿2(𝐼;𝐿𝑝(Ω))

)︁
,

for some constant 𝐶 independent of ℎ, 𝑘, and 𝑦. Using that dG(0)cG(1) method is
invariant on 𝑋0,1

𝑘,ℎ, by replacing 𝑣 and 𝑣𝑘ℎ with 𝑣 − 𝜒 and 𝑣𝑘ℎ − 𝜒 for any 𝜒 ∈ 𝑋0,1
𝑘,ℎ,

by taking the supremum over 𝑦, using the triangle inequality, and using
∫︀ 𝑇

0
|(𝑣 −

𝜒)(𝑡, 𝑦)|2𝑑𝑡 ≤ ‖𝑣 − 𝜒‖2𝐿2(𝐼;𝐿∞(Ω)), we obtain Theorem 3.1.

3.3. Local error estimate. For the error at point 𝑥0 we are able to obtain a
sharper result. For elliptic problems similar result was obtained in [37]. As before,
we denote by 𝐵𝑑 = 𝐵𝑑(𝑥0) the ball of radius 𝑑 centered at 𝑥0, and 𝜋𝑘𝑣 = 𝑣(𝑡𝑚).

Theorem 3.5 (Local approximation). Assume 𝑣 and 𝑣𝑘ℎ satisfy (2.1) and (3.6)
respectively and let 𝑑 > 4ℎ. Then there exists a constant 𝐶 independent of ℎ, 𝑘 and
𝑑 such that for any 1 ≤ 𝑝 ≤ ∞∫︁ 𝑇

0

|(𝑣 − 𝑣𝑘ℎ)(𝑡, 𝑥0)|2𝑑𝑡

≤ 𝐶|lnℎ|3 inf
𝜒∈𝑋0,1

𝑘,ℎ

∫︁ 𝑇

0

‖𝑣 − 𝜒‖2𝐿∞(𝐵𝑑(𝑥0))
+ ℎ−

4
𝑝 ‖𝜋𝑘𝑣 − 𝜒‖2𝐿𝑝(𝐵𝑑(𝑥0))

𝑑𝑡

+ 𝐶𝑑−2|lnℎ|
∫︁ 𝑇

0

‖𝑣 − 𝑣𝑘ℎ‖2𝐿2(Ω)𝑑𝑡. (3.24)

Proof. As in the proof of Proposition (2.3) let 𝜔(𝑥) be a smooth cut-off function
with the properties (2.4). Define

̃︀𝑣(𝑡, 𝑥) = 𝜔(𝑥)𝑣(𝑡, 𝑥). (3.25)
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Let ̃︀𝑣𝑘ℎ be dG(0)cG(1) approximation of ̃︀𝑣 defined by

𝐵(̃︀𝑣 − ̃︀𝑣𝑘ℎ, 𝜙𝑘ℎ) = 0, ∀𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ.

Adding and subtracting ̃︀𝑣𝑘ℎ, we have

(𝑣 − 𝑣𝑘ℎ)(𝑡, 𝑥0) = (̃︀𝑣 − 𝑣𝑘ℎ)(𝑡, 𝑥0) = (̃︀𝑣 − ̃︀𝑣𝑘ℎ)(𝑡, 𝑥0) + (̃︀𝑣𝑘ℎ − 𝑣𝑘ℎ)(𝑡, 𝑥0).

By the global best approximation result Theorem 3.1 with 𝜒 ≡ 0 we have∫︁ 𝑇

0

|(̃︀𝑣 − ̃︀𝑣𝑘ℎ)(𝑡, 𝑥0)|2𝑑𝑡 ≤ 𝐶|lnℎ|2
∫︁ 𝑇

0

‖̃︀𝑣‖2𝐿∞(𝐵2𝑑(𝑥0))
+ ℎ−

4
𝑝 ‖𝜋𝑘̃︀𝑣‖2𝐿𝑝(𝐵2𝑑(𝑥0))

𝑑𝑡

≤ 𝐶|lnℎ|2
∫︁ 𝑇

0

‖𝑣‖2𝐿∞(𝐵2𝑑(𝑥0))
+ ℎ−

4
𝑝 ‖𝜋𝑘𝑣‖2𝐿𝑝(𝐵2𝑑(𝑥0))

𝑑𝑡.

(3.26)
The discrete function

𝜓𝑘ℎ := ̃︀𝑣𝑘ℎ − 𝑣𝑘ℎ

satisfies

𝐵(𝜓𝑘ℎ, 𝜙𝑘ℎ) = 0, ∀𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ(𝐵𝑑(𝑥0)), (3.27)

where 𝑋0,1
𝑘,ℎ(𝐵𝑑(𝑥0)) is the subspace of 𝑋0,1

𝑘,ℎ functions that vanish outside of 𝐵𝑑(𝑥0).
We will need the following discrete version of the Sobolev type inequality.

Lemma 3.6. For any 𝜒 ∈ 𝑉ℎ and ℎ ≤ 𝑑, there exists a constant 𝐶 independent
of ℎ such that

𝜒(𝑥0) ≤ 𝐶|lnℎ| 12
(︀
‖∇𝜒‖𝐿2(𝐵2𝑑(𝑥0)) + 𝑑−1‖𝜒‖𝐿2(𝐵2𝑑(𝑥0))

)︀
.

Proof. The proof goes along the lines of [36, Lemma 1.1]. Let 𝜔(𝑥) be a smooth
cut-off function as in (2.4) and let Γ𝑥0(𝑥) denote the Green’s function for the Laplacian
on 𝐵2𝑑(𝑥0) with homogeneous Dirichlet boundary conditions. Then

𝜒(𝑥0) = (𝜔𝜒)(𝑥0) =
∫︁

𝐵2𝑑(𝑥0)

∇𝑥Γ𝑥0(𝑥) · ∇(𝜔𝜒)(𝑥)𝑑𝑥

≤
∫︁

𝐵ℎ(𝑥0)

∇𝑥Γ𝑥0(𝑥) · ∇𝜒(𝑥)𝑑𝑥+
∫︁

𝐵2𝑑(𝑥0)∖𝐵ℎ(𝑥0)

∇𝑥Γ𝑥0(𝑥) · ∇(𝜔𝜒)(𝑥)𝑑𝑥

:= 𝐽1 + 𝐽2.

Using the estimate |∇𝑥Γ𝑥0(𝑥)| ≤ 𝐶
|𝑥−𝑥0| and the inverse inequality we have

𝐽1 ≤ 𝐶‖∇𝜒‖𝐿∞(𝐵ℎ(𝑥0))

∫︁
𝐵ℎ(𝑥0)

𝑑𝑥

|𝑥− 𝑥0|
≤ 𝐶ℎ−1‖∇𝜒‖𝐿2(𝐵ℎ(𝑥0))ℎ ≤ 𝐶‖∇𝜒‖𝐿2(𝐵2𝑑(𝑥0)).

Similarly we have

𝐽2 ≤ ‖∇Γ𝑥0‖𝐿2(𝐵2𝑑(𝑥0)∖𝐵ℎ(𝑥0))

(︀
|𝜔|‖∇𝜒‖𝐿2(𝐵2𝑑(𝑥0)) + |∇𝜔|‖𝜒‖𝐿2(𝐵2𝑑(𝑥0))

)︀
≤ 𝐶|lnℎ| 12

(︀
‖∇𝜒‖𝐿2(𝐵2𝑑(𝑥0)) + 𝑑−1‖𝜒‖𝐿2(𝐵2𝑑(𝑥0))

)︀
.
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This completes the proof.
Applying the above lemma with 𝑑/4 in the place of 𝑑, we have∫︁ 𝑇

0

|𝜓𝑘ℎ(𝑡, 𝑥0)|2 𝑑𝑡 ≤ 𝐶|lnℎ|
∫︁ 𝑇

0

(︁
‖∇𝜓𝑘ℎ‖2𝐿2(𝐵𝑑/2(𝑥0))

+ 𝑑−2‖𝜓𝑘ℎ‖2𝐿2(𝐵𝑑/2(𝑥0))

)︁
𝑑𝑡.

(3.28)
To treat ‖∇𝜓𝑘ℎ‖𝐿2(𝐼;𝐿2(𝐵𝑑/2(𝑥0))) we need the following lemma.

Lemma 3.7. Let 𝜓𝑘ℎ satisfy (3.27), then there exists a constant 𝐶 such that∫︁ 𝑇

0

‖∇𝜓𝑘ℎ‖2𝐿2(𝐵𝑑(𝑥0))
𝑑𝑡 ≤ 𝐶𝑑−2

∫︁ 𝑇

0

‖𝜓𝑘ℎ‖2𝐿2(𝐵2𝑑(𝑥0))
𝑑𝑡.

Proof. Let 𝜔 be as in (2.4). Thus we have∫︁ 𝑇

0

‖∇𝜓𝑘ℎ‖2𝐿2(𝐵𝑑(𝑥0))
𝑑𝑡 ≤

∫︁ 𝑇

0

‖𝜔∇𝜓𝑘ℎ‖2𝐿2(Ω) 𝑑𝑡.

The equation (3.27) on each time level 𝐼𝑚 we can rewrite as

(−∆ℎ𝜓𝑘ℎ, 𝜙)𝐼𝑚×Ω + ([𝜓𝑘ℎ]𝑚−1, 𝜙𝑚)Ω = 0, ∀𝜙 ∈ 𝐻1
0 (𝐵𝑑(𝑥0)) and 𝜙 |Ω∖𝐵𝑑(𝑥0)= 0.

In other words

−𝑘𝑚∆ℎ𝜓𝑘ℎ,𝑚 + [𝜓𝑘ℎ]𝑚−1 = 0,

inside the ball 𝐵𝑑(𝑥0). Multiplying the above equation by 𝜔2𝜓𝑘ℎ,𝑚 we have

(−∆ℎ𝜓𝑘ℎ, 𝜔
2𝜓𝑘ℎ)𝐼𝑚×Ω + ([𝜓𝑘ℎ]𝑚−1, 𝜔

2𝜓𝑘ℎ,𝑚)Ω = 0.

Using the identity

([𝑤𝑘ℎ]𝑚−1, 𝑤𝑘ℎ,𝑚)Ω =
1
2
‖𝑤𝑘ℎ,𝑚‖2𝐿2(Ω) −

1
2
‖𝑤𝑘ℎ,𝑚−1‖2𝐿2(Ω) +

1
2
‖[𝑤𝑘ℎ]𝑚−1‖2𝐿2(Ω),

(3.29)
the last term can be rewritten as

([𝜔𝜓𝑘ℎ]𝑚−1, 𝜔𝜓𝑘ℎ,𝑚)Ω =
1
2
‖𝜔𝜓𝑘ℎ,𝑚‖2𝐿2(Ω) −

1
2
‖𝜔𝜓𝑘ℎ,𝑚−1‖2𝐿2(Ω) +

1
2
‖[𝜔𝜓𝑘ℎ]𝑚‖2𝐿2(Ω).

For the first term we have

−(∆ℎ𝜓𝑘ℎ,𝜔
2𝜓𝑘ℎ)𝐼𝑚×Ω = −𝑘𝑚(∆ℎ𝜓𝑘ℎ,𝑚, 𝑃ℎ(𝜔2𝜓𝑘ℎ,𝑚))Ω

= 𝑘𝑚(∇𝜓𝑘ℎ,𝑚,∇𝑃ℎ(𝜔2𝜓𝑘ℎ,𝑚))Ω
= 𝑘𝑚(∇𝜓𝑘ℎ,𝑚,∇(𝜔2𝜓𝑘ℎ,𝑚))Ω + 𝑘𝑚(∇𝜓𝑘ℎ,𝑚,∇(𝑃ℎ(𝜔2𝜓𝑘ℎ,𝑚)− 𝜔2𝜓𝑘ℎ,𝑚))Ω
= 𝑘𝑚‖𝜔∇𝜓𝑘ℎ,𝑚‖2𝐿2(Ω) + 𝑘𝑚(𝜔∇𝜓𝑘ℎ,𝑚, 2∇𝜔𝜓𝑘ℎ,𝑚))Ω

+ 𝑘𝑚(∇𝜓𝑘ℎ,𝑚,∇(𝑃ℎ(𝜔2𝜓𝑘ℎ,𝑚)− 𝜔2𝜓𝑘ℎ,𝑚))Ω
:= ‖𝜔∇𝜓𝑘ℎ,𝑚‖2𝐿2(𝐼𝑚;𝐿2(Ω)) + 𝐽1 + 𝐽2.

Using the Cauchy-Schwarz, (3.13c), and the geometric-arithmetic mean inequalities,
we have

𝐽1 ≤ 𝐶𝑑−1‖𝜔∇𝜓𝑘ℎ‖𝐿2(𝐼𝑚;𝐿2(Ω))‖𝜓𝑘ℎ‖𝐿2(𝐼𝑚;𝐿2(Ω))

≤ 1
4
‖𝜔∇𝜓𝑘ℎ‖2𝐿2(𝐼𝑚;𝐿2(Ω)) + 𝐶𝑑−2‖𝜓𝑘ℎ‖2𝐿2(𝐼𝑚;𝐿2(Ω)).

(3.30)
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To estimate 𝐽2 we need the following superapproximation result which essentially
follows from [15],

Lemma 3.8 (Superapproximation). For any 𝜒 ∈ 𝑉ℎ and 𝜔(𝑥) as in (2.4), there
exists a constant 𝐶 independent of ℎ and 𝑑 such that

‖∇(𝑃ℎ(𝜔2𝜒)− 𝜔2𝜒)‖𝐿2(Ω) ≤ 𝐶ℎ
(︀
𝑑−1‖𝜔∇𝜒‖𝐿2(Ω) + 𝑑−2‖𝜒‖𝐿2(𝐵2𝑑)

)︀
, (3.31a)

‖𝑃ℎ(𝜔2𝜒)− 𝜔2𝜒‖𝐿2(Ω) ≤ 𝐶ℎ2
(︀
𝑑−1‖𝜔∇𝜒‖𝐿2(Ω) + 𝑑−2‖𝜒‖𝐿2(𝐵2𝑑)

)︀
. (3.31b)

By the Cauchy-Schwarz inequality, the superapproximation (3.31a) and the inverse
inequality we have

𝐽2 ≤ 𝑘𝑚‖∇𝜓𝑘ℎ,𝑚‖𝐿2(𝐵2𝑑)𝐶ℎ𝑑
−1(‖𝜔∇𝜓𝑘ℎ,𝑚‖𝐿2(Ω) + 𝑑−1‖𝜓𝑘ℎ,𝑚‖𝐿2(𝐵2𝑑))

≤ 𝐶𝑘𝑚‖𝜓𝑘ℎ,𝑚‖𝐿2(𝐵2𝑑)(𝑑−1‖𝜔∇𝜓𝑘ℎ,𝑚‖𝐿2(Ω) + 𝑑−2‖𝜓𝑘ℎ,𝑚‖𝐿2(𝐵2𝑑))

≤ 1
8
‖𝜔∇𝜓𝑘ℎ‖2𝐿2(𝐼𝑚;𝐿2(Ω)) + 𝐶𝑑−2‖𝜓𝑘ℎ‖2𝐿2(𝐼𝑚;𝐿2(𝐵2𝑑)).

(3.32)

Combining (3.30) and (3.32), we have∫︁
𝐼𝑚

‖𝜔∇𝜓𝑘ℎ‖2𝐿2(Ω)𝑑𝑡+‖𝜔𝜓𝑘ℎ,𝑚‖2𝐿2(Ω)−‖𝜔𝜓𝑘ℎ,𝑚−1‖2𝐿2(Ω)𝑑𝑡 ≤ 𝐶𝑑−2

∫︁
𝐼𝑚

‖𝜓𝑘ℎ‖2𝐿2(𝐵2𝑑)𝑑𝑡.

Summing over 𝑚 we obtain Lemma 3.7

3.4. Proof o Theorem 3.5. Applying Lemma 3.7 to (3.28) with 𝑑/2 instead of
𝑑, we have ∫︁ 𝑇

0

|𝜓𝑘ℎ(𝑥0)|2 𝑑𝑡 ≤ 𝐶|lnℎ|𝑑−2‖𝜓𝑘ℎ‖2𝐿2(𝐼;𝐿2(𝐵𝑑(𝑥0)))
.

Since on 𝐵𝑑(𝑥0) we have ̃︀𝑣 = 𝑣, by the triangle inequality

‖𝜓𝑘ℎ‖𝐿2(𝐼;𝐿2(𝐵𝑑(𝑥0))) ≤ ‖̃︀𝑣 − ̃︀𝑣𝑘ℎ‖𝐿2(𝐼;𝐿2(𝐵𝑑(𝑥0))) + ‖𝑣 − 𝑣𝑘ℎ‖𝐿2(𝐼;𝐿2(𝐵𝑑(𝑥0))).

Using that |𝐵𝑑| ≤ 𝐶𝑑2, we have

‖̃︀𝑣 − ̃︀𝑣𝑘ℎ‖𝐿2(𝐼;𝐿2(𝐵𝑑(𝑥0))) ≤ 𝐶𝑑 ‖̃︀𝑣 − ̃︀𝑣𝑘ℎ‖𝐿2(𝐼;𝐿∞(𝐵𝑑(𝑥0))).

Applying Theorem 3.1, similarly to (3.26) we have

𝑑−2

∫︁ 𝑇

0

‖̃︀𝑣 − ̃︀𝑣𝑘ℎ‖2𝐿2(𝐵𝑑(𝑥0))
𝑑𝑡 = 𝑑−2

∫︁ 𝑇

0

∫︁
𝐵𝑑(𝑥0)

|(̃︀𝑣 − ̃︀𝑣𝑘ℎ)(𝑡, 𝑥)|2𝑑𝑥𝑑𝑡

= 𝑑−2

∫︁
𝐵𝑑(𝑥0)

∫︁ 𝑇

0

|(̃︀𝑣 − ̃︀𝑣𝑘ℎ)(𝑡, 𝑥)|2𝑑𝑡𝑑𝑥

≤ 𝐶 sup
𝑥∈𝐵𝑑(𝑥0)

∫︁ 𝑇

0

|(̃︀𝑣 − ̃︀𝑣𝑘ℎ)(𝑡, 𝑥)|2𝑑𝑡

≤ 𝐶|lnℎ|2
∫︁ 𝑇

0

‖𝑣‖2𝐿∞(𝐵2𝑑(𝑥0))
+ ℎ−

4
𝑝 ‖𝜋𝑘𝑣‖2𝐿𝑝(𝐵2𝑑(𝑥0))

𝑑𝑡.

(3.33)
Combining (3.26) and (3.33) we have∫︁ 𝑇

0

|(𝑣 − 𝑣𝑘ℎ)(𝑡, 𝑥0)|2𝑑𝑡 ≤ 𝐶|lnℎ|3
∫︁ 𝑇

0

(︁
‖𝑣‖2𝐿∞(𝐵2𝑑(𝑥0))

+ ℎ−
4
𝑝 ‖𝜋𝑘𝑣‖2𝐿𝑝(𝐵2𝑑(𝑥0))

)︁
𝑑𝑡

+ 𝐶𝑑−2|lnℎ|
∫︁ 𝑇

0

‖𝑣 − 𝑣𝑘ℎ‖2𝐿2(Ω)𝑑𝑡.
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Again using that dG(0)cG(1) method is invariant on 𝑋0,1
𝑘,ℎ, by replacing 𝑣 and 𝑣𝑘ℎ

with 𝑣 − 𝜒 and 𝑣𝑘ℎ − 𝜒 for any 𝜒 ∈ 𝑋0,1
𝑘,ℎ we obtain Theorem 3.5 with an inessential

difference of having 2𝑑 in the place of 𝑑.

4. Discretization of the optimal control problem. In this section we de-
scribe the discretization of the optimal control problem (1.1)-(1.2) and prove our main
result, Theorem 1.1. We start with discretization of the state equation. For a given
control 𝑞 ∈ 𝑄 we define the corresponding discrete state 𝑢𝑘ℎ = 𝑢𝑘ℎ(𝑞) ∈ 𝑋0,1

𝑘,ℎ by

𝐵(𝑢𝑘ℎ, 𝜙𝑘ℎ) =
∫︁ 𝑇

0

𝑞(𝑡)𝜙𝑘ℎ(𝑡, 𝑥0) 𝑑𝑡 for all 𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ. (4.1)

Using the weak formulation for 𝑢 = 𝑢(𝑞) from Proposition 2.2 we obtain, that this
discretization is consistent, i.e. the Galerkin orthogonality holds:

𝐵(𝑢− 𝑢𝑘ℎ, 𝜙𝑘ℎ) = 0 for all 𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ.

Note, that the jump terms involving 𝑢 vanish due to the fact that 𝑢 ∈ 𝐶(𝐼;𝑊−𝜀,𝑠(Ω))
and 𝜙𝑘ℎ,𝑚 ∈𝑊 1,∞(Ω).

As on the continuous level we define the discrete reduced cost functional 𝑗𝑘ℎ : 𝑄→
R by

𝑗𝑘ℎ(𝑞) = 𝐽(𝑞, 𝑢𝑘ℎ(𝑞)),

where 𝐽 is the cost function in (1.1). The discretized optimal control problem is then
given as

min 𝑗𝑘ℎ(𝑞), 𝑞 ∈ 𝑄ad, (4.2)

where 𝑄ad is the set of admissible controls (2.9). We note, that the control variable 𝑞 is
not explicitly discretized, cf. [26]. With standard arguments one proves the existence
of a unique solution 𝑞𝑘ℎ ∈ 𝑄ad of (4.2). Due to convexity of the problem, the following
condition is necessary and sufficient for the optimality:

𝑗′𝑘ℎ(𝑞𝑘ℎ)(𝛿𝑞 − 𝑞𝑘ℎ) ≥ 0 for all 𝛿𝑞 ∈ 𝑄ad. (4.3)

As on the continuous level, the directional derivative 𝑗′𝑘ℎ(𝑞)(𝛿𝑞) for given 𝑞, 𝛿𝑞 ∈ 𝑄
can be expressed as

𝑗′𝑘ℎ(𝑞)(𝛿𝑞) =
∫︁

𝐼

(𝛼𝑞(𝑡) + 𝑧𝑘ℎ(𝑡, 𝑥0)) 𝛿𝑞(𝑡) 𝑑𝑡,

where 𝑧𝑘ℎ = 𝑧𝑘ℎ(𝑞) is the solution of the discrete adjoint equation

𝐵(𝜙𝑘ℎ, 𝑧𝑘ℎ) = (𝑢𝑘ℎ(𝑞)− ̂︀𝑢, 𝜙𝑘ℎ) for all 𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ. (4.4)

The discrete adjoint state, which corresponds to the discrete optimal control 𝑞𝑘ℎ is
denoted by 𝑧𝑘ℎ = 𝑧(𝑞𝑘ℎ). The variational inequality (4.3) is equivalent to the following
pointwise projection formula, cf. (2.12),

𝑞𝑘ℎ = 𝑃𝑄ad

(︂
− 1
𝛼
𝑧𝑘ℎ(·, 𝑥0)

)︂
.
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Due to the fact that 𝑧𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ, we have 𝑧𝑘ℎ(·, 𝑥0) is piecewise constant and therefore

by the projection formula also 𝑞𝑘ℎ is piecewise constant.
To prove Theorem 1.1 we first need estimates for the error in the state and in the

adjoint variables for a given (fixed) control 𝑞. Due to the structure of the optimality
conditions, we will have to estimate the error ‖𝑧(·, 𝑥0)− 𝑧𝑘ℎ(·, 𝑥0)‖𝐼 , where 𝑧 = 𝑧(𝑞)
and 𝑧𝑘ℎ = 𝑧𝑘ℎ(𝑞). Note, that 𝑧𝑘ℎ is not the Galerkin projection of 𝑧 due to the fact
that the right-hand side of the adjoint equation (2.11) involves 𝑢 = 𝑢(𝑞) and the right-
hand side of the discrete adjoint equation (4.4) involves 𝑢𝑘ℎ = 𝑢𝑘ℎ(𝑞). To obtain an
estimate of optimal order, we will first estimate the error 𝑢− 𝑢𝑘ℎ with respect to the
𝐿2(𝐼;𝐿1(Ω)) norm. Note, that an 𝐿2 estimate would not lead to an optimal result.

Theorem 4.1. Let 𝑞 ∈ 𝑄 be given and let 𝑢 = 𝑢(𝑞) be the solution of the
state equation (1.2) and 𝑢𝑘ℎ = 𝑢𝑘ℎ(𝑞) ∈ 𝑋0,1

𝑘,ℎ be the solution of the discrete state
equation (4.1). Then there holds the following estimate

‖𝑢− 𝑢𝑘ℎ‖𝐿2(𝐼;𝐿1(Ω)) ≤ 𝑐𝑑−1|lnℎ| 52 (𝑘 + ℎ2)‖𝑞‖𝐼 ,

where 𝑑 is the radius of the largest ball centered at 𝑥0 that is contained in Ω.
Proof. We denote by 𝑒 = 𝑢 − 𝑢𝑘ℎ the error and consider the following auxiliary

dual problem

−𝑤𝑡(𝑡, 𝑥)−∆𝑤(𝑡, 𝑥) = 𝑔(𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐼 × Ω,
𝑤(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ 𝐼 × 𝜕Ω,
𝑤(𝑇, 𝑥) = 0, 𝑥 ∈ Ω,

where 𝑔(𝑡, 𝑥) = sgn(𝑒(𝑡, 𝑥))‖𝑒(𝑡, ·)‖𝐿1(Ω) and the corresponding discrete solution 𝑤𝑘ℎ ∈
𝑋0,1

𝑘,ℎ defined by

𝐵(𝜙𝑘ℎ, 𝑤 − 𝑤𝑘ℎ) = 0, ∀𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ.

Using the Galerkin orthogonality for 𝑢− 𝑢𝑘ℎ and 𝑤 − 𝑤𝑘ℎ we obtain:∫︁ 𝑇

0

‖𝑒(𝑡, ·)‖2𝐿1(Ω) 𝑑𝑡 = (𝑒, sgn(𝑒)‖𝑒(𝑡, ·)‖𝐿1(Ω))𝐼×Ω = (𝑒, 𝑔)𝐼×Ω

= 𝐵(𝑢− 𝑢𝑘ℎ, 𝑤) = 𝐵(𝑢− 𝑢𝑘ℎ, 𝑤 − 𝑤𝑘ℎ)
= 𝐵(𝑢,𝑤 − 𝑤𝑘ℎ)

=
∫︁ 𝑇

0

𝑞(𝑡)(𝑤 − 𝑤𝑘ℎ)(𝑡, 𝑥0)𝑑𝑡

≤ ‖𝑞‖𝐼

(︃∫︁ 𝑇

0

|(𝑤 − 𝑤𝑘ℎ)(𝑡, 𝑥0)|2𝑑𝑡

)︃ 1
2

.

(4.5)

Using the local estimate from Theorem 3.5 we obtain∫︁ 𝑇

0

|(𝑤 − 𝑤𝑘ℎ)(𝑡, 𝑥0)|2𝑑𝑡 ≤ 𝐶|lnℎ|3
∫︁ 𝑇

0

‖𝑤 − 𝜒‖2𝐿∞(𝐵𝑑(𝑥0))
+ ℎ−

4
𝑝 ‖𝜋𝑘𝑤 − 𝜒‖2𝐿𝑝(𝐵𝑑(𝑥0))

𝑑𝑡

+ 𝐶𝑑−2|lnℎ|
∫︁ 𝑇

0

‖𝑤 − 𝑤𝑘ℎ‖2𝐿2(Ω)𝑑𝑡 := 𝐽1 + 𝐽2 + 𝐽3.
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Taking 𝜒 = 𝜋ℎ𝜋𝑘𝑤, where 𝜋ℎ is the Clement interpolation by the triangle inequality
and the inverse estimate, we have

𝐽1 ≤ 𝐶|lnℎ|3
∫︁ 𝑇

0

‖𝑤 − 𝜋ℎ𝑤‖2𝐿∞(𝐵𝑑(𝑥0))
+ ‖𝜋ℎ(𝑤 − 𝜋𝑘𝑤)‖2𝐿∞(𝐵𝑑(𝑥0))

𝑑𝑡

≤ 𝐶|lnℎ|3
∫︁ 𝑇

0

‖𝑤 − 𝜋ℎ𝑤‖2𝐿∞(𝐵𝑑(𝑥0))
+ ℎ−

4
𝑝 ‖𝜋ℎ(𝑤 − 𝜋𝑘𝑤)‖2𝐿𝑝(𝐵𝑑(𝑥0))

𝑑𝑡.

Using the fact that the Clement interpolation is stable with respect to any 𝐿𝑝-norm
and the correspondig interpolation estimates, see, e. g., [4], we obtain

𝐽1 ≤ 𝐶|lnℎ|3
∫︁ 𝑇

0

ℎ4− 4
𝑝 ‖𝑤‖2𝑊 2,𝑝(𝐵2𝑑(𝑥0))

+ ℎ−
4
𝑝 ‖𝑤 − 𝜋𝑘𝑤‖2𝐿𝑝(𝐵2𝑑(𝑥0))

𝑑𝑡

≤ 𝐶ℎ−
4
𝑝 |lnℎ|3(ℎ4 + 𝑘2)

∫︁ 𝑇

0

‖𝑤‖2𝑊 2,𝑝(𝐵2𝑑(𝑥0))
+ ‖𝑤𝑡‖2𝐿𝑝(𝐵2𝑑(𝑥0))

𝑑𝑡.

𝐽2 can be estimated similarly since for 𝜒 = 𝜋ℎ𝜋𝑘𝑤 by the triangle inequality we have

‖𝜋𝑘𝑤−𝑃ℎ𝜋𝑘𝑤‖𝐿𝑝(𝐵𝑑(𝑥0)) ≤ ‖𝜋𝑘𝑤−𝑤‖𝐿𝑝(𝐵𝑑(𝑥0))+‖𝑤−𝜋ℎ𝑤‖𝐿𝑝(𝐵𝑑(𝑥0))+‖𝜋ℎ(𝑤−𝜋𝑘𝑤)‖𝐿𝑝(𝐵𝑑(𝑥0)).

This results in

𝐽1 + 𝐽2 ≤ 𝐶ℎ−
4
𝑝 |lnℎ|3(ℎ4 + 𝑘2)

∫︁ 𝑇

0

‖𝑤‖2𝑊 2,𝑝(𝐵2𝑑(𝑥0))
+ ‖𝑤𝑡‖2𝐿𝑝(𝐵2𝑑(𝑥0))

𝑑𝑡.

Using Lemma 2.2 we obtain∫︁ 𝑇

0

‖𝑤‖2𝑊 2,𝑝(𝐵2𝑑(𝑥0))
+‖𝑤𝑡‖2𝐿𝑝(𝐵2𝑑(𝑥0))

𝑑𝑡 ≤ 𝑐𝑑−2𝑝2‖𝑔‖2𝐿2(𝐼;𝐿𝑝(Ω)) ≤ 𝑐𝑑−2𝑝2‖𝑒‖2𝐿2(𝐼;𝐿1(Ω)).

For the term 𝐽3 we obtain using an 𝐿2-estimate from [31]

𝐽3 ≤ 𝑐𝑑−2|lnℎ|(ℎ4 + 𝑘2)
(︁

(‖∇2𝑤‖2𝐿2(𝐼;𝐿2(Ω)) + ‖𝑤𝑡‖2𝐿2(𝐼;𝐿2(Ω))

)︁
≤ 𝑐𝑑−2|lnℎ|(ℎ4 + 𝑘2)‖𝑔‖2𝐿2(𝐼;𝐿2(Ω))

≤ 𝑐𝑑−2|lnℎ|(ℎ4 + 𝑘2)‖𝑒‖2𝐿2(𝐼;𝐿1(Ω)).

Combining the estimate for 𝐽1, 𝐽2 and 𝐽3 and inserting them into (4.5) we obtain:

‖𝑒‖𝐿2(𝐼;𝐿1(Ω)) ≤ 𝑐|lnℎ| 32 𝑑−1(𝑝ℎ−
2
𝑝 + 1)(ℎ2 + 𝑘).

Setting 𝑝 = |lnℎ| completes the proof.
In the following theorem we provide an estimate of the error in the adjoint state

for fixed control 𝑞.
Theorem 4.2. Let 𝑞 ∈ 𝑄 be given and let 𝑧 = 𝑧(𝑞) be the solution of the

adjoint equation (2.11) and 𝑧𝑘ℎ = 𝑧𝑘ℎ(𝑞) ∈ 𝑋0,1
𝑘,ℎ be the solution of the discrete adjoint

equation (4.4). Then there holds the following estimate(︃∫︁ 𝑇

0

|𝑧(𝑡, 𝑥0)− 𝑧𝑘ℎ(𝑡, 𝑥0)|2 𝑑𝑡

)︃ 1
2

≤ 𝑐𝑑−1|lnℎ| 72 (𝑘 + ℎ2)
(︀
‖𝑞‖𝐼 + ‖̂︀𝑢‖𝐿2(𝐼;𝐿∞(Ω))

)︀
,



Parabolic pointwise optimal control 21

where 𝑑 is the radius of the largest ball centered at 𝑥0 that is contained in Ω.
Proof. We introduce an intermediate adjoint state ̃︀𝑧𝑘ℎ ∈ 𝑋0,1

𝑘,ℎ defined by

𝐵(𝜙𝑘ℎ, ̃︀𝑧𝑘ℎ) = (𝑢− ̂︀𝑢, 𝜙𝑘ℎ) for all 𝜙𝑘ℎ ∈ 𝑋0,1
𝑘,ℎ,

where 𝑢 = 𝑢(𝑞) and therefore ̃︀𝑧𝑘ℎ is the Galerkin projection of 𝑧. By the local best
approximation result of Theorem 3.5 for any 𝜒 ∈ 𝑋0,1

𝑘,ℎ we have∫︁ 𝑇

0

|(̃︀𝑧𝑘ℎ − 𝑧)(𝑡, 𝑥0)|2 𝑑𝑡 ≤ 𝐶|lnℎ|3
∫︁ 𝑇

0

‖𝑧 − 𝜒‖2𝐿∞(𝐵𝑑(𝑥0))
+ ℎ−

4
𝑝 ‖𝜋𝑘𝑧 − 𝜒‖2𝐿𝑝(𝐵𝑑(𝑥0))

𝑑𝑡

+ 𝐶𝑑−2|lnℎ|
∫︁ 𝑇

0

‖̃︀𝑧𝑘ℎ − 𝑧‖2𝐿2(Ω)𝑑𝑡 := 𝐽1 + 𝐽2 + 𝐽3.

The terms 𝐽1, 𝐽2 and 𝐽3 are estimated in the same way as in the proof of Theorem 4.1
using the regularity result for the adjoint state 𝑧 from Proposition 2.3. This results
in(︃∫︁ 𝑇

0

|(̃︀𝑧𝑘ℎ − 𝑧)(𝑡, 𝑥0)|2 𝑑𝑡

)︃ 1
2

≤ 𝑐|lnℎ| 32 𝑑−2(𝑝2ℎ−
2
𝑝 +1)(ℎ2+𝑘)

(︀
‖𝑞‖𝐿2(𝐼) + ‖𝑢̂‖𝐿2(𝐼;𝐿∞(Ω))

)︀
.

Setting 𝑝 = |lnℎ| we obtain(︃∫︁ 𝑇

0

|(̃︀𝑧𝑘ℎ − 𝑧)(𝑡, 𝑥0)|2 𝑑𝑡

)︃ 1
2

≤ 𝑐|lnℎ| 72 (ℎ2 + 𝑘)
(︀
‖𝑞‖𝐿2(𝐼) + ‖𝑢̂‖𝐿2(𝐼;𝐿∞(Ω))

)︀
. (4.6)

It remains to estimate the corresponding error between ̃︀𝑧𝑘ℎ and 𝑧𝑘ℎ. We denote
𝑒𝑘ℎ = ̃︀𝑧𝑘ℎ − 𝑧𝑘ℎ ∈ 𝑋0,1

𝑘,ℎ. Then we have

𝐵(𝜙𝑘ℎ, 𝑒𝑘ℎ) = (𝑢− 𝑢𝑘ℎ, 𝜙𝑘ℎ) for all 𝜙 ∈ 𝑋0,1
𝑘,ℎ.

As in the proof of Lemma 3.4 we use the fact that

‖∇𝑣‖2𝐼×Ω ≤ 𝐵(𝑣, 𝑣).

Applying this inequality together with the discrete Sobolev inequality, see [5], results
in

‖∇𝑒𝑘ℎ‖2𝐼×Ω ≤ 𝐵(𝑒𝑘ℎ, 𝑒𝑘ℎ) = (𝑢− 𝑢𝑘ℎ, 𝑒𝑘ℎ)
≤ ‖𝑢− 𝑢𝑘ℎ‖𝐿2(𝐼;𝐿1(Ω))‖𝑒𝑘ℎ‖𝐿2(𝐼;𝐿∞(Ω))

≤ 𝑐|lnℎ| 12 ‖𝑢− 𝑢𝑘ℎ‖𝐿2(𝐼;𝐿1(Ω))‖∇𝑒𝑘ℎ‖𝐼×Ω.

Therefore we have

‖∇𝑒𝑘ℎ‖𝐼×Ω ≤ 𝑐|lnℎ| 12 ‖𝑢− 𝑢𝑘ℎ‖𝐿2(𝐼;𝐿1(Ω))

and consequently (again by the discrete Sobolev inequality)

‖𝑒𝑘ℎ‖𝐿2(𝐼;𝐿∞(Ω)) ≤ 𝑐|lnℎ|‖𝑢− 𝑢𝑘ℎ‖𝐿2(𝐼;𝐿1(Ω)).

Using Theorem 4.1 and(︃∫︁ 𝑇

0

|𝑒𝑘ℎ(𝑡, 𝑥0)|2𝑑𝑡

)︃1/2

≤ ‖𝑒𝑘ℎ‖𝐿2(𝐼;𝐿∞(Ω)),
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we obtain (︃∫︁ 𝑇

0

|𝑒𝑘ℎ(𝑡, 𝑥0)|2𝑑𝑡

)︃1/2

≤ 𝑐𝑑−1|lnℎ| 72 (𝑘 + ℎ2)‖𝑞‖𝐼 .

Combining this estimate with (4.6) we complete the proof.
Using the result of Theorem 4.2 we proceed with the proof of Theorem 1.1.
Proof. Due to the quadratic structure of discrete reduced functional 𝑗𝑘ℎ the second

derivative 𝑗′′𝑘ℎ(𝑞)(𝑝, 𝑝) is independent of 𝑞 and there holds

𝑗′′𝑘ℎ(𝑞)(𝑝, 𝑝) ≥ 𝛼‖𝑝‖2𝐼 for all 𝑝 ∈ 𝑄. (4.7)

Using optimality conditions (2.10) for 𝑞 and (4.3) for 𝑞𝑘ℎ and the fact that 𝑞, 𝑞𝑘ℎ ∈ 𝑄ad

we obtain

−𝑗′𝑘ℎ(𝑞𝑘ℎ)(𝑞 − 𝑞𝑘ℎ) ≤ 0 ≤ −𝑗′(𝑞)(𝑞 − 𝑞𝑘ℎ).

Using coercivity (4.7) we get

𝛼‖𝑞 − 𝑞𝑘ℎ‖2𝐼 ≤ 𝑗′′𝑘ℎ(𝑞)(𝑞 − 𝑞𝑘ℎ, 𝑞 − 𝑞𝑘ℎ) = 𝑗′𝑘ℎ(𝑞)(𝑞 − 𝑞𝑘ℎ)− 𝑗′𝑘ℎ(𝑞𝑘ℎ)(𝑞 − 𝑞𝑘ℎ)
≤ 𝑗′𝑘ℎ(𝑞)(𝑞 − 𝑞𝑘ℎ)− 𝑗′(𝑞)(𝑞 − 𝑞𝑘ℎ) = (𝑧(𝑞)(𝑡, 𝑥0)− 𝑧𝑘ℎ(𝑞)(𝑡, 𝑥0), 𝑞 − 𝑞𝑘ℎ)𝐼

≤

(︃∫︁ 𝑇

0

|𝑧(𝑞)(𝑡, 𝑥0)− 𝑧𝑘ℎ(𝑞)(𝑡, 𝑥0)|2 𝑑𝑡

)︃ 1
2

‖𝑞 − 𝑞𝑘ℎ‖𝐼 .

Applying Theorem 4.2 completes the proof.
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