OPTIMAL A PRIORI ERROR ESTIMATES
OF PARABOLIC OPTIMAL CONTROL PROBLEMS
WITH POINTWISE CONTROL

DMITRIY LEYKEKHMANT AND BORIS VEXLER*

Abstract. In this paper we consider a parabolic optimal control problem with a pointwise (Dirac
type) control in space, but variable in time, in two space dimensions. To approximate the problem
we use the standard continuous piecewise linear approximation in space and the piecewise constant
discontinuous Galerkin method in time. Despite low regularity of the state equation, we show almost
optimal h2 + k convergence rate for the control in L? norm. This result improves almost twice the
previously known estimate in [23].
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1. Introduction. In this paper we provide numerical analysis for the following
optimal control problem:

. 1 (T - a [T
minJ(g,0)i= 5 [ ) -0 ede+ 5 [ laOPa )
q,u 2 0 2 0
subject to the second order parabolic equation
ue(t, ) — Au(t, z) = q(t)d,, (), (t,x) e I xQ, (1.2a)
u(t,z) =0, (t,z) € I x 09, (1.2b)
u(0,2) =0, x € (1.2¢)

and subject to pointwise control constraints
o < q(t) < gy a.e. inl. (1.3)

Here I = [0,77], Q C R? is a convex polygonal domain, x € Int ) fixed, and §,, is the
Dirac delta function. The parameter « is assumed to be positive and the desired state
u fulfills @ € L?(I; L>°(Q2)). The control bounds ¢4, q € R U {£oo} fulfill ¢, < gp.
The precise functional-analytic setting is discussed in the next section.

This setup is a model for problems with pointwise control that can vary in time.
For simplicity we consider here the case of only one point source. However, all pre-
sented results extend directly to the case of [ > 1 point sources Zlizl qi(t)0z, ().

There are several applications in the context of optimal control as well as of
inverse problems leading to pointwise control. The main mathematical difficulty is
low regularity of the state variable for such problems. We refer to [I3],[34] for pointwise
control in the context of Burgers type equations and to [9] [16] for pointwise control
of parabolic systems. Moreover, a recent approach to sparse control problems utilizes
a formulation with control variable from measure spaces, see [7, [8, [10, [33].
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For the discretization, we consider the standard continuous piecewise linear finite
elements in space and piecewise constant discontinuous Galerkin method in time. This
is a special case (r =0, s = 1) of so called dG(r)cG(s) discretization, see e.g. [19] for
analysis of the method for parabolic problems and e.g. [31], B2] for error estimates in
the context of optimal control problems. Throughout, we will denote by h the spatial
mesh size and by k the time step, see Section [3] for details.

The numerical analysis of the problem under the consideration is challenging due
to low regularity of the state equation. On the other hand the corresponding adjoint
(dual) state is more regular, which is exploited in our analysis. In contrast, optimal
control problems with state constraints leads to optimality systems with lower regular-
ity of the adjoint state and more regular state, see [14], B0] for a priori error estimates
for discretization of state-constrained problems governed by parabolic equations.

Although, numerical analysis for elliptic problems with rough right hand side
was considered in a number of papers [2, [3] 6 18, [39], there are few papers that
consider parabolic problems with rough sources. We are only aware of the paper [22],
where L?(I; L?(Q2)) error estimates are considered. Based on the results of this paper,
suboptimal error estimates of order (’)(k% + h) for the optimal control problem under
the consideration were derived in [23]. However, the numerical results in the same
paper strongly suggest better convergence rates. Examining the error analysis in [23],
one can notice that the authors worked with L? norm in space for both the state
and the adjoint equations. Looking at these equations separately, one can see that
only the state equation has a singularity at x(, the adjoint equation does not. As
a result the solutions to these equations have different regularity. To obtain better
order estimates, one must choose the functional spaces for the error analysis more
carefully. Roughly speaking, performing an error analysis in L*(£2) norm is space and
L? norm in time for the state equation as well as an error analysis in L™ in space and
L? norm in time for the adjoint equation, we are able to improve the error estimates
for the control to the almost optimal order O(k + h?). The main result in the paper
is the following.

THEOREM 1.1. Let g be optimal control for the problem - and qrn be
the optimal dG(0)cG(1) solution. Then there exists a constant C independent of h
and k such that

17— Grnllezny < Ca_ld_l\lnh|% (k+n?),

where d is the radius of the largest ball centered at xy that is contained in Q.

We would also like to point out that in addition to almost optimal order esti-
mates our analysis does not require any relationship between the size of the space
discretization h and the time steps k. In our opinion any relation between h and
k is not natural for the method since the piecewise constant discontinuous Galerkin
method is just a variation of Backward Euler method and is unconditionally stable.

The main ingredients of our analysis are the global and local pointwise in space
error estimates, Theorem and Theorem [3.5] respectively. In these theorems the
discretization error is estimated with respect to the L>(Q; L?(I))-norm. These results
have an independent interest since the error estimates in such a norm are somewhat
nonstandard and are not considered in the finite element literature. We are not aware
of any results in this direction. The local estimate in Theorem [3.5] is based on the
global result from Theorem and uses a localization technique from [36]. This local
estimate is essential for our analysis since on the one hand only local error of the
adjoint state at point g plays a role (see the proof of Theorem [1.1]) and on the other
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hand the required regularity of the adjoint state can only be expected in the interior
of 2, cf. Proposition [2.3

Due to substantial technicalities, this paper treats the two dimensional case only.
The technique of the proof does not immediately extend to three space dimensions.
Moreover we believe that in three space dimensions, due to stronger singularity, the
optimal order estimates can not hold without special mesh refinement near the sin-
gularity. This is a subject of the future work.

Throughout the paper we use the usual notation for Lebesgue and Sobolev spaces.
We denote by (-, -)q the inner product in L?(£2) and by (-, -) sxq with some subinterval
J C I the inner product in L?(.J; L*(9)).

The rest of the paper is organized as follows. In Section[2]we discuss the functional
analytic setting of the problem, state the optimality system and prove regularity
results for the state and for the adjoint state. In Section [3] we establish important
global and local error estimates with respect to the L°°(£2; L?(I))-norm for the heat
equation. Finally in Section [4] we prove our main result.

2. Optimal control problem and regularity. In order to state the functional
analytic setting for the optimal control problem, we first introduce an axillary problem

ve(t,x) — Av(t,z) = f(t,x), (t,x)elxQ,
v(t,x) =0, (t,x) € I x 09, (2.1)
v(0,2) =0, x €

with a right-hand side f € L?(I; LP(Q)) for some 1 < p < co. This equation possesses
a unique solution

ve LA HNQ) N HY I H Q).

Due to the convexity of the polygonal domain €2 the solution v possesses an additional
regularity for p = 2:

v e LX(I; H*(Q) N Hy () N H (1; L*(2)),
with the corresponding estimate
lollLz(rsmz@)) + el L2z ) < cllfll2asez@), (2.2)

see, e.g., [20]. Moreover, there holds the following regularity result.
LEMMA 2.1. If f € L*(I; LP(?)) for an arbitrary p > 1, then v € L*(I;C(Q))
and

vl 2(r00)) < Collfll2;oe @)

where Cp, ~ p%l,

Proof. This lemma follows from the maximal regularity result [24] that says that
if f e L3(I; LP(Q)) for any p > 1, then Av € L?(I; LP(Q2)) and v; € L?(I; LP(2)) with
the following estimate

asp— 1.

lvellz(rioe ) + 1AV 2 (rize)) < Cllfll2rine))s (2.3)

where the constant C' does not depend on p. Since by our assumption 2 is polygonal
and convex, there exists some po > 2, see [25], such that

[0l 2wz () < CpllAv[|L2(r; L0 ()
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for all 1 < p < pq, where C), ~ p%l as p — 1. The exact form of the constant can be

traced for example from Theorem 9.9 in [21I]. By the embedding W2(Q) — C(Q)
we have v € L?(I;C(9)) and the desired estimate follows. 00

We will also need the following local regularity result. Here, and in what follows
we will denote an open ball of radius d centered at z¢ by By = Bg(zo).

LEMMA 2.2. If Bog C Q and f € L?(I; L2(Q)) N L?(I; LP(Bag)) for some 2 <
p < oo, then v € L*(I;W?P(B,)) N HY(I; LP(By)) and there exists a constant C
independent of p and d such that

lvell L2(rsne(Bay) + 10l L2sw2e(80)) < CPULF L2 (rine (Boa)) + A I 2122 (0)))-

Proof. To obtain the local estimate we introduce a smooth cut-off function w with
the properties that

w(x) =1, =€ By(zg) (2.4a)
w(x) =0, x € Q\Baa(wo) (2.4b)
|Vw| <Cd™!,  |Viw| < Cd2. (2.4¢)
Define
o(t) = L v(t, z)dx.
| Badl Jp,,

By the Cauchy-Schwarz inequality we have

_ 1 -
vy < @|B2d|1/2””t”ﬂ(32d) <ad 1||UtHL2(Bzd)' (2.5)

We set o = (v — )w. There holds:
AD = wAv+ Vv - Vw+ (v —7)Aw
and therefore v satisfies the following equation
oy —Av =g, v(0,x)=0,
on Byy with homogeneous Dirichlet boundary conditions, where

g= (v, — Av)w — Vv Vw — (v — 0)Aw — jiw
= fw—Vuv-Vw— (v—0)Aw — Tw.

We have
lgll2 (1,00 (Baa)) < C(Hf||L2(I;LT‘(Bzd)) +d 7|Vl 210 (Baa))
+d72 0 = 0l 2(rsno (B + 5 ]2(1i0(Ba )
Using the Sobolev embedding theorem and , we have

IVUllL2(1,0(Baw)) < CllvllL2(rm2(Brg)) < CllfllL2(riz2(0)-

Similarly, using the Poincare inequality first, we obtain

[v =0l 2(1:L7(Boa)) < ClIVV||L2(1;00(Bow)) < CdllfllL2(1522(02))-
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Also by (2.5) we have

2_
1|22 (1520 (Baa)) < Cd?~Hvtll L2 (1522(Bs)) - (2.6)

By the maximum regularity estimate [24] we obtain

0l 22(1;10 (Bag)) + 1AV L2(1,10(Brg)) < CllgllLe(1;00(Baw))
< C(d Y fllrarrz) + 11l L2100 (Baw))) »

and due to the fact that Bog has a smooth boundary we also have

191l L2 (r; w20 (Bya)) < CPIAD|| 121,10 (Baw))

for any 2 < p < co. Observing that VZv = V2% on By we obtain the desired
estimate for ||[v||p2(r;w2r(B,)). The estimate for ||v¢||r2(r,zr(B,)) follows by the fact
that v; = vy + v on By, estimate and by the triangle inequality. This completes
the proof. O

To introduce a weak solution of the state equation we use the method of
transposition, cf. [29]. For a given control ¢ € Q = L*(I) we denote by u = u(q) €
L2(I; L*(2)) a weak solution of (L.2)), if for all ¢ € L?(I; L?(Q)) there holds

(1, 01w = / w(t, z0)q(t) dt,

where w € L2(I; H*(Q) N H}(Q)) N HY(I; L*()) is the weak solution of the adjoint
equation

—wi(t, z) — Aw(t, x)
w(t, x
w(T,x

o(t,z), (t,z)elxQ,
(t,z) € I x 09, (2.7)
, z e Q.

~

0
)=0
The existence of this weak solution u = wu(gq) follows by the Riesz representation
theorem using the embedding L2(I; H?(Q)) — L*(I;C(9)). Using Lemma we
can prove additional regularity for the state variable u = u(q).

PROPOSITION 2.1. Let ¢ € Q = L*(I) be given and u = u(q) be the solution of
the state equation (1.2). Then u € L2(I; LP(Q)) for any p < oo and the following
estimate holds for p — oo with a constant C independent of p,

lull 27002y < CpllallLz(ry-

Proof. To establish the result we use a duality argument. There holds

1 1
lull z2(r;ze () = sup (u,)rxq, where —+—=1.
”‘Pl‘L?(I;Ls(Q)):l p S

Let w be the solution to (2.7) for ¢ € L?(I; L*(£)) with lellz2(r;ne () = 1. From
Lemma w € L*(I;C(Q)) and the following estimate holds

C C
lwllL2(ro@) < GH@HLZ‘(I;LS(Q)) =.1°< Cp, as p — oo.
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Thus
lullL2(r.e ) = sup (u, ©)rx0
el L2 z;ps ) =1
_ /1 w(t, z0)q(t) dt < |lallz2n lwllz2riowy < Cpllallzaa.
0

A further regularity result for the state equation follows from [17].
PROPOSITION 2.2. Let ¢ € Q = L?(I) be given and u = u(q) be the solution of
the state equation (1.2). Then for each 3 < s <2 and e > 0 there holds

we LA We(Q), w e L2(L;W™5(Q) and ue CI;W™55(Q))

for any € > 0. Moreover, the state u fulfills the following weak formulation

(. 9) + (Vu, Vi) = / ot zo)a(t)dt for all o € L3I W (Q),

where L + 1 =1 and (-,-) is the duality product between L*(I;W~:%(Q2)) and

L2(1; Wy ().

Proof. For s < 2 we have s’ > 2 and therefore Wol’s,(Q) is embedded into C(Q).
Therefore the right-hand side ¢(t)d,, of the state equation can be identified with an
element in L?(I; W~15(2)). Using the result from [I7, Theorem 5.1] on maximal
parabolic regularity and exploiting the fact that —A: VVO1 #(Q) — WLs(Q) is an
isomorphism, see [27], we obtain

we LA W () and  w, € L2(I; W™55(9)).

The assertion u € C(I; W~54(Q)) follows then by embedding and interpolation, see [T}
Ch. III, Theorem 4.10.2]. Given the above regularity the corresponding weak formu-
lation is fulfilled by a standard density argument. O

As the next step we introduce the reduced cost functional j: @ — R on the control
space Q = L?(I) by

J(q) = J(q,u(q)),

where J is the cost function in (1.1)) and u(q) is the weak solution of the state equa-
tion ([1.2]) as defined above. The optimal control problem can then be equivalently
reformulated as

min j(q), ¢ € Qad, (2.8)
where the set of admissible controls is defined according to (|1.3)) by
Qua=1{0€Q]¢<q(t)<ga e inl}. (2.9)

By standard arguments this optimization problem possesses a unique solution § €
Q = L*(I) with the corresponding state @ = u(g) € L?(I; LP(£2)), see Proposition
for the regularity of @. Due to the fact, that this optimal control problem is convex,
the solution @ is equivalently characterized by the optimality condition

J'(@)(6g—q) =0 for all §q € Qaa- (2.10)
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The (directional) derivative j'(¢)(dq) for given ¢,dq € @ can be expressed as

7(@)(60) = [ (@a(t) + #(t,20)) a0 .

I

where z = z(q) is the solution of the adjoint equation

—z(t,x) — Az(t, z) = u(t,z) — u(t,x), (t,x) e I x Q, (2.11a)
z(t,x) =0, (t,z) e I x 99, (2.11b)
z2(T,z) =0, x €, (2.11c)

and u = u(q) on the right-hand side of is the solution of the state equa-
tion . The adjoint solution, which corresponds to the optimal control ¢ is denoted
by z = 2(q).

The optimality condition is a variational inequality, which can be equiva-
lently formulated using the pointwise projection

PQ,.0 Q@ = Qads  Pq.,(q)(t) = min(gy, max(qa, q(t)))-

The resulting condition reads:

d=Po., (—;z(~7x0)> . (2.12)

In the next proposition we provide an important regularity result for the solution
of the adjoint equation.
PROPOSITION 2.3. Let ¢ € @ be given, let u = u(q) be the corresponding state

fulfilling (L.2) and let z = z(q) be the corresponding adjoint state fulfilling (2.11)).
Then,

(a) z € L*(I; H*(Q) N H(Q)) N HY(I; L2(R)) and the following estimate holds
IV?2ll L2 rn2c0)) + Nzl 2z < elllallpzcn + a2 sz @)

(b) If Bag C Q, then z € L*>(I; W*P(B,)) N HY(I; LP(By)) for all2 < p < o and
the following estimate holds

V22l 2 (rsme(ay) + 12t 2(ine 0y < c0®d™ (lallpzey + all2sne @)))-

Proof.

(a) The right-hand side of the adjoint equation fulfills u — @ € L?(I; LP(f)) for
all 1 < p < o0, see Proposition Due to the convexity of the domain 2 we
directly obtain z € L2(I; H*(Q) N HZ(2)) N HY(I; L?(Q2)) and the estimate

IV22)| 212 () + 2l 222 < ellu =8l 222 @))-

The result from Proposition leads directly to the first estimate.
(b) From Lemma [2.2| for p > 2 we have

IV22l Lerize(say + 12l 2 (rizesa) < Cpd ™" lu = allL2riee ()
Hence, by the triangle inequality and Proposition 2.I] we obtain
lu =@l 2110 (0)) < C (qu||L2(I) + ||a||L2(I;L°°(Q))) .

That completes the proof.
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0

REMARK 2.3. From Propositz'on one concludes that = € H*=¢(I;C(By)) for
all e > 0 using an embedding result from [I2, Chapter XVIII, page 494, Theorem
6]. Hence, there holds z(-,x¢) € H'=¢(I). Using the pointwise representation
of the optimal control q and the fact, that this projection operator preserves H*-
regularity for 0 < s < 1, see [28, Lemma 3.3], we obtain ¢ € H'=¢(I). We do not
need this regularity for the proof of our error estimates, but the order of convergence
in Theorem 1s consistent with this regularity result.

3. Discretization and the best approximation results for parabolic prob-
lem.

3.1. Space-time discretization and notation. For the discretization of the
problem under the consideration we introduce a partitions of I = [0, 7] into subinter-
vals Iy, = (tm—1,tm] of length k,, = t,,, — t;—1, where 0 = tg < t1 < -+ < tpy—1 <
tyr = T. The maximal time step is denoted by k = max,, k,,. The semidiscrete space
X? of piecewise constant functions in time is defined by

XY ={vp € L*(I; H}(Q)) : k|1, € Po(H(Q)), m=1,2,..., M},

where Py(V') is the space of constant functions in time with values in V. We will
employ the following notation for functions in X}
V-

b = lim v(t,+e) == vmy1, v, = lim v(t,—e) =v(tm) = Vm, [Vm =1

e—0+ e—0+
(3.1)
Let 7 denote a quasi-uniform triangulation of Q with a mesh size h, i.e., T = {7}
is a partition of 2 into triangles 7 of diameter h, such that for h = max; h,,

diam(r) <h < C|r|?, VreT

hold. Let Vj, be the set of all functions in H}(2) that are linear on each 7, i.e. Vj, is
the usual space of linear finite elements. We will use the usual nodewise interpolation
7h: Co(2) — Vi, the Clement intepolation mj,: L1(2) — Vj, and the L2-Projection
Py L2(Q2) — V}, defined by

(Prv,x)a = (v,xX)a, VYx € Vi (3.2)

To obtain the fully discrete approximation we consider the space-time finite element
space

ngill = {'Ukh S X,g : Ukh‘Im S Po(Vh), m=1,2,.. .,M}. (33)

We will also need the following semidiscrete projection 7 : C(I; H}(2)) — X2 defined
by

ﬂ-kv“’m :U(tm)7 mzl,Q,...,M.

To introduce the dG(0)cG(1) discretization we define the following bilinear form

M M
B('U» 90) = Z <1)t, 90>Im><Q + (VU, VQO)IXQ + Z ([v]mfla QD;L*I)Q + (’U(;ra @3)% (3'4)

1 m=2
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where (-, )1 «q is the duality product between L?(I,,; W ~5%(Q)) and L?(I,,; WOI’S/ (Q)).
We note, that the first sum vanishes for v € X?. Rearranging the terms we obtain an
equivalent (dual) expression of B:

M M—
Bv,p) == ) (v,¢)1,,xa+ (Vv,Vo)rxa — Z U [k]m) e + (U3, ). (3.5)

m=1 =1

In the two following subsections we establish global and local pointwise in space
best approximation type results for the error between the solution v of the axillary
equation (2-1)) and its dG(0)cG(1) approximation vy, € Xy} defined as

B(vkn, ekn) = (f,0rn)1x0 + (v0, 9ip.0)a  for all oy, € X;S:,{L (3.6)

and vg = 0. Since dG(0)cG(1) method is a consistent discretization we have the
following Galerkin orthogonality relation:

B(v — vgp, ppn) =0 for all @iy € Xk b

3.2. Global pointwise in space error estimate. In this section we prove the
following global approximation result with respet to the L>°(Q; L?(I))-norm.

THEOREM 3.1 (Global best approximation). Assume v and vy, satisfy and
respectively. Then there exists a constant C independent of k and h such that
forany 1 <p < oo,

T
sup / (0 — vn) (£, )|t
yeQ J0

2 2 —4 2
< Clnh| Emf <||’U = Xl Z2(rp00 )y B P llmRv — X||L2(I;LP(Q))) :
X

kh

Proof. To establish the result we use a duality argument. Let y € Q be fixed, but
arbitrary. First, we introduce a smoothed Delta function [38, Appendix], which we
will denote by 6= Sy = S;j This function is supported in one cell, denoted by 7,, and
satisfies

(X, 0)r, = x(¥), Vx €P'(ry).
In addition we also have

18]l (@) < Ch™*7207%), 1 <p<oo, s=0,1. (3.7)

Thus in particular HSHLI(Q) <C, ||S||L2(Q) < Ch™1, and ||5||LOC(Q) < Ch™2.
We define g to be a solution to following backward parabolic problem

—gi(t,x) — Ag(t,z) = vin(t, )0y (x)  (t,2) € I x Q,
g(t x) 0, (t,z) € I x 09, (3.8)
=0, z €.

Let grn € X,S}’,lz be dG(0)cG(1) solution defined by

B(@rns grn) = (Vin(t,9)dy, @rn)ixa,  Vorn € X;S:}, (3.9)
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Then using that dG(0)cG(1) method is consistent, we have

T
/ lvin (8, y) |2dt = B(vgn, gkn) = B(v, gkn)
0
M (3.10)
= (VU, Vgrn)rxa — 3 (Um; [gknlm) o,

m=1

where we have used the dual expression for the bilinear form B (3.5]) and the fact that
the last term in (3.5) can be included in the sum by setting gip ar+1 = 0 and defining

consequently [gxn]nm = —gkn,a- The first sum in (3.5) vanishes due to gipn, € X,S,ll
For each t, integrating by parts elementwise and using that gy is linear in the spacial
variable, by the Hélder’s inequality we have

1
(Vu,Vgrn)o = 3 > (0, [0ngkn])or < Cllvli) > M0ngenlll i or) (3.11)

where [0, gxn] denotes the jumps of the normal derivatives across the element faces.
Next we introduce a weight function

o(z) =]z —y|> + h2. (3.12)

One can easily check that o satisfies the following properties,

”071HL2(Q) < C\lnhﬁ, (3.13a)
Vol < C, (3.13b)
V20| < Clo™Y|. (3.13c)

From Lemma 2.4 in [35] we have

> 0ngenlllzior) < Cnhl2 (o Anginlz2@) + [ Varnllza(e)) -

To estimate the term involving the jumps in (3.10)), we first use the Holder’s inequality
and the inverse estimate to obtain

M M
1 _1 2
(Vm, [grnlm)a < c Z Eallvm e ) km® h™ 7 (| [gkn]m L1 (@) (3.14)

m=1 m=1

Now we use the fact that the equation (3.9)) can be rewritten on the each time level
as

(Vorn: Varn) 1, x0 — (@khms [Gkn]lm)o = (Okn(t, )y, 0kn) 1, x Q)
or equivalently as
— kmAnGihom — [9kn)m = EmUkh.m (Y) Pady, (3.15)

where Py, : L*(Q) — V, is the L2-projection, see (3.2)) and Ay : Vi, — Vj, is the discrete
Laplace operator. We test equation (3.15) with ¢ = —sgn([gxn]m) and obtain

MgrnlmllLr @) < kmllAngknmllr @) + kaPhS”Ll(Q)|'Ulch,m(y)|~
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Using that the L?-projection is stable in L'-norm (cf. [I1]), we have
1Pnd]| 1 () < Clldl| 10y < C.

Inserting the above estimate into (3.14)), we obtain

M
_2 1 1
0 <Ch™? > kalvmllze@ka (|Angknmll @) + [0knm (Y)])
1

2>2

M

E (Uma[gkh]m)
m=1 m=1
1
2 M
> (E ki || Angin,m |21 () + K vrn,m ()]

M
_2
<Ch"» (Z kaUm”%P(Q)
m=1

_z2 T
< Ch v ||lmyol| L2 (1o @) (/ I hlloAngrnllza ) + lven(t y)Pdt
0

m=1
2

Combining (3.10) with the above estimate we have
T 2 1 —2

lvkn(t,y)|7dt < C|lnh|2 (HU||L2(1;L°°(Q)) +h ”||7fkv||L2(1;Lp(Q))) X

1 (3.16)

2

T
</0 loARgknllT2 () + IV grn T2 (o) + |Ukh(tay)|2dt>

To complete the proof of the theorem we need to show that
(3.17)

T T
| (1ol oy + 190 )t < Clinl [ foun ).
The first lemma treats the

The above result will follow from the series of lemmas.
term HO’AhgthiQU;LQ(Q) .
LEMMA 3.2. For any € > 0 there exists C. such that

T T M
/0 loAngenl7@ydt < C. / (lon &) + 1V gin 1320y ) dtte D kit llolgenlmlF o).
m=1

Proof. The equation (3.9) for each time interval I,,, can be rewritten as (3.15)).

Testing (3.15) with ¢ = —02A,gxn we have
/ loAnginll7z()dt = = ([9kn]m> 0> Angin.m)e — (Vkn(t, y) Pudy, 0> Angin) 1, <0

= —([0%gkn)ms Angrnm)a — (Vkn(t,y) Pudy, 02 Angrn) 1, x

V(o2 g6n)lms Varnm)a + (V(Pn — Do ginlm, Vakhm)o

m

= (
— (kn(t,9) Prdy, 02 Angin) 1, x0 = Ji + Jo + Js.

We have
J1 = 2(oVo[gknlm, Varnm)a + (0[Varnlm: oVarnm)a = Ji1 + Ji2.
By the Cauchy-Schwarz inequality and using (3.13bf) we get

Jir < Cllo(grnlmllzz@) IV gknmll L2 ()-
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Using the identity

1 1 1
([wkn]ms wen,m)o = §Hwkh,m+1||2m(9) - §||wkh7m\|izm) - 5\\[wkh]m|\%z(g)7 (3.18)

we have
1 2 1 2 1 2
Ji2 = §||0V9kh,m+1|\L2(Q) - §||UV9kh,m||L2(Q) - §||0'[V9kh]m\|1:2(9)~
Using the generalized geometric-arithmetic mean inequality for Ji; and neglecting

_%”U[ngh]mniz(ﬂ) in J12 we obtain

1 1 €
Ji < 3 10V grnm+1 H%2(Q)—§ ||UV9kh7mH%2(Q)+Cekm||V9kh,m||%2(9)+kf lolgrnlmll72(q)-

(3.19)
To estimate Js, first by the Cauchy-Schwarz inequality and the approximation theory
we have

Jo = Z([V(Ph — Do*ginlm, Vashm)r

< Chz 11V (0 gl £2 () |V Gt || 12 () -
Using that gip is piecewise linear we have
V(0 gen) = V*(0?)gkn + V(6°) - Vgrn  on 7.

There holds 9;;(0?) = (0;0)(9j0)+00;j0 and V(0?) = 20Vo. Thus by the properties
of o (3.13b)) and (3.13c|), we have

\V2(02)| <ec¢ and |V(02)| <co.

Using these estimates, the fact that h < o and the inverse inequality we obtain

g
Jo < Cllolgrnlmllz2 @) IV gknmll L2(@) < Cekim|Vgrnml72(q) + kflla[gkh]mllzm(n)-

(3.20)
To estimate J3 we first show that

|0 Pyl r2(q) < C. (3.21)
By the triangle inequality we get
loPuéllz2@) < llod]lz2() + lo(Pn — D)3 L2()-

Using that the support of Sy is in a single element 7, and using (3.7)), we have

08172 () = / |06 da < IISII%w(Q)/ (I = yI* + h*)dz < Ch™*h?|r,| < C.
Ty T,

Yy

Similarly using that ||o(Pp, — I)5||L2(Q) < ChHJV5||L2(Q) and (3.7)), we have

T

V61720 :/ loVi|2dx < ||v5\|§oc(m/ (Jz—y|? +h?)dz < Ch~Sh?|7,| < Ch~2.

Y
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This establishes (3.21). By the Cauchy-Schwarz inequality, (3.21]), and the arithmetic-
geometric mean inequality we obtain

1
J3 < C/ |’Ukh(t,y)‘2dt + 5/ HO’Ahgk;]LmH%Z(Q)dt. (3.22)
I,

m

Using the estimates (3.19)), (3.20), and (3.22)) we have
| lotngnlade < €. [ (ot )P + [Vl ) de

€ 1 1
+ ]THU[gkh]mHQL?(Q) + §||Uv9kh,m+1”%2(ﬂ) - §||UV9kh,m||2L2(Q)~
m

Summing over m and using that gpp ar+1 = 0 we obtain the lemma. O
The second lemma treats the term involving jumps.
LEMMA 3.3. There exists a constant C' such that

M T
> kallloloualnlte <€ [ (IotngunlEs + ot ) at.
m=1 0

Proof. We test (8.15)) with ¢ = 02[gkn]m and obtain

lolginlm 72 = —(Angin: 0 [gknlm) 1, x2 — (Ukn(t, ¥) Pad, 0 [gknlm) 1, x0- (3.23)
The first term on the right hand side of (3.23)) using the geometric-arithmetic mean

inequality can be easily estimated as

1
(Angin, 2 [gknlm) 1, x0 < Ckm/ loAngknlleqydt + 1\|U[gkh]m||%2(m-

m

The last term on the right hand side of (3.23)) can easily be estimated using (3.21)) as

= 1
(0kn (6, 9) Prd, 0% [gkn)m) 1, x0 < C'km/ |own (t, y)|2dt + Z\|0[gkh]m||%2(9)-

m

Combining the above two estimates we obtain
ol oy < Chn [ (IoSngunley + (e ) ) .

Summing over m we obtain the lemma. O
LEMMA 3.4. There exists a constant C' such that

T
IV genllZe s 0y < C|1nh|/0 [okn (t,y) [P dt.

Proof. Adding the primal (3.4) and the dual (3.5)) representation of the bilinear
form B(-,-) one immediately arrive at

[Vv||3q < B(v,v) forall ve Xp,
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see e.g. [31]. Applying this inequality together with the discrete Sobolev inequality,
see [0, Lemma 4.9.2], results in

T
IVginll T < B(gkns gkn) = (Urn(t,9)0y, grn) rxa = / vkn(t, y)grn(t, y) dt
0

T
<</ |Ukh(t»y)|2dt> grnllL2 (1,0 ()
0

1
2

T
< c|lnh|? (/ [ven (t, )| dt) IV grnllrxa-
0

N

This gives the desired estimate. O
We proceed with the proof of Theorem From Lemma Lemma [3.3] and
Lemma 3.4l It follows that

T T
| (g oy + 1V ey ) e < Coa] [ o .

T
L ce / o Angenl 2 eyt
0

Taking ¢ sufficiently small we have (3.17). From (3.16) we can conclude that

T
_4
/0 ogn (8, y)[Pdt < C|nhf* (H’UH%Q(I;L‘X’(Q)) +how HTrkUHQLQ(I;LP(Q))> ;

for some constant C' independent of h, k, and y. Using that dG(0)cG(1) method is
invariant on X,g’,ll, by replacing v and vgp, with v — x and vy, — x for any x € X,C’}lb,

by taking the supremum over y, using the triangle inequality, and using fOT [(v —
X)(t, ) 2dt < ||v— XHQL?(I-LOC(Q))’ we obtain Theorem a

3.3. Local error estimate. For the error at point zg we are able to obtain a
sharper result. For elliptic problems similar result was obtained in [37]. As before,
we denote by By = Bg(z) the ball of radius d centered at xg, and mpv = v(ty,).

THEOREM 3.5 (Local approximation). Assume v and v, satisfy and
respectively and let d > 4h. Then there exists a constant C independent of h, k and
d such that for any 1 < p < oo

/ (v — vin) (8, z0)|*dt
0

T
. _4
< Clnhf? inf | /0 [0 = X2 (Baeoyy + 17 I1Tk0 = X[ T (B4 (20

XEXph

T
+Cd_2llnh|/ [v = vknl[20ydt.  (3.24)
0

Proof. As in the proof of Proposition (2.3)) let w(x) be a smooth cut-off function
with the properties (2.4). Define

u(t, z) = w(z)v(t, ). (3.25)
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Let vk be dG(0)cG(1) approximation of v defined by
B(@ = Tkn, oxn) =0, Vorn € X}
Adding and subtracting vy, we have
(v = vkn)(t,20) = (V= vgn)(t, 20) = (U — Vn)(t, o) + (Vkn — ven) (¢, o).

By the global best approximation result Theorem with x = 0 we have

T T
~ ~ ~ _4 ~
/0 (% — Tn)(t, 20)|2dt < Cflm b / T2 oy + 1 1T 5 oy

T
4
< CMBE [ [0l iyt + e s
(3.26)
The discrete function

Yk = Ukh — Vkh

satisfies
B(Wkn,prn) =0, Veorn € Xp'p,(Balwo)), (3.27)

where X ,S:,ll(Bd(xo)) is the subspace of X,S,ll functions that vanish outside of By(zo).
We will need the following discrete version of the Sobolev type inequality.

LEMMA 3.6. For any x € Vi, and h < d, there exists a constant C independent
of h such that

1 _
X(x0) < Clh|Z (VXlL2(Bsa(zo)) T & IXI L2 (Boa(wo))) -

Proof. The proof goes along the lines of [36] Lemma 1.1]. Let w(x) be a smooth
cut-off function as in (2.4) and let I';, («) denote the Green’s function for the Laplacian
on Bsg(xg) with homogeneous Dirichlet boundary conditions. Then

x(@0) = (@x)(0) = / VT () - ¥ (wy) (2)de

Baa(o)
< / VT () - V(z)dz + / VT, (&) - V(wy)(@)da
Bhn(zo) Baa(2o)\Bn(zo)
=J1 + Jo.

Using the estimate |V, 'y, (2)] < and the inverse inequality we have

C
|lz—xo]|

dx
) |x — x|

7 < CIVNi oo |

Bh(lo

< Ch VXN 2By @b < CIV X L2(Bsa(a0))-

Similarly we have

J2 <NV a0l L2(Baa@o)\ Ba (o)) (LI XI L2(Baa(wo)) + IV@IIXI L2 (Baa(o)))
1 _
< Clmh|z (IVXll2(Baateo)) + & X/ L2 (Baa(ao))) -
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This completes the proof. O
Applying the above lemma with d/4 in the place of d, we have

T T
| et a) e < il [ (190008 st + 4200l )

(3.28)
To treat ||V1pkh||L2(1;Lz(Bd/2(mo))) we need the following lemma.
LEMMA 3.7. Let ¥pp satisfy (3.27), then there exists a constant C such that

T T
/0 V40 213,y < Ol / T

Proof. Let w be as in ([2.4). Thus we have

T T
/0 IV 12 3y oy < / |V 2 e .

The equation (3.27) on each time level I, we can rewrite as

(=Artrn, @)1, x2 + (Wkhlm—1,0m)a =0, Ve € Hy(Ba(zo)) and ¢ |0\ 5, (ze)= 0-

In other words

—kmApYinm + [Yrn)m—1 =0,

inside the ball By(zo). Multiplying the above equation by w?¥kp ,, we have

(= Antkns W rn) 1, x2 + ([Yrnlm—1, 0 Venm)a = 0.

Using the identity

1 1 1
([wkn]m—1, wenm)o = §||wkh,m||%2(m - §||wkh,m—1||2L2(Q) + §||[wkh]m—1”2L2(Q)7
(3.29)
the last term can be rewritten as

1 1 1
(wWnlm—1,wrnmla = SlotmnmlLz) = 5 letrnm-llZz o) + 5 1wtrmlmliz o)

For the first term we have

— (AR kh V) 1, x0 = —km (Anrh.m, Po(@?Vknm))e
= ki (Vrhm, V Pr (W rn.m))o
= ke (Vkhm, V(@0 Pkhm ) + km (Vrhm, V(Pr (W Pkhm) — 0 Ypnm))o
= k|| wVrnml 20y + Em(WVkh,m, 2V 0knm))e
+ ki (Vrh s V(Pr (W02 Ykhm) — 02 Ukhm))
= ”WVT/)kh,m”%%Im;m(Q)) + Ji + Ja.

Using the Cauchy-Schwarz, (3.13c)), and the geometric-arithmetic mean inequalities,
we have

Ji < CdY\wVnllrz(1,,. 2 ) |¥rnl L2 (1,12 0))
] , e (3.30)
< ZHWVWILHLz(Im;L?(Q)) + Cd™ [ Ywnllz2(r,, . 2(02))
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To estimate Jo we need the following superapproximation result which essentially
follows from [I5],

LEMMA 3.8 (Superapproximation). For any x € Vi, and w(x) as in , there
exists a constant C' independent of h and d such that

IV(Pr(w?x) = w*X)l2() < Ch (d™HwVxllL2@) + 472X 22(82)) 5 (3.31a)
[Pr(w®x) = w?xllz2() < Ch* (™ wVxll2) +d 2 Ixl2B.0) - (3:31D)

By the Cauchy-Schwarz inequality, the superapproximation (3.31a)) and the inverse
inequality we have

J2 < ki |[VUkhmll 28,0 Chd ™ 1oV rn,mll 2(@) + 4 [ $rhmll 2(B20))
< Chul[knm £2(Bag) (@ HlwVkhm || 22(0) + A2 1k m || £2(B2a)) (3.32)

1 _
< gvawth%z(Im;LZ(Q)) + Cd™|Wknll T (1,12 (Ban))-
Combining (3.30)) and (3.32]), we have

[ 190 oyt m = m s [t < O [ gt

m m

Summing over m we obtain Lemma [3.7]0

3.4. Proof o Theorem Applying Lemma to (3.28) with d/2 instead of
d, we have

T
| @) it < b g
Since on Bg(xg) we have v = v, by the triangle inequality

[¥nnllL2(r2(Batzo))) < 10— UknllL2(r;22(Batao))) + 1V — VknllL2(1,02(Ba(ao))) -

Using that |By| < Cd?, we have

10 = Okl L2(1:02(Ba(zo))) < OO = Vknll L2 (1,2 (Ba(zo)))-

Applying Theorem similarly to (3.26)) we have

T T
42 [T = Bl andt = [ [ 1@ Tua)(0) Pl
0 0 JBa(zo)

T
dQ/B( )/0 |(T — T ) (t, )| dtda
d\To

T
<C sup /|(5—5kh)(tax)|2dt
0

x€Bg(xo)

T
_ 4
< Clnhf? / 1012 asconyy + 101 s ooy -
(3.33)
Combining (|3.26]) and (3.33]) we have

T . T 4
| = ool < Clnbl® [ (100~ mauia + B I sy

T
+ Cd_2|ln h| /0 H’U — Uk;h”%g(ﬂ)dl&
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Again using that dG(0)cG(1) method is invariant on X,S:,ll, by replacing v and vgp

with v — x and vgp, — x for any x € X,S:}ll we obtain Theorem with an inessential
difference of having 2d in the place of d.

4. Discretization of the optimal control problem. In this section we de-
scribe the discretization of the optimal control problem - and prove our main
result, Theorem We start with discretization of the state equation. For a given
control ¢ € @ we define the corresponding discrete state ug, = ugn(q) € X,S:}ll by

T
B(ukh, pkn) :/ q()prn(t,zo) dt  for all g € X;Sj;1L~ (4.1)
0

Using the weak formulation for u = wu(q) from Proposition we obtain, that this
discretization is consistent, i.e. the Galerkin orthogonality holds:

B(u — ugp, prn) =0 for all g, € X,[:}ll

Note, that the jump terms involving u vanish due to the fact that v € C(I; W~2(Q))
and @rpm € WH(Q).

As on the continuous level we define the discrete reduced cost functional jip: Q —
R by

Jen(q) = J(q, ukn(q)),

where J is the cost function in (1.1)). The discretized optimal control problem is then
given as

min jrn(q), ¢ € Qaa; (4.2)

where (0,4 is the set of admissible controls . We note, that the control variable q is
not explicitly discretized, cf. [26]. With standard arguments one proves the existence
of a unique solution g, € Qaq of . Due to convexity of the problem, the following
condition is necessary and sufficient for the optimality:

Jtn(@rn) (8¢ — Grr) >0 for all 6g € Qaq. (4.3)

As on the continuous level, the directional derivative j;;, (¢)(dq) for given ¢,dq € Q
can be expressed as

Ton(0)(6q) = / (aq(t) + zn (£, 70)) q(t) dt,

where 2z, = 2zkr(q) is the solution of the discrete adjoint equation
B(gkn, 2en) = (urn(q) — @, opn)  for all gy € X7 (4.4)

The discrete adjoint state, which corresponds to the discrete optimal control Gxp is
denoted by Zgp = 2(Gkr). The variational inequality (4.3)) is equivalent to the following
pointwise projection formula, cf. (2.12]),

1
axn = Pog., <a2kh('7ﬂfo)) .
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Due to the fact that zx, € X ,Sji, we have Zgp, (-, zo) is piecewise constant and therefore

by the projection formula also qx, is piecewise constant.

To prove Theorem [I.1] we first need estimates for the error in the state and in the
adjoint variables for a given (fixed) control g. Due to the structure of the optimality
conditions, we will have to estimate the error ||z(-, xo) — 2k (-, 0)||r, where z = z(q)
and zp, = zkn(q). Note, that zgy, is not the Galerkin projection of z due to the fact
that the right-hand side of the adjoint equation involves u = u(q) and the right-
hand side of the discrete adjoint equation involves ugp = ukp(q). To obtain an
estimate of optimal order, we will first estimate the error u — uy;, with respect to the
L?(I; L' (Q)) norm. Note, that an L? estimate would not lead to an optimal result.

THEOREM 4.1. Let ¢ € Q be given and let u = u(q) be the solution of the
state equation and ugn = ugp(q) € X,S:}IL be the solution of the discrete state
equation . Then there holds the following estimate

_ 5
lw = wpnl L2701 () < ed”'Inh|z (k+ h?)|q|,
where d is the radius of the largest ball centered at xg that is contained in €.
Proof. We denote by e = u — ug, the error and consider the following auxiliary

dual problem

_wt(tvx) - AU}(t,(E) = g(t,;v), (t,l’) elx Qa
w(t,z) =0, (t,x) € I x 092,
w(T,z) =0, x €,

where g(t, z) = sgn(e(t, v))|le(t, -)|| L1 () and the corresponding discrete solution wy €
0,1
X}, defined by

B(prh,w —win) =0, Vo, € X,S,’,lf
Using the Galerkin orthogonality for u — ug, and w — wyy, we obtain:

T
/0 lle(t, ')H%l(ﬂ) dt = (e,sgn(e)|le(t, ’)”Ll(Q))IxQ = (e,9)1x0

= B(u — ugp, w) = B(u — ugp, w — wgp)
= B(u,w — wgp)

T
:/0 q(t)(w — wrp) (t, zo)dt

T
< qlr </O |(w—w;ch)(t7xo)|2dt>

Using the local estimate from Theorem we obtain

(4.5)

N

T T
_4
/0 (0 — win) (£, 20) 2dt < Clln bf? / 0 = X2 Bagoary + B F 17500 = X120 5y oy

T
+Cd_2|lnh\/ ||’U}—wkh||%2(ﬂ)dt =J + Jy + Js.
0
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Taking xy = mpmw, where 7, is the Clement interpolation by the triangle inequality
and the inverse estimate, we have

T
Jy < Clluhf? / 0 — T2 3y + 170 (0 = 70) |2 3

T
_ 4
< Clnhf? / o0 = Tl (5 mnyy + 1 700 = TR0) 12 g -

Using the fact that the Clement interpolation is stable with respect to any LP-norm
and the correspondig interpolation estimates, see, e.g., [4], we obtain

T
JL < ClnhlP [ 5 w2 B ||lw — 2 dt
1 < Cllnhl o P Hw||W2=P(BM(xO)) +h7r|w WkaLp(BM(zo))

T
_4
< O H AP+ 1) [ ol atonn + 0l sta
Jo can be estimated similarly since for x = m, 7w by the triangle inequality we have
[mew—Prmiw| Lo (Ba(zo)) < 1T = Lo (By(o)) HW=TnW| Lo (B4 (20)) HITR(W—TEW) || L2 (By(20))-
This results in
-4 3714 2 4 2 2
Ji+J2 <Ch™7|Inh|*(h" + k )/ | Wl[Fv2.0 (B (wo)) T 10t L0 (Bau (w0 ) A-
0

Using Lemma [2.2] we obtain

T
/0 w120 (Baa o 0l Eo(Braeon @ < cd™ 0?9122 (1,10 () < cd P2 (lel T2 (1,11 (a))-
For the term .J3 we obtain using an L?-estimate from [31]

Js < cd”?|Inh|(h* + k?) ((HVQIUHZH(I;H(Q)) + ||wt||i2(I;L2(Q))>
<ed [ A|(h* + k) gll72 (.12
< cd™?Inh|(h* + k) |lell72 (.01 (0)-

Combining the estimate for Ji, Jo and J3 and inserting them into (4.5 we obtain:
lell 2(rizr () < clnh|¥d™ (ph™ 5 + 1)(h? + k).

Setting p = |In k| completes the proof. O

In the following theorem we provide an estimate of the error in the adjoint state
for fixed control q.

THEOREM 4.2. Let ¢ € @ be given and let z = z(q) be the solution of the
adjoint equation and zgn = zkr(q) € X,S’}ll be the solution of the discrete adjoint
equation . Then there holds the followmg, estimate

1
2

T
( | tetta0) - zkhu,xo)?dt) < cd ™ fE (k+ 1) (gl + [ z200i0m )
0
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where d is the radius of the largest ball centered at xy that is contained in Q.
Proof. We introduce an intermediate adjoint state zy;, € X,S’i defined by

B(@kh, 2kn) = (u — U, ppp)  for all @pp, € Xlnglw

where u = u(q) and therefore zy_is the Galerkin projection of z. By the local best
approximation result of Theorem for any x € X,S}ll we have

T T
~ _4
/O |(Zan — 2)(t,20)|* dt < C|ln h|3/0 12 = XN 2 (Bawoyy + 17 17z = XU 0 (B (o)) 4

T
+Cd72|lnh|/ ||Ekh—z||%2(mdt =J1+ Jo+ J3.
0

The terms Jq, Jo and J3 are estimated in the same way as in the proof of Theorem
using the regularity result for the adjoint state z from Proposition 2.3] This results
in

2

T
</0 |(Zkn — 2)(t7$0)|2dt> < e|nh|2d =2 (p?h ™ 1) (h2+k) (llgll 2(ry + N1l L2 (1.0 @2))) -

Setting p = |In h| we obtain

T 2
(/ |(Zn — 2)(t, o) dt) < clnh|= (h* + k) (lall 2y + lallz2(r,o= @) - (46)
0

It remains to estimate the corresponding error between Zzp, and zgx,. We denote
~ 0,1
€kh = Zkh — Zkh € X.;,- Then we have

B(kah, 6kh) = (u — Ukh, Sﬁkh) for all (RS X’S:}ll
As in the proof of Lemma [3.4] we use the fact that
HV’UH%XQ < B(va)'

Applying this inequality together with the discrete Sobolev inequality, see [5], results
in

[VernllFwa < Blerns exn) = (U — Ukh, €xn)
< lu — wrn || 21,0 (@) llewnll L2 (150 @)
1

< c|llnh|2||u — urn|lL2 ;01 ) | Vern | rxa-

Therefore we have
1
Vernllrxa < c[nh|2||u — upnl| 221,01 ()
and consequently (again by the discrete Sobolev inequality)
lexnll L2z~ () < cmhl|lu — ugn |l L2 (1,01 (@)

Using Theorem [.1] and

T 1/2
</ |€kh(t,$o)|2dt> < lewnllz2(r;z= (),
0
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we obtain
- 1/2
/ lexn (t, zo) P dt < cd bl (k + h?)|q -
0

Combining this estimate with we complete the proof. O
Using the result of Theorem we proceed with the proof of Theorem
Proof. Due to the quadratic structure of discrete reduced functional ji;, the second
derivative j;/,(q)(p,p) is independent of ¢ and there holds

Jin(@)(p,p) = a7 for all pe Q. (4.7)

Using optimality conditions (2.10)) for ¢ and (4.3|) for gr, and the fact that g, Gen, € Qad
we obtain

Gk (@) (@ — kn) <0 < —5"(3)(q — Grn)-
Using coercivity (4.7) we get

alld— aenll7 < 51 (@@ — Qe @ — Ten) = Jin (@) (T — Qkn) — Grn (@) (@ — Ton)
< Jen(@D(@ = Gren) = 3@ = Gen) = (2(@)(t, 20) — 2kn (@) (t,20), T — Gn)r

[SIE

T
< ([ 1@ z0) ~ @t a0) dt ) g gl
0
Applying Theorem completes the proof. O
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